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Abstract: The “Extreme Exercise Hypothesis” states that when individuals perform training beyond
the ideal exercise dose, a decline in the beneficial effects of physical activity occurs. This is due
to significant changes in myocardial structure and function, such as hemodynamic alterations,
cardiac chamber enlargement and hypertrophy, myocardial inflammation, oxidative stress, fibrosis,
and conduction changes. In addition, an increased amount of circulating biomarkers of exercise-
induced damage has been reported. Although these changes are often reversible, long-lasting cardiac
damage may develop after years of intense physical exercise. Since several features of the athlete’s
heart overlap with arrhythmogenic cardiomyopathy (ACM), the syndrome of “exercise-induced
ACM” has been postulated. Thus, the distinction between ACM and the athlete’s heart may be
challenging. Recently, an autoimmune mechanism has been discovered in ACM patients linked to
their characteristic junctional impairment. Since cardiac junctions are similarly impaired by intense
physical activity due to the strong myocardial stretching, we propose in the present work the novel
hypothesis of an autoimmune response in endurance athletes. This investigation may deepen the
knowledge about the pathological remodeling and relative activated mechanisms induced by intense
endurance exercise, potentially improving the early recognition of whom is actually at risk.

Keywords: arrhythmogenic cardiomyopathy; athletes; autoantibodies; physical exercise; desmo-
somes

1. Introduction

Although physical exercise is recommended for the maintenance of a healthy lifestyle
and the reduction of cardiovascular disease incidence [1,2], prolonged and intense activ-
ity can be deleterious for cardiac structure and function. It can acutely and transiently
increase sudden cardiac death (SCD) and myocardial infarction risk in susceptible indi-
viduals [3]. Increased myocardial fibrosis [4,5], coronary artery calcification [6], and atrial
fibrillation [7,8] have been reported in endurance athletes.

Since endurance athletes exceed the usual recommendations for exercise by 15-fold to
20-fold, the “Extreme Exercise Hypothesis” has been proposed to explain how the beneficial
effects of physical activity may plateau or decline when individuals perform training be-
yond the ideal exercise dose [9,10]. As depicted in Figure 1, the dose–response relationship
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between exercise training volumes and health risk is described by a J-shaped (or U-shaped)
curve [2,9]. To date, the exact amount of exercise able to impair the cardiovascular system
has not been defined. The metabolic equivalents of task (METs) method is recognized
as useful to evaluate the functional capacity or exercise tolerance of an individual [11].
One MET is the amount of oxygen consumed at rest and is equal to 3.5 mL of oxygen per
kilogram per minute [11]. Most reports have defined “vigorous exercise” as needing at
least six METs, although the maximal individual capacity could influence this threshold [3].
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Most exercise-associated adverse effects often occur in subjects with occult or di-
agnosed structural cardiac diseases [3,12]. Among young individuals, the concomitant
pathological conditions are often hereditary or congenital cardiovascular abnormalities,
such as arrhythmogenic cardiomyopathy, hypertrophic cardiomyopathy, coronary artery
anomalies, and bicuspid aortic valve [13–15]. Among older subjects who die during
physical exercise, coronary artery disease is the most frequent pathological finding [16,17].

SCD overall incidence during exercise is estimated at 1:50,000 [18–20]. Exercise-related
SCD seems to depend on the interaction between the physical activity acute trigger and an
underlying disease, but it can be further elicited by other concomitant processes, including
emotional stress, hemodynamic changes, and impaired parasympathetic tone [3]. It has
been reported that physical activity may increase the risk of SCD by 2.5 times [21].

In the present review, we summarize the current knowledge about exercise-induced
cardiac alterations and circulating biomarkers of damage. In addition, we propose a novel
hypothesis of an autoimmune response in endurance athletes, based on the analogies with
arrhythmogenic cardiomyopathy patients.

