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Phase measurements are of paramount importance in quantum
optical sensing. However, the promise of a quantum advantage,
the celebrated Heisenberg scaling, is severely curtailed in the
presence of noise and loss. Here we investigate systems in which
phase and absorption profiles are linked by Kramers–Kronig
relations and show that, in the limit of a large photon number,
their use connects the uncertainties on the profiles attainable
by optimal probes for loss and phase. This underlines a physi-
cal motivation for which the Heisenberg scaling for the phase
is lost. Our results bear practical implications, revealing the
metrological capabilities of absorption measurements in deter-
mining phase profiles. © 2021 Optical Society of America under

the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.440438

The purpose of quantum metrology is to establish the best possible
strategy for performing the measurement of a set of parameters.
This dictates the choice of the state preparation and measure-
ment that, for a given evolution governed by those parameters,
is able to deliver the most accurate estimate [1–3]. Early efforts
were prompted by the possibility of improving the scaling of the
precision of optical phases due to the use of quantum resources.
However, this capability is hampered by the presence of loss: more
sophisticated tools have been developed to investigate non-ideal
scenarios in parameter estimation [4–6]. The current goals are set
on achieving robust operation of quantum metrological protocols,
by producing states that can operate efficiently in loss channels,
as well as under more general noise models, albeit without recov-
ering an improved scaling [7–12]. These studies assume a fixed
noisy channel, with a detailed characterization available before its
use for phase estimation. A different approach considers loss as a
parameter to be estimated, invoking multiparameter methods [13–
16], in either the independent or correlated case. While the exact
expressions of the achievable precision are often cumbersome,
bounds are found that enjoy simpler forms, and are achievable
asymptotically for a large amount of resources [9].

When investigating material samples, the Kramers–Kronig
relations (KKR) impose an inter-dependence between these
parameters, as the refractive index at any given frequency can be
written by means of an integral of the absorption coefficient over
the frequency domain [17]. This correlates a single parameter with
a continuum, and the implications for metrology have not been
explored. In this Letter, we demonstrate that by employing KKR,
the quantum-limited estimation of an absorption profile grants
quantum-limited estimation of the dispersion profile and vice
versa. In our investigations, we have made use of concepts taken
from quantum function estimation, a novel approach that has been
added to the toolbox of quantum metrology in recent years [18].

Kramers [19] and Kronig [20] investigated the connection
between dispersion and absorption from atomic species, allowing
them to establish the relation between real and imaginary parts of
the complex refractive index ñ(ω)= n(ω)+ iκ(ω) as a function
of the optical frequencyω:

n(ω)=1+
2

π
P
∫
∞

0

ω′κ(ω′)

ω′2 −ω2
dω′,

κ(ω)=−
2ω

π
P
∫
∞

0

n(ω′)

ω′2 −ω2
dω′, (1)

whereP denotes the Cauchy principal value. At a more fundamen-
tal level, similar relations are found between the real and imaginary
parts of the linear electric susceptibility [21], and it is now appre-
ciated how this relation is a manifestation of causality in the linear
response of a medium [17]. This has made them a precious tool in
research in material science. The generality of the KKR has made
it possible to find applications well outside their original scope
of describing optical response, and these are now employed in
acoustics and seismology [22,23], imaging problems [24,25], and
coherent signal processing [26].

In optics, the relations (1) are more conveniently expressed
in terms of measurable quantities. When light traverses a
length l of this medium, it accumulates in a single pass a phase
shift ϕ(ω)= (n(ω)− 1)ωl/c , with respect to propagation
in the vacuum. The transmission for the intensity follows the
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Lambert–Beer law η(ω)= e−α(ω)l = e−2κ(ω)ωl/c . Differently from
n(ω) and κ(ω), the quantities ϕ(ω) and η(ω) can be accessed
experimentally. The KKR can be cast in the form

ϕ(ω)=−
1

2π
P
∫
∞

−∞

log η(ω′)

ω′ −ω
dω′ = Ĥ[log

√
η](ω),

log
√
η(ω)=−Ĥ[ϕ(ω)],

(2)

where Ĥ is the Hilbert transform operator. To prove these
relations, we consider the first of the two equations Eq. (1),
multiplying both sides byωl/c :

ϕ(ω)=
ω

π
P
∫
∞

0
dω′

α(ω′)l

ω′2 −ω2
. (3)

Since the complex refractive index satisfies ñ(−ω)= ñ∗(ω)
[17], κ(ω) is an odd function, making α(ω) an even function.
This property can be used to rewrite the integral Eq. (3) over both
negative and positive frequencies; this eventually leads to the first
of the equations in Eq. (2). The second is obtained by the property
Ĥ[Ĥ[ f ]] =− f . Thus, in principle, by measuring the transmis-
sion profile η(ω) over the whole frequency spectrum, it is possible
to recover the function ϕ(ω), and vice versa. The KKR, however,
provide an unambiguous connection between phase and loss only
for the minimal-phase model [27]. In the more general case, the
complex transfer function should be inspected, and the presence of
zeros causes further additive terms in the phase [28].

