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Abstract

A growing body of evidence shows that collaborative teams and communities tend to produce

the highest-impact scientific work. This paper proposes a new method to (1) Identify collabo-

rative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific

research institutes, services or policies on the interdisciplinary collaboration between these

communities. First, we apply community-detection algorithms to cross-sectional scientific col-

laboration networks and analyze different types of co-membership in the resulting subgroups

over time. This analysis summarizes large amounts of longitudinal network data to extract

sets of research communities whose members have consistently collaborated or shared col-

laborators over time. Second, we construct networks of cross-community interactions and

estimate Exponential Random Graph Models to predict the formation of interdisciplinary col-

laborations between different communities. The method is applied to longitudinal data on

publication and grant collaborations at the University of Florida. Results show that similar

institutional affiliation, spatial proximity, transitivity effects, and use of the same research ser-

vices predict higher degree of interdisciplinary collaboration between research communities.

Our application also illustrates how the identification of research communities in longitudinal

data and the analysis of cross-community network formation can be used to measure the

growth of interdisciplinary team science at a research university, and to evaluate its associa-

tion with research policies, services or institutes.

1. Introduction

The recent increase in collaborative research [1,2] has led to the development of a new field,

the Science of Team Science (SciTS). This field analyzes scientific collaboration, team effective-

ness, and the mechanisms of team assembly using a variety of methods including network

analysis [3–9]. Consistent with this framework, this paper studies the formation of communi-

ties and interdisciplinary collaborations by analyzing longitudinal collaboration networks
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extracted from peer-reviewed publications and awarded grants at the University of Florida

(UF), a large research university comprising more than 50,000 students and 5,000 full-time

faculty. We propose a method that uses community-detection algorithms to identify longitudi-

nal research communities, i.e., sets of investigators who have been part of the same collabora-

tive subgroup consistently over a certain number of years. We analyze the drivers of

interdisciplinary collaborations that cut across different research communities using Exponen-

tial Random Graph Models (ERGM).

These models are used to quantify the effect of node-level characteristics, network topology,

and the activities of a specific UF research institute on the growth of interdisciplinary collabora-

tions in the university. The analysis focuses on a specific research institute, namely the University

of Florida Clinical and Translational Science Institute (CTSI) in the UF College of Medicine,

funded in part by a Clinical and Translational Science Award (CTSA) by the National Institutes

of Health (NIH) National Center for Advancing Translational Sciences [10]. One of the main

goals of CTSA-funded research institutes is to facilitate interdisciplinary research that aims to

translate basic scientific discoveries into applications in health facilities and communities, includ-

ing new treatments, clinical practices, and health policies. Existing evidence points to an impor-

tant role of CTSA-funded institutes in shaping the network architecture of research universities

[11–15]. While there are only 62 CTSAs, other types of cross-department and cross-college insti-

tutes are often established in universities to stimulate inter-disciplinary research. In this study, we

use the UF CTSI as an example of a research institute’s effect on collaboration communities.

Scientific collaboration is often operationalized as co-authorship on peer-reviewed publica-

tions or co-participation in research grants [13–16]. This paper combines publication and

grant data to obtain a more comprehensive and realistic representation of underlying collabo-

rative relationships among scientists. Such relationships are frequently represented and ana-

lyzed using notions and methods from Social Network Analysis (SNA) and Network Science

[17,18]. Networks of scientific collaboration are a crucial channel for the diffusion of informa-

tion, knowledge, expertise and innovation among scientists in different disciplines [19–21].

Networks of interdisciplinary collaborations, in particular, play a central role in combining

and coordinating different skill sets, models, and approaches to tackle complex problems in

innovative ways and bridge disciplinary silos [1,22,23]. A growing body of evidence suggests

that the highest-impact scientific work typically originates in large and cross-disciplinary

teams [24–26].

SNA is a set of notions, methods and theories used to represent relations between actors

and to study the role that such relations play in shaping individual and group behaviors and

outcomes [27]. SNA methods have been used to analyze the structural patterns of scientific

collaborations [28–30], evaluate the impact of research institutes on the scientific network of

an organization [11,13–15,31] and design interventions to promote behavioral change [32,

33].

