
Abstract

The selection of relevant factors and appropriate spatial scale(s) is fundamental when modelling 

species response to climate change. We evaluated whether the effects of climate factors on species 

distribution/occurrence are consistently modelled over different spatial scales in birds, and used a 

two-scale approach to identify species-climate correlations unlikely to represent causal effects. 

We used passerine birds inhabiting mountain grassland in the Apennines (Italy) as a model. We 

surveyed four grassland species at 400 sampling points, and built habitat selection models (territory 

scale) and distribution models (7 algorithms, landscape scale). We compared the effect of climatic 

predictors on occurrence/distribution highlighted by models over to the two spatial scales, and with 

the effects supposed a priori based on the climatic niche of each species. 

Models at the territory level included at least one climatic predictor for three species; the observed 

effect of climatic predictors was seldom consistent with supposed effects. At the broadest scale, 

distribution models for all species included climatic predictors, with varying consistence with 

supposed effects and findings at the finer scale. 

Despite the importance of climate for species distribution, occurrence could be more directly related

to other factors, with important implications for understanding/predicting the impacts of 

climate/environmental changes. Our approach revealed key variables for grassland birds, and 

highlighted the scale-dependent perceived importance of climate. At the local scale, climate effects 

were weak or hard to interpret. We found a general lack of consistence between supposed and 

observed effects at the territory level, and between landscape and territory models. Our results show

the importance of predicting the potential effect of climatic factors prior to the analyses, carefully 

selecting ecologically meaningful variables and scales, and evaluating the nature and scale of 

climate-species links. We call for caution when predicting under future climates, especially when 

mechanistic effects and consistency across scales lack.
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Introduction

Anthropogenic climate change is one of the main threats to biodiversity and ecosystems and will 

continue to impact on Earth’s environments in the next decades (Sala et al. 2000). Several studies in

the recent literature evaluated and predicted the impacts of climate change on species and 

ecosystems; such studies are essential for conservation as they allow to propose adaptation and 

mitigation strategies (Bellard et al. 2012). However, the evaluation of climate change impacts on 

living species suffers because of several sources of uncertainty (Bagchi et al. 2013, Engler et al. 

2017). Uncertainties include those linked to distribution modelling (such as data appropriateness 

and resolution, extrapolation, modelling algorithm(s), biases in geographical/environmental 

sampling; e.g. Virkkala et al., 2010; Braunisch et al., 2013; Fourcade et al., 2014; Pacifici et al., 

2015; Mitchell et al., 2017; Quillfeldt et al., 2017; Titeux et al., 2017a), those tied to species 

characteristics (e.g. dispersal limitations, local adaptation, interactions with other species; e.g. 

Zurell, 2017), as well as the uncertainties due to heterogeneity and variability in predictions of 

future climate and to the frequent need to project distribution patterns on non-analogous climates 

(Kujala et al. 2013, Stoklosa et al. 2015). In addition, ignoring land-use and land-cover impacts 

could result in partial understanding of climate effects and in inaccurate predictions (Titeux et al. 

2017b). A particular case in point is represented by spatial scale. In fact, climate is likely to be 

particularly relevant when modelling species distribution over broad extent, i.e. regional to global 

(Pearson and Dawson 2003), even if fine-scale models have been reported to reduce uncertainties in

predicting distribution (Jiménez-Alfaro et al. 2012). Studies comparing predictions in range shifts 

obtained over different spatial scales have shown contrasting results for plant species across scales 

(Franklin et al. 2013), with evidence for both under- (Trivedi et al. 2008) and over-estimation 

(Randin et al. 2009) of impacts at broad scales. In fact, there is increasing evidence of the 

importance of spatial scale at which the relationships between species and their environment are 

analysed (Mertes and Jetz 2018). In animals, considering that habitat selection is often a multi-scale
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process (Jedlikowski et al. 2016), it is very likely that climate may also have different importance at

different spatial scales, and that its effect on species distribution could appear different across 

different spatial levels. In any case, a proper evaluation of such effects requires that the climate 

gradient sampled within a study is representative of the broad climate gradient occupied by the 

target species (Titeux et al. 2017a, Brambilla et al. 2017b).

All these challenges result in uncertainty in understanding and predicting species distribution in 

relation to present and future climate, and are particularly relevant when dealing with birds: being 

endotherm species, they are less strictly affected by a direct effect of climatic predictors as is often 

the case for ectotherm species. In addition, they display great mobility (Engler et al. 2017) and 

frequent seasonal variation in habitat association (Engler et al. 2014), respond at different 

environmental drivers at different spatial scales (Jedlikowski and Brambilla 2017) and can use 

different habitats for different purposes (Brambilla and Saporetti 2014). Studies sampling species 

occurrence along elevation gradients in mountain areas revealed important effects of both habitat 

characteristics and climate, with relative importance depending on species (Chamberlain et al. 2013,

2016).

