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1. Introduction

The theory of symmetry – i.e., what is now known as Lie theory – was developed by Sophus Lie in
his attempt to solve (nonlinear) differential equations, generalizing the approach by Evariste Galois for
algebraic equations.

The Lie approach, and more generally symmetry methods for differential equations, produced a
number of results by Lie and his pupils, but afterwards the theory remained at the same level for
quite a long time, until it was taken up by Birkhoff in the USA and by Ovsjannikov in USSR in the
sixties [1, 2]. One of the reason for this “long sleep” lies in that the applications of the Lie theory
do in general require quite extensive computations; these can nowadays be routinely performed on a
computer by algebraic manipulation programs, but were quite prohibitive in earlier times.

After the reviving by Birkhoff and Ovsjannikov, the theory developed quickly, and underwent
various generalizations; the reader can consult some of the by now standard texts [3–9] for the basics
as well as for the most common extensions and generalizations.
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Here we are concerned with two of these extensions and generalizations. That is, on the one side
with the generalization to conditional [10], partial [11], and asymptotic [12] symmetries; and on the
other side with the extension of the theory to the framework of stochastic differential equations [13–30]
(by this we always mean equations of Ito or Stratonovich type [31–37], see below).

Our goal is to put the two together, i.e., to consider conditional and asymptotic symmetries for
stochastic differential equations. Needless to say, our main interest is not in the abstract definition
of these, but in showing that they can be of concrete use in determining (conditional or asymptotic)
solutions to the concerned equations.

In the first part of the paper we establish some background. In particular, we quickly recall some
of the main points of the theory of symmetry for (deterministic) differential equations, mainly to fix
notation (Section 2), then recall the (well-known) notion of conditional symmetry (Section 3) and of
(less well-known) asymptotic symmetry (Section 4) together with their use. We will also recall the
basics of the theory of symmetry for stochastic differential equations (Section 5), and the method of
invariants for these (Section 6).

We then proceed to merge the two, i.e., we develop conditional and asymptotic symmetries and
invariants for stochastic differential equations; this will be the subject of Sections 7 and 8. We also
provide, in Section 9, a number of concrete examples, chosen to be computationally simple in order to
keep the conceptual issues in focus.

Our main result can be shortly stated saying that the theory of conditional, partial and asymptotic
symmetries can be extended to the framework of stochastic differential equations. The reader will not
find “big theorems” in our discussion, rather a number of lemmas; this corresponds to the fact we are
not overcoming any special technical difficulty here. We are instead proposing a point of view that has
not been considered previously in the literature, i.e., building a method which – we believe – is useful
in characterizing solutions to stochastic equations via their asymptotic properties, in the same way as
the corresponding deterministic approach proved to be precious in analyzing solutions to deterministic
equations having certain asymptotic properties.

As we will discuss in more detail in the following (see Sections 3 and 4), the key observation
triggering the present approach is that while in several physical cases one has equations which
are invariant – say, for the sake of concreteness, under a rotation or scaling transformation – and
correspondingly for these there is a special set of solutions displaying such symmetry, it is of more
general interest the case where either (i) the solutions do have such symmetry only asymptotically in
time and/or space (think e.g., to the case where the rotationally invariant solutions are stable, so that
solutions which are not rotationally invariant at t = 0 but which are sufficiently near to those will, in
the long run, acquire the rotational symmetry); or (ii) the equations do not have such a symmetry, but
there are solutions which, at least asymptotically in time and/or space, display such a symmetry.

The trivial, but not meaningless example, is that of the zero solution, which surely has a very high
degree of symmetry, and which can be a valid – and maybe also stable or even attractive – solution for
equations with no symmetry.

A less extreme, more concrete and also physically relevant, example is provided, in the deterministic
framework, by the Boussinesq equation of Fluid Dynamics: in this case a number of physically relevant
– and routinely observed in experiments – solutions do have symmetry properties which are not
shared by the equation; and they can be analytically determined though the conditional symmetries
approach. Similarly, stable solutions to several types of reaction-diffusion equations (including the
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prototypical Fisher-Kolmogorov equation) can be analytically determined through the method of
asymptotic symmetries.

It must be stressed that in general, in this way one is able to obtain exact analytical expression for
these symmetric class of solutions albeit there is no way to obtain a general solution to the equation
under study in analytical terms. We will thus extend these approaches, developed in the framework of
deterministic equations; and propose a general method to study special classes (characterized indeed
by symmetry-like properties) of solutions to stochastic differential equations.

As already mentioned, we will illustrate the method by a number of concrete examples; these will
however be chosen to be computationally simple in order to keep the conceptual issues in focus.

Throughout the paper, we will use the Einstein summation convention. We will denote by t the
time variable and by xi the spatial ones, while the wk will be Wiener processes; we moreover use the
shorthand notation

∂t :=
∂

∂t
, ∂i :=

∂

∂xi , ∂̂k :=
∂

∂wk ,

and denote the time derivative of a function x(t) as either xt or ẋ, depending on typographical
convenience.

2. Symmetry of differential equations

In this section we recall some basic notions concerning symmetries of deterministic differential
equations. In particular we consider first order ODEs, i.e., dynamical systems (DS), as this is the
deterministic analogue of Ito or Stratonovich equations to be considered in the following.

For a dynamical system
dxi

dt
= f i(x, t) (1)

with t ∈ R, x ∈ M0 ⊆ Rn, we define M = M0 × R and consider maps Φ : M → M. In particular, we
consider one-parameter groups of such maps, with generator

X = θ(x, t) ∂t + ϕi(x, t) ∂i . (2)

Note that with π0 : M → R the projection π0(m0, r) = r, the full phase bundle M = M0 × R has a
natural structure of fiber bundle over the time real axis, (M, π0,R).

Under the action of X – or more precisely of the maps Φ = exp[εX] in the one-parameter group
generated by X – we have, at first order in ε,

t → t̃ = t + ε θ(x, t) , xi → x̃i = xi + ε ϕi(x, t) . (3)

Once we define the transformation of the independent (t) and the dependent (xi) variables, we have
also implicitly defined the transformation of the derivatives of the latter with respect to the former. We
have indeed (always working at first order in ε)

xi
t → x̃i

t = xi
t + εψi(x, t, ẋ)

where ψi is given by the prolongation formula [3–9]

ψi(x, t, ẋ) = Dtϕ
i − xi

t Dtθ , (4)
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and Dt is the total time derivative (in this case, this is just Dt = ∂t + ẋ j∂ j).
With this, the vector field X on M is extended (prolonged) to a vector field X(1) in J1M (in which

we consider local coordinates {t; x1, ..., xn; ẋ1, ..., ẋn}),

X(1) = θ(x, t)
∂

∂t
+ ϕi(x, t)

∂

∂xi + ψi(x, t; ẋ)
∂

∂ẋi . (5)

Here and below J1M is the (first) jet bundle associated to M [3–9]. Note this can be seen both as a
bundle over M (the fiber corresponding to first derivatives ẋ) with projection π̃1 and as a bundle over R
(the fiber corresponding to variables x and first derivatives ẋ) with projection π1,

J1M
π̃1
−→ M

π1

↘

yπ0

M0

.

The projections satisfy π1 = π0 ◦ π̃1, i.e. the diagram above is a commutative one.
The DS (1) defines a submanifold in J1M, also called the solution manifold Σ f for the Eq (1).
A function x = ξ(t) is identified with its graph

γξ = {(x, t) : x = ξ(t)} ⊂ M ,

i.e., with a section γξ of the bundle (M, π0,R); this is naturally extended to a section γ(1)
ξ in J1M. In

local coordinates, we have

γ(1)
ξ = {t; ξ1(t), ..., ξn(t); ξ̇1(t), ..., ξ̇n(t)} . (6)

The function x = ξ(t) is a solution to (1) if and only if

γ(1)
ξ ⊂ Σ f . (7)

The vector field (2) is a Lie-point symmetry (generator) for the Eq (1) if and only if

X(1) : Σ f → T Σ f ; (8)

in this case it also maps (sections of (M, π0,R) representing) solutions to (1) into – generally, but not
necessarily, different – (sections of (M, π0,R) representing) solutions to (1) [3–9].

Note that we will adhere to the usual abuse of notation consisting in calling “symmetries” the vector
fields which are actually generators for the symmetry group.

It may be worth noting that the action of the vector field (2) on sections is given by

X : f (t) → f̃ (t) = f (t) + ε
[
ϕ − θ f ′(t)

]
. (9)

To avoid any misunderstanding, we specify that this notation means that the section Γ f given by Γ f =

{(t, x = f (t))} is mapped into the section Γ f̃ given by Γ f̃ = {(t, x = f̃ (t))}.
Actually this is also an equivalent characterization of symmetries: that is, symmetries can be defined

as maps M → M which transform solutions into (generally, but not necessarily, different) solutions
[3–9].∗

∗For a very readable discussion of different – but equivalent – definitions of symmetries, see e.g., Chapter 3 in ref. [8] or Section 2.2.
in ref. [6].
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If x = ξ(t) is a solution to (1) and if X, satisfying (8), leaves γξ invariant, we say that x = ξ(t) is an
X-invariant solution to (1).

Vector fields that are symmetries for a given equations, such as the evolution Eq (1), or of more
general form, – or for equations, be these ODEs or PDEs, of more general form – are characterized
as solutions to a set of linear PDEs for the coefficients of the vector field, known as determining
equations [3–9]. For equations of the form (1) and vector fields expressed as in (2) with θ = 0 (these
are the simple vector fields to be considered below), these are written as

∂ϕi

∂t
+ f j ∂ϕ

i

∂x j − ϕ j ∂ f i

∂x j = 0 . (10)

Remark 2.1. It should be mentioned that this sketchy discussion refers to proper Lie-point symmetries.
In the case of deterministic Dynamical Systems, it turns out that so-called orbital symmetries are also
quite useful [38–40]; as far as we know, these have not been investigated in the context of stochastic
dynamical systems. �

Remark 2.2. The prolongation formula for ODEs, Eq (4), is a special occurrence of the general
prolongation formula, which – in the multi-index notation used in most of the literature, and in
particular denoting by xi the independent variables, and by ua the dependent ones – reads

ψa
J,i = Diϕ

a
J − ua

J,k Diξ
k .

We refer to [3–9] for discussion and details. �

2.1. Dynamically invariant submanifolds

The evolution Eq (1) defines a dynamics, and a dynamical vector field Z, in all of M; when f is
time-autonomous, we actually also have a vector field Y in M0 and in this case Z = ∂t+Y; symmetries X
are then characterized by [X,Z] = 0 (so called orbital symmetries are characterized by [X,Z] = λZ, for
their properties and applications see e.g., [38–40]). We are specially interested in this latter case of f
time-autonomous, both because the analysis is slightly simpler and due to its relevance in applications.

It may happen that there exist submanifolds of M being invariant under Z. In particular, for f time
autonomous, there may be proper submanifolds U ⊂ M0 which are invariant under Y . The simplest
example is that of fixed points for f , i.e., points x0 such that f (x0, t) = 0. Other simple but significant
examples are provided by periodic or multi-periodic solutions, by heteroclinic or homoclinic orbits, or
by the stable and unstable manifolds of hyperbolic fixed points [41–44].

One would expect that symmetries are constrained by the need to somehow respect the structure of
such invariant sets; this is indeed the case, provided one considers time-independent symmetries [4,45].
In particular, it can be shown that Lie-point time independent (LPTI) symmetries maps solutions into
solutions whose trajectories in M0 have the same topology.

More specifically, we have the following results (these embody several Lemmas given in [4, 45];
see there for proofs; the Corollary makes use of standard results in Topology, see e.g., [46]). We will
denote by K(X) ⊆ M the subset of M which is point-wise invariant under a vector field X (or K(A) ⊆ M
for the set invariant under an algebraA of vector fields), by Z the vector field defining the dynamics of
the (autonomous) dynamical system under study, and by G the Lie algebra of symmetries for Z.
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Lemma 2.1. The LPTI symmetry algebra of an autonomous ODE transforms stationary solutions into
stationary solutions, periodic solutions into periodic solutions of the same period.

Lemma 2.2. Assume there is a compact set K(Z) ⊂ M invariant under the flow of Z. Then for any
subalgebra G0 ⊆ G, the submanifold K0(G0) := (K(G0) ∩ K(Z)) ⊆ M is either empty or compact and
invariant under the flow of Z.

Corollary. If K0(G0) has components isomorphic to an even-dimensional sphere S 2n, then on each of
these lie stationary solutions to the dynamical system ẋ = Z(x). If K0(G0) has components isomorphic
to a disk D2n+1, then on each of these lie stationary solutions to ẋ = Z(x).

2.2. Asymptotic solutions

In several cases one meets dynamical systems or PDEs which cannot be solved exactly, but whose
asymptotic behavior (e.g., for t → ∞ and/or for |x| → ∞ or for |x| → 0) is amenable to exact treatment.

We just mention here two very simple examples of use in the following (these can be readily
generalized).

Example 2.1. For x ∈ R, consider
ẋ = f (x) = −∇Φ(x)

with Φ(x) = Φ(−x) a convex even function, non-degenerate in x = 0. Then for any initial datum
x(0) = x0 the dynamics is attracted to x∗ = 0, and in the region near x∗ (and thus asymptotically in
time) the dynamics is well described by the linear equation

ẋ = − A x := [(D f )(0)] x , A = −(D f )(0) > 0 ;

the solutions to this are of course
x(t) = x(t0) exp[−At] . ♦

Example 2.2. In R2 and with polar coordinates (ρ, ϑ), consider the system

ρ̇ = ρ (1 − ρ) ,
ϑ̇ = 1 + (1 − ρ) h(ρ, ϑ) ,

with h(ρ, ϑ) an arbitrary smooth function. The system can not be solved in general, but we know that
the dynamics is attracted to the circle ρ = 1, and on this attracting manifold we have a trivial dynamics
ϑ̇ = 1. Thus any solution is asymptotically described by ρ = 1, ϑ(t) = k0 + t for some phase k0. ♦

3. Conditional and partial symmetries

As mentioned above, symmetries map (any) solution into a (generally different) solution. It may
happen, however, that there are maps such that this property (i.e., mapping solutions into solutions)
holds only for a subset of solutions.
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3.1. Conditional symmetries

The most common case is that of equations admitting solutions which are invariant under maps that
are not a symmetry of the equation. For instance, any equation of the form (1) with f linear in x,
f (x, t) = A(t)x, will admit the origin as a fixed point, and this in turn will be invariant under any linear
(possibly time-dependent) map x→ B(t)x. But this will be a symmetry of the equation if and only if

dB(t)
dt

= [A(t) , B(t)] ,

which is definitely a non-generic property.
In this case, and in similar but less trivial ones, one speaks also of conditional symmetries [10]; see

also [47–54]. Let us discuss these in some more detail (the reader can see the references given above
for a more complete discussion), referring to the case of PDEs for greater generality; we denote by
x1, .., xq the independent variables, and by u1, ..., up the dependent ones. Our goal is to determine X-
invariant solutions for a differential equation (note that by this we will always mean possibly a vector
one, i.e., a system of scalar differential equations) ∆ = 0, where

X = ξi(x, u)
∂

∂xi + ϕa(x, u)
∂

∂ua = ξi ∂i + ϕa ∂a

is not necessarily a symmetry of ∆; at the same time, we want to determine the X which admit such
solutions.