Scientific collaboration networks, both within and across institutions, are typically very

large [28, 34] and comprised of many smaller collaborative subgroups. Broad institutional clas-

sifications such as institutes, departments, and colleges are unlikely to describe these groups,

particularly when they include investigators from different disciplinary backgrounds and affili-

ations. While these units are necessary for administrative purposes, in practice they may

unnecessarily constrain our understanding of collaborative behavior. By contrast, network

methods for community detection [35] can help to identify collaborative subgroups as they

emerge from actual interactions between scientists. Intuitively, a network community is a set

of actors who densely interact with each other, but show sparser connections with the rest of

the network.
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The structural characteristics of scientific collaboration networks result from a variety of

organizational, disciplinary, geographic, and cultural factors. Spatial proximity, homophily,

transitivity, past collaboration experiences, shared funding sources, disciplinary background,

and department and college affiliation all play a role in shaping the structure of scientific net-

works. Spatial proximity is a predictor for research collaboration, as investigators whose work

locations are closer in space are more likely to engage in informal conversations, leading to

professional collaborations [36–38]. In addition, analyses of homophily or assortative mixing

have found that researchers are more likely to work with colleagues who are similar in disci-

pline, tenure status, age, gender, and other background characteristics [39–40]. Transitivity,

the tendency for two collaborators of the same scientist to also collaborate with each other, has

been identified as another driver of scientific collaboration, due to scientists often introducing

their colleagues to each other [17].

The structure of scientific networks has been analyzed in a number of papers [17,28–30,41]

to detect the main topological features of these networks (e.g., small-world structures, scale-

free degree distributions, community structures). The factors shaping these structures can be

identified using network formation models [42]. Network formation models, including

ERGMs, view a social network as the realization of a probabilistic social process in which the

creation of a tie between researchers may result from different factors, including node-level

attributes (e.g., the collaborators’ disciplinary background) and network topology (e.g. transi-

tivity effects). Using network formation models, [43] and [44] assess the impact of overlapping

competences and skill complementarities on the propensity to scientific collaboration among

economists; [45] analyzes the effect of spatial and network proximity on the probability of col-

laboration between investigators working on the feminization of the labor force in Asia; [40]

investigate how disciplinary affiliation affects collaborative behaviors at Washington Univer-

sity in St. Louis.

This paper is organized as follows. Section 2 introduces the data and the construction of the

individual-level collaboration networks. Section 3 presents our methods to identify research

communities and obtain community-level networks. Section 4 reports results from the analysis

of the identified communities and the formation of inter-community networks. Sections 5 and

6 discuss the findings and conclude the paper.

2. Data

We use data on peer-reviewed publications and extramurally awarded grants of University of

Florida researchers in 2013, 2014 and 2015. Publication data were obtained for all UF authors

from the Thomson Reuters Web of Science, while grant records were extracted from institu-

tional data on financial transactions between funding entities and the UF Office of Research.

Web of Science data were disambiguated and stored into VIVO, a semantic-web application

adopted across all colleges and departments at UF [5]. For all UF authors, VIVO creates publi-

cation IDs and links author names to unique numeric UFIDs. All the data needed to reproduce

results in this paper are available at the following URL: https://github.com/CTSI-Network-

Science-group/Detecting-and-analyzing-research-communities-in-longitudinal-scientific-

networks.

Both publications and grants are obviously an indication of collaboration between the

investigators involved, although their time cycle and the resulting data structures often differ.

While in some cases groups of collaborators work on both publications and grants at approxi-

mately the same time, it is often the case that researchers collaborate on publications first, to

then be able to demonstrate research results and apply for grants together; or conversely, fre-

quently scientists obtain a grant first, which then enables them to conduct research resulting in
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publications. Thus at a specific point in time, for certain pairs and groups of scientists, collabo-

ration might only occur through publications and be detectable in publication data; for others,

collaboration might only take place through grants, and be visible in grant data. Dataset that

combine publications and grants, therefore, offer a unique opportunity to capture multiplex

and comprehensive relations of collaboration, which would remain unobserved if publications

and grants were analyzed separately. However, gaining access to both publication and grant

data for a given set of scientists is not common, and analyses of publication and grant collabo-

rations taken separately prevail in the literature.

Although publication and grant collaborations can and should be analyzed separately when

the interest centers on specific social processes leading to different research outcomes (e.g.

publishing versus obtaining research funding), in this study we are interested in operationaliz-

ing a broader notion of scientific collaboration between individuals at a university. This paper,

therefore, combines publication and grant collaborations to obtain a more comprehensive,

inclusive, and realistic representation of collaborative interactions among UF scientists, com-

pared to the single “slices” of publications and grants taken separately. Appendix A in S1 File

provides more details on the different data structures implied by publications and grants.