Given the sensitivity of birds to climate (Stephens et al. 2016), and the common importance of 

multi-scale and different determinants of species occurrence and habitat selection (Brambilla 2015, 

Jedlikowski et al. 2016), avian species are an ideal model to test whether the effect of climate on 

species distribution is constant or vary across spatial scales. Previous studies of the relationships 

between bird occurrence and climate have provided rather different outcomes; whereas their 

distribution had been reported to be substantially in equilibrium with climate in Europe (Araújo and

Pearson 2005), in 19 passerine species in Northern America, occurrence was found to be more 

related to spatial coordinates and neighbourhood occupancy, rather than to climate (Rich and Currie

2018).
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With this study, we investigate the determinants of avian species occurrence in grassland-dominated

areas in a mountain region at two different spatial scales, namely territory and landscape, evaluating

the effects of climate and of other environmental variables describing land-use/land-cover, 

vegetation structure and management. We aim at specifically evaluating the importance of climate 

over different spatial scales and considering different predictors, according to two frequently 

adopted approaches in studies dealing with bird ecology and conservation, i.e. i) habitat selection at 

territory scale and ii) species distribution modelling (SDM) at landscape scale. We expect a stronger

effect of climate at the broadest scale (assessed by using distribution models), whereas  climate 

could have a secondary importance when fine-scale descriptors of habitat characteristics are also 

considered (within habitat selection models), at least for some species likely to be more affected by 

other environmental factors. We also postulate that for major effects of climate, coherent patterns of

species-climate relationships should be found across scales. Recently, this has been the case of a 

high-elevation specialist of alpine grassland in European mountains, the white-winged snowfinch 

Montifringilla nivalis, across landscape (Maggini et al. 2014, Brambilla et al. 2017b), meso- 

(Brambilla et al. 2017a) and micro-habitat scales (Brambilla et al. 2018). On the opposite, 

potentially different patterns could suggest indirect associations between a species and climate 

(Rich and Currie 2018), and call for careful extrapolations of the species-climate relationships over 

e.g. different areas or future scenarios.
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Material and Methods

Study area 

Our study was carried out in the Central Apennines (central Italy), a mountain area where traditional

land-uses have created large extents of grassland along broad elevation gradients. Such grassland 

extents, mostly used as seasonal pastures, occur from relatively low (below 1000m asl) to much 

higher elevation (>2000m). In the study area, the forest limit is usually around 1400-1600m 

(Piermattei et al. 2016), whereas the treeline would naturally occur mostly between 1700 and 

1800m (according to the elevation limit of beech Fagus sylvatica, cf. Magnani, 2007; Pezzi et al., 

2007), whereas, above this elevation, low shrubland and grassland represent the climax vegetation 

because of climatic constraints. 

We investigated five main different areas corresponding to different mountain systems included in 

National or Regional Parks: Sibillini, Laga, Gran Sasso, Velino-Sirente, Marsica, Majella (Fig. 1). 

We sampled sites at an elevation of 752-2129 m asl (mean 1528 ± 232 SD).

Model species

We investigated passerine birds breeding in mountain grassland, because species tied to this habitat 

are among the most threatened ones because of ongoing climate and habitat changes (Chamberlain 

et al. 2013, Brambilla et al. 2017b, Scridel et al. 2018, Lehikoinen et al. 2018) and thus both require

urgent research and qualify as an ideal model for our aims. We selected four species likely to show 

different relationships with climate and land-cover: water pipit Anthus spinoletta, tawny pipit 

Anthus campestris, northern wheatear Oenanthe oenanthe and linnet Linaria  cannabina. Water 

pipit is a mainly insectivorous species restricted to open habitats in the main mountain areas of 

central and southern Europe and western Asia. Water pipit breeds only at relatively high elevation, 

often performing elevational movements in winter or short migration, and has been considered as 
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threatened by climate change on European mountains (Chamberlain et al. 2013, Brambilla et al. 

2016, 2017b). Tawny pipit is an insectivorous species, long-distance migrant, tied to relatively 

warm and dry areas, where it occupies open habitats with low and sparse vegetation, usually in 

sunny and flat or gentle sloping areas (Cramp 1998).  Northern wheatear is a long-distance migrant, 

insectivorous species, tied to areas with low vegetation (usually grassland), sandy or rocky soil and 

bare ground or sparse herbaceous vegetation, occupying a broad spectrum of climatic conditions 

(Cramp 1998). Linnet feeds predominantly on seeds, and is a resident or short-distance migrant; it 

occurs over very broad environmental and elevational gradients, being found e.g. in Italy both in 

fruit orchards in very warm areas (e.g. Sicily, Lo Valvo and Lo Valvo 1987) as well as in high-

elevation habitats with sparse shrubs (e.g. sites above 2000m asl in the Alps and the Apennines) 

(Gustin et al. 2010). Therefore, we expected to find a stronger importance of climate for water pipit,

coherent across scales. On the other side, we did not expect such a strong importance of climate for 

northern wheatear and linnet, as the latter two species inhabit wide areas and elevational gradients, 

including all (or almost so) the climatic conditions found within our study areas. Finally, for tawny 

pipit we expected a potentially limiting effect of most extreme climates (especially of coldest and 

wettest conditions). All these four species have a concerning conservation status (“inadequate”, 

sensu Brambilla et al., 2013) in Italy (Gustin et al. 2016).