In quantum metrology, phase and loss are considered as model
examples for the estimation of unitary [2] and dissipative parame-
ters [29,30]. In ideal conditions, an optical phase can be measured
with an uncertainty scaling with the number p of photons in the
probe as 1/p2, the so-called Heisenberg limit [1], as opposed to the
optimal scaling with classical light 1/p . The estimation of phase
in a lossy system reveals that, while the Heisenberg limit cannot
be attained, a quantum advantage is retained as a constant factor
[6]. Further, studies on the joint estimation of the two parameters
have shown that simultaneous optimal estimability cannot be
implemented [13,14,31]. While these works have considered only
uncorrelated values, in [15], instead, a form of correlation was
introduced, in that the precision limits on a parameterχ , on which
both the phase ϕ(χ) and η(χ) depend, have been investigated.
The picture offered by the KKR in the form of Eq. (2) is even more
involved, as it shows how a single parameter ϕ0 = ϕ(ω0) at a given
frequency ω0 is related to the function η(ω). It is then convenient
to study the metrological implications of the KKR Eq. (2) with the
methods of the recently introduced quantum function estimation
[18,32].

We define our goal as that of obtaining an estimate ϕ̃(ω) of the
actual phase function ϕ(ω); for quantum metrology, the relevant
figure is the error [18]

δ2
ϕ = E

[∫
∞

−∞

|ϕ(ω)− ϕ̃(ω)|2dω

]
, (4)

obtained as the expectation value over all the evaluations of ϕ̃(ω).
Two routes are followed to obtain such a function, as shown in
Fig. 1; we first consider the case of a direct measurement of the
phase: ϕ̃(ω) is then estimated by assessing the values for some
frequencies ωi , and interpolating in between these points. The

Fig. 1. Use of the Kramers–Kronig relations for phase reconstruction.
(a) We aim at reconstructing the phase profile of a lossy sample, with
frequency-dependent parameters ϕ(ω) and η(ω). For this, we can either
(b) measure a set of values ϕ̃(ωi ) and interpolate them to obtain the esti-
mated function ϕ̃(ω) or (c) use the KKR on a reconstructed transmission
profile η̃(ω).

error Eq. (4) then originates from two contributions: the sta-
tistical uncertainties on the measured phases ϕ̃(ωi ), and the
deviations due to the interpolation [18]. The ideal limit has the
measured sample dense enough that the second contribution
is small with respect to the statistical one, and the total error is
thus well approximated by the sum of point-by-point deviations
1ϕ2(ω)= E[|ϕ(ω)− ϕ̃(ω)|2], and hence δ2

'
∫
∞

−∞
1ϕ2(ω)dω.

As an alternative strategy, we can obtain an estimate η̃(ω) of the
transmission profile, and use this to derive the phase, by means of
the KKR Eq. (2). The error on the phase function is then

δ2
ϕ =

1
4 E
[∫
∞

−∞

∣∣∣Ĥ[log η̃](ω)− Ĥ[log η](ω)
∣∣∣2dω

]
. (5)

We can simplify this expression by invoking the property
that, for any square-summable function f (ω),

∫
| f (ω)|2dω=∫

|Ĥ[ f ](ω)|2dω:

δ2
ϕ =

1

4
E
[∫
∞

−∞

| log η̃(ω)− log η(ω)|2dω

]
. (6)

If the collected sample is sufficiently dense, we can take the
same approximation as above, and obtain δ2

ϕ =
∫
∞

−∞
1η2(ω)/

(4η2(ω))dω, valid when the deviation 1η2(ω)= E[|η̃(ω)−
η(ω)|2] is small. The adoption of the KKR thus allows an estimate
for the phase function with the same error we would get from a
direct phase measurement with an equivalent uncertainty:

1ϕ2
eq(ω)=

1η2(ω)

4η2(ω)
. (7)

