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Abstract. A large number of uncertain resonances in the Gamow window make the
22Ne(p, γ)23Na reaction rate the most uncertain in the NeNa cycle. A new direct measurement of
the 22Ne(p, γ)23Na reaction has been performed at LUNA (Laboratory for Underground Nuclear
Astrophysics), with a windowless gas target. Two complementary setups have been used, to
obtain both high resolution and high efficiency measurements. Three new resonances have been
discovered at 156.2, 189.5 and 259.7 keV and their decay scheme has been determined. Two
tentative resonances at 71 and 105 keV have not been detected and improved upper limits have
been put on their strength. Thanks to the high-efficiency setup, it was possible to measure the
non-resonant cross section at unprecedented low energies.

1. Introduction
In the innermost regions of asymptotic giant branch (AGB) stars, the temperature can be as
high as 0.1 GK and the Hot Bottom Burning Process (HBB) takes place [1]. Advanced hydrogen
burning cycles such as the neon-sodium (NeNa) and magnesium-aluminum (MgAl) cycles can
significantly contribute to nucleosynthesis in massive stars [2, 3]. The 22Ne(p, γ)23Na reaction,
which is part of the NeNa cycle, links 22Ne to 23Na, the only stable isotope of sodium.

In stars on the red giant branch in galactic globular clusters, where the 22Ne(p, γ)23Na is
crucial for the synthesis of sodium [4, 5], a neon-sodium anti-correlation was observed. The
22Ne(p, γ)23Na reaction rate affects the result of stellar models intended to reproduce such
anticorrelation [2, 6]. A difference as large as three orders of magnitude exists between the rates
from the NACRE [7] compilation, and following evaluations by Hale et al. [8], Iliadis et al. [9],
and STARLIB [10] in the relevant temperature interval.

A recent measurement [11] in a surface laboratory showed the importance of direct
measurements of low-energy resonances and their impact on the thermonuclear reaction rate.
LUNA [12] recently studied the 22Ne(p, γ)23Na reaction, observing three new low-energy
resonances with two high-purity germanium (HPGe) detectors [13, 14, 15, 16]. The existence
of the two lowest out of the three new resonances at Ep = 156.2, 189.5, and 259.7 keV (Ep is
the proton energy in the laboratory system) was later confirmed at the Triangle Universities
Nuclear Laboratory (TUNL) [17].

In order to measure the cross section at such low energy, new measurements have been
performed at LUNA using a high-efficiency setup including a segmented Bismuth Germanate
(BGO) detector. The resonances at Ep = 156.2, 189.5, and 259.7 keV have been investigated
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Figure 1. Scheme of the differential-pumping, extended gas target used at LUNA.

further, determining their strength and branching ratios. Two resonances at Ep = 71 and 105
keV, reported as tentative in an previous indirect experiments [18] and not confirmed later [8,
19] have been investigated with higher sensitivity with respect to the previous setup. The direct
capture contribution, as well as the contribution from a broad sub-threshold resonance have
been measured using the high-efficiency setup.

2. Experiment
2.1. Setup
A differential-pumping, extended gas target was used in combination with a ∼ 4π solid angle
coverage BGO detector segmented in 6 parts [20] [21]. Enriched 22Ne (≥ 99.9% pure) was
recycled through the pumping system and purified by a chemical getter in order to remove
hydrocarbons, oxygen and nitrogen. The density profile was determined measuring pressure
and temperature in several position inside the target chamber.

A power compensation calorimeter with constant temperature gradient was used to measure
the beam current. Each optically insulated segment of the six-fold BGO detector was coupled
to a PMT and independently digitized. Acquired events were time-stamped to allow offline
coincidence analysis.

2.2. Measurements
A yield curve was measured varying the beam energy in steps of 1-3 keV for each of the three
previously observed resonances [13, 14, 15, 16, 22]. Long runs were taken at a beam energy
corresponding to maximum yield. Runs with argon inside the target chamber were taken to
properly subtract the beam-induced background.

The beam-induced background was mainly due to the 11B(p, γ)12C reaction and its Compton
continuum [21]. The beam-induced background spectrum was scaled for equal counting rate in
the 10-19 MeV region, where the contribution of the 11B(p, γ)12C is dominant. Singles spectra,
gated on add-back events in the region of interest of the 22Ne(p, γ)23Na reaction, were compared
with GEANT4 and GEANT3 Monte Carlo simulations using previously measured branching
ratios [15, 21]. A reasonably good agreement was found, but a new evaluation of branching
ratios with the BGO detector might uncover the contribution of very weak branches.
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To investigate the possible resonances at Ep = 71 and 105 keV, many long runs were
performed around their nominal energy, in the 63-78 keV and 95-113 keV energy intervals
respectively. Since these resonances were not observed, new upper limits were put on their
strength. The non-resonant yield was measured at four beam energies, Ep = 188.0, 205.2, 250.0,
and 310.0 keV to study the contribution by a broad sub-threshold resonance [23] and direct
capture.

3. Conclusion
The measured strengths are slightly higher than previous values obtained at LUNA [13, 14, 15,
16, 22] but consistent within 2 σ. Because of the particular setup used in the LUNA-HPGe
experiment, the difference may be due to angular distribution effects or weak branches. These
effects can only play a minor role in the present LUNA-BGO experiment, thanks to the ∼ 4π
solid angle coverage of the detector and its high efficiency.

The existing uncertainty on the measured strengths and the off-resonance measurements at
250.0 and 310.0 keV is mainly due to the uncertainty on detection efficiency (5% systematic
uncertainty). The uncertainty on the off-resonance measurements at 188.0 and 205.2 keV,
instead, is mainly due to statistics (9% statistical uncertainty).

A detailed description of the experiment is about to be published.
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