Fieldwork

We recorded birds during the breeding period at 400 points (Fig. S1), in spring 2016 (June-July). 

All points were surveyed in the morning (from dawn to 11:00) by the authors, and each survey 

lasted 10 minutes. All points were surveyed once in the period 9-29 June, and then 172 points were 

surveyed a second time (30 June-10 July). At each point, we measured topographic (derived from 

an European DEM-Digital Elevation Model: 

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem) and 
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climatic factors obtained via the CHELSA (http://chelsa-climate.org/) database (Karger et al. 

2017) in a GIS environment, whereas we recorded in the field detailed habitat variables, including 

land-cover parameters (several types of natural, semi-natural and anthropogenic habitats), and 

management-related parameters (mowing, grazing, sward height). Habitat variables recorded at 

survey points are described in Table 1. Both birds and variables were recorded within a 100m radius

from the point.

Supposed effect of climatic predictors

To refine the expectation about the effect of the climatic variables tested in the models, we 

compared the values of such predictors in our study site vs. the values recorded all over the range of

the target species in Italy, to hypothesize the likely direction of the climate effect on species 

occurrence (see Fig. 2 for a graphical summary). In fact, if the climatic niche of a species for a 

given parameter at the national level (hereafter, climatic niche) encompasses the values recorded for

the same parameter within our study area, we supposed that such a climate parameter would not 

affect (at least, directly) the occurrence of that species within the study area, because the local range

of values falls within the values at which the species occurs at a broader scale. Otherwise, if the 

range of values of a climatic parameter within the study area are larger than or are only partially 

overlapping with the species climatic niche, an effect (for that parameter on that species) could be 

supposed based on the relationship between climate in the study area and climatic niche (Fig. 2). As

an example, if the values of a certain parameter in the study area are generally higher than the 

climatic niche of a species, we suppose that the occurrence probability of such a species in the study

area should be negatively affected by the parameter value. Given the broad latitudinal and 

elevational gradients that characterize Italy, the species distribution within the country could be 

considered as representative for the purposes of our work (Brambilla et al. 2016). We calculated 

mean ± SE for each climate predictor considered in models for the range (given as occurrence cells)
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of each species as recently defined by Nardelli et al. (2015), who provided the most update 

summary of species distribution in Italy. To be conservative in the identification of the potential 

effects, and to take into account the broad range units (10 km x 10 km cells) used by  Nardelli et al. 

(2015), we opted to use mean ± SE to define the ‘typical’ climatic niche of a species in Italy. The 

comparison between the climatic values found in our study area and the climatic niche of each 

species at the national range, as well as the supposed effects at both scales, are displayed in Table 2.

Habitat suitability models

We excluded from the samples 12 points at which no bird was recorded within the fixed radius; the 

final sample size of the dataset used in the analyses was thus equal to 388 points. We built models 

to evaluate the factors potentially affecting habitat suitability for grassland passerine species at two 

different spatial scales: territory and landscape. We adopted different methods at the two scales i) to 

match different approaches currently adopted in distribution studies, ii) to correctly deal with 

different kind of data (presence-absence at territory level, vs. presence-background at the landscape 

scale).

Territory models

Models at the territory level were based on bird occurrence and a dataset of variables integrating 

predictors measured in the field within 100m from survey points, and others calculated via GIS 

(Table 1). Before analyses, we checked variable distribution and excluded a few factors, which had 

value zero in most cases (snow cover, water cover, bare soil, buildings, wetland). We then 

standardized all variables (centred around mean and scaled by standard deviation), a procedure 

recommended to evaluate multicollinearity and relative effect (Schielzeth 2010, Cade 2015), and 

checked for the occurrence of outliers within the dataset so obtained.
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 To appropriately take into account the effect of double counts performed in one half of sites, we 

added a species-specific weight to the models. In fact, the observed absence of a species is less 

reliable for (absence) sites surveyed only once, than for sites surveyed twice. All sites surveyed 

twice and all occurrence sites were weighted one, and the absence sites surveyed only once were 

weighted 0.5. 

At the territory level, we related species occurrence to fine-scale environmental predictors, after 

omitting a few factors which inflated multicollinearity according to the generalized variance 

inflation factors (gVIFs; (Zuur et al. 2009): the variables finally used for modelling were thus 

broadleaved forest, shrubland, transitional shrubland, grassland, shrubs, trees, arable land, rock, 

hedges, height of the grassland sward, occurrence of ski piste with modification on ground 

vegetation, grazing occurrence, slope, solar radiation, bio1 (maximum temperature of the warmest 

month), bio4 (temperature seasonality expressed as standard deviation multiplied by 100), bio18 

(precipitation of warmest quarter), bio19 (precipitation of coldest quarter). Most variables had a 

gVIF value <3; two predictors had a slightly higher value (bio4 and grassland cover, value ~5); we 

retained such variables to allow a proper comparison with landscape models (see below). 