In this study, a publication collaborative tie between researchers i and j exists in a given

year t if one or more articles, in which i and j appear as co-authors, are published in year t. The

number of articles co-authored by i and j in that year is stored in the data as the weight of that

year’s publication collaborative tie between the two researchers. Similarly, a grant collaborative

tie between i and j exists in year t if one or more grants, in which i and j appear together as PIs,

multiple PIs or co-PIs, are active in year t. The number of such active grants is the weight of

the grant collaborative tie between i and j in year t. We define as union collaboration the union

of a publication and a grant collaboration. Scientists i and j have a union collaborative tie in

year t if one or more articles are published in t, in which i and j are co-authors; or if one or

more grants are active in t, in which i and j appear as PIs, multiple PIs, or co-PIs. The weight

of the union collaborative tie is the number of such articles and grants.

In the data analyzed for this paper, year t is one of 2013, 2014 and 2015, the three most

recent years for which complete data were available when the project started. We limited the

analysis to 2013–2015 for two main reasons. In the first place, we were most confident in the

completeness and accuracy of publication and grant data for the most recent three years. Avail-

able data were less complete and accurate for previous years. In the second place, and perhaps

more importantly, we were most interested in patterns of recent and emergent research collab-

orations. It should be noted that even the most recent publication and awarded grant data

have an inherent temporal lag, in that published articles and awarded grants normally follow

in time, by at least several months, the actual start of a collaborative research project. While we

did extract research communities based on data for more years (e.g. the most recent 5 years) in

previous iterations of this project, subsequent qualitative interviews with involved investigators

suggested that the resulting communities tended to capture older collaborations and to incor-

porate more recent research to a lesser extent. By contrast, we are interested in detecting com-

munities that reflect more current collaborative patterns, while at the same time identifying

consistent patterns in recent time.

In network terms, we extract two networks for each of the three years in 2013–2015:

1. A publication network, Gp,t. This is a weighted graph in which an edge counts the number

of times that researchers i and j were coauthors on one published article in year t (we indi-

cate the edge weight as gi;jp;t � 1);
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PLOS ONE | https://doi.org/10.1371/journal.pone.0182516 August 10, 2017 4 / 23

https://doi.org/10.1371/journal.pone.0182516


2. A grant network, Gg,t. This is a weighted graph in which an edge counts the number of

times i and j were PIs or Co-PIs on the same awarded grant in year t (the relative edge

weight is gi;jg;t � 1).

The union network, Gu,t, is obtained by merging Gp,t and Gg,t. This cross-sectional network

includes all nodes in the publication and grant network, with the union edge weight being

gi;ju;t ¼ gi;jp;t þ gi;jg;t . Gu,t is a weighted network where individuals i and j are connected (i.e.,

gi;ju;t � 1) if they were co-authors on at least one publication or co-investigators on at least one

grant in year t. The cross-sectional union network is the most comprehensive representation

of scientific collaborations at UF that can be obtained from our data for a given year t. Gu,t is

cross-sectional in that it is observed at a single point in time (year t). An overall representation

of all publication and grant collaborations over 2013–2015 is obtained by creating an overall

union network, Gu, as the sum of the three union networks in 2013–2015: Gu = Gu,2013 +

Gu,2014 + Gu,2015. Isolates (i.e. investigators with no collaborations on publications or grants)

are excluded from all publication and grant networks analyzed in this paper.

A concern with this type of data might be that three years are not a sufficiently long span of

time to capture the dynamics and time variation of collaborations, for two main reasons. In

the first place, the set of co-authors in publications might remain constant over that period of

time. Secondly, budget periods of awarded grants might last longer than this time frame, con-

sequently a time window of three years might register only the activation of collaborations, but

not the dissolution. While the solution to the former issue heavily relies on the structure of the

data (e.g. whether there is a variation in co-authorships or not), the latter issue may be

addressed considering all collaborations that are active during 2013–2015, not only the ones

that started within this time frame. In this way, we can observe the dissolution of existing col-

laborations for grants that started before 2013 and ended before 2015, and the activation of

new collaborations for grants that started after 2013. Appendix A in S1 File provides evidence

that this approach allows our three-year data to capture the dynamic process of collaborations’

activations and dissolutions.