1.1. The Athlete’s Heart

Vigorous physical exercise is associated with significant changes in myocardial struc-
ture and function. The athlete’s heart has to sustain a higher cardiac output during maximal
effort than untrained hearts. Thus, it is subjected to a physiological remodeling that allows
its greater resistance during intense activity and sufficient oxygen delivery to exercising
muscles. This physiological response is known as the Frank–Starling Mechanism or “law
of the heart” [22].
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Sympathetic activation is responsible for the augmented cardiac output through heart
rate modulation. The heart rate spans from <40 bpm at rest to >200 bpm in a young
maximally exercising individual. The stroke volume may significantly increase with
sustained training because of the higher ventricular end-diastolic volume and sympatheti-
cally mediated end-systolic volume reduction [23]. The hemodynamic changes parallel
cardiac chamber enlargement and hypertrophy [24–26]. These cardiac adaptations may
mimic those of a diseased heart, but in most cases systolic and diastolic functions are
preserved [27,28], although a transient reduction in left ventricular (LV) ejection fraction
(EF) has been reported after more than 6 h of continuous exercise [29,30]. In many cases, the
right ventricular (RV) function seems to be more compromised by prolonged exercise than
left ventricular one, possibly for the thinner-walled structure of RV [31–33]. Indeed, RV
wall stress increases more than in the LV during exercise, producing higher pressure load
on the RV, not compensated by a sufficient volume increase and myocardial thickening [34].
This depends on the increase in pulmonary artery pressure relative to systemic vascular
pressure, necessary to guarantee the requested cardiac output [35]. However, at equal
exercise loads, the RV response shows high interindividual variability due to differential
adaptations of the pulmonary circulation. Indeed, a higher vascular reserve corresponds
to enhanced maximal exercise capacity [36]. In addition, conduction alterations are com-
mon, and they are usually mediated by parasympathetic activity and/or sinoatrial node
slowing [37]. Endurance athletes are often affected by bradyarrhythmias, such as sinus
bradycardia, junctional bradycardia, and first-degree atrioventricular block [38]. Trained
athletes can experience premature beats and non-sustained ventricular tachycardia, usu-
ally of benign etiology and without long-term consequences [39,40], although no higher
prevalence if compared to sedentary individuals has been assessed [41]. The main prob-
lematic effect of intense physical activity is atrial fibrillation, which has been reported more
frequently among athletes than in sedentary individuals [42,43]. Syncope often manifests
in the immediate post-exercise period due to neurocardiogenic mechanisms based on a
sudden reduction in venous return. When syncope manifests during exercise, it can be due
to malignant arrhythmias, structural cardiac disease, or myocardial ischemia, which have
to be thoroughly evaluated [44].

Although these alterations are often reversible, long-lasting cardiac damage may
develop after years of intense physical exercise [45,46].

Furthermore, after prolonged endurance exercise, myocardial inflammation, oxidative
stress, and fibrosis have often been reported, representing a substrate for life-threatening
arrhythmias [5,10,47].

During exercise, increased metabolic processes with an augmented oxygen uptake
may induce a mitochondrial electron “leakage” and the consequent production of reactive
oxygen species (ROS) [48,49]. Moreover, the activation of immune and inflammatory
responses due to exercise-induced muscle injury may generate high amounts of ROS [50,51].
To possibly counterbalance the oxidative damage, an increase in antioxidant defenses,
through the activation of antioxidant enzymes [52], has been reported in response to high
volumes of exercise [48]. Thus, it seems that oxidative stress does not occur below a certain
threshold of intensity, but only when exercise is strenuous [53].

The higher amount of oxidative stress can increase oxidation of different molecules, causing
their damage. For example, acute bouts of exercise can increase LDL oxidation [54–57].

The oxidative radicals could impair cardiomyocyte membrane permeability, concur-
ring with mechanical stress in cardiomyocyte remodeling [58,59]. In addition, ROS may
inhibit glycolysis, producing a perturbation in calcium homeostasis, which could lead to
myocardial dysfunction [60].