Considering that the effects of parameters in single-variable models and in final ones were fully 

coherent, we are confident that collinearity did not affect models. We used generalized additive 

models with binomial error distribution, and progressively simplified models according to a step-

down procedure (Zuur et al. 2009, Calvi et al. 2018), , using P = 0.01 as threshold for variable 

removal.  Environmental variables were tested as smooth terms, whereas a tensor term (full tensor 

product smooth; Wood 2017) of longitude and latitude was added to control for spatial 

autocorrelation. This analysis was performed in R (R Development Core Team 2016), by means of 

the package ‘mgcv’ (Wood 2019).

Landscape models
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At the landscape level, models were built using the same species’ occurrence data (plus a few 

occurrence record collected while moving between different survey points – 3 for water pipit, 4 for 

tawny pipit, 3 for northern wheatear, 2 for linnet). For water pipit, to increase the limited sample 

size, we considered the precise location of all the single individuals we were able to record with 

good spatial accuracy (a few meters/tens of meters, in any case < 50 m). Bird data were coupled 

with environmental variables (topographical, climatic and relative to land-use and land-cover) 

derived from GIS layers, at a 1km-resolution (1km x 1km cells). We calculated average values per 

cell of climatic factors (derived from the CHELSA database) and topographic factors (derived from 

the DEM; see above); for land-use/land-cover factors, we calculated the percentage cover within the

cell of each cover categories comprised in the CORINE database (European Environment Agency 

2016). As a study area, we used the polygon resulting from the creation of a 4km buffer around all 

point counts with at least one species recorded (132 433 ha; eight polygons of size varying between 

7087 and 41 639 ha). This area (Fig. 1) was used for model development. Occurrence data were 

filtered as to have one record per each cell, apart from water pipit, for which this procedure resulted 

in a very small sample size: for the latter, we kept all records (note that a qualitative comparison 

with models built using the filtered occurrence records led to comparable effects for the most 

important variables). Environmental predictors adopted in this analysis were the following ones: 

continuous urban fabric, discontinuous urban fabric, non-irrigated arable land, permanently 

irrigated land, vineyards, pastures, annual crops associated with permanent crops,  complex 

cultivation patterns,  land principally occupied by agriculture with significant areas of natural 

vegetation, broad-leaved forest, coniferous forest, mixed forest, natural grassland, moors and 

heathland, transitional woodland-shrub, bare rocks, sparsely vegetated areas, water bodies, bio1 

(annual mean temperature), bio4 (temperature seasonality expressed as standard deviation 

multiplied by 100), bio18 (precipitation of warmest quarter), bio19 (precipitation of coldest 

quarter), slope, solar radiation. Landscape models were created using a Maximum Entropy 
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(MaxEnt) approach, by means of the package ENMeval (Muscarella et al. 2014) in R. MaxEnt is 

the most suited method for our purposes, i.e. to investigate the effect of climatic parameters on 

species distribution over the regional scale, without the use of absence data. Background points 

were constrained within 4 km from point counts, as to match background with actually sampled 

environmental conditions. MaxEnt models were based on an AICc-model selection among eight 

different values of the regularization parameter (ranging between 0.5 and 4); all variables with both 

percentage contribution and permutation importance lower than 0.5% were excluded from the 

model in an iterative way (for water pipit, level was increased to 1% to limit the number of 

predictors in the model, given the smaller sample size). Models were developed partitioning 

occurrence data into two spatially independent bins, via a checkerboard scheme (method 

checkerboard1 in ENMeval). Effects were evaluated on models run with all selected predictors. 

Given that the choice of a specific algorithm over other ones may affect modelling results (Hijmans 

et al. 2016, Quillfeldt et al. 2017), even if MaxEnt is considered as the most suited method to deal 

with dataset lacking absence data, we developed models using also different approaches to compare 

the modelled species-environment relationships, namely Generalized Linear Models (GLM), 

Generalized Boosted Models (GBM), Random Forests (RF), Classification Tree Analysis (CTA), 

Artificial Neural Networks (ANN), Multiple Adaptive Regression Splines (MARS), Flexible 

Discriminant Analysis (FDA). These additional models, based on the same variables and occurrence

data, were also developed in R, via biomod2 package (Thuiller et al., 2013). As pseudoabsence 

locations, we selected all available cells within 4 km from the point counts. We partitioned 

occurrence data in two dataset, one comprising 70% of the data for calibration, and 30% for testing 

(except for water pipit, 85% vs. 15%, due to the smaller sample size). Even if most studies carried 

out using biomod2 use the recommended default settings (Thuiller et al. 2013), we adopted specific 

values for some algorithm-species combination, because for the latter a visual inspection of the 

response curves clearly suggested overfitting with default settings. Therefore, every time we found 
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a biologically unsupported relationship putatively due to overfitting, we decreased model 

complexity by progressively adjusting model settings (Table S2). For all species, MARS and GBM 

models were fitted without interactions. To assess concordance between supposed and observed 

species-climate relationships, we considered the environment-species relationships modelled by the 

top four (out of six) models in terms of AUC of the ROC plot (hereafter, best performing models). 