In order to do this, we complement ∆ with an equation ∆X = 0 expressing the requirement of
X-invariance of the function u = u(x). This is just, see (9) above,

ϕa(x, u) − ξi(x, u) ua
i = 0 . (11)

We are thus led to consider the system

EX =

∆ = 0
∆X = 0

(12)

It is clear that the solutions of this, if they exist, are all and only the solutions to ∆ = 0 which are
also X-invariant (i.e., which also solve ∆X = 0). Thus symmetries for the system EX, which transform
solutions into solutions, will transform X-invariant solutions to ∆ into X-invariant solutions to ∆. In
particular this apply for the vector field X itself, which by construction will leave each of such solutions
invariant.

We are thus at first sight reduced to a standard problem in symmetry analysis; however we should
look at this with some more care. One possibility is that we fix in advance X and look for solutions to
∆ which are X-invariant. In this case ∆X reduces to an ansatz on the functional form of u(x) which can
then be inserted into ∆, and indeed nothing new is here.

On the other hand, the interesting case is the one where we do not know in advance what X should or
could be, and we study the system (12) in order to determine X and the associated invariant solutions,
if any.

In this case we get something new: in fact, the usual determining Eq (10) – or more generally
their version for PDEs – are linear in the X coefficients {ξi(x, u), ϕa(x, u)}, while now we will have
determining equations which are nonlinear (in particular, quadratic) in these.
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We will not enter into the details of how such a system of nonlinear (determining) equations can be
solved thanks to the peculiar structure of the problem, referring the reader to the original paper by Levi
and Winternitz for this matter [10].

We instead stress a most relevant point: symmetries have to map solutions into solutions, but when
we apply symmetry analysis to the system (12), this applies to the common solutions to ∆ = 0 and to
∆X = 0, i.e., only to invariant solutions. Thus these are symmetries of ∆ conditional upon the additional
invariance condition ∆X.

Remark 3.1. We should mention that one could also investigate the inverse problem for conditional
symmetries: that is, for a given number of dependent and independent variables and a given order of
the equation, and given a certain vector field X, determine all the differential equations ∆ which admit
X as a conditional symmetry. This was considered by Levi, Rodriguez and Thomova in [55], and more
recently by Pucci and Saccomandi [56, 57]. We are not able to provide stochastic extensions of this
analysis at the moment. �

3.2. Partial symmetries

A slightly more general case is also possible, i.e., that we have a subset of solutions which are not
individually invariant under the map, but which are indeed transformed one into another by the map
– which again is not a symmetry of the original equation ∆ = 0. In this case one speaks of partial
symmetries [11] (see also [58]).

A specially relevant case in our dynamical systems context is where the solutions in this set
are characterized by living on a manifold which is dynamically invariant (i.e., invariant under the
dynamics). The situation is characterized in a way which looks quite similar to the characterization
provided above for conditional symmetries. That is, we consider a differential equation (again, in
general this can be a system of PDEs) ∆ = ∆0, and a vector field X which is not a symmetry for ∆0,
thus such that – writing S 0 := S ∆0 for ease of writing,[

X(n) ∆0

]
S 0
, 0 .

We consider then an auxiliary equation

∆1 :=
[
X(n) (∆0)

]
.

If we look at solutions to the system

E =

∆0 = 0
∆1 = 0

which are globally invariant under X (that is, the set of solutions is mapped into itself, albeit the single
solutions are possibly not invariant), this set is characterized precisely by the property[

X(∗) (∆1)
]

S (1)
= 0 ; (13)

here S (1) = S 0 ∩ S 1, with of course S 1 = S ∆1 , is the set of solutions to the system E; and we wrote X(∗)

to mean the prolongation of X of appropriate order, i.e., the same order as the equation ∆1. In this case,
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i.e., if (13) is satisfied, we say that X(∗) is a partial symmetry of order one for ∆, as it maps a subset of
solutions into solutions (belonging to the same subset).

We stress that (13) may or may not be satisfied, depending on ∆ and on our choice of the vector
field X. If it is not satisfied, we can iterate our procedure and consider

∆2 := X(∗) (∆1)

and look for S (2) = S 0 ∩ S 1 ∩ S 2, enquiring if – with an obvious notation – the equation[
X(∗) (∆2)

]
S (2)

= 0 (14)

is satisfied. If this is the case, we say that X is a partial symmetry of order two for ∆; otherwise we can
still iterate our procedure and so on.

We set this in the form of a Proposition, which is quoted from [11].

Proposition 3.1. Given the general differential problem ∆ = ∆0 = 0 and a vector field X on M, define
∆r+1 := X(∗)(∆r). Denote by S (r) the set of simultaneous solutions of the system

∆0 = ∆1 = ... = ∆r = 0 ,

and assume that this is not empty for r ≤ s. Assume moreover that[
X(∗) (∆r)

]
S (r)
, 0 for r = 0, 1, ..., n − 1 ,

[
X(∗) (∆n)

]
S (n)

= 0 .

Then the set S (n) provides a family of solutions to the initial problem ∆ which is mapped into itself by
the transformations generated by X.

Remark 3.2. When the situation depicted in Proposition 3.1 is met, we shall say that X is a partial
symmetry, or P-symmetry for short, for the problem ∆, and that the globally invariant subset of
solutions S (n) obtained in this way is a X-symmetric set. We also refer to the number n appearing
in the statement as the order of the P-symmetry. �

The discussion can be specialized to the case of dynamical system; here we just recall a result
for this case, quoting again from [11], to which the reader is referred for further detail. Here L(λ)( f )
denotes the linearization of f at x(λ) (see below), i.e.,

L(λ)( f ) =
[
∇( f )

]
x(λ)

.

Proposition 3.2. Assume that the dynamical system ẋ = f (x) admits a LPTI partial symmetry X =

ϕi(x)∂i, and let x(λ) = x(λ)(t) be an orbit of solutions obtained under the action of the group generated
by X, with λ the group parameter. Then Φ := ϕ(x(λ)) satisfies the equations

dΦ

dt
= L(λ)( f ) · Φ ; Φ =

dx(λ)

dλ
.
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3.3. Examples

We give here two Examples (examples 3.1 and 3.2) of conditional symmetries, and three Examples
(examples 3.3 through 3.5) dealing with partial symmetries. These are taken respectively from [10]
and from [11]. Some Examples deal with PDEs, as the essential of conditional and partial symmetries
is better grasped in this context.

Example 3.1. The Boussinesq equation [59] in one spatial dimension, for a function u = u(x, t), reads

utt + u uxx + u2
x + uxxxx = 0 . (15)

If we consider the vector field
X1 = ∂t + t ∂x − 2 t ∂u ,

this is not a symmetry for the equation, but it turns out to be a conditional symmetry for it.
Under the action of X1 we have a one-parameter flow (group parameter λ) which acts as

t → t̃ = t + λ

x → x̃ = x + λt + (1/2)λ2

u → ũ = u − 2tλ − λ2

Assuming that u = u(x, t) is a solution to (15), we have that ũ = ũ(x̃, t̃) is a solution if it satisfies the
auxiliary condition (we omit the tildes from now on)

∆1 := (ut + t ux)x = 0 . (16)

Now we note that the invariance condition ∆X = 0, see (11), reads in this case (i.e., for the X we are
now considering)

ut + t ux + 2 t = 0 .

Thus (16) is just a differential consequence of this, (∆1)x = 0. ♦

Example 3.2. Consider again the Boussinesq Eq (15), and now

X2 = ∂t − (x/t) ∂x +
[
(2/t) u + (6/t3) x2

]
∂u ;

again this is not a symmetry for Eq (15). Now we get

ũ
(
x̃, t̃

)
=

[ t + λ

t

]2

u(x, t) +

[
(t + λ)2

t4 −
t2

(t + λ)4

]
x2 .

On the other hand, the invariance condition (11) is now

∆2 :=
[
2
t

u +
6
t3 x2

]
− ut +

x
t

ux = 0 . (17)

If u(x, t) is a solution to (15), then the condition for ũ(x̃, t̃) to be also a solution reads

A1(x, t; λ) F + A2(x, t; λ) Ft + A3(x, t; λ) Fx = 0 ,
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where Ai are certain smooth polynomial functions, and

F := ut − (x/t) ux −
[
(2/t) u + 6 (x2/t3)

]
.

Thus if u(x, t) is a solution to the Boussinesq equation and F = 0, the transformed function ũ(x̃, t̃) is
also a solution. But looking at (17) we see that F = 0 is just the invariance condition under X2. ♦

Example 3.3. Consider the modified Laplace equation

∆ := uxx + uyy + g(u) uxxx = 0 , (18)

with g(u) an arbitrary smooth function. We also consider the rotation vector field

X = y ∂x − x ∂y ; (19)

this is a symmetry for ∆ in the case g(u) = 0, but not in general. We will assume g(u) , 0.
Implementing our procedure, we get

∆1 := uxxy ,

∆2 := 2 uxxy − uxxx ,

∆3 := 2 uyyy − 7 uxxy ,

∆4 := 3 uxyy ,

∆5 := uyyy − 2 uxxy .

The last equation is identically satisfied on common solutions to the previous ones, thus we have a
partial symmetry of order five.

The set S (5) has the following form, with k1, . . . , k6 arbitrary constants:

S (5) = {u(x, y) = k1 x2 + k2 y2 + k3 xy + k4 x + k5 y + k6} ;

that is, functions which are at most quadratic in the (x, y) variables. Note that for these functions the
Eq (18) reduces to the standard Laplace equation, and for this it is obvious that (19) is a symmetry;
thus this seemingly complicated computation yields a rather obvious result. ♦

Example 3.4. We look again at the Boussinesq Eq (15), which will be our ∆0, and consider the vector
field

X = ∂t + t ∂x − 2 t ∂u . (20)

Now we have (disregarding some inessential nonzero multiplicative constants)

∆1 = X(∗) ∆0 = uxt + t uxx ,

∆2 = X(∗) ∆1 = 0 .

We have thus to look for simultaneous solutions to ∆0 = 0 and to ∆1 = 0. Solving for ∆1 = 0 yields

u(x, t) = v(x − t2/2) + w(t) − t2, (21)
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with v and w arbitrary functions. Note that the functions (21) are X-invariant if and only if w′(t) = 0
(this is why the term −t2 has not been absorbed into the arbitrary function w(t) in writing (21)); thus
we are considering a setting which is really a generalization of the conditional symmetries approach,
even in this case.

Inserting now (21) into ∆0, i.e. into the Boussinesq equation (15), and writing z = x − t2/2, we get
that v and w must satisfy

d
dz

(
v′′′ + v v′ − v − 2 z

)
+ w v′′ +

d2w
dt2 = 0 . (22)

We are specially interested, as mentioned above, in the case w(t) , 0 (otherwise we recover the Levi-
Winternitz family of X-invariant solutions). E.g., for w(t) = K a nonzero constant, we get solutions
u(x, t) = K + v(z) − t2 with v a solution to

v′′′ + v v′ − v + K v′ = c + 2 z . ♦

Example 3.5. We now consider an example involving a Dynamical System in R3 with Cartesian
coordinates (x, y, z); we will also write ρ2 = x2 + y2. Consider

ẋ = x (1 − ρ2) − y + z g1(x, y, z)
ẏ = y (1 − ρ2) + x + z g2(x, y, z)
ż = z g3(x, y, z)

with gi smooth functions. If we also consider the rotation vector field

X = y ∂x − x ∂y ,

then the partial symmetry condition reads

z Gα(x, y, z) = 0 (α = 1, 2, 3)

with Gα certain functions which are non-zero for generic gi: e.g.,

G1 = g2 − y (∂g1/∂x) + x (∂g1/∂x) .

Thus the system exhibits – as rather obvious from its expression – rotational (x, y) symmetry only
if restricted to the plane z = 0. Moreover, in this plane one can find three different families of solutions
(beside the null one, which is rotationally invariant) which are mapped into themselves by the rotations,
without being rotationally invariant themselves: the trajectories lying in ρ < 1, and respectively in
ρ > 1, spiralling towards the limit cycle ρ = 1; and the solutions running on the single trajectory ρ = 1
which is left fixed by the partial symmetry (i.e., the limit cycle). ♦
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4. Asymptotic symmetries

In many cases, one has equations whose solutions have a complicated behavior, which becomes
simple in some asymptotic regime. This may be asymptotic in time (thus for t → ±∞, possibly with
different behavior in the two limits or with a simple behavior only in one of the limits) or asymptotically
in space (i.e., for |x| → ∞, or in the one dimensional case for x → ±∞, with the same notes as for t);
or in a suitable combination of the two.

It is remarkable that in such cases one can adopt a renormalization-group (RG) like approach [60,
61]; this in turn can be combined with symmetry considerations [12, 62, 63]. In particular, we can
have asymptotic symmetries, i.e., maps which are symmetries (hence in particular map solutions into
solutions) only in this asymptotic regime, being otherwise (that is, in the non-asymptotic regime) only
approximate symmetries, at most.

4.1. Asymptotic symmetries in the PDE setting

In order to discuss asymptotic symmetry properties (at least in the deterministic case) we consider
the general case, i.e., possibly PDEs (of any order n); the independent variables live on a manifold B,
the dependent ones take values in a manifold U, and we consider M = U × B. We will follow the
discussion given in [4], referring to [12, 62, 63] for further detail.