The main characteristics of the union networks are displayed in Table 1. Although the over-

all number of researchers involved in scientific collaboration at UF decreases over 2013–2015,

the main structural characteristics of the networks remain constant in time. Most interactions

occur within the main (or giant) connected component, which is the largest set of nodes that

are directly or indirectly connected. This suggests that most departments are connected to

each other via direct or indirect paths that comprise at least an interdisciplinary, cross-

departmental collaboration. While UF has one very large main component, other universities

may not have one due to separation of campuses, such as medical campuses in separate loca-

tions. Density (the number of existing ties as a proportion of all possible ties) and modularity

(a measure of the extent to which the network is divided into separate communities) are

approximately constant in the three years, indicating that the overall level of collaborations

and their community structure are persistent over time.

Table 1. Structural characteristics of union networks (Gu,t).

Gu,2013 Gu,2014 Gu,2015 Gu

Number of nodes 4414 4038 3358 6414

Number of edges 11950 9783 8363 2.154

Density 0.0012 0.0012 0.0015 0.0010

Modularity 0.8411 0.8558 0.8466 0.7777

Number of components 237 264 260 220

% of nodes in the giant component 85.09 81.08 77.43 90.80

https://doi.org/10.1371/journal.pone.0182516.t001
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3. Methods

The rich set of interactions captured in our data entails two major challenges. First, the data

include a large amount of interactions over time. Analyses of such large network data normally

require extremely computer-intensive calculations. Second, there is a constant variation of

these interactions over time (see Appendix A in S1 File), which is a possible source of con-

founding factors: sporadic and temporary instances of collaboration may generate a noise that

can bias our comprehension of systematic collaboration patterns. We address these issues by

developing a method to aggregate and summarize data from multiple years, reducing the

computational burden of network analyses, while also accounting for a significant portion of

the variation in interactions between years.

Our aim is to identify persistent patterns of collaboration over time. Research on scientific

collaboration networks has showed that previous collaborations affect the choice of future col-

laborators. On the one hand, investigators may find it easier to collaborate with someone with

whom they have already worked (for example, because the time to find this collaborator and

the coordination efforts are minimized). On the other hand, investigators show a propensity to

collaborate with colleagues who have become influential because of a large number of other

previous collaborations, in a pattern of preferential attachment [17,41]. Similar research inter-

ests and network proximity also increase the propensity of collaboration between two investi-

gators [39]. Thus, researchers who are interested in the same topics are more likely to directly

work together or to share a high number of collaborators over time. The result is the emer-

gence of a community network structure [46–47], in which subgroups of nodes are densely

connected with each other, and have a high number of adjacent nodes in common (high inter-

nal clustering), while being more sparsely connected with the rest of the network.

We analyze the evolution of this community structure by developing a two-step strategy to

identify persistent research communities. First, we detect clusters that signal the presence of

collaborative subgroups in yearly cross-sectional networks (Gu,2013, Gu,2014, Gu,2015). Second,

we identify sets of researchers who have consistently been part of the same collaborative sub-

groups, filtering out temporary collaborations that were only in place for a limited time.

3.1. Detecting inter-temporal research communities

In the first step we extract collaborative subgroups in each of the three cross-sectional union

networks (Gu,2013, Gu,2014, Gu,2015) using the Louvain community detection algorithm [48].

This algorithm was specifically designed for large-scale networks with thousands of nodes,

similar to the ones in our data, and has been reliably used in several applications [35]. The

method optimizes the network modularity associated with a given partition into subgroups.

Intuitively, modularity quantifies the extent to which subgroups or clusters of nodes are inter-

nally well-connected, and are sparsely connected with the rest of the network [49]. The Lou-

vain method analyzes investigators’ interactions both at a bilateral and multilateral level, and

identifies the most efficient partition of the network structure into subgroups. The algorithm

begins by assigning each node (investigator) to its own subgroup, thus starting with as many

subgroups as there are nodes. Then, all nodes are assigned to a reduced set of subgroups that

increases modularity as much as possible, determining the fraction of edges falling within sub-

groups to be higher than the fraction of edges existing across subgroups. The resulting sub-

groups are used to generate a reduced graph, in which each node represents a subgroup, and

edges measure the connections between the subgroups in the original network. The algorithm

iteration is repeated on the reduced graph. In this way, each iteration generates smaller and

smaller reduced graphs, and the algorithm ends when modularity can no longer be increased.