We evaluated as “coherent” identical or very similar effects (see Table S3 for criteria). We 

considered concordance “high” when all models provided relationships coherent with supposed 

effects; “good” when at least three models were coherent with supposed effects; “moderate” when 

two models were coherent with supposed effects; and “weak” when only one or no model was 

coherent with the supposed effects.
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Results

Water pipit was detected at 32 points, tawny pipit at 101, northern wheatear at 159 and linnet at 162.

At 111 points, none of the target species was detected. The distribution of species records is shown 

in Figs. S2 and S3.

Territory level

Models worked out at the territory level show medium-low to high explanatory power for all 

species, with R2 ranging from 0.13 to 0.56 (Table 3). They included at least one climatic predictor 

for all species except tawny pipit, which occurrence was dictated only by grassland cover, and 

which had the lowest explanatory power (Table 3). The observed effect of climatic predictors was 

seldom consistent with the supposed effects (Table 4). The effect of other predictors (and especially,

but not exclusively, of land-cover variables) was often important, and the spatial tensor was 

included in the final model in three out of four species, indicating some sort of spatial patterns in 

species occurrence (Table 3).

Landscape scale

Sample size at the landscape scale was equal to 54 for water pipit (after the inclusion of all 

individual records), 65 for tawny pipit, 82 for northern wheatear and 94 for linnet. The distribution 

of the occurrence records used for landscape models is shown in Fig. S3. At the broadest scale, 

MaxEnt distribution models showed an explanatory power generally consistent over the two bins in 

which the occurrence dataset was partitioned, with the only partial exception of water pipit, the 

species with the lowest sample size (Table S2). Climatic predictors were included in the models of 

all species (although with varying importance; Fig. 2). The supposed effect of climate variables and 

the species-climate relationships modelled at the landscape scale were substantially coherent for the
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two pipit species, whereas the concordance was lower for linnet and, especially northern wheatear 

(Table 5).

Data deposition

Data available from the Dryad Digital Repository: http
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Discussion

The importance of climate on species distribution (including for avian taxa) is beyond any doubt 

(Stephens et al. 2016). However, regional to continental distribution could be to some extent more 

directly related to other spatially structured factors (Rich and Currie 2018). This has critical 

implications for understanding and predicting the potential impacts of climate and environmental 

changes. Our approach helps reveal the relative importance of key variables affecting grassland bird

occurrence; in particular, the use of different spatial scales and modelling approaches (reflecting 

common ways used to investigate the link between environment and species) highlights important 

issues related to the perceived importance of climate on species distribution, confirming the 

importance of scales, grain, variables and approaches in distribution modelling (Quillfeldt et al. 

2017, Mertes and Jetz 2018, Fourcade et al. 2018). 

Even if our analysis of concordance between the supposed effects and the relationships depicted by 

distribution models is qualitative in nature (see Tab. S3), and includes also models that perform 

better with ‘true’ absence (Elith and Graham 2009), it could provide the basis for an informed 

comparison of the coherence between expectations and modelling output. Whereas we found an 

acceptable concordance between the supposed effect of climate variables and the species-climate 

relationships modelled at the landscape scale for the two pipits (but with the important exceptions 

of bio1 for tawny pipit and bio18 for water pipit), consistent with a distribution largely in 

equilibrium with climate (Araújo and Pearson 2005) and with expectations at a large scale (Pearson 

and Dawson 2003), the concordance was lower for linnet and, especially northern wheatear (Table 

5). For the latter, almost all the effects of climate factors suggested by distribution models were 

different from the supposed ones, according to all or most modelling algorithms. When moving to 

the local scale, the interpretation of climate effects become even harder. We found indeed a 

common lack of consistence between supposed and modelled effects of climate on species 
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occurrence at the territory level (Table 4). In addition, there was also a lack of congruence in terms 

of different effects suggested by landscape and territory models. Indeed, it could be expected that, at

a finer level, species occurrence is primarily driven by other characteristics, which are more likely 

to have a direct importance at such a scale, as e.g. suitable land-cover, prey availability, vegetation 

composition or structure, or biotic interactions (Pearson and Dawson 2003). The only instance for 

which a relatively consistent pattern of response to climate variables was recorded across both 

scales was temperature for water pipit, i.e. the species most expected to be directly affected by 

climate (Chamberlain et al. 2013) and especially by temperature (Brambilla et al. 2016): the latter 

factor was identified as the most important variable affecting the species occurrence over both 

scales, coherently with evidence from other areas (Brambilla et al. 2017b). Tawny pipit was 

apparently not affected by climate at the local scale (Table 4), but climatic predictors turned out to 

be important when evaluated at the landscape scale (Table 5). Apparently even more surprising, we 

found contrasting effects of the same predictor over the two spatial scales, as was the case for 

average temperature (bio1) for linnet: this variable had a U-shaped quadratic effect at the territory 

scale, but a hump-shaped effect (thus, the exact opposite) according to landscape models, within the

same range of values (cf. Figs. 3 and 4; Fig. S4).  The hump-shaped effect found at the landscape 

level is coherent with the supposed effect of average temperature on the species, according to its 

climatic niche. On the other side, the U-shaped effect found at the territory level is very likely to 

reflect the distribution of key resources for the species, or local adaptation to individual habitats not 

occurring at ‘intermediate’ temperatures within the study area. Consequently, it would be unreliable 

to project changes in occurrence because of temperature variation on the basis of such a 

relationship. Whatever the specific reason of such diverging patterns, this finding confirms the 

importance of predicting the potential effect of climatic factors prior to the analyses, on the basis of 

the species’ realized distribution over broader scales; such a task, which we implemented in a 
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largely descriptive manner, could be potentially developed also from a quantitative point of view in 

future applications.