It is then convenient to use the geometrical representation of functions as cross sections of the
bundle (M, π0, B), and of equations as submanifolds in JnM; in the case of evolution equations, these
can also be seen as sections of a suitable fiber bundle (with time derivatives in the fiber, i.e., in the
vertical space), and on the other hand some care is needed in order to take into account the special role
of the time variable in this case.

Here and in the following we write ∂J
a = (∂/∂ua

J); moreover ψa
0 = ϕa, and u[n] will denote

(u, u(1), ..., u(n)). Recall also that |J| is the order of the multi-index J.
A vector field

Y = ξi(x, u) ∂i + ϕa(x, u) ∂a (23)

in M, and its prolongation
Y (n) = ξi(x, u) ∂i + ψa

J(x, u[|J|]) ∂J
a (24)

to JnM, will then induce an action on the space of sections in (M, π0, B), hence on functions; and on
submanifolds in JnM, hence on equations.

In particular, a (vector) function ua = f a(x) is then mapped by the infinitesimal action of the vector
field (with parameter ε) into

ũa(x) =
(
eεY f

)a
(x)

= ua(x) + ε
[
ϕa(x, f (x)) − ξi(x, f (x)) ∂i f a(x)

]
+ O(ε2) ; (25)

this infinitesimal action defines a flow (with parameter λ, not necessarily small) γ(λ) = Φ(λ, γ0) in
the set Γ(M) of sections in (M, π0, B), where λ is the flow parameter and γ0 is the initial point for
the flow. From this one also computes the transformation rules for derivatives ua

J, i.e., on sections of
(JnM, πn, B), and hence for equations; this also defines a flow γ(n)(λ) = Φ(n)(λ, γ(n)

0 ) in the set Γ(n)(M)
of sections in (JnM, πn, B), where λ is the flow parameter and γ(n)

0 is the initial point for the flow.
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We will also write these flow as

fλ = Φ(λ, f0) , ∆λ = Φ(n)(λ,∆0) , (26)

for ease of writing.
We say that a function u = f (x) is symmetric under Y if and only if the corresponding section

γ f ∈ Γ(M) is invariant under (the flow Φ in Γ induced by) Y; and similarly that the equation ∆ in JnM
is symmetric under Y if and only if the corresponding submanifold S ∆ is invariant under (the flow Φ(n)

in JnM induced by) the prolongation Y (n).
We are specially interested in the case where the flow drives functions (or equations) which are not

invariant to a fixed point, i.e., to a limit function (or an equation) which is invariant.
In particular, consider the case where the limit

lim
λ→∞

Φ(λ, γ f ) = γ∞f (27)

exists. Then we say that Y is an ω-asymptotic symmetry for (the section γ f and hence) the function
f : B → U. (In the case where the limit limλ→−∞Φ(λ, γ f ) = γ−∞f exists, we say that Y is an
α-asymptotic symmetry for f . This notation recalls the notions of ω-limit and of α-limit in use in
Dynamical Systems theory [41–44].)

Similarly, in the case where the limit

lim
λ→∞

Φ(n)(λ, S ∆) = S∞∆ (28)

exists, we say that Y is an ω-asymptotic symmetry for (the submanifold S ∆ and hence) the equation
∆ = 0; and similarly considering the limit for λ→ −∞.

We have the following results, which we quote from [4] (Lemma IX.1 therein):

Lemma 4.1. Let u = f0(x) be a solution to the differential equation ∆0; and let the limits f±∞, ∆±∞ for
the flows

fλ = Φ(λ, f0) , ∆λ = Φ(n)(λ,∆0)

exist. Then f±∞ is a solution to ∆±∞.

Corollary. If ∆0 → ∆∗ for λ→ ±∞, then under the flow Φ(λ, f ) all solutions f0 to ∆0 go into solutions
(not necessarily invariant) to ∆∗ for λ→ ±∞.

Remark 4.2. We stress that here “asymptotic” refers to the flow parameter λ, i.e., to the flow Φ and
Φ(n) associated to Y . This may or may not correspond to asymptotic properties in time and/or space
depending on the form of the vector field Y we are considering. �

4.2. Examples

Example 4.1. Consider the DS in R2ẋ = x − A y − (x2 + y2) x ,

ẏ = y + A x − (x2 + y2) y ;
(29)
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this is symmetric under both time translations and spatial rotations. Thus if we consider the two-
parameters family of vector fields

X = α ∂t + β
(
x ∂y − y ∂x

)
, (30)

all of these are symmetries for our DS. Note that for α > 0 the action of X gives translations forward
in time, while for α < 0 we have translations backward in time; similarly, the sign of β controls the
direction of rotation in the (x, y) plane. We assume α > 0 for definiteness and ease of discussion.

The action of X on the space Γ = {xλ(t), yλ(t)} of sections of (R2 × R, π0,R) – which we denote by X̃
– is described by

dxλ
dλ

= −α
[
1 − (x2 + y2)

]
xλ − (β − α A) yλ ,

dyλ
dλ

= −α
[
1 − (x2 + y2)

]
yλ + (β − α A) xλ .

Thus there is no fixed point for the action of X̃ unless we choose β = αA, i.e.,

X = X0 := α
[
∂t + A

(
x ∂y − y ∂x

)]
.

With this choice instead, we get

dxλ
dλ

= −α
[
1 − (x2 + y2)

]
xλ ,

dyλ
dλ

= −α
[
1 − (x2 + y2)

]
yλ ;

thus all solutions admit the vector field X0 as an α-asymptotic symmetry, and the vector field X∗0 = −X0

as an ω-asymptotic one (their role is reversed for α < 0 in the definition of X0). Note that the solutions
with x2

0 + y2
0 equal to either zero or one also admit X0 as a full symmetry. ♦

Example 4.2. Consider the FKPP (Fisher-Kolmogorov-Petrovskii-Piskunov) equation [64, 65]

ut = A uxx + ε u (1 − u) (31)

for u = u(x, t), with A and ε positive real constants; in biological applications, it is required that u(x, t) ≥
0 for all x and t. This obviously has some stationary homogeneous (i.e., ux = 0) states u(x, t) = 0 and
u(x, t) = 1, with the former being unstable and the latter stable against small perturbations. It is known
that if the initial datum is suitably concentrated, in particular if it decays exponentially fast for |x| → ∞,
then for t → ∞ and x→ ∞ the solution is in the form of a traveling front

u(x, t) ' exp
[
−

x − v t
λ

]
; λ =

√
A/ε , v =

√
4Aε .

It is convenient to rescale coordinates via

t → t̃ = ε t , x→ x̃ =
√
ε/A x .
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Using these coordinates – and omitting the tildes for ease of writing – the equation reads

ut = uxx + u (1 − u) , (32)

and the asymptotic solution is

u(x, t) ' f0(x, t) = A exp [− (x − 2 t)] .

As already mentioned, the asymptotic above describes the behavior of the solution for large t and x,
which also means for small u. But for small u the equation is approximated by its linearization around
u = 0, i.e., simply by

ut = uxx + u ; (33)

the ansatz u(x, t) = w(z) = w(x − 2t) transforms this into

w′′ + 2 w′ + w = 0 , (34)

with solutions
w(z) = c+ e−z + c− ez .

We denote byW the space of such solutions; the constants (c+, c−) provide coordinates in this space.
The requirement that w(z) → 0 for z → ∞ (i.e. for x → ∞ at any finite t) yields c− = 0 and hence
w(x) = c+e−z, which is just the f0(x, t) given above.

The symmetry algebra of the linearized Eq (33) is generated by

X0 = u ∂u , X1 = ∂x , X2 = ∂t .

We also consider

X± := X1 ∓
1
2

X2 ;

note that X+ = ∂z, X−(z) = 0. Moreover, [X0, X±] = 0.
The quotient (i.e., symmetry-reduced) Eq (34) admits X0 (now written as X0 = w∂w) as a scaling

symmetry, and is also invariant under X+. It is easily checked that the propagating front solutions
correspond to a subspace ofW invariant under the action of the group generated by the vector fields
X0 and X+.

As for asymptotic symmetries, the situation is less simple; one can show the following, which we
quote from [63]: if we consider a scaling vector field X such that the limit for λ → ∞ of exp[λX]
extracts the behavior for large x and t, and ∆0 is the FKPP equation, we set ∆λ := eλX∆0. Then

lim
λ→∞

∆λ = ∆∗

is the heat equation ut = uxx.
In fact, consider the most general scaling vector field,

Xs = a x ∂x + b t ∂t + c u ∂u ;
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one of the constants a, b, c can always be set to unity (provided it is nonzero), which amounts to a
redefinition of the group parameter. Then choosing ∆0 the FKPP equation in its standardized form (32)
we get for ∆λ = exp[Xsλ]∆0 the expression

∆λ = λc−b
[
ut − λb−2a uxx − λb u + λb+c u2

]
.

In order to have a meaningful (and nonzero) limit for λ → ∞ we set b = c, and we will choose
b = c < 0; in order to have a nontrivial limit for λ → ∞ we also set a = b/2. Moreover, we can
reparametrize the flow setting |b| = 1, i.e., b = −1. This yields

∆λ = ut − uxx − (u/λ) + (u2/λ2) ,

which reduces to the heat equation for λ→ ∞. ♦

5. Symmetry of stochastic differential equations

We have so far discussed symmetries of deterministic differential equations. The symmetry
approach has also been applied to stochastic differential equations [13–30].

Here we will be specially concerned with equations (as in the case of deterministic equation, here
an equation might be of vector type, i.e., a system of scalar equations) of Ito type, i.e., in the form

dxi = f i(x, t) dt + σi
k(x, t) dwk , (35)

where f i and σi
k are smooth functions. We will also consider Stratonovich type equations

dxi = bi(x, t) dt + σi
k(x, t) ◦ dwk . (36)

As it is well known, to each Ito equation there is an associated Stratonovich equation (and
conversely) which carries the same statistical information (the correspondence between the two
presents some subtleties, see e.g., [34,37] for a discussion of these), in particular Eqs (35) and (36) are
in such a relation if their drifts satisfy

f i(x, t) = bi(x, t) +
1
2

(
∂kσ

i j
)
σk

j . (37)

We will consider in particular the approach which parallels the usual treatment of deterministic
equations in the stochastic case (to which we gave several contributions in recent years); for a
discussion of other approaches, including earlier attempts, see e.g., the review paper [22]. See
also [66, 67] for an approach relating symmetries to Girsanov theory, and more generally [68–72]
for a related concurrent approach.

While in the case of deterministic differential equations there exists a well developed geometric
theory, which allows to set the symmetry theory on firm geometrical basis, this does not hold for
stochastic equations. Actually, the main characteristic of Ito differentials is that under diffeomorphisms
they do not transform by the familiar chain rule, but according to Ito rule. This shows that the lack
of a geometrical setting for symmetries of Ito equations is not due to insufficient development of the
theory, but to its intrinsic features. The situation is slightly different for Stratonovich equations. In
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this case the chain rule is preserved, so that a geometrical setting would be possible; but, as it is
well known, the Stratonovich formulation presents several delicate points from the point of view of
stochastic processes (many of them being actually associated to its more relevant advantage from the
point of view of a physicist, i.e., the preservation of the time inversion symmetry), so that a formulation
of the basic theory in terms of the Ito theory is preferable. The relation between symmetry theory for
Ito and Stratonovich equations is thoroughly discussed e.g., in [27]; see also [19] for earlier results.

5.1. Symmetry of Ito equations

Let us consider an Ito Eq (35); this involves the time variable t, the driving Wiener processes wk(t),
and the spatial variables xi, which evolve through a stochastic process depending on the realization of
the wk(t) and described by the Ito equation itself.

Thus our problem lives in the space E of the variables {t; x; w} (note that x and w are vector
variables); a blind application of the Lie approach would consider general vector fields in this space,
i.e., vector fields of the form

X = τ(x, t,w)
∂

∂t
+ ϕi(x, t,w)

∂

∂xi + hk(x, t,w)
∂

∂wk . (38)

It is clear that the action of such a vector field mixes all the variables, discarding the difference between
driving and driven stochastic processes, and, even more, introducing a stochastic time. This kind of
transformation is well known and widely used by probabilists, and also in the study of stochastic
differential equations (including e.g., in the study of normal forms for SDEs, which has close relations
with symmetry considerations [73]); but here we are interested in transformations which leave the
equation invariant. Transformations which even change the nature of the variables are surely not
leaving the equation invariant, and hence will not be considered.

If we want to leave the equation invariant, a necessary (but by no means sufficient) condition is that
the nature of the involved variables is not changed. We should also ask the transformed wk variables to
be still independent Wiener processes. These requirements (see [30] for how the latter one restricts the
form of the hk functions) lead to consider vector fields in E of the form

X = τ(t)
∂

∂t
+ ϕi(x, t,w)

∂

∂xi +
(
Rk

`w
`
) ∂

∂wk , (39)

with R a matrix in the Lie algebra of the conformal linear group CL(n). These vector fields are called
admissible in E, and in the following we only consider such fields.

Remark 5.1. We recall CL(n) ≈ R+ × O(n), where O(n) is the (n-dimensional) orthogonal group, and
R+ represents here the dilation group. An alternative characterization of matrices A ∈ CL(n) is simply
that they satisfy A+A = λ2I for some λ ∈ R. We are interested in matrices R in the Lie algebra of CL(n);
in practice, such an R is the sum of a diagonal matrix which is a multiple of the identity (corresponding
to the linear space spanned by the generator of the dilation group), and a skew-symmetric one (these
correspond to the linear space spanned by the generators of the orthogonal part of the group). Thus R
has 1 + n(n − 1)/2 independent elements. �

It is then straightforward to consider the change of variables induced by an infinitesimal action of
X, i.e.,

t → t + ετ , xi → xi + εϕi , wk → wk + εRk
`w

` ,
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and hence on the Eq (35). Our restrictions on the form of the vector field guarantees that the
transformed equation is still an Ito one, which can hence be written as (recall the variables t, x,w
are now the transformed ones)

dxi = f̂ i(x, t) dt + σ̂i
k(x, t) dwk , (40)

where the functions f̂ i and σ̂i
k – which can be readily computed in explicit terms – are in general

different from the original ones, f i and σi
k.