Exercise-induced myocardial fibrosis patterns are various and differ according to
the age of the athletes [61–63]. Fibrosis is often found near the interventricular septum,
especially in middle-aged and older athletes, and near the right ventricular insertion points,
mainly in young athletes [4,5,61]. More rarely, a sub-endocardial ischemic pattern, a sub-
epicardial pattern, and extensive mid-wall and diffuse fibrosis could be detected. Since only
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specific fibrotic patterns have been associated with ventricular arrhythmias and adverse
cardiac events, the clinical and prognostic significance of myocardial fibrosis in athletes is
yet to be determined [63]. The dose of exercise has been reported to be associated with the
extent of fibrotic substitution in few studies [5,9,64].

The impact of gender on the ventricular response to exercise constitutes a relevant open
issue. Although male versus female differences have a strong impact on cardiovascular
disease pathogenesis [65–67], female athletes are often underrepresented in studies of
cardiac adaptation to exercise. Few studies on this topic demonstrated a similar cardiac
remodeling and prevalence of arrhythmic events in both male and female athletes [68,69].
However, RV performance during exercise seems to be enhanced in women when compared
to men [68]. Conversely, a recent study reported that LV remodeling is more common in
males, whereas RV remodeling mainly concerns females [70]. Thus, further investigations
are needed to clarify the effective impact of gender.

1.2. Effects of Myocardial Stretching

During intense exercise, the stretching of the myocardium activates different intrinsic
physiologic mechanisms to adequately respond to this stimulus [71], through the so-called
mechanoelectric feedback, which is able to transduce the mechanical stimulus into an
electrical signal [72,73].

Each component of the heart seems to perceive mechanical stimuli, activating in-
tracellular pathways that mediate several responses [74,75]. These pathways are often
activated without binding of extracellular mediators [76]. An example is stretch-activated
channels, able to modulate their permeability to ions and, consequently, electrical and
mechanical properties of the myocardium [77]. This response often depends on protein
phosphorylation. For example, calcium channel phosphorylation, by intensifying calcium
transient, improves the contractile function [78]. Besides ion channels, other cardiomyocyte
proteins concur in stretch-activated mechanisms: troponin I phosphorylation increases
contractility, owing to the reduction of myofilament calcium sensitivity [79]; titin, both
functioning as a mechanosensor and a molecular target, can trigger downstream signaling
and modulate myocardial tension and sarcomeric length [80–82].

A central role in mechanosensing is played by intercalated discs, required to maintain
mechanical and electric coupling between cardiomyocytes [83]. The two main structures
of intercalated discs, fascia adherens junctions and desmosomes, contribute to adaptive
responses to stretch [84] due to their connection with cytoskeletal actin and intermediate
filaments, respectively [83]. In volume overload conditions, as during intense physical
activity, the intercalated discs undergo dynamic changes [85]. For example, N-cadherin
(N-CAD), one of the main proteins of fascia adherens junctions, is upregulated following
mechanical stretch and elicits changes in cardiomyocyte shape, myofibrillar organization,
and function [86]. On the contrary, N-CAD downregulation precludes the correct formation
of intercalated discs, provoking cardiac morphological and functional defects [87].

Similarly, desmosomal protein loss impairs mechanotransduction responses [83]. For
example, the deletion of the desmosomal protein desmoglein 2 (DSG2), necessary to
assembly the extracellular domain, alters cell adhesion and signaling. It provokes the
upregulation of heart failure markers, fibrosis, biventricular dilation and dysfunction,
and death [88–90]. In general, desmosome deficiency leads to cardiomyocyte inability to
appropriately face high mechanical stress, resulting in myocyte detachment and tissue
remodeling [84].

Moreover, gap junctions, prominently localized at intercalated discs, mediate electrical
propagation and are thus crucial to excitation and contraction [91]. They are composed of
connexins, among which connexin 43 (CX43), the most important in the myocardium [91].
Physical exercise may affect gap junction remodeling, leading to CX43 expression down-
regulation during acute exercise, as demonstrated in a murine model [92], and to a possible
consequent impairment of electrical conduction [93].
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Additionally, costamere proteins, which are responsible for the connection between
the contractile apparatus and extracellular matrix, as integrins, are involved in mechan-
otransduction and can be compromised when subjected to mechanical stress [94–97].