Some of the effects suggested by the models in fact contrast with the ones supposed to occur on the 

basis of the comparison between the range of climate experienced by the species at the national 

level (the climatic niche) vs. the climate found in the study area. The negative effects of average 

temperature (bio1) on the occurrence of tawny pipit (at landscape scale) and wheatear (at territory 

level), when the expected effects were quadratic and null, respectively, serve as examples of likely 

indirect effects, mediated by other environmental processes. Specifically, for tawny pipit the study 

area includes some of the coldest sites of known occurrence, and comparing the temperature 

experienced by the species over its broad national range and within the study area, revealed a weak 

overlap between temperature values (bio1) at the territory scale, which would lead to a positive 

effect of bio1 (Table 2). At the landscape scale, a quadratic effect could be supposed as the values 

defining the climatic niche of the species (for bio1) fall well within the range recorded at the 

broader scale within the study area. This suggests that the negative effect of temperature at the 

landscape level is likely due to other factors, such as higher predator density at warmer sites (the 

abundance of foxes, martens, corvids and snakes is definitely higher towards lower elevation in 

Central Apennines; our pers. obs.), or vegetation structure/density (e.g. the composition and 

structure of the grass sward could be more suitable in colder sites within the study area). Notably, at

the territory level temperature had no effect on species’ occurrence, this indirectly confirming that 

the temperature effect is due to other factors (spatial, environmental, or biotic; see above), which 

could have a spatial pattern  somewhat mirroring the spatial variation of temperature (Brambilla et 

al. 2016, Rich and Currie 2018). Modelling future distribution according to forecast warmer 

climates would result in a substantial loss of suitability/distribution for this species according to the 

relationships modelled within our study, something that is hard to envision when the warm climates 
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to which the species is associated are considered (Cramp 1998), or when the full range of the 

species is taken into account (cf. Barbet-Massin et al., 2010). 

In northern wheatear, a quadratic effect of temperature was expected at the landscape scale, as the 

temperature range generally occupied by the species at the national scale falls well within the 

thermal range recorded within the study area, whereas at the territory level no effect was supposed, 

as the climatic niche of the species largely coincided with the range of values recorded at such a 

scale within the study area (Tab. 2). The effects we found were negative (and highly significant) at 

territory level and  quadratic/negative at the landscape scale. Again, it is likely that the broadly 

negative effect of temperature on wheatear occurrence could be due to indirect effects, possibly the 

same ones mentioned above for tawny pipit.

Well-built ecological niche models may identify truly important factors affecting species’ ecology, 

to the point that, in addition to distribution (Engler et al., 2017), they can sometimes predict even 

annual recruitment  (Searcy and Shaffer 2016) or breeding success and territory size (Brambilla and

Ficetola 2012), whereas the habitat suitability measure they provide is frequently associated with 

local abundance (VanDerWal et al. 2009, Brambilla et al. 2009, Oliver et al. 2012). Sometimes 

ecological niche models, which are correlative in nature, may be based on non-causal relationships; 

the correlation between climate and distribution may be the outcome of the effect of non-climate 

variables (Chapman 2010, Rich and Currie 2018). In the case of tawny pipit, the lack of effect at the

territory scale enabled us to discard a causal relationship between tawny pipit occurrence and 

climate. This calls for extreme caution when predicting distribution under future climates, in the 

lack of evidence of consistent effects across spatial scales. For northern wheatear, however, the 

largely negative relationship with temperature unexpectedly found at the landscape scale was 

reinforced by the negative effect found at the territory scale, when also fine-scale determinants are 

considered: this suggests an underlying mechanism acting with a spatial pattern matching that of 

temperature, resulting in a proxy effect of the latter. It is possible that future changes in temperature 
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will induce changes in the ultimate factor(s) driving the distribution pattern of the species (e.g. 

predation). Under that circumstance, the potential effect of climate change on the species will be 

similar to those forecast in the case of a direct (‘mechanistic’) link with climate. However, further 

insights into local species’ ecology are definitely needed to understand mechanisms and 

consequences of climate factors and their change. In conclusion, careful evaluation of the nature 

and scale of the link between climate and species is required for safe projections of the potential 

outcomes of climate change on species occurrence; the selection of biologically meaningful 

predictors is a key issue in distribution modelling indeed (Rich and Currie 2018, Fourcade et al. 