Requiring that the equation is left invariant under the action of X means simply requiring that
f̂ i(x, t) = f i(x, t) and that σ̂i

k(x, t) = σi
k(x, t). We have thus n + n2 equations involving the unknown

functions τ, ϕi, σi
k, which determine the vector fields which leave the Eq (35) invariant, i.e., identify

its (Lie-point) symmetries; these are thus called the determining equations.
An important point is that the form (39) for symmetry vector fields is actually still too general:

albeit all vector fields of this form are admissible, not all of them are useful when it comes to applying
symmetry theory. In particular, as in the deterministic case, the main purpose of computing symmetries
is to then apply them for reducing – or even solving – the stochastic equations. But to this purpose,
only so called simple symmetries are useful under the present theory [16–18, 28]. Simple symmetries
are those not acting (but generally depending) on the time variable; i.e., those, in the notation of (39),
with τ = 0). Thus admissible simple symmetries have generators of the form

X = ϕi(x, t,w)
∂

∂xi +
(
Rk

`w
`
) ∂

∂wk , (41)

with R as discussed above.
We stress that this restriction to simple (admissible) symmetries will be given for granted in the

following; it will also simplify a number of matters.
Some further nomenclature within simple symmetries may also be useful: when R = 0 and the ϕi

do not depend on the w variables, we have deterministic symmetries; when R = 0 and (at least some
of) the ϕi do actually depend on the w variables, we have random symmetries; and finally when R , 0
(and hence the X has a component along the w variables) we have W-symmetries.

Remark 5.2. There is a substantial difference in computing the action of a vector field X on a stochastic
equation with respect to the case of a standard (i.e., deterministic) ordinary differential equation. In
the latter case the ODE defines a vector field Z in a suitable jet bundle J, and we compute how the
vector field X and its prolongations act on the vector field Z; in the case of stochastic Ito equations,
we have to compute how X acts on the functions f i(x, t), σi

k(x, t) and on the differentials dxi, dt, dwk.
Thus, roughly speaking, we are dealing with one-forms rather than with vector fields. This might be
compared with recent work by Anco and Wang [74] taking the same point of view for deterministic
ODEs. �

When we write down the explicit expressions for f̂ i and σ̂i
k, we also obtain the explicit expressions

for the determining equations. We set this in the form of a Proposition; this is quoted from [30], and
we refer to there for a proof.

Here and below the symbol ∆ denotes the Ito Laplacian,

∆F :=
∑
k,`

δk` ∂2F
∂wk∂w`

+
∑

i, j

(σσT )i j ∂2F
∂xi∂x j + 2

∑
j,k

σ jk ∂2F
∂x j∂wk . (42)

Mathematics in Engineering Volume 4, Issue 5, 1–52.



20

Proposition 5.1. The determining equations for simple symmetries of the Ito Eq (35) are

∂ϕi

∂t
+ f j ∂ϕ

i

∂x j − ϕ j ∂ f i

∂x j +
1
2

∆ϕi = 0 , (43)

∂ϕi

∂wk + σ
j
k

∂ϕi

∂x j − ϕ j ∂σ
i
k

∂x j − σi
m Rm

k = 0 . (44)

Obviously, several special cases are obtained by considering special forms of the functions τ, ϕi and
R. We will not enter into this discussion, and just refer the reader to [22, 30].

We will however stress that solutions with τ = 0 (i.e., such that the time variable is not acted upon
by the vector field X) are known as simple symmetries, and are specially useful in that the symmetry
reduction based on these is specially simple.

Remark 5.3. The determining Eqs (43), (44) are a set of n+n2 equations for the n functions {ϕ1, ..., ϕn}

and the n × n matrix R, having (as noted above) n(n − 1)/2 + 1 independent elements. In order to
concretely use the information about the symmetry, it does not suffice to prove that a solution exists,
but we need of course to determine it in an explicit way. �

5.2. Ito versus Stratonovich equations

As it is well known – and recalled above – the Ito Eq (35) is associated with the Stratonovich
Eq (36), the coefficients of the two being related by (37). With this condition, (36) carries the same
statistical information as (35); see e.g., [37] for more detail. From the point of view of symmetry, there
is a substantial difference: while the Ito equations transforms, under the action of a diffeomorphism and
thus in particular under the flow generated by a vector field, as described by the Ito rule, a Stratonovich
equation transforms under the usual chain rule and thus has a geometrical meaning.

It is quite natural to wonder if symmetries of an Ito equation and of the associated Stratonovich
equation are related or coincide. The question was first tackled by Unal [15], and then fully solved by
Kozlov [27], who showed that deterministic and random symmetries of an Ito and of the associated
Stratonovich stochastic equations are just the same – as indeed natural given the equivalence of the two
formulations.

The situation is slightly different for W-symmetries; the relations of these for an Ito and the
associated Stratonovich equation are discussed in [30], see Section VII (and in particular Section VII.C)
therein.

One could of course also analyze symmetries of a Stratonovich Eq (36) along the lines of Section
5.1, with the same limitation on the form if the admitted vector fields; in this way one would obtain
the determining equations for (Lie-point) symmetries of a Stratonovich equation. See again [30] for a
proof to the following statement.

Proposition 5.2. The determining equations for simple symmetries of the Stratonovich Eq (36) are

∂ϕi

∂t
+ b j ∂ϕ

i

∂x j − ϕ j ∂bi

∂x j = 0 , (45)

∂ϕi

∂wk + σ
j
k

∂ϕi

∂x j − ϕ j ∂σ
i
k

∂x j = σi
m Rm

k . (46)
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Note that (46) coincides with (44); as for (45), this coincides with (43) when we impose the
correspondence (37). See also [24–27] for further detail.

5.3. Adapted variables and integration of stochastic equations

In the view of Sophus Lie, the symmetry analysis of differential equations was not a mathematical
curiosity, but a concrete method to obtain order/dimensional reduction, and when possible exact
solutions, of the differential equations.

The same applies for symmetry analysis of stochastic equations: knowledge of their symmetries
allows to obtain a reduction, and when we have enough symmetries (e.g., one symmetry for a scalar
equation) there is a concrete method to obtain a complete solution of the equation.

Remark 5.4. It is maybe worth specifying what we mean by this, i.e., by a complete solution of
an Ito equation. We mean an explicit correspondence between a concrete realization of the driving
(n-dimensional) Wiener process and the corresponding realization of the (n-dimensional) stochastic
process x(t). Example of this correspondence are provided below in this subsection. �

As for deterministic equations, the key to integration of a symmetric equation lies in passing to
symmetry-adapted variables (an alternative method uses invariants, and will be discussed in the next
Section). In these, the equation takes a specially simple form and is integrated in an elementary way;
that is, the difficulty of integrating the equation is moved to the difficulty of determining the symmetry
and the symmetry-adapted variables.

In fact, once we have determined (simple) symmetries of a given Ito equation, these can be used
pretty much in the same way as in the case of deterministic equations to integrate or reduce the equation
at hand.

Proposition 5.3. Let the Eq (35) for x ∈ M ≈ Rn admit a r-dimensional solvable algebra G of simple
deterministic Lie symmetries. Then, passing to G-adapted variables, the equation can be reduced to a
stochastic equation for y ∈ M/G ≈ Rn−r plus a set of r reconstruction equations; the latter amount to
simple Ito integrations. In the case r = n, the equation is explicitly integrated.

Proof. This is given and proved e.g., in [25]; it is however worth sketching the proof. The first step,
i.e., the determination of (simple) Lie symmetries, has already been mapped in the previous part of this
section to the problem of solving the determining equations. Assume that a symmetry vector field X –
written in the form (41) – has been found. We want then to pass from (x, t; w) to new variables (y, θ; z),
where the zk are still independent Wiener processes, such that in the new variables X reads simply as
X = ∂/∂yn. In fact, if this is the case the Ito equation will be written, in the new variables, as

dyi = F i(y, θ) dθ + S i
k(y, θ) dzk (47)

with both the F i and the S i
k being independent of yn. The equation decouples then into an (n − 1)-

dimensional Ito equation plus a “reconstruction equation”, which is written in terms of an Ito integral
as

yn(t) = yn(0) +

∫ t

0
Fn[y(θ), θ] dθ +

∫ t

0
S n

k[y(θ), θ] dzk . (48)

In the case of a scalar equation, this gives directly a full solution of the equation.
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When we have a higher dimensional equations and several symmetries spanning a solvable Lie
algebra, we can proceed step by step by reducing the dimension of the system provided we operate
according to the structure of the Lie algebra, i.e., according to the derived series for G, as in the case
of deterministic equations [3–9]. ♦

We stress that for simple Lie-point symmetries, i.e., vector fields of the form

X = ϕi(x, t) ∂i , (49)

there is a simple way to relate the sought-for change of variables to the symmetry X [16–18]. First
of all we note that in this case the time variable can be left unaffected by the change of variables. It
suffices then to require that

X = ϕi(x, t)
∂

∂xi = ϕi[x(y), t]
∂y`

∂xi

∂

∂y`
=

∂

∂yn ;

this requires to solve the linear equationsϕi(x, t)
(
∂y`/∂xi

)
= 0 (` = 1, ..., n − 1)

ϕi(x, t)
(
∂yn/∂xi

)
= 1 ,

which are solved by the classical method of characteristics.
In particular, for n = 1 we have to solve only the last equation, and its solution is promptly written

as
y =

∫
1

ϕ(x, t)
dx .

Remark 5.5. The reader can wonder why this Proposition considers only deterministic symmetries.
The reason is that in the case of random or W-symmetries, one is not guaranteed that the transformed
equation is still of Ito type (this depends on a certain compatibility condition being satisfied, see [25,
30]). Note that the problem is specially present when attempting multiple reduction. In fact, the first
reduced equation could be not of Ito type, and in this case our theory can not say anything about
successive reductions.

We also stress that in the scalar case the reduced equation, albeit not of Ito type, could be integrable;
in this case its solution provides – inverting the transformation – the solution to the original equation.

Finally, we note that in [30], see in particular Sect. V therein, condition ensuring the symmetry
reduced equations are still of Ito type are discussed in some detail (in any case, one can perform the
reduction and verify if the reduced equation is Ito or otherwise). When all the reduced equations are
of Ito type, Proposition 3 extends also to random or W-symmetries. �

5.4. The Lie algebraic structure of symmetries for a stochastic equation

It is well known that symmetries of a deterministic differential equations form a Lie algebra [3–9]
(for an explicit proof, see e.g., Sect. 2.3 (and Sect. 5.1 for the case of generalized symmetries) in
ref. [6]). The same holds for stochastic equations, at least for deterministic or random symmetries;
note this includes the class of symmetries (deterministic ones) which are guaranteed to allow multiple
reductions (see Remark 5.5 above):
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Proposition 5.4. The set of simple deterministic or random symmetries of a given Ito equation has
the standard Lie algebra structure, i.e., if X,Y are symmetries of a given equation, their commutator
Z = [X,Y] is also a symmetry for the same equation.

Proof. This is Theorem 4.3 in [26]; see there for the proof. Alternatively, note that symmetries of an Ito
equation correspond to symmetries of the associated Stratonovich equation; for the latter the standard
chain rule holds, so it is obvious that symmetries have the standard Lie algebra structure, proceeding
just as in the case of deterministic equations. ♦

Remark 5.6. It should be noted that [20] contains a statement in contrast with Proposition 5.4 (see
Sect. IX.A therein). That statement concerns transformations of a rather more general form than the
one considered here† and it is thus wrong if seen in the present context, while Proposition 5.4 above is
correct. �

Remark 5.7. Our Proposition 5.4 does not say anything concerning W-symmetries. In fact, the
following Examples will show that in some cases these also form a Lie algebra (or possibly even a
Lie module), while in other cases this is not the case. In other words, no general statement is possible
about the Lie algebraic structure of W-symmetries of a given equation. �

5.5. Stochastic versus diffusion equations

Finally, we recall that for any Ito Eq (35) there is an associated diffusion (Fokker-Planck) equation

ut = Ai j ui j − Bi ui − C u , (50)

describing the evolution of the density u(x, t) in time; here ui := (∂u/∂xi) and similarly ui j :=
(∂2u/∂xi∂x j), and the coefficients in the Fokker-Planck Eq (50) are related to those in the Ito Eq (35)
by

Ai j =
1
2

(σσT )i j , Bi = f i − ∂ j(σσT )i j , C = (∂i f i) −
1
2
∂2

i j(σσ
T )i j . (51)

Remark 5.7. The Fokker-Planck equation is often also written, more synthetically, as

ut =
1
2

∂2

∂xi∂x j

[
σσT u

]
−

∂

∂xi

[
f i u

]
. (52)

Combining this equation with those for the transition from an Ito equation to the associated
Stratonovich one, see Eq (37), it is immediate to get the Fokker-Planck equation associated to a
Stratonovich equation. �

Remark 5.8. We also recall that, as discussed in [13, 19, 22], any symmetry of the Ito Eq (35) leads
(adding a standard term proportional to ∂u) to a symmetry of the associated Fokker-Planck Eq (50),
but the converse is not true. This is rather natural, given that different Ito equations can have the same
associated Fokker-Planck equation; in fact, symmetries of a Fokker Planck equation will in general
map these different Ito equations one into the other. We refer to [13, 14, 19, 22] for further detail and
examples. �

†In fact, far too general transformations, in particular functions h(x, t,w), are allowed at that point of the discussion in [20]; restricting
to h(x, t,w) = Rw, as we do here, produces the right result.
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5.6. Examples

We consider here some examples illustrating the results discussed in this Section. We recall that we
are considering simple admissible symmetries or W-symmetries; that is, vector fields of the form (41)
with R a constant matrix of the form discussed in Sect. 5.1.

Example 5.1. Consider the equation
dx = t dw .

The determining equations are then

ϕt +
1
2

∆(ϕ) = 0 , ϕw + t ϕx − R t = 0 ;

their general solution is
ϕ = R x + k ,

with k a constant. Thus we have two symmetries (a deterministic one and a W-symmetry), i.e.,

X = ∂x , Y = R x ∂x + R w ∂w .