Applied to our networks, the Louvain algorithm returns a partition of investigators into

Detecting and analyzing research communities in longitudinal scientific networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0182516 August 10, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0182516


collaborative subgroups within the network of each year t. In this partition, each investigator i
is associated with a collaborative subgroup Skt , where kt � {1,. . .,nt}, and nt is the total number

of collaborative subgroups detected at time t. Thus, the Louvain algorithm yields three parti-

tions of investigators into yearly collaborative subgroups, one for each year in 2013–2015.

The three partitions are used to construct co-membership networks, in which the tie

between two researchers indicates that they were members of the same collaborative subgroup

Skt for more than one year. Different types and degrees of subgroup co-membership are possi-

ble. We construct two types of co-membership networks, namely a cross-sectional and an

inter-temporal type. In cross-sectional co-membership networks, individuals i and j are con-

nected if they were co-members of the same yearly collaborative subgroup Skt for either three

or two years. The two years do not need to be consecutive. This co-membership network is a

weighted graph, Gc, whose edge weight gi;jc is the number of years that i and j were in the same

community (0 � gi;jc � 3). Two binary cross-sectional co-membership networks are generated

by setting two different thresholds on gi;jc : Gc,1 includes all edges whose weight is gi;jc � 2 (two

investigators are linked if they were in the same collaborative subgroup for at least two, not

necessarily consecutive, years out of three); co-membership network Gc,2 only includes edges

whose weight is gi;jc ¼ 3 (two investigators are linked if they were in the same collaborative

subgroup for all the three years). Table 2 summarizes the co-membership notation.

In the inter-temporal co-membership networks, two investigators are connected if they are

part of the same inter-temporal collaborative subgroup over multiple years. An inter-temporal

subgroup is defined as a pair of collaborative subgroups from consecutive years, Sk,t and Sk,t+1

(t�{2013,2014}), that maximize the following overlap measure [41]:

� ¼
NðSk;tÞ \ NðSk;tþ1Þ

NðSk;tÞ [ NðSk;tþ1Þ

Where N(�) is the set of all nodes in community Sk. This overlap measure (also known as the

Jaccard index of similarity between two sets) is maximized by a pair of collaborative subgroups

A and B when subgroup A in year t shares the highest proportion of nodes with subgroup B in

year t+1, indicating that the core of investigators who were in A in t are also in B in t+1; or, in

other words, that A and B are fundamentally the same collaborative subgroup over two years.

In the inter-temporal co-membership network, Gy, the edge weight gi;jy counts the number of

times that i and j have been members of an inter-temporal collaborative subgroup (Sk,t,Sk,t+1).

Two binary inter-temporal co-membership networks are constructed, corresponding to two

different thresholds on gi;jy : Gy,1 includes all edges for which gi;jy � 1 (two investigators are

Table 2. Notation summary.

Approach Graph Edge weight

Cross-sectional Gc,1

gi;jc;1 ¼ Iðgi;jc Þ≔
1 if gi;jc � 2

0 otherwise

(

Gc,2

gi;jc;2 ¼ Iðgi;jc Þ≔
1 if gi;jc ¼ 3

0 otherwise

(

Inter-temporal Gy,1

gi;jy;1 ¼ Iðgi;jy Þ≔
1 if gi;jy � 1

0 otherwise

(

Gy,2

gi;jy;2 ¼ Iðgi;jy Þ≔
1 if gi;jy ¼ 2

0 otherwise

(

https://doi.org/10.1371/journal.pone.0182516.t002
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linked if they have been in the same inter-temporal subgroup for at least two consecutive years

out of three); Gy,2, which only includes edges for which gi;jy ¼ 2 (two investigators are linked if

they have been in the same inter-temporal subgroup for three consecutive years). Fig 1 illus-

trates the concepts of cross-sectional and inter-temporal co-membership.

Our method results in the construction of four different co-membership networks. A co-

membership tie between two scientists in these networks indicates that they have tended to be

part of the same collaborative subgroups over the three years. This may reveal different types

of relationships or similarities between two researchers. Two individuals may be connected in

the co-membership networks because they have consistently worked together. They may also

be connected if, even without ever working together, they have consistently shared the same

collaborators over the years. Thus, a co-membership tie shows that two scientists have similar

substantive or methodological research interests, or that they have developed complementary

sets of skills and expertise that are sought by the same other collaborators. Scientists who are

linked in the co-membership networks have been part of the same work circles and environ-

ments, encountering similar ideas and information in their workplace over the years. There-

fore, cohesive clusters in co-membership networks can be viewed as research communities of

scientists who have consistently shared similar research interests, methods, and scientific

approaches to problems. We identify such research communities by applying the Louvain

community-detection algorithm again, this time to the co-membership networks. This yields

four sets of research communities Ck,G, one for each co-membership network, where k�{1,. . .,

nG} and nG is the total number of Louvain communities detected in co-membership network

G.