2018), as well as the proper selection of spatial scale (Mertes and Jetz 2018). As a consequence, the 

choice of the right factors and scales is of basic importance for meaningful conservation planning, 

being irreplaceable for the definition of protected sites or management plans targeted at preserving 

key habitats or areas in the face of climate change.
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Table 1. Habitat variables recorded at each point count, within a 100-m radius, and used for 

building models at the territory scale. Not all variables were tested in the models, because of scarce 

occurrence of a given habitat or because of multicollinearity issues (see text).

Variable Description

Climate and topography average values within the 100m radius (measured in GIS)
slope average value (°)
solar radiation global value for 21st June(kWh/m2)
bio1 average annual temperature

bio4
temperature seasonality expressed as standard deviation multiplied 
by 100

bio18 precipitation of warmest quarter
bio19 precipitation of coldest quarter

Land use/land cover
percentage cover estimated within the 100m radius (~5%; measured
on the field)

Broadleaved forest forest and woodland composed by broadleaved trees
Coniferous forest forest and woodland composed by coniferous trees (pines)
Mixed forest forest and woodland composed by broadleaved and coniferous trees
Shrubs woody plants taller than 4m
Transitional shrubland shrubs and young trees (evolving into forest)
Grassland natural or semi-natural grassland
Isolated shrubs number of isolated shrubs (height 1-4m)
Isolated trees number of isolated trees (height >4 m)
Arable land arable land (ploughed and seeded)
Bare soil bare ground (compact)
Rock rocky substrate
Sand, scree bare ground with sandy or scree soil
Building buildings of different kind
Paved roads paved (tarmac) roads
Tracks unpaved roads, tracks
Hedgerows and tree rows length (m) of hedgerows and tree rows
Waterbodies lakes, ponds, rivers
Wetland vegetation wetland and marsh plants
Snow/ice snow-covered surfaces

Habitat 
structure/management

categorical predictors describing grassland management (measured 
on the field)

Height of grassland sward categorical measure of the height of the grassland sward: low 0-10 
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cm; medium: 10-40 cm; high: >40 cm

Ski-pistes
categorical (binary): ski-pistes with original grassland or similar 
plant communities

Ski-pistes with altered 
vegetation

categorical (binary): ski-pistes with degraded/altered vegetation

Grazing
categorical (binary): active or recent grazing (grazing occurring or 
recent dungs)

Mowing categorical (binary): recent mowing
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Table 2. Values of climatic predictors used in the models: range of values defining the climatic 

niche of each species in Italy (expressed as mean ± SE), minimum and maximum values recorded at

sampling units at both scales, and supposed effect on each species (supposed effects have been 

derived from a comparison between climatic niche at national scale and climate within the study 

area; see Fig. 2 and text for details). Legend of abbreviation used for the supposed effect: T: 

territory; L: landscape; 0: no effect; +/-: quadratic effect (higher occurrence probability for 

intermediate values); +: positive effect; -: negative effect; +/--: quadratic or negative; ++/-: 

quadratic or positive; 0/-: null or slightly negative; 0/+ null or slightly positive.

species bio1
supposed

 effect
bio14

supposed

 effect
bio18

supposed

effect
bio19

supposed

effect

water pipit 29.48-76.94
T: -

L: -

5779.82-

6317.87

T: 0/-

L: 0

243.03-

357.30

T: +

L: +

170.22-

274.93

T: +

L: +

tawny pipit
116.57-

144.57

T: +

L: +/-

5717.52-

6201.54

T: 0/-

L: 0/-

84.33-

145.70

T: -

L: -

188.08-

236.52

T: 0/+

L: +/--

northern 

wheatear
59.38-112.5

T: 0

L: +/-

5795.75-

6345.48

T: 0/- 

L: 0

155.59-

285.66

T: 0/+

L: +/-

172.86-

258.52

T: 0/+

L: +/-

linnet
95.24-

140.44

T: +

L: +/-

5718.14-

6286.74

T: 0/- 

L:0/-

103.47-

210.77

T: -

L: +/--

176.61-

241.57

T: ++/-

L: +/-

Study area: 

Territory

70.16-

115.00

5927.00-

6472.00

151.00-

215.00

154.00-

219.00

Study area: 

Lanscape
0.80-167.00

5756.87-

6699.22

91.00-

298.20

106.00-

435.00
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Table 3. Summary of the habitat suitability models obtained at the territory level for each target 

species; + means positive effect, - negative effect, +/- quadratic effect (suitability higher at 

intermediate values, unless specified otherwise). The percentage of deviance explained and the R2 

of each model are reported as calculated by ‘mgcv’ package in R. Legend for P-value: *: 0.1 < P < 

0.05; **: 0.05 < P < 0.01; *** 0.01 < P < 0.001; **** P < 0.001.