All these modifications generally have an adaptive meaning, but, depending on
the strength of the stimulus, their nature, and the individual’s genetic background, they
can result in maladaptive pathological remodeling [98], with mechanoelectric feedback
dysfunction [72] and consequent arrhythmias, cardiac hypertrophy, and heart failure [74,84].
Indeed, when the physical activity is prolonged and intense, the impairment of these
processes may provoke an altered cellular response and possibly heart disease.

1.3. Circulating Biomarkers of Exercise-Induced Damage

The changes induced by endurance exercise are associated with several circulating
biomarker increases. These elevations are usually modest and transient, but their clinical
implications are not fully elucidated.

As for cardiac damage biomarker, cardiac troponin (cTn) levels significantly increase
after only 30 min of intense physical activity [99], reaching higher levels in younger and
untrained individuals [100], concomitant with cardiovascular risk factors [101], greater
exercise duration and intensity [32,101–105], and dehydration [106]. cTn release likely
depends on exercise-induced cardiomyocyte necrosis, or the changes in membrane perme-
ability caused by intense activity could determine the leakage of unbound troponin [107].
Further studies are needed to understand the mechanisms mediating its elevation [59,108].
Usually, cTn levels return to baseline within 72 h [109,110], and any cardiac dysfunction
associated with increased cTn has been reported transient [59].

B-type natriuretic peptide (BNP) and its cleaved form NT-proBNP are secreted in re-
sponse to cardiomyocyte stress produced by volume or pressure overload [111]. Thus, they
can increase after endurance exercise [32,112–117], but return to baseline within 72 h [109,118].
Exercise duration [104,115], age [113,118], and poor physical preparation [32,112,119] can
impact on BNP and NT-proBNP elevation.

Creatine kinase MB (CKMB), belonging to myocardial infarction biomarkers, can also
be increased after intense activity, but it possibly originates more from skeletal muscle
damage than from myocardial injury [120].

Moreover, typical fibrosis biomarkers have been associated with intense physical
exercise. Soluble suppression of tumorigenicity 2 (sST-2) concentrations exceed the up-
per reference value after endurance activity, reaching higher levels as exercise intensity
increases, but its complete normalization occurs within 48 h [121].

Tissue inhibitors of matrix metalloproteinase type I (TIMP-1), carboxy-terminal telopep-
tide of collagen type I (CITP), and carboxy-terminal propeptide of collagen type I (PICP)
are other circulating markers of collagen synthesis and degradation that are augmented in
endurance athletes [59].

Similarly, galectin-3 resting levels are greater in athletes than controls, and further
increase after physical activity, possibly produced mainly by skeletal muscle [122]. Indeed,
no correlations with cardiac function have been detected [122].

For what concern oxidative stress markers, 13- and 9-hydroxy-octadecadienoic acid
(13-HODE and 9-HODE), known oxidized linoleic acid metabolites, significantly increase
immediately post-exercise, but their plasma concentrations return to baseline levels within
24 h [123]. Their production could be linked to lipoxygenase activation in response to cell
injury [124].

Moreover, lipid peroxidation increases after endurance exercise, as demonstrated by
higher levels of malondialdehyde (MDA) [117,125] and F(2)-isoprostanes [57]. In both
cases, the augmentation is transient.

Similarly, the heat shock proteins Hsp70 and Hsp72, known inflammation markers,
are upregulated in athletes’ serum after physical exercise [126–128]. As for the majority
of the exercise-induced circulating biomarkers, the increase is rapid but transient. Higher
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levels of these proteins has been previously reported in failing hearts [129]. Thus, their
release is not specifically associated with exercise-induced alterations.

The current information about circulating factors in athletes is limited and a broader
analysis (e.g., microRNA) is required [130,131]. To date, no biomarkers have been associ-
ated with the adverse remodeling that can occur after endurance activity with a cause–effect
specificity. Indeed, most of the described biomarkers are elevated also in concomitance
with various arrhythmic and heart failure diseases [132], making the understanding of the
underlying causes difficult.