It is immediate to check that
[X,Y] = R ∂x

is still a symmetry: thus in this case the set of (simple) symmetries, involving both “ordinary” and
W-symmetries, is indeed a Lie algebra. ♦

Example 5.2. Consider the scalar Ito equation

dx = α x dt + β x dw , (53)

where α and β are real constants. This describes the geometric Brownian motion in one dimension, and
it is well known that this equation can be integrated (see e.g., [36], Chapter 5). Note that if we start
with x(0) > 0, we are guaranteed to have x(t) ≥ 0 for all times. The determining equations (43), (44)
for simple symmetries‡ of (53) are

ϕt + α xϕx − αϕ +
1
2

∆ϕ = 0 , (54)

ϕw + β xϕx − β ϕ − β x R = 0 . (55)

Solving (55) yields

ϕ(x, t; w) = x
[
R log(x) + ψ(z, t)

]
; z := w − β−1 log(x) .

Inserting this into (54), the latter reads(
x

2β

) [
β (β2 + 2α) R + 2 βψt + (β2 − 2α)ψz

]
= 0 ;

‡Recall this means τ = 0 in terms of (39), i.e., that X should be of the form (41).
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the solution to this equation is

ψ(z, t) =
β (2α + β2) Rz + (2α − β2) Q(ζ)

(2α − β2)
,

having defined

ζ =
(2α − β2) t + 2 βw − 2 log(x)

2α − β2 .

Going back to evaluate ϕ, we thus we have symmetries depending on the arbitrary function Q and on
the arbitrary constant R

X =

[
x

(
β

2α − β2

(
(2α + β2) w − 2 β log(x)

)
R + Q(ζ)

)]
∂x + (R w) ∂w . (56)

The simplest choice is of course R = 0, Q(ζ) = 1, which gives ϕ = x, i.e. the scaling symmetry

X0 = x ∂x .

The associated integrating change of variables is simply

y =

∫
1
ϕ

dx =

∫
1
x

dx = log(x) ;

In fact, Ito formula for the change of variables gives immediately (using (53) for the time evolution)

dy = (α − β2/2) dt + β dw ,

which yields at once (setting for ease of writing t0 = 0 and w(0) = 0)

y(t) = y0 + (α − β2/2) t + βw(t) ,

and hence
x(t) = exp[y(t)] = x0 exp

[
(α − β2/2) t + βw(t)

]
.

We can use this Example also to illustrate the Lie algebraic structure of the set of symmetries. Let
us first set R = 0, i.e., consider random symmetries, and two symmetries of the general form (56) with
R = 0, say

X = x P(ζ) ∂x , Y = x Q(ζ) ∂x .

An explicit computation shows that

Z := [X,Y] = x H(ζ) ∂x

where the function H is given explicitly by

H(ζ) :=
1

α − β2/2
[
P′(ζ) Q(ζ) − P(ζ) Q′(ζ)

]
.

This is still of the functional form (56) with R = 0, and hence is immediately known to be still a
(random) symmetry for our Eq (53).
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On the other hand, let us consider the general case, i.e., let us not enforce R = 0. We set a simplified
notation writing

µ(x,w) =
β

2α − β2

(
(2α + β2)w − 2β log(x)

)
,

and consider vector fields

X = x (µ(x,w) R1 + P(ζ)) ∂x + (R1w) ∂w ,

Y = x (µ(x,w) R2 + Q(ζ)) ∂x + (R2w) ∂w ;

by our discussion above, they are symmetries of (53); we could actually also take R1 = R2 = R , 0.
Then an explicit computation yields

Z = [X,Y] = x h(x,w; ζ) ∂x

where the function h is given by

h(x,w; ζ) :=
1

(α − β2/2)2

[
β2 (

βw − log(x)
) (

R2 P′(ζ) − R1 Q′(ζ)
)

+
(
α − β2/2

) [
(R1Q − R2P)β2 + P′(ζ) Q(ζ) − P(ζ) Q′(ζ)

]]
.

The vector field Z thus defined is not of the form (56) and hence is not a symmetry of the Eq (53).
This shows that W-symmetries of a given equation, contrary to simple deterministic and random

symmetries, in general do not form a Lie algebra. ♦

Example 5.3. Consider the stochastic logistic equation with environmental noise

dx =
(
α x − β x2

)
dt + γ x dw . (57)

Here α, β, γ are nonzero real constants; in the biological applications they have positive sign, but for
our present purposes this is not relevant.

We will again look at the case with R = 0, i.e., search for symmetries of the form X = ϕ(x, t; w)∂x.
In this case the second determining equation (44) reads

ϕw + γ (xϕx − ϕ) = 0 ,

which yields immediately

ϕ(x, t,w) = x ψ(z, t) ; z = w − γ−1 log(x) .

Then the first determining Eq (43) splits into two equations (for the coefficients of x and x2 in the
resulting expression):

ψt =

(
α

γ
−
γ

2

)
ψz

ψz = − γ ψ .
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These are easily solved, and we get in the end

ϕ(x, t,w) = x2 exp
[
− (A t + γw)

]
, A := α − γ2/2 .

Note this yields a random symmetry

X = x2 exp
[
− (A t + γw)

]
∂x .

The associated change of variables and its inverse are given by

y =

∫
1

ϕ(x, t,w)
dx = −

1
x

exp[A t + γw] ; (58)

x = −
1
y

exp[A t + γw] . (59)

When we express the evolution of y using Ito’s rule and (57), we get

dy = − β exp
[
A t + γw

]
dt ;

note this is not an Ito equation. It can however be directly integrated to give

y(t) = y0 − β

∫ t

0
exp

[
Aτ + γw(τ)

]
dτ .

Transforming back to the original variable x via (59) we obtain the solution to (57) in closed –
albeit involved – form. The reader can see [75] for numerical experiments confirming the analytical
procedure. ♦

Example 5.4. Consider the equation

dx = x e−t dt + x dw . (60)

(note that x(0) > 0 entails x(t) ≥ 0 for all t ≥ 0.) This admits as symmetry

X = x F(ζ) ∂x , (61)

where F is an arbitrary function of

ζ := e−t +
t
2
− w + log(x) .

The simplest choice is of course F(ζ) = 1, i.e.,

X = x ∂x ;

note this is a deterministic symmetry. The associated change of variables is just y = log(x), and with
this our Eq (60) is mapped into

dy =
(
e−t − 1/2

)
dt + dw ,
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which is directly integrated to

y(t) = y(t0) −
[
(t − t0)

2
+

(
e−t − e−t0)] + (w(t) − w(t0)) .

This yields the solution to our Eq (60) upon inversion of the change of variables, i.e., setting x = ey.
Suppose we do not want to make this simplest choice, and go for the next simpler one; this will

produce a random symmetry. So let us choose F(ζ) = ζ, and hence

X = x
[
e−t +

t
2
− w + log(x)

]
∂x .

Then the associated change of variables is

y = log
[
e−t +

t
2
− w + log(x)

]
+ β(t,w) .

the equation for y is then

dy =

(
βt +

1
2
βww

)
dt + βw dw .

Thus we should choose β(t,w) = b(t) + cw in order to get an Ito equation. With this choice, the initial
equation is mapped into

dy =
[
b′(t)

]
dt + c dw ,

which is readily integrated to yield

y(t) = y(t0) + [b(t) − b(t0)] + c [w(t) − w(t0)] .

Inverting the change of coordinates – which is now a more complex operation than in the previous case
– we obtain the solution for x(t).

We can again check that the symmetries, i.e., vector fields of the form (61) (which are random
symmetries), form a Lie algebra. In this case, it is in fact immediate to check that if

X = x F(ζ) ∂x , Y = x G(ζ) ∂x ,

then we have
Z := [X,Y] = x H(ζ) ∂x

where we have defined
H(ζ) = F′(ζ) G(ζ) − F(ζ) G(ζ) .

Thus Z is of the form (61), and hence a symmetry for Eq (60), as claimed. ♦

Example 5.5. Consider the two-dimensional equation (here and elsewhere in concrete examples, we
write vector indices as lower ones, to avoid any possible confusion with squares)

dx1 =

[
ex1 −

1
2

e−2x1

]
dt + e−x1 dw1

dx2 =
1
2

ex2
[
2 ex1 + ex2 + e2x1+x2

]
dt − ex1+x2 dw1 − ex2 dw2 . (62)
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It is easily checked that this admits the symmetry vector field

X = − ex2 ∂2 ; (63)

symmetry-adapted variables are

y1 = exp[x1] , y2 = exp[−x2] ; (64)

in these variables, the vector field is
X = ∂/∂y2

and the Eq (62) reads simply

dy1 = y2
1 dt + dw1

dy2 = −y1 dt + y1 dw1 + dw2 . (65)

That is, we have an autonomous Ito equation for y1; if this is solved, say with y1 = Φ[t,w1(t)], then the
equation for y2 is immediately integrated to give

y2(t) = y2(0) −
∫ t

0
Φ[t,w1(t)] dt +

∫ t

0
Φ[t,w1(t)] dw1(t) +

∫ t

0
dw2(t) .

The solution to the initial problem (62) is then obtained by inverting the change of variables (64). ♦

Example 5.6. Consider, as in [30], the two-dimensional isotropic linear stochastic equation

dxi = λ xi dt + µ dwi (i = 1, 2) . (66)

This was considered, for what concerns W-symmetries in [30] (this was Example 7 therein), but only
W-symmetries were considered in that work; we will thus have to derive the full symmetry algebra.

We write, for ease of notation, R in the form

R =

(
r0 r1

−r1 r0

)
.

Solving the σ-determining equations for ϕi(x, t; w) yields

ϕ1(x1, x2, t; w1,w2) = r0 x1 + r1 x2 + ψ1(z1, z2, t) ,
ϕ2(x1, x2, t; w1,w2) = −r1 x1 + r0 x2 + ψ2(z1, z2, t) ;

zi := wi − xi/µ .

With this, the f -determining equations read

∂ψ1

∂t
=

λ

µ

(
x1
∂ψ1

∂z1
+ x2

∂ψ1

∂z2

)
+ λψ1 ,

∂ψ2

∂t
=

λ

µ

(
x1
∂ψ2

∂z1
+ x2

∂ψ2

∂z2

)
+ λψ2 .
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Note that the ψ are functions of the zi variables alone; thus coefficients of the xi must vanish separately,
and we get

ψi(z1, z2, t) = eλt ci

where ci are arbitrary constants.
In conclusion, the symmetry algebra G for (66) is spanned by the vector fields

X1 = x1 ∂1 + x2 ∂2 + w1 ∂̂1 + w2 ∂̂2 ,

X2 = x2 ∂1 − x1 ∂2 + w2 ∂̂1 − w1 ∂̂2 ;
Y1 = exp[λt] ∂1 ,

Y2 = exp[λt] ∂2 .

Note that the Xi are W-symmetries, while the Yi are deterministic symmetries. A trivial computation
shows that the commutation relations are given by

[X1, X2] = 0 , [Y1,Y2] = 0 ;
[Y1, X1] = Y1 , [Y1, X2] = −Y2 ,

[Y2, X1] = Y2 , [Y2, X2] = Y1 .

This shows that G is indeed a Lie algebra; moreover GX = {X1, X2} and GY = {Y1,Y2} are abelian
subalgebras, and GY an abelian ideal in G. ♦

6. The method of invariants

Consider a general function
F = F(x, t,w) ; (67)

its Ito differential is
dF =

∂F
∂t

dt +
∂F
∂xi dxi +

∂F
∂wa dwa +

1
2

∆F dt .

When we evaluate this on the dynamics described by the Ito Eq (35), we get

dF =

[
∂F
∂t

+ f i(x, t)
∂F
∂xi +

1
2

∆F
]

dt +

[
∂F
∂wa + σi

a(x, t)
∂F
∂xi

]
dwa . (68)

It follows immediately that if (and only if) F satisfies the equations

∂F
∂t

+ f i(x, t)
∂F
∂xi +

1
2

∆F = 0 , (69)

∂F
∂wa + σi

a(x, t)
∂F
∂xi = 0 (a = 1, ...,m) , (70)

then F is an invariant for the SDEs (35).
Note that in general the invariants will be arbitrary functions of some “basic invariants” functions.

Example 6.1. Consider the equation

dxi = f i(t) dt + σi
k(t) dwk (i = 1, ..., n) ; (71)
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then the Eq (70) yield immediately that

F(x, t,w) = F(z, t) ; zi := xi −

∫
σi

k(t) dwk(t) .

A straightforward computation shows that in this case ∆F = 0 (note in particular ∆zi = 0). The Eq (69)
reads then

∂F
∂t
− f i ∂F

∂zi = 0 ,

and it follows immediately that
F = F(ζ) ,

having defined

ζ i := zi − Φi(t) = xi − Φi(t) −
∫

σi
k(t) dwk , (72)

where Φ is the primitive of f ,

Φi(t) =

∫
f i(τ) dτ . (73)

Obviously, the ζ i are in this case the basic invariants mentioned above. ♦

The existence of invariants allows to express the solutions to a SDE system in terms of a reduced
system of Ito equations; if there are as many independent invariants as degrees of freedom, then the
solution can be expressed purely in terms of invariants.

In other words, the presence of a sufficient number of invariants guarantees the integrability of the
equation, pretty much as in the deterministic case the presence of a sufficient number of conserved
quantities guarantees integrability.

Example 6.2. In the case of Eq (71), we have the basic invariants defined in (72); at the initial time
t = 0 these will satisfy ζ i = ζ i(0). If wi(0) = 0, and choosing the constant in the primitives of (73) so
that Φi(0) = 0, at t = 0 we have

ζ i(0) = ζ i
0 = xi

0 = xi(0) .

Thus we have at all times and for each realization of the Wiener processes wk(t), and with Φi as in (73)
above,

xi(t) = xi
0 + Φi(t) +

∫ t

0
σi

k(τ) dwk(τ) .

This yields directly the solution to (71). ♦

It is natural to wonder if and how invariants are related to symmetries of the stochastic equation.
Comparing Eqs (43), (44) one the one hand, and (69), (70) on the other, we immediately observe

a rather trivial (but useful) relation: if both f i and σi
k do not actually depend on the x variables (but

possibly depend on t) and set R = 0, the symmetry coefficients ϕi are also invariants for the Ito equation.
(Note that such relation does not exist for R , 0, i.e., for proper W-symmetries [30].)