This quantity, however, should not be interpreted as the error
on the individual phase values as obtained from the function ϕ̃(ω).
Optimal estimation of the transmission is obtained by using Fock
state probes [30], and we allow for the same number of repetitions
of the same states for every frequency. This yields to the uncertainty
1η2(ω)= (1− η(ω))η(ω)/N, where, for a p-photon state and
M repetitions, N = p M. More in general the same form of the
optimal precision holds also when substituting N with the average
number of photons used to probe the sample at each frequency; in
this regard, a more practical optimal strategy is to use half of a two-
mode squeezed vacuum state [33], while single-mode squeezing
offers advantages only in particular regimes [29]. Substituting this
expression in Eq. (7), we obtain
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1ϕ2
eq(ω)=

1− η(ω)

4η(ω)N
. (8)

This is a known bound on the ultimate quantum limit for
lossy phase estimation with N photons [4,34], which is asymp-
totically attainable [9]. Therefore, by using the optimal states for
loss estimation, we obtain an estimate ϕ̃(ω) that is, at the lead-
ing order, as good as the one we could obtain by employing the
optimal states for phase estimation. This discussion, however,
comes with the important caveat that the Hilbert transform of a
constant function is zero. This implies that the phase profile can
be reconstructed from the transmission up to a phase, which needs
to be fixed up front. The boundary condition [17] that φ(ω)→ 0
for ω→∞may help resolve this ambiguity. While this reasoning
was presented for minimal-phase models, it also applies more
generally, since the additive terms in the phase—provided they
are specified—will be irrelevant for the sake of analyzing the phase
estimation variance.

The same reasoning can be applied, in reverse, to estimation of
the transmission α(ω), obtaining δ2

α = 4/l2
∫
+∞

−∞
12φ(ω)dω. If

the phase can be estimated optimally, it will asymptotically follow
the error Eq. (8), and thus we obtain δ2

α = 1/l2
∫
+∞

−∞

1−η(ω)
Nη(ω) dω.

As expected, this is equivalent to the error obtained from a direct
optimal estimation of η(ω), i.e., δ2

α =
∫
+∞

−∞
1α2(ω)dω, with

1α2(ω)=
12η(ω)

l2η2(ω)
=

1−η(ω)
l2η(ω)

, sinceα =−1/l log η, by definition.
Interestingly, this argument sheds a new light on the loss of

Heisenberg scaling in lossy phase estimation: were it not so, the
equivalent uncertainty 1α2(ω), and consequently, the function
estimation of α(ω) would show quantum enhancement in the
form of a 1/p2 scaling of the uncertainty, although absorption
is not a coherent process [2,29]. KKR are compatible with fun-
damental quantum metrological bounds derived without taking
them into account. The KKR are established as a consequence of
the physical properties of dispersive and absorptive objects, but
they can also be interpreted as the fact that the complete determi-
nation of one function leads to an exhaustive knowledge of the
other. Our results interpret this property as optimality in a statis-
tical sense, in that resources are employed for the best use for one
parameter as well as the other.

There may occur other mechanisms, including those
related to the detectors, which can be calibrated in advance.
If the overall efficiency, excluding the absorption, is T(ω),
the optimal uncertainty on the transmission is 1η2(ω)=

(1− η(ω)T(ω))T(ω)/(η(ω)N). Inserting this expression
into the equivalent phase uncertainty leads to 1ϕ2

eq(ω)=

(1− η(ω)T(ω))/(4η(ω)T(ω)N): the phase profile estimation is
influenced by the total transmissionη(ω)T(ω), and the equivalent
uncertainty is the optimal permitted by the total loss. The KKR
are also useful to link the best precision on phase and transmission
allowed by classical light. For this, we use coherent states as bench-
marks, as they are optimal among classical states for both phase
and loss estimation. Loss estimation with state |β〉 leads to the
uncertainty 1η2(ω)= η(ω)/β2. From this expression, we derive
the equivalent uncertainty Eq. (7) as 1ϕ2

eq(ω)= 1/(4η(ω)β2),
which is the corresponding precision for phase estimation, when
loss is considered. In this case, the KKR relate the classical limits for
individual parameters.