Species % dev. explained variables included

water pipit 58.9%; R2 0.56 bio1 (-)****, grazing occurrence (+)*, spatial tensor**

tawny pipit 11.6%, R2 0.13 grassland (+)*, spatial tensor***

northern wheatear 21.9%, R2 0.25 broadleaved woodland (-)***, shrubland (-)***, trees 

(-)**, ski-pistes with altered vegetation (-)***, grazing 

occurrence (-)*, slope (+/-)**, solar radiation**, bio1 

(-)****, bio4 (-)*

linnet 27.1%, R2 0.28 transitional shrubland (-)**, rock (+)***, height of 

grassland sward (- for high grass)**, slope (+/-)**, bio1 

(inverse +/-)****. spatial tensor**
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Table 4. Comparison of supposed (derived from a comparison between climatic niche at national 

scale and climate within the study area) and modelled effects (see text) of climatic factors on 

species occurrence at the local scale, according to the models obtained at the territory level.   

Legend of abbreviation used for the supposed effect: T: territory; L: landscape; 0: no effect; +/-: 

quadratic effect (higher occurrence probability for intermediate values); +: positive effect; -: 

negative effect; +/--: quadratic or negative; ++/-: quadratic or positive; 0/-: null or slightly negative; 

0/+ null or slightly positive.

Species variable Supposed effect observed

water pipit bio1 - -

bio4 0/- 0

bio18 + 0

bio19 + 0

tawny pipit bio1 + 0

bio4 0/- 0

bio18 - 0

bio19 0/+ 0

northern wheatear bio1 0 -

bio4 0/- -

bio18 0/+ 0

bio19 0/+ 0

linnet bio1 + inverse +/-

bio4 0/- 0

bio18 - 0

bio19 ++/- 0
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Table 5. Comparison of supposed (derived from a comparison between climatic niche at national 

scale and climate within the study area) and modelled effects (see text) of climatic factors on 

species occurrence at the broad scale, according to the models obtained at the landscape level. For 

alternative models obtained via biomod2, only the effects of the four best performing models per 

each species are considered (see text). Legend of variable effects: + positive; (+) slightly positive; - 

negative; (-) slightly negative; +/- quadratic; +/-- quadratic/negative; 0: null. Legend for 

“concordance” (see Table S3) categories: high: all models coherent with expectations; good: at least

three models coherent with expectations; moderate: two models coherent with expectations; weak: 

one or no model coherent with expectations.

Species variable supposed

effect

MaxEnt GLM GBM CTA ANN FDA MARS RF concordance

water pipit bio1 - - - (-) - - high

bio4 0 0 0 0 +/- + good

bio18 + (-) - 0 +/- (-) weak

bio19 +/-- (-) - - - 0 good

AUC 0.991 0.990 0.909 0.936 0.947 0.943 0.798 0.789

tawny pipit bio1 + - (-) 0 +/- (-) weak

bio4 0/- 0 0 0 0 (+) good

bio18 - - (-) 0 (-) (-) good

bio19 +/-- - (-) - +/- (-) high

AUC 0.894 0.645  0.794 0.764 0.677 0.717 0.715 0.749

northern 

wheatear

bio1 +/- +/-- (-) - - - weak

bio4 0 - (-) - - 0 weak

bio18 +/- (-) (-) - - (-) weak

bio19 +/-- - (-) - - 0 good

AUC 0.881 0.810 0.828 0.825 0.829 0.802 0.818 0.834

linnet bio1 +/- +/- +/- 0 0 - moderate

bio4 0/- - - - - 0 good

bio18 +/-- +/- (+) (+) 0 (+) weak

bio19 +/-- - - (-) 0 0 good

AUC 0.853 0.825 0.826 0.767 0.702 0.829 0.821 0.870
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Figure 1. Study areas (plots with black margins) in Central Apennines (Italy); the bottom left inset 

shows the location of the study areas within Italy.
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Figure 2. A schematic representation of the approach adopted to define the supposed effect of 

climatic predictor on species distribution within the study area, based on a comparison between the 

climatic niche of the species at the national scale (here, water pipit and bio1; indicated with “A”) 

and the values of the same climatic predictor recorded within the study area (indicated with “B”). 

This approach was replicated for each scale, for each climatic variable and for each species.
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Figure 3. Modelled effects of climate variables on species occurrence at the territory scale, 

according to the GAM model. No climate variable was included in the model for tawny pipit.
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Figure 4. Modelled effect of climate variables on species occurrence and relative variable 

importance (percentage contribution, abbreviated “contr.”, and permutation importance, and 

permutation importance, abbreviated “perm.imp.”; both given as percentages) at the landscape scale

according to the MaxEnt model (plotted effects: models run with all selected predictors).
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Supplementary material

Table S1. Manual setting of models’ parameters in biomod2, adopted to prevent data overfitting 

based on a critical visual inspection of species-environment curves.

Table S2. Summary of MaxEnt model performances.

Table S3. Criteria adopted for the evaluation of coherence between supposed (derived from the 

comparison between climatic niche of a species and climate of the study area) effects and 

relationships depicted by the models.

Table S4. Variable importance (percentage contribution and permutation importance, both 

expressed as percentages) for predictors included in the final MaxEnt models.Figure S1. 

Distribution of point counts.

Figure S2. Distribution of occurrence records used for the analysis at the territory level.

Figure S3. Distribution of occurrence records used for the analysis at the landscape level.

Figure S4. Comparison of bio1 effect on linnet occurrence.
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