2. Exercise-Induced Arrhythmogenic Cardiomyopathy

Together with polymorphic ventricular tachycardia [133] and hypertrophic cardiomy-
opathy [134,135], arrhythmogenic cardiomyopathy (ACM) is included among the cardiac
diseases that can be induced by physical exercise.

ACM is a genetic cardiac disorder, predominantly affecting the RV [136]. It is character-
ized by a fibro-adipose replacement of the ventricular myocardium, malignant arrhythmias,
and SCD, especially in young adults and athletes [136]. Often, ACM penetrance is incom-
plete and genotype-phenotype correlations are difficult to establish [137]. Among the
pathogenesis cofactors that have been proposed to explain ACM variable expressivity,
physical exercise exposes ACM patients to a five-fold higher risk of SCD if compared
to sedentary patients [138]. Due to the critical RV degeneration and arrhythmogenic-
ity following repetitive intense exercise [31–33], even in the absence of known genetic
abnormalities [139], the syndrome of “exercise-induced ACM” was proposed few years
ago [140,141].

Although only a small fraction of high-level athletes develops signs of RV cardiomy-
opathy, the hypothesis is that endurance exercise provokes RV insults, in line with circu-
lating cardiac damage biomarker rise and dysfunction, that, in the long term, could have
pathological implications [142,143]. According to this hypothesis, an ACM-like phenotype
may be acquired and not unquestionably ascribed to a genetic predisposition. Studies
with a rat model of long-term intensive exercise training supported this theory, prov-
ing training-dependent RV fibrosis and increased arrhythmia inducibility after chronic
endurance exercise [144].

If definite ACM patients carry, in the majority of the cases, genetic mutations that
impair desmosomes, exercise-induced ACM is likely to involve cardiac junctions as well.
Indeed, in the latter case, disproportionate wall stress, caused by intense and prolonged
physical exercise, disrupts “normal” desmosomes [142], and the mismatch between wall
stress and desmosomal integrity can be associated with the huge hemodynamic stress [142].

A debate about the effective existence of these exercise-induced ACM forms is still
open and not all the involved factors have been unraveled. Indeed, no proper studies
have confirmed or denied the existence of ACM phenotypes exclusively induced by ex-
ercise [145]. Additionally, gene-elusive patients represent a heterogeneous group, since
some might have ACM causative genetic variants in genes not yet identified as associated.
Possibly, other factors can predispose a subpopulation of endurance athletes to this condi-
tion, such as an unrecognized genetic predisposition that phenotypically manifests only
in the setting of extreme exercise [146]. Moreover, the study of the underlying molecular
mechanisms is still difficult for the limitations of the current in vivo models of endurance
exercise [147].

The distinction between ACM and the athlete’s heart is still a challenge for sports
cardiologists because of the overlapping features [148–151]. Indeed, studies comparing
athletes with and without recognized genetic mutations often described similar clinical
phenotypes (Figure 2). The proportion of individuals experiencing a major arrhythmic
event during the follow up is comparable (28% of the cases), and electrocardiographic
signs, including the ACM diagnostic major criterion epsilon wave, were reported to be
similarly represented [139], except for the presence of pathological Q waves only in ACM
patients [149]. The impairment of signal average ECG (SAECG) parameters has been more
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frequently reported in traditional ACM cases [149]. ACM patients are characterized by
more severe LV and/or RV dilation and dysfunction, as confirmed by the stronger EF
reduction [139,142], but the increase in RV size is similar in ACM and exercise-induced
ACM individuals [152]. As for tissue remodeling, a typical feature of ACM patients is
fibro-fatty substitution, whereas only fibrosis has been found in exercise-induced ACM in-
dividuals [139]. In addition, ACM patients exhibit delayed gadolinium enhancement [149].
On the other hand, histological abnormalities and cardiac inflammation and oxidative
stress are shared by the two types of patients [12,142].
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Unfortunately, despite the intensive efforts to discriminate traditional ACM patients
from exercise-induced ACM individuals, there is still the need to improve the diagnostic
procedure. In addition, the comparison between the features of ACM left dominant and
biventricular forms to exercise-induced remodeling could be of further help.