We have explored the implications of the KKR in the
practical case, performing numerical calculations on a
Gaussian absorption line centered around ω0, with α(ω)=

α0 exp(−(ω−ω0)
2/(2σ 2)). This is a relevant model for those

media with an isolated line, or close multiplets, such as quan-
tum memories, whenever the contribution to the phase of other
absorption regions can be neglected. This is associated to a phase
profileϕ(ω) described by a Dawson function [17]. The absorption
profile has parameters α0l = 1, ω0 = 0.5, and σ = 0.1, and the
interval [0,1] is considered. We have simulated the estimation of
the functions η̃(ω) and φ̃(ω) from a set of measurements of the
transmission using the optimal single-photon states, with a fixed
number of total resources Ntot divided among Ns sampled points;
each of these is then estimated from Nev = Ntot/Ns events. For
each of the Ns points taken on the transmittivity curve, equally
spaced on theω axis, the value of η̃i = η̃(ωi ) is taken from a normal
distribution with mean ηi and variance ηi (1− ηi )/Nev, i.e., we
assume an unbiased measurement and a sample sufficiently large
to achieve an estimator for η̃ with a Gaussian distribution. A linear
interpolation method is employed to connect those points, and
obtain a continuous function from these discrete measurements.
The error integral on the loss is approximated as a discrete sum
δ2
η '

∑Nref
j=1 |η̃(ω j )− η(ω j )|

2δω. We have defined Nref = 10000
as the number of interpolated points, δω= 1/Nref as their spacing
in frequency. We expect the error to reach a minimum, as a result of
the trade-off between the resolution and statistical uncertainty on
the measured points [18]. Indeed, for fixed Ntot, the lower the Ns ,
the higher the error from the interpolation, while increasing Ns

also increases the statistical contribution to the error [32]. Further,
we calculate the expected error on ϕ̃(ω) if we were able to estimate
phases with a variance given by Eq. (8).

Starting from η̃(ω), the KKR are employed to obtain ϕ̃(ω),
which is then compared to the Dawson phase profile. We used
the numerical methods introduced in [35] for the evaluation of
the Hilbert transform, which, for reduced intervals, introduces
less numerical errors with respect to the usual approach based
on the Fourier transform [17]. Given a function f (x ), recon-
structed over the interval [xmin, xmax], its Hilbert transform can be
approximated by the sum

H[ f ](x )≈
1

π

∑
k

f
(

2k + 1

2 j+1

)
log

∣∣∣∣ 2 j x − k
2 j x − k − 1

∣∣∣∣ , (9)

where j is a fixed natural, setting the accuracy of the approxima-
tion, and k is an integer satisfying 2 j xmin < k< 2 j xmax, i.e., the
original interval is sampled in steps of 1/2 j ; for our calculations, we
used j = 17, as a compromise between accuracy and computing
time. The results of our simulations are depicted in Figs. 2(a) and
2(b). Function estimations of η̃(ω) and φ̃(ω) achieve the minimal
error for the same number of sampled points Ns . For the smaller
number of resources, Ntot= 105, the reconstruction of phase based
on the KKR performs close to the limit set by Eq. (8). When the
resources are increased to Ntot= 108, a discrepancy appears with
respect to the ideal bound. We have verified that this behavior
observed in Fig. 2 does originate from the setting of j : the statistics
of the event is now sufficiently good to reveal systematic effects.
We should observe, however, that the uncertainty limit Eq. (8) is
optimistic, especially for high values of η(ω); while the bound is
asymptotically attainable, convergence to the asymptotic bound is
slow [9].

The possibility of accessing both functions without incurring
a trade-off in precision suggests that, beyond metrology, quantum
resources may have potential applications in the realization of
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Fig. 2. Results of the simulated estimation. The error δ2 is calculated for the transmittivity (left panel) for Ntot= 105 (green) and Ntot= 108 (purple). The
phase errors are shown in the right panel: the error on the phase reconstructed through KKR (dashed line, green circles, for Ntot= 105 and dashed line, pink
squares, for Ntot= 108), and the error on the phase directly estimated at the lossy bound (dark green for Ntot= 105, dark purple for Ntot= 108). To ascertain
the uncertainties on the points, we have performed Nmc = 50 numerical experiments by means of a Monte Carlo method based on bootstrapping of the sim-
ulated data. The uncertainty is taken as the standard deviation of this sample, following the procedure in real experiemnts.

Kramers–Kronig coherent receivers [26]: this communication
protocol reconstructs a complex signal by means of equations
similar to Eq. (2). It is not excluded (though unlikely in the face of
trade-offs in joint phase-loss estimation [13]) that the precision can
be further improved by more sophisticated estimation protocols
that take into account KKR and retrieve information optimally
from a direct joint measurement of phase and attenuation, instead
of measuring one quantity and reconstructing the other. The KKR
are peculiar to the optical absorption–dispersion mechanism; how-
ever, one may attempt generalizations when the parameters can
be traced back to the response function to an applied field. These
could then provide insight on the physical origin of the bounds on
precision.
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