We would be interested in knowing if other relations exist. This matter has been studied in recent
papers by one of us [26–28] (to which we refer for details and examples), and we briefly report the
relevant results here.
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Proposition 6.1. The set of invariants for a given Ito equation is a ring over R, i.e., if F,G are
invariants for the given equations and α, β are real constants, so are

H = α F + βG , K = F ·G .

Proposition 6.2. If a given Ito Eq (35) admits the symmetry X and the invariant F, then G = X(F) is
also an invariant for the same equation.

Proposition 6.3. The set of symmetries for a given Ito equation has, beside the structure of Lie algebra,
the structure of a Lie module over the ring of invariants; i.e., if X,Y are symmetries for the given
equation, and F,G invariants for the same equation, then

Z = F X + G Y

is still a symmetry for the equation.

Proof. Proposition 6.1 is trivial; Propositions 6.2 and 6.3 are respectively Theorems 4.4 and 4.6 in [26];
see there for proofs. ♦

We stress that, obviously, a generic stochastic equation has no invariants, even in the case it has
symmetries.

Example 6.3. Consider again the two-dimensional isotropic linear stochastic Eq (66) considered
in Example 5.6 above (where it was found it has a nontrivial symmetry algebra). Now a direct
computation shows that there are no invariants. In fact, invariants should satisfy the equations

Jw1 + µ Jx1 = 0 ,
Jw2 + µ Jx2 = 0 ; (74)
Jt + λ

(
x1 Jx1 + x2 Jx2

)
= 0 .

Note in the last equation there should also be a term (1/2)∆J with ∆ the Ito Laplacian (42), but in this
case it results ∆J = 0.) Solving the first two equations yields

J(x1, x2, t,w1,w2) = H(z1, z2, t) ; zi := wi − xi/µ .

Plugging this into the last Eq (74) yields H = const, thus showing that only trivial invariants are
present. ♦

7. Conditional and asymptotic symmetries for stochastic equations

We now want to argue that – pretty much in the same way as a great extent of the standard theory
of symmetry of deterministic differential equations can be extended to the framework of stochastic
differential equations – the concepts of conditional, partial and asymptotic symmetry also apply for
stochastic differential equations. What is more, these are also useful to determine solutions to stochastic
equations.

It will happen that these are intimately related – much more than in the deterministic setting – to
similar concepts for invariants, i.e., to conditional, partial or asymptotic invariants. These, and the
relation with symmetries, will be discussed in the next Sect. 8. We will first discuss the matter in
abstract terms – actually with a more formal writing than in previous Sections, as now we develop new
material and results; and then provide, in Sect. 9 below, a number of concrete Examples.
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7.1. Conditional and partial symmetries

Our first observation is that conditional and partial symmetries can be, in principle, defined for
stochastic equations exactly as in the case of deterministic ones.

The difference – and the reason to write “in principle” in the lines above – is that while a solution
of a deterministic equation is determined by the initial condition, in the case of stochastic equation it
is determined by the initial condition and by the realization of the driving Wiener processes. But, of
course, we do not know a priori what the realization of the Wiener process will be, so we do not want
to discuss properties which depend on such realization. (A partial exception to this is that often we
are satisfied with properties which hold for generic realizations of the Wiener processes, i.e., for a full
measure set of the driving Wiener paths.)

Thus, in practice, it is quite difficult – and makes little sense in view of applications – to study
symmetries of a given solution, or of a given set of solutions.

The exception is provided by the case where the solutions in the set which is studied are identified
by their living on an invariant manifold for the equation. By this we mean that the Eq (35) describes
a variable (x, t) ∈ M (M is the phase manifold), and there is a proper submanifold M0 ⊂ M such
that if (x(0), t0) ∈ M0, then for any realization of the driving Wiener processes, and for any t ≥ t0,
(x(t), t) ∈ M0.

We will actually confine ourselves to the case of autonomous equations, i.e., the case where the
coefficients f i(x, t) and σi

k(x, t) in (35) are actually independent of t. In this case we can work with the
reduced phase manifold§, and in the following M should be interpreted as the reduced phase manifold.
Extension of our discussion and results to the non-autonomous is rather simple, and in any case can be
obtained – remaining within the autonomous formalism – by adding a new variable x0 with evolution
governed by dx0 = dt.

We will see in the following that the existence of these invariant manifolds is naturally related to
“conditional” (or “partial”) invariants for the equation.¶

The simplest nontrivial case is that in which the dynamics admits a nontrivial invariant submanifold
M0 ⊂ M (this is of course more significant if M0 is stable or attracting, as will be discussed later on). In
this case we can consider the restriction of our system to M0, and this may have symmetries which are
not present for the full system. These in turn may allow for the integration of the restricted equation;
solutions obtained in this way are also special solutions for the full system.

We start by stating some very simple – but useful – facts.

Lemma 7.1. Let the SDE ∆ (35) in the n-dimensional manifold M admit an invariant submanifold
M0 ⊂ M of dimension m < n. Consider the restriction ∆0 of ∆ to M0. Any solution to ∆0 is also a
solution to ∆, and the most general solution to ∆ with x(0) ∈ M0 is obtained as a solution to ∆0.

Proof. Obvious.

Lemma 7.2. In the setting of Lemma 7.1, let ∆0 admit m simple symmetries spanning a solvable
algebra. Then it can be integrated, and hence all the solutions to the initial equation ∆ with initial
conditions on M0 can be obtained.

§This was denoted as M0 in Sect. 2; but here we reserve this notation to the dynamically invariant submanifold. We trust no confusion
will arise.

¶The simplest – but rather trivial – case in which there is an invariant manifold is that of a fixed point; for example the stochastic
Eq (35) with coefficients satisfying f i(0, t) = 0, σi

j(0, t) = 0, automatically admit x = 0 as a fixed point, and hence a (highly symmetric)
solution x(t) ≡ 0. This is of little interest.
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Proof. Integrability of ∆0 follows from Proposition 5.3 above. Once ∆0 is integrable, the rest of the
statement follows immediately from Lemma 7.1. ♦

This construction is also generalized to the case where the symmetry algebra has smaller dimension,
as stated in the following Lemma.

Lemma 7.3. Let the Ito SDE ∆ in the n-dimensional manifold M admit an invariant submanifold
M0 ⊂ M of dimension m < n. Let ∆0 be the restriction of ∆ to M0. Then
(a) If ∆0 admits s < m simple symmetries spanning a solvable algebra G which generates a local Lie
group G, then ∆0 can be reduced to an equation ∆̂0 on M0/G.
(b) Let x̂(t) be any solution to ∆̂0; then x̂(t) extends to a solution x(t) of ∆0, and this is turn describes
the most general solution to ∆ with x(0) ∈ M0.

Proof. Point (a) follows by Proposition 5.3 above. Solutions to ∆̂0 are extended to solutions to ∆0 again
by means of Proposition 5.3, i.e., via the reconstruction equations. In view of Lemma 7.1, the exact
solutions obtained in this way are also all the solutions to the initial equation ∆ with initial conditions
on M0. ♦

Remark 7.1. The statement in these Lemmas are rather trivial, as shown by their very simple proofs.
Actually these Lemma are more the description of a strategy to obtain a set of solutions (identified by
living on M0) to ∆. �

Remark 7.2. If the equation admits a standard (global) invariant, then all the level manifolds for this
invariant are invariant manifolds of the differential equation; see Example 9.1 below. Thus the Lemmas
7.1, 7.2 and 7.3 given above apply in general, in the sense that any initial datum lies on such an invariant
manifold. But they apply also to the case where no global invariant exists (we will see in a moment a
weaker type of invariant is involved here), i.e., when we have isolated invariant manifolds. �

Remark 7.3. The presence of an isolated invariant manifold can be described in terms of a conditional
invariant for the stochastic equation. That is, if M0 is the submanifold described by F(x) = m0 (here
m0 ∈ R) and M0 is an invariant manifold while there are no nearby invariant manifolds, then F(x) is a
conditional invariant for our equation. Note that this means that on the dynamics we have

dF = [F(x) − m0]
[
α(x, t) dt + βk(x, t) dwk

]
,

with nonzero α, βk. In this case only the m0 level set is invariant, while the other ones are in general not
invariant, as in our Examples 9.2 and 9.3 below (in both cases the conditional invariant is just ρ and
the invariant level set is ρ = 1). We will discuss this point in more detail in Sect. 8 below. �

Remark 7.4. This situation is similar to the setting considered by Misawa and by Albeverio & Fei
[76–79] in their early study of symmetry of stochastic equations (see the discussion in [22]). In their
case, however, we had a global (proper) invariant, hence a global constant of motion – which allowed
for a dimensional reduction of the stochastic system – as in Example 9.1 below, while in the setting
discussed here we only have a conditional one, hence reduction can take place only on the specific level
set of the conditional constant of motion, viz. the manifold M0. �

Remark 7.5. The situation discussed in this Section is related to conditional constants of motion
[80–84] and conditional invariants, so that it would be natural to speak of conditional symmetries.
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On the other hand, in this case the solutions (to the restricted problem) are not invariant under the
conditional symmetry: they are actually mapped one into another by the action of the latter. In this
sense, the situation is more similar to that encountered when dealing, in the deterministic framework,
with partial symmetries; from this point of view it might be more appropriate to speak of partial
invariants; but we will prefer to use the term conditional invariant in view of the first mentioned
parallel with the deterministic case, and the established use in the latter. �

7.2. Invariant manifolds and (conditional) configurational invariants

In the previous discussion, in particular Lemmas 7.1 through 7.3, we have assumed the existence of
an invariant manifold M0 ⊂ M for the dynamics described by our Ito Eq (35). Needless to say, this is a
highly non-generic situation. In fact, as anticipated in Remark 7.3, the existence of invariant manifolds
is related to the existence of (conditional) invariants for the dynamics.

In order to identify invariant manifolds in M, or in M × R, these invariants should depend only on
the x, or the (x, t), variables. We have thus the following:

Definition 7.1. When the invariant J = J(x, t; w) for an Ito equation does not depend on the w
variables, i.e., J(x, t; w) = Ψ(x, t), we say that J is a phase invariant; if moreover Ψ is independent
of t, we say J is a configurational invariant.

Remark 7.6. We stress that while configurational invariants can identify invariant manifolds, and
phase invariant can identify time-varying invariant manifolds, in order to identify solutions in terms of
invariants we need invariants which also depend on the wi variables, and hence on the realization of
the Wiener processes. See also Example 9.1 in this respect. �

We recall that if J : M → R is a smooth function defined on the phase manifold M, or more
generally J : M × W → R where W ≈ Rn is the space in which the driving Wiener processes
wi = wi(t) take values, then its evolution on the dynamics described by the Ito equation ∆ – written as
(35) – is given by

dJ =

(
∂J
∂t

)
dt +

(
∂J
∂xi

)
dxi +

1
2

∆(J) dt

=

[(
∂J
∂t

)
+

(
∂J
∂xi

)
f i(x, t) +

1
2

∆(J)
]

dt (75)

+

[(
∂J
∂wk

)
+

(
∂J
∂xi

)
σi

k(x, t)
]

dwk .

We are specially interested in the case where J is a function of x and t alone, J(x, t; w) = Ψ(x, t); we
say then that J is a phase space function, and if Ψ does not depend on t we say it is a configurational
function. In both these cases the Ito Laplacian reduces to

∆J = ∆Ψ = σikσ
j
k

∂2Ψ

∂xi∂x j . (76)

Lemma 7.4. The evolution of a phase space function under the dynamics described by an Ito Eq (35)
is itself described by an Ito equation.
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Proof. Using (75) and specializing it to the case J = Ψ(x, t), we have

dJ =

[(
∂Ψ

∂t

)
+

(
∂Ψ

∂xi

)
f i(x, t) +

1
2

∆(Ψ)
]

dt

+

[(
∂Ψ

∂xi

)
σi

k(x, t)
]

dwk . (77)

Recalling also (76), we note that now all terms within the square brackets depend on (x, t) alone, i.e.,
we have again an equation of Ito type. ♦

It is now natural to introduce the following Definition, which leads immediately to the foregoing
Lemma 7.5.

Definition 7.2. (a) If the function J is such that dJ = 0 on solutions to the Ito equation (35), i.e., (75) is
identically zero, we say that it is an invariant for the Ito equation (a phase space invariant if J = Ψ(x, t),
and (78) is identically satisfied, a configurational invariant if J = Ψ(x)).
(b) If this relation is valid only on the level set J = c, we say that J is a conditional invariant (a
conditional phase space invariant if J = Ψ(x, t), a conditional configurational invariant if J = Ψ(x)) for
the Ito equation.

Lemma 7.5. Phase space invariants are identified by the n + 1 equations(
∂Ψ

∂t

)
+

(
∂Ψ

∂xi

)
f i(x, t) +

1
2

∆(Ψ) = 0 ,(
∂Ψ

∂xi

)
σi

k(x, t) = 0 . (78)

Proof. This follows at once from (77). ♦

Remark 7.7. If the solutions to the (78) identify one or more level sets of J = Ψ (in practice, if the
l.h.s. of the above equations can be factorized with a factor being just a function of Ψ), then this or
these level sets correspond to invariant manifolds for the dynamics. We will see in concrete Examples
that this may happen. �

Remark 7.8. As configurational invariants (and functions) are special cases of phase space invariants
(and functions), the Lemmas 7.4 and 7.5 above also apply to them. Note that the Eq (78) read in this
case (

∂Ψ

∂xi

)
f i(x) +

1
2

∆(Ψ) = 0 ,(
∂Ψ

∂xi

)
σi

k(x) = 0 , (79)

where we have taken into account the fact that configurational invariants naturally arise in autonomous
systems. �
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7.3. Asymptotic symmetries

We have so far discussed the case where an invariant submanifold M0 ⊂ M exists, and considered
dynamics on it. We have not discussed neither what happens nearby the invariant manifold, nor the
stability of such manifold.

As we are considering stochastic systems, we should consider at least two types of (local or global)
stability [85, 86].

(A) On the one hand, it is possible that for any initial datum x0 in a neighborhood B0 ⊃ M0 and any
realization of the Wiener processes wi(t), the dynamics is attracted towards M0.

(B) On the other hand, it is possible that for any x0 ∈ B0, considering the Fokker-Planck equation with
initial condition u(x, 0) = δ(x − x0) the probability density function u(x, t) remains concentrated
around M0.