Our method is based on a shift from the original collaboration networks, in which a tie

indicates direct collaboration between two individuals, to networks of co-membership in col-

laborative subgroups, in which a tie indicates that two individuals have consistently partici-

pated in the same research groups and work circles over time. The co-membership networks

Fig 1. Extracting co-membership relationships from collaborative subgroups. Red shaded areas are yearly collaborative subgroups. Red arrows

indicate sequences identified as inter-temporal collaborative subgroups. Investigators A and B are in the same yearly collaborative subgroup for all the 3

years: gc(A,B) = 3. However, only for 2 years are they in the same inter-temporal collaborative subgroup: gy(A,B) = 1. Investigators C and D are in the same

yearly collaborative subgroup for two consecutive years (gc(C,D) = 2), but this is not an inter-temporal subgroup (gy(C,D) = 0). Investigators D and E are in the

same yearly collaborative subgroup for two non-consecutive years (gc(D,E) = 2), but they are never in the same inter-temporal collaborative subgroup (gy(D,

E) = 0).

https://doi.org/10.1371/journal.pone.0182516.g001
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aggregate and summarize the information contained in the longitudinal collaboration net-

works, with the goal of filtering out the noise of transient and intermittent direct collabora-

tions, and extracting the signal of recurrent co-participation in the same scientific circuits over

time. Cohesive subgroups detected in co-membership networks are less affected by temporary

and random direct collaborations, and reveal groups of researchers who consistently share

projects, collaborators, ideas and approaches over time, which we call research communities.

3.2. Networks and attributes of research communities

While research communities are only identified on the basis of recurrent interactions over

time, with no reference to investigators’ institutional affiliations such as department or college,

most communities are likely to mainly include scientists who belong to the same (or close) col-

leges, departments, institutes or centers. This is the case because common institutional affilia-

tion and discipline obviously facilitate and incentivize working together in a recurrent fashion.

At the same time, although most collaborations occur within the identified research communi-

ties, some collaborations also exist between investigators who belong to different communities.

By construction, these cross-community collaborations are the links that connect researchers

from different scientific circuits, cut across well-established groups, and span diverse work

environments. Therefore, such collaborations are likely to sustain some of the most innovative,

cutting-edge and interdisciplinary projects at a research university. We map these cross-com-

munity collaborations by constructing community-level networks in which nodes represent

research communities and edges represent the density of collaborations between two different

communities. We compute the density of collaborations between two communities, Cf and Ck,

as follows (note that to avoid heavy notation, the G term referring to the co-membership net-

work will not be written explicitly)

DCf Ck
¼

eðCf ;CkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðCf ÞNðCkÞ

q

Where Cf and Ck are two different communities detected in the co-membership network G
(one of the four co-membership networks), and e(Cf,Ck) is the number of edges in Gu (the

three-year overall union network for 2013–2015) involving a member of Cf and a member of

Ck. DCf Ck
is a measure of density of inter-group connections adjusted by group size [50]. In our

case, DCf Ck
measures the density of publication and grant collaborations that occurred over the

whole three-year period between members of two different communities. For each co-mem-

bership network G, we obtain a weighted network of cross-community collaborations, in

which nodes are the research communities extracted from G, and DCf Ck
is the weight of the

edge between any two communities Cf and Ck. This weighted network is then converted to a

binary network, TG, by keeping an edge between communities Cf,G and Ck,G if DCf Ck
is greater

than the median of its distribution among all pairs of communities extracted from G. In other

words, TG is a network in which two communities are connected if the density of collabora-

tions between them is greater than the median density of collaboration between any two com-

munities from the same co-membership network. In this way, we ensure that the architecture

of these networks is not biased by contextual effects (e.g., occasional collaborations).