3. Autoimmune Response Hypothesis in Endurance Athletes

Based on the available information, a parallelism between the negative effects induced
by intense exercise at cardiac level and the typical characteristics of ACM, mainly caused
by genetic mutations that affect desmosomes, has been proposed by coining the term
“exercise-induced ACM” [140,141]. Although a proper description of the features that can
discriminate the two forms is still lacking, some lessons might be learned from the actual
knowledge of ACM. Recently, circulating autoantibodies against DSG2, one of the desmo-
somal proteins, have been found in ACM patients, and not in healthy controls and subjects
affected by other cardiomyopathies [153]. These results are promising for the development
of a novel diagnostic test for ACM patients and to potentially discriminate definite ACM
patients from people affected by other conditions in differential diagnosis [132]. However,
can they discriminate ACM from exercise-induced ACM?

The generation of these autoantibodies is likely to be dependent on DSG2 release into
the intercellular space and circulation due to an ACM causative genetic mutation [153].
DSG2 may include “cryptic” epitopes that can induce, once exposed, an immune re-
sponse [153].
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However, no authors have to date assessed if the same autoimmune mechanisms
interest endurance athletes. Indeed, as described above, among the induced modifica-
tions, intense physical exercise can challenge cell junctions, especially fascia adherens and
desmosomes [84], and the expression and localization of the constituent proteins may be
altered [85]. Although their remodeling usually ensues to properly respond to a greater
mechanical stress, when a threshold of intensity is exceeded, dysfunction may occur due
to increased oxidative stress [48,49] and changes in cell permeability [107]. The extent
of fibrotic substitution that can follow endurance activity exacerbates the reduction of
cell-to-cell contact [154]. Accordingly, the disruption of epithelial tight junctions has been
already described during exercise due to heat- and oxidative damage-mediated stress [155].
Therefore, similar mechanisms are likely to impact on other cell junctions also at the cardiac
level. In the worst scenario, all these processes could induce the detachment of intercellular
junctional proteins, such as DSG2. For these reasons, the analysis of endurance athletes’
plasma for anti-DSG2 autoantibody is awaited to assess the potential of this immune
biomarker in distinguishing ACM from athlete’s heart remodeling.

Other than their role as circulating biomarkers, DSG2 autoantibodies may affect
cardiac function, as suggested by Chatterjee and colleagues [153]. Their levels correlate
with premature ventricular contraction count in ACM patients, and in vitro analyses re-
vealed their ability to functionally affect gap junctions. This is in line with the increasingly
recognized ability of autoantibodies in arrhythmia stimulation through ion channels inter-
ference [156]. Moreover, DSG2 autoantibodies may attack the desmosomes and the whole
intercalated discs, further weakening these structures. This is likely to happen similarly to
what is described for anti-DSG3 autoantibodies produced against the cutaneous isoform of
desmoglein in some skin disorders [157]. These autoantibodies induce DSG3 internaliza-
tion and redistribution, altering the dynamics of desmosome assembly [158] and increasing
tissue fragility in this already diseased state [159].

In addition, the inflammation triggered by this faulty immune response may aggravate
the exercise-induced dysfunction [160].

In this view, in addition to physical detraining, immunosuppressive measures, includ-
ing immunomodulatory drugs, plasmapheresis, or immunoadsorption for autoantibody
removal, may be of help for at risk individuals.

4. Conclusions

Although physical exercise is an important measure to reduce cardiovascular disease
incidence, excessive endurance training can paradoxically increase SCD and myocardial
infarction risk in susceptible individuals as explained by the “Extreme Exercise Hypothesis”.
Several exercise-induced features overlap with ACM and make the distinction between
ACM and the athlete’s heart challenging. A debate about the existence of ACM phenotypes
exclusively induced by exercise is still open. More information about the pathological
remodeling and relative activated mechanisms induced by intense endurance exercise
needs to be collected. Since not all the individuals practicing sports at high levels manifest
exercise-induced cardiac alterations, the early recognition of whom is actually at risk is
fundamental. The improvement of pre-participation screenings and the evaluation of new
potential circulating biomarkers could be of considerable help.
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