Definition 7.3. When the situation described in case (A) above occur, we say that M0 is locally strongly
attractive; if this holds for any x0 ∈ M, we say it is globally strongly attractive.

Definition 7.4. When the situation described in case (B) above occur, we say that M0 is locally weakly
attractive; if this holds for any x0 ∈ M, we say it is globally weakly attractive.

Remark 7.9. Note that in case (B) above typically there will be a parameter σ0 ≥ 0 – related in
physical terms to the intensity of the noise described by the Wiener processes – which controls the
spreading of the asymptotic measure around M0, and such that in the limit σ0 → 0 the asymptotic
measure u∗(x) = limt→∞ u(x, t) collapses to a measure on M0. �

Lemma 7.6. In the case (A), the most general asymptotic solution to ∆ will be described by the most
general solution to ∆0.

Proof. In fact, under these hypotheses any dynamics starting in B will be attracted to the invariant
manifold M0, and on this the dynamics is described by ∆0. The conclusion follows then by Lemma 7.1
above. ♦

Remark 7.10. Needless to say, even in the case ∆0 is fully integrable we will in general not be able to
describe which ones of the solutions to ∆0 will describe the asymptotic behavior for a given solution to
∆, i.e., for given initial datum x0 ∈ B and given realization of the Wiener processes, as we will not be
able to integrate the transient dynamics. �

Remark 7.11. The Remark above refers to case (A). In case (B), on the other hand, the dynamics can
not be reduced, even asymptotically, exactly to the dynamics on M0 and hence to ∆0. Thus even in the
case where ∆0 is exactly integrable – and even for x0 ∈ B0 – this does not give a description of the
asymptotic dynamics for ∆. In this case we have a weaker result. �

Lemma 7.7. In the case (B), for small enough σ0, the asymptotic dynamics will be described for most
of the time, by the linearization ∆̃0 of ∆ around M0.

Proof. Under the hypotheses holding in case (B) and for small enough σ0, the measure will
be asymptotically concentrated around M0, so that the linearization ∆̃0 (which, in turn, will be a
linearization around ∆0) will describe “most” of the asymptotic solutions; by this we mean that there

Mathematics in Engineering Volume 4, Issue 5, 1–52.



38

could be from time to time large fluctuations driving the dynamics for a short time outside of the
immediate neighborhood of M0, i.e., outside the region where ∆ reduces to ∆̃0. These large fluctuations
will occur with a frequency exponentially small in σ0 and will decay rapidly so that the dynamics is
quickly driven back to the region around M0. ♦

Remark 7.12. This Lemma does not give a result of the same strength as the previous one; on the
other hand, it says that one will have a reliable description in terms of ∆̃0, except for rare and short
fluctuations. �

As far as symmetries are concerned, our discussion suggests naturally the following definitions.

Definition 7.5. Let M0 ⊂ M be a strongly attractive submanifold for the equation ∆, and let ∆0 be the
restriction of ∆ to M0; let X be a symmetry for ∆0, hence a conditional symmetry for ∆. We say that X
is also a strong asymptotic symmetry for ∆.

Definition 7.6. Let M0 ⊂ M be a weakly attractive submanifold for the equation ∆, let ∆0 be the
restriction of ∆ to M0, and let ∆̃0 be the linearization of ∆ around M0; let X be a symmetry for ∆0,
hence a conditional symmetry for ∆. If X is also a symmetry for ∆̃0, then we say that X is also a weak
asymptotic symmetry for ∆.

Both these cases are related to the presence of asymptotic conditional invariants, as we are now
going to discuss in the next Section 8.

We stress that we are again interested in the case of phase space or configurational invariants, i.e.,
where the would-be invariants depend on (x, t) or on the x variables alone; thus we are in the setting
discussed above, and the evolution is described by (77).

8. Asymptotic invariants and asymptotic symmetries for stochastic equations

The discussion of Section 7.2, referring to conditional symmetries, can be extended to the case of
asymptotic symmetries.

The key observation is that the evolution of a phase space function under the dynamics of an Ito Eq
(35) is described by (77), i.e., by an equation of Ito type; this will be denoted, for ease of reference, as
∆J. So our discussion of (stochastic) stability for submanifolds M0 of M under ∆ can be repeated for
the stability under ∆J.

Definition 8.1. If J = Ψ(x) is a conditional configurational invariant for the Ito equation ∆ on the
invariant manifold M0, and M0 is a strongly attractive manifold for ∆, we say that J is a strong
asymptotic invariant for ∆.

Definition 8.2. If J = Ψ(x) is a conditional configurational invariant for the Ito equation ∆ on the
invariant manifold M0, and M0 is a weakly attractive manifold for ∆, se say that J is a weak asymptotic
invariant for ∆.

Lemma 8.1. Let J be a strongly asymptotic configurational invariant for the Ito equation ∆, associated
to the invariant manifold M0, and let ∆0 be the reduction of ∆ to M0. Then the asymptotic solutions to
∆ are described by the solutions to ∆0.

Proof. By definition, under the hypotheses of the Lemma M0 is a strongly attractive invariant manifold
for ∆, hence the statement follows immediately from Lemma 7.6, which itself uses Lemma 7.1. ♦
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Lemma 8.2. Let J be a weakly asymptotic configurational invariant for the Ito equation ∆, associated
to the invariant manifold M0, and let ∆̃0 be the linearization of ∆ around M0. Then the asymptotic
solutions to ∆ are described by the solutions to ∆̃0, up to large fluctuations.

Proof. By definition, under the hypotheses of the Lemma M0 is a weakly attractive manifold for ∆.
Thus, according to Lemma 7.7, the dynamics of ∆ lives, for most of the time and up to rare and short-
lived large fluctuations, in a neighborhood of M0; thus it is described by ∆̃0, and the Lemma is just a
restatement of these facts in terms of (asymptotic) invariants. ♦

Remark 8.1. The approach discussed in this subsection is strongly related to stochastic Lyapounov
functions, see e.g., [85, 86]. Some of our ideas are also related to ideas developed in the context of
bifurcation for stochastic systems [87]. �

Remark 8.2. Our discussion used configurational invariants to relate invariants to attractive invariant
submanifolds. As stressed above, see Remark 7.6, configurational or phase space (asymptotic)
invariants can only do this, i.e., they cannot be used to obtain solutions to Ito equations, at difference
with general (asymptotic) invariants, i.e., invariants depending also on the w variables. See also the
discussion in Sect. 6 for the case of full invariants. �

9. Examples

We will now consider concrete Examples related to the matters discussed in Sections 7 and 8 above.
These matters are of course strongly interconnected, but we have separated the Examples in different
types – and correspondingly separated the present Section in different subsections – for ease of reading.

In most cases, our Examples are built so that the compact invariant manifold is just a circle (usually
the unit one), as we want to focus on conceptual issues rather than on computational difficulties. Thus
it is not surprising that things will be simpler in polar or spherical coordinates, and indeed we will
mostly work in polar coordinates, albeit in some cases we will also start from Cartesian ones.

9.1. Full symmetry, full invariants

We start by considering an Example due to Misawa [79]; this is Example 1 in there, where it is
considered in the equivalent Stratonovich form, and only up to checking J is an invariant.

Example 9.1. Consider the Ito equation

dx1 =

(
x3 − x2 −

1
2

(2x1 − x2 − x3)
)

dt + (x3 − x2) dw

dx2 =

(
x1 − x3 −

1
2

(2x2 − x3 − x1)
)

dt + (x1 − x3) dw (80)

dx3 =

(
x2 − x1 −

1
2

(2x3 − x1 − x2)
)

dt + (x2 − x1) dw

(note that only one Wiener process is involved). In this case the function

J = x2
1 + x2

2 + x2
3 = ρ2 (81)
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is an invariant. In fact one has

∆J = 4 [J − (x1x2 + x2x3 + x3x1)] ,

and then dJ = 0 on the Eq (80) follows immediately from a direct computation. Thus any sphere of
radius ρ is invariant under the evolution described by (80).

It is also easily checked, by the same procedure or by just looking at (80), that

H = x1 + x2 + x3 (82)

is another invariant.
By considering the Jacobian matrix for the change of coordinates (x1, x2, x3)→ (J,H, z) with z = x3,

we observe that its determinant is 2(x1 − x2), i.e., this is singular on the plane x1 = x2; we will thus
have to consider two regions.

Implementing the change of variables (x1, x2, x3) → (J,H, z) we have that the inverse change is
given (in the two regions x1 < x2 and x1 > x2) by

x1 =
1
2

[
(H − z) ∓

√
2(J − z2) − (H − z)2

]
,

x2 =
1
2

[
(H − z) ±

√
2(J − z2) − (H − z)2

]
.

Note that by elementary algebra, and in view of the definitions of J,H, and z, we have

2(J − z2) − (H − z)2 = (x1 − x2)2 ;

thus the argument of the square root in the formula above is always positive. We introduce, for ease of
writing, the new real function

χ(J,H; z) =
√

2(J − z2) − (H − z)2 ,

so that the above inverse change of variables reads

x1 =
1
2

[
(H − z) ∓ χ(J,H; z)

]
,

x2 =
1
2

[
(H − z) ± χ(J,H; z)

]
. (83)

On the one-dimensional manifolds (corresponding to the ± sign in the formulas above) identified
by given values for J = ρ2 and H we have the reduced equation

dz =

[
1
2

(H − 3z) ± χ(J,H; z)
]

dt ± χ(J,H; z) dw . (84)

Note that here z ∈ [−ρ, ρ] (recall J = ρ2), and that for z = ±ρ we have J = z2, H = z and x1 = x2 = 0.
We can further look for symmetries of the reduced equation. We disregard W-symmetries, i.e., set

R = 0 in (44)‖; with straightforward computations we get

ϕ±(z, t; w) = χ(J,H; z) ψ±(u±) ,
‖The case with R , 0 can also be analyzed completely, yielding of course more complex formulas.
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where the ± refers to the two determinations given above for x1 and x2 in terms of z, ψ± are arbitrary
function of their argument, and

u± = w + t ±
1
√

3
arctan

 H − 3z
√

3 χ(J,H; z)

 .
The simplest case does of course correspond to ψ±(u±) = c±, say

ψ±(u±) = ±1

for ease of discussion (note the two ± signs are independent), i.e., to∗∗

ϕ±(z, t; w) = ± χ(J,H; z) .

With this, the integrating change of variables is given by

ξ =

∫
1

ϕ±(z, t; w)
dz = ∓

1
√

3
arctan

 H − 3z
√

3 χ(J,H; z)

 .
With a direct application of Ito rule, the evolution equation for the random variable ξ turns out to be

dξ = dt + dw . (85)

This is immediately integrated, yielding

ξ(t) = ξ(t0) + (t − t0) + [w(t) − w(t0)] .

Going back to the z variable we obtain (note that 3J − H2 ≥ 0)

z =
H
3
±

√
2

3

√
3J − H2 sin(

√
3 ξ) .

Having obtained z(t), i.e., x3(t), now x1(t) and x2(t) are also obtained via (83). ♦

9.2. Full or conditional symmetries, conditional invariants

We now consider several examples with conditional invariants; at this stage we will not yet look at
asymptotic symmetries or invariants.

Example 9.2. Let us work in R2 with polar coordinates (ρ, ϑ), and consider the Ito equations

dρ = a (1 − ρ2) ρ dt + σ (1 − ρ2) dw1

dϑ =
[
b (1 − ρ2) + ωρ2

]
dt + σ dw2 (86)

with a, b, ω, σ nonzero real constants.
It is clear that the unit circle ρ = 1 is an invariant manifold for these equations; the dynamics on the

unit circle is described by
dϑ = ω dt + σ dw2

∗∗This notation might be confusing: a more precise notation would be ϕ± = s±χ, with s± a sign.
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i.e., by a uniform rotation with a superimposed Wiener process. This yields immediately

ϑ(t) = ϑ(0) + ω t + σ [w2(t) − w2(0)] ; ρ(t) = 1 .

Thus albeit we have no information about the dynamics for generic initial conditions, we have a full
description of the dynamics with initial condition on the unit circle.

The discussion is immediately generalized – in its entirety – to equations of the form

dρ = α(ρ, ϑ) dt + σ1(ρ, ϑ) dw1

dϑ = β(ρ, ϑ) dt + σ1(ρ, ϑ)dw2

with α, β, σi smooth functions and

α(ρ0, ϑ) = 0 = σ1(ρ0, ϑ) ,
∂ϑβ(ρ0, ϑ) = ∂ϑσ1(ρ0, ϑ) = 0

for some ρ0.
If we drop the last condition, i.e., require only α(ρ0, ϑ) = 0 = σ1(ρ0, ϑ), we still have reduction to

a one dimensional equation on the circle of radius ρ0, albeit we have no information on the solutions
living on this circle.

Note that in this case the full equations are rotationally invariant, as immediately seen from (86);
but the associated function J = ρ is a conditional invariant. ♦

Example 9.3. Consider R3 with cylindrical coordinates (ρ, ϑ, z) and the Ito equations

dρ = a(1 − ρ2) dt + κ (1 − ρ2) dw1

dϑ =
[
ω + b (1 − ρ2) + c cos(z)

]
dt + σ1(ρ, ϑ, z) dw2 (87)

dz = γ(r, ϑ, z) dt + σ2(ρ, ϑ, z) dw3 ,

with {a, b, c, κ, ω} nonzero real constants and {γ, σ1, σ2} smooth functions. By construction, the
cylinder M0 of equation ρ = 1 is an invariant submanifold (the function J1 = ρ is a conditional
invariant), and on it the system reduces to

dϑ = [ω + c cos(z)] dt + σ1(1, ϑ, z) dw2

dz = γ(1, ϑ, z) dt + σ2(1, ϑ, z) dw3 ,

Suppose now that in general {γ, σ1, σ2} depend effectively on ϑ, but that

(∂ϑγ(ρ, ϑ, z))ρ=1 = (∂ϑσ1(ρ, ϑ, z))ρ=1 = (∂ϑσ2(ρ, ϑ, z))ρ=1 = 0 .

Then the restricted system admits rotations in ϑ as symmetries, and hence the system can be further
reduced to an equation in z. Albeit we are in general not able to solve this (one-dimensional) equation,
we know that given a solution we can reconstruct a solution of the two-dimensional restricted system,
and this is a special solution to the full three-dimensional problem.

Similarly it is easy to produce examples in which not only the cylinder ρ = 1 is invariant, but within
this we have the circle S 1

0 = {ρ = 1 , z = 0} which is also invariant. In this case the equation is
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fully integrated for initial data on S 1
0, partially integrated for initial data on the cylinder ρ = 1, and in

general nothing can be said for general initial data (but Eq (87) show that an asymptotic analysis will
be possible). ♦

Example 9.4. In the previous examples, everything was rather obvious by construction, thanks to the
use of polar coordinates and the fact the invariant manifold was just a circle of radius one. Things are
slightly less evident if we use Cartesian coordinates, and we want to show now that one can indeed
work also with a less “ready to use” setting.

Consider, with r2 = x2
1 + x2

2 for short, the equation

dx1 =
[(
α (1 − r2) − (σ2/2)

)
x1 −

(
β (1 − r2) + ω r2

)
x2

]
dt

+ σ (1 − r2) x1 dw1 − σ x2 dw2

dx2 =
[(
β(1 − r2) + ω r2

)
x1 +

(
α (1 − r2) − (σ2/2)

)
x2

]
dt

+ σ (1 − r2) x2 dw1 + σ x1 dw2 . (88)

We consider now the function J = r2, and look at its variation on the dynamics (88). This yields

dJ =
∂J
∂t

dt +
∂J
∂x1

dx1 +
∂J
∂x2

dx2 +
1
2

∆(J) dt

=
[(

2 a + (1 − J)σ2
)

J (1 − J)
]

dt + 2σ J (1 − J) dw1 . (89)

Thus we obtain that J is not an invariant; but it is a conditional invariant: on the level sets J = 0
(corresponding to the origin in the Cartesian plane) and J = 1 (the unit circle in the Cartesian plane)
we have dJ = 0, and hence these are invariant manifolds for the dynamics (88).

Actually, passing to polar coordinates (ρ, θ) (on ρ = 0 the change of coordinates is singular, and θ
ill-defined) the Eq (88) reads simply

dρ = α ρ (1 − ρ2) dt + σρ (1 − ρ2) dw1

dθ =
[
β(1 − ρ2) + ωρ2

]
dt + σ dw2 . (90)

It is thus evident that on J = ρ2 = 1 the dynamics reduces to

dρ = 0
dθ = ω dt + σ dw2 .

It should be noted that, as immediately apparent from (90), in this case rotations in the (x1, x2) plane
are a symmetry of the full equation, and not only of the reduced one. We thus see again that one can
have a conditional invariant associated to a full symmetry. ♦

Example 9.5. We generalize the previous Example; we use Cartesian coordinates (x, y) and write again
r =

√
x2 + y2. Consider the equations

dx1 =

[
((1 − r)x1 f1 − x2 f2) −

(1 − r)2

2

(
(s2

21 + s2
22)x1 + 2(s11s21 + s12s22)x2

)]
dt

+ (1 − r)(s11x1 − s21x2) dw1 + (1 − r)(s12x1 − s22x2) dw2
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dy =

[
(x1 f2 + (1 − r)x2 f1) +

(1 − r)2

2

(
2(s11s21 + s12s22)x1 − (s2

21 + s2
22)x2

)]
dt

+ (1 − r) (s21x1 + s11x2) dw1 + (1 − r) (s22x1 + s12x2) dw2 . (91)

Here fi = fi(x, y) and si j = si j(x, y) are arbitrary smooth functions, and of course the system is written
in this rather involved way so that it produces a simple result.

We consider again the function J = r2; it results that on solutions to (91) we have

dJ =
[
(1 − r) J

(
2 f1(x, y) + s2

11 + s2
12 − r(s2

11 + s2
12)

)]
dt

+ 2 (1 − r) J s11 dw1 + 2 (1 − r) J s12 dw2 .

It is thus immediately apparent that J is in general not an invariant for (91), but that it is always a
conditional invariant on the circle r = 1. Thus the latter is an invariant manifold for all the equations
of the form (91).

In fact, passing to polar coordinates (r, θ), and writing

Fi(r, θ) = fi[x1(r, θ), x2(r, θ)] , S i j(r, θ) = si j[x1(r, θ), x2(r, θ)] ,

the Eq (91) reads simply

dr = r (1 − r) [F1(r, θ) dt + S 11(r, θ) dw1 + S 12(r, θ) dw2]
dθ = F2(r, θ) dt + (1 − r) [S 21(r, θ) dw1 + S 22(r, θ) dw2] . (92)

Now, unless all the functions Fi and S i j are actually independent of θ, rotations are not a symmetry of
the full Eq (92), and hence of the original Eq (91).

On the other hand, the equation reduced to the invariant manifold r = 1 reads just

dr = 0 , dθ = F2(1, θ) dt (93)

(note this is a deterministic equation), and if F2(1, θ) is independent of θ, it has a rotational symmetry.
On the other hand, if F2(1, θ) does actually depend on θ, we do not have a rotational conditional
symmetry, despite the presence of the conditional invariant J on r = 1. ♦

9.3. Asymptotic symmetries

The reader has surely noted that, albeit we only discussed conditional symmetries and/or invariants
in our previous Examples, these are actually tailored so to have asymptotic symmetries and/or
invariants. We will look again at them under this point of view, but we will first consider an even
simpler one dimensional Example.

Example 9.6. Consider the one-dimensional equation

dx = −
(
x + x3

)
dt + σ x dw ; (94)

in this case the invariant manifold is just the single point x = 0; this is of course of little interest in
itself.
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This equation does not have continuous symmetries (an obvious reflection symmetry (x, t,w) →
(−x, t,w) is present), but as the dynamics is attracted towards x = 0 we know that asymptotically the
system dynamics will be described by its linearization

dx = − x dt + σ x dw . (95)

This has a scaling symmetry,

X = x
∂

∂x
:= ϕ(x)

∂

∂x
; (96)

thus we can just use the prescription discussed in Sect. 5 and pass to the new variable

y =

∫
1
ϕ(x)

dx = log(x) .

Note here that we should actually write y = log(|x|) and distinguish the cases x > 0 and x < 0.
This is just fine as x = 0 is a barrier for this dynamics. We will then use x > 0 (so that in particular
∂y/∂x = 1/x), and x = exp[y]. A similar discussion would apply for x < 0.

If we apply this transformation to the full equation, we get

dy =
1
x

dx +
1
2

∆(y) dt

=
1
x

[
−(x + x3) dt + σx dw

]
−

1
2
σ2 dt

= − (1 + x2 + σ2/2) dt + σ dw

= −
[(

1 + σ2/2
)

+ e2y
]

dt + σ dw .

Now we should observe that we are interested in the region x ≈ 0, i.e., y ≈ −∞; in this limit the term
e2y can be discarded. Actually, the y dynamics will drive the system towards this limit. Thus in this
asymptotic regime the dynamics is just governed by

dy = −
(
1 + σ2/2

)
dt + σ dw ;

it is clear that this equation is readily integrated to

y(t) = y(t0) +
(
1 + σ2/2

)
(t − t0) + [w(t) − w(t0)] ,

and also that it admits ∂y as a symmetry. ♦

Example 9.7. Consider again the system of Example 9.2, i.e., (86), which we rewrite here for ease of
reference:

dρ = a (1 − ρ2) ρ dt + σ (1 − ρ2) dw1

dϑ =
[
b (1 − ρ2) + ωρ2

]
dt + σ dw2 . (97)

The equation for ρ is autonomous, and we readily note that ρ = 1 is an invariant manifold, and actually
for a > 0 a weakly attractive one.
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It appears from (97) that – at least for |σ| � 1, i.e. when the drift overcomes the diffusion term –
the dynamics converges to the circle ρ = 1. Note this will be a weakly attracting manifold. We will
thus linearize (97) around ρ = 1; we do this by writing

ρ = 1 + η

and taking only first order terms in η. This yields

dη = −2 a η dt − 2ση dw1

dϑ =
[
ω + 2 η(ω − b)

]
dt + σ dw2 . (98)

The dynamics is attracted to η = 0 (corresponding to ρ = 1) and on this it is described by dϑ =

ωdt + σdw2, while in the region around the attracting manifold it is described by (98).
The original Eq (97) is rotationally invariant; this symmetry is also present in the reduced Eq (98).
Note also that the first equation in (98) admits X = η∂η as a (scaling) symmetry; thus it can be

integrated (passing to the variable y = log(ρ) = log(1 + η)), which yields η = η(t) as an explicit
function, depending on the realization of the Wiener process w1(t). With this, the second equation in
(98) is also readily integrated.

It may be interesting to see what happens if we proceed in a slightly different way. We can perform
the change of variables y = log(ρ) directly on the original equation (97); this yields in mixed notation
(obviously we have a singularity at ρ = 0) for the first equation

dy =

[(
a −

σ2

2 ρ2 +
σ2

2

)
(1 − ρ2)

]
dt + σ

1 − ρ2

ρ
dw1

Passing now to write ρ = 1 + η as above, the full equation reads

dy = −

[
η (2 + η)

(
a −

η(2 + η)σ2

2 (1 + η)2

)]
dt − ση

2 + η

1 + η
dw1 ;

expanding in series at first order in η, we get y = log(1 + η) ' η, hence dy ' dη, and

dη = − 2 a η dt − 2σ η dw1 ,

where |σ| � 1 has been taken into account, exactly as before. ♦

Example 9.8. Consider the equation

dx1 =
[
(1 − r) (a x1 − b x2) − ω x2 − (α2 + β2)(x1/2)

]
dt

− α x2 dw1 − β x2 dw2

dx2 =
[
(1 − r) (b x1 + a x2) + ω x1 − (α2 + β2) (x2/2)

]
dt

+ α x1 dw1 + β x1 dw2 . (99)

Here a, b are real constants, α, β, ω are arbitrary smooth functions of x1, x2. We assume a > 0 for
definiteness.
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In this case the evolution of J = r2 is given by

dJ = 2 a r2 (1 − r) dt ;

note this is a deterministic equation, so that any initial datum with r , 0 is attracted by the circle r = 1.
In this case, we have an invariant and strongly attractive submanifold. Correspondingly, J is a strongly
asymptotic invariant.

Passing to polar coordinates, we have

dr = a r (1 − r) dt

dθ = [b (1 − r) + ω] dt + α dw1 + β dw2 .

Needless to say, the functions α, β, ω should now be thought as functions of (r, θ); we will denote by
α̂, β̂, ω̂ the restrictions of these to the circle r = 1. On the invariant strongly attractive submanifold
r = 1 the evolution is described by

dθ = ω̂(θ) dt + α̂(θ) dw1 + β̂(θ) dw2 . (100)

It is rather clear that choosing suitably the functions α, β, ω we can have different situations:

• If these do not depend on θ, the full Eq (99) is rotationally invariant, i.e., X = −x2∂1 + x1∂2 is a
full symmetry of (99);
• If these do depend on θ, but their restrictions α̂, β̂, ω̂ do not depend on θ, then (99) does not admit

X as a full symmetry, but admits it as a conditional symmetry on the invariant (and attractive)
manifold M0 identified by r = 1;
• If (at least one of) the α̂, β̂, ω̂ depend on θ, then (99) does not even admit X as a conditional

symmetry.

It is maybe worth stressing again that in all these cases J is a strongly asymptotic invariant. ♦

10. Discussion and conclusions

In many physically interesting situations, one observes that equations not enjoying a given
symmetry can have special solutions which are symmetric. Even more frequently, the asymptotic
behavior of the system under study is characterized in terms of symmetry, independently of the
symmetry of initial conditions; typically this involves a simple, i.e., a rotational or a scaling symmetry.
A theory of conditional and asymptotic symmetries for deterministic equations has been developed in
the literature.

In the present paper, we have extended this theory to the case of stochastic differential equations,
considering also the interplay between (asymptotic) symmetry and (asymptotic) integrability for
stochastic equations. A special role in this frame is played by (full or conditional or asymptotic)
invariants for stochastic equations. We have also shown by concrete (simple) examples how the theory
developed here can be applied in practice.

Our examples show that the interrelation between the presence of (conditional and/or asymptotic)
symmetry and invariants is not unique: the presence of conditional of asymptotic configurational
invariants is needed to have a conditional or asymptotic symmetries, but the converse is not true.
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Our discussion shows that the pre-existing theory for deterministic equations can be fully extended
to stochastic ones, and the examples show that it can be applied with a well definite algorithm and
standard computations; these were specially simple in the considered examples – which were built
precisely in order to show the conceptual issues without blurring them by computational details – but
our discussion shows that even in more involved cases (apart from computational complications) the
procedure is rather straightforward.

Needless to say, its success depends on the equations under study possessing the required (full,
conditional or asymptotic) symmetry properties. Symmetry is a non-generic property; but conditional
or even more asymptotic symmetry is more common than full symmetry, so we are confident that our
method can be widely applicable, as it already happens in the context of deterministic equations.

Our approach was focusing – again, as in the deterministic case – on continuous (Lie) symmetries.
At difference with the deterministic case, we have dealt only with ordinary stochastic differential
equations, and not discussed partial stochastic differential equations. The reason for this is that a
symmetry theory for these equations is not as well developed as for ordinary ones; we expect that
once this (substantial) obstacle is removed, the theory can be extended from full to conditional and
asymptotic symmetries as in this work. In view of the relevance of conditional and asymptotic
symmetries for the study of deterministic PDEs, we expect this extension to stochastic PDEs to be
specially relevant for applications, and we hope it may soon be obtained.

Finally, we would like to note that in a way the approach pursued in the literature dealing with
conditional or asymptotic symmetries is inverse to that of the well known symmetry breaking approach.
In that case, attention is focused on the fact that equations possessing a given symmetry G can have
solutions which are invariant only under a subgroup G0 ⊂ G (possibly with G0 = {I}); here instead one
is focusing on the fact that an equation possessing a symmetry G0 (possibly with G0 = {I}) can have
solutions with symmetry G ⊃ G0. Similarly, for an equation with symmetry G0 it may happen that the
asymptotic dynamics is described by an effective equation with symmetry G ⊃ G0, and this is turn may
have solutions with symmetry G or even G̃ ⊃ G ⊃ G0.
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