Two additional networks are created to represent spatial proximities between research

communities:

• BG is a network of building proximities between communities. We measure building proxim-

ity between Cf and Ck as the number of pairs of investigators {i,j} such that i belongs to
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community Cf, j belongs to community Ck, and i’s and j’s offices are located in the same

building. BG is a weighted network in which each node is a research community and the edge

weight is the building proximity measure.

• Similarly, FG is a network of floor proximities between communities. Floor proximity between

Cf and Ck is measured as the number of pairs of individuals {i,j} such that i belongs to Cf, j
belongs to Ck, and i’s and j’s offices are located in the same floor of the same building. In FG
each node is a research community and the edge weight is the floor proximity measure.

In the network formation models, cross-community collaborations are the dependent vari-

able, which is explained by community attributes and network structural factors. We obtain a

number of attributes that describe the research profile of each community. The starting

hypothesis is that the determinants of persistent collaborations between communities include

similarity of expertise (i.e., scientists tend to collaborate when they have similar backgrounds

and skills) and complementarity of expertise (i.e., scientists tend to collaborate when they have

complementary, non-overlapping backgrounds and skills) [21,43]. These concepts are opera-

tionalized measuring the distribution of disciplinary backgrounds of a community’s members,

as represented by members’ departments and colleges. To capture expertise similarity, we cal-

culate the modal value of the distribution, i.e., the most common department or college

among a community’s members. To quantify expertise complementarity, we obtain the gener-

alized variance of the distribution, which can be interpreted as the probability that two ran-

domly extracted researchers in the community share the same department or college [51].

To analyze the effect of the UF CTSI on cross-community collaborations, we also measure

the use of CTSI research services by members of a community. For each community, we calcu-

late the proportion of its members who have used CTSI services in 2013–2015. In each or the

four sets of communities, 33% is approximately the 75th percentile of the distribution of this

proportion–in other words, in 75% of all communities less than one third of the members

have used CTSI services. We create a community-level dummy variable for CTSI service use,

whose value is 1 if 33% or more of the community members have used CTSI services in 2013–

2015, and 0 otherwise.

Finally, we calculate the following network metrics for each community in the overall

union network Gu:

• Density of collaborations within the community;

• Bridging centrality. This index measures the extent to which community’s members func-

tion as a bridge between unconnected areas of the UF collaboration network. This is a group

version of the bridging centrality measure by [52]. For each community Cf, we select the set e
(Cf,Gu − Cf) of all edges connecting Cf to the rest of the network Gu. Then, we calculate the

average decrease in overall network cohesion (measured as inverse average path length in

Gu,) caused by the removal of edges in e(Cf,Gu − Cf). A community Cf has higher bridging

centrality if the removal of the edges connecting it to the rest of the network causes a higher

decrease in overall network cohesion. In other words, higher bridging values are associated

to those communities that are more critical in reducing path lengths between all investiga-

tors in Gu.

3.3. ERG models for collaborations between research communities

We use ERG models [53] to analyze the formation of cross-community collaborations, that is,

the formation of links in the four cross-community collaboration networks (TG). Similar to a

logistic model, an ERGM is used to estimate the effect of a set of explanatory variables (e.g.
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discipline similarity) on the probability of an event, the event being in this case the existence of

a link (i.e., above-median density of collaborations) between two research communities.

ERGM parameter estimates, for example, can indicate the extent to which the probability of a

link between communities Cf and Ck increases when Cf and Ck share the same modal value of

department affiliation among their members. Furthermore, a crucial feature of ERGMs is the

ability to model the generation of networks based on both exogenous and endogenous factors,

controlling not only for dyadic effects (e.g. similarity), but also for more complex structural

patterns such as transitivity and star structures. In the next section, we present ERG estimates

for the impact of community attributes and network factors on the formation of each cross-

community network TG.

4. Results

Table 3 summarizes the structural characteristics of collaborative subgroups obtained for each

cross-sectional union network (Gu,2013,Gu,2014,Gu,2015). For comparison purposes, we also

include statistics for collaborative subgroups obtained from the overall union network (Gu).

The full cumulative distribution functions are displayed in Appendix B in S1 File. Except for a

slight decrease in average subgroup size, the characteristics of cross-sectional networks appear

to be mostly constant over time. Additional evidence is provided in Appendix B in S1 File

(Figure B in S1 File) by plots of the cumulative distribution functions for each structural char-

acteristic in Table 3. The significant overlap of the distributions from different yearly networks

indicates that characteristics of collaborative subgroups tend to remain the same in 2013–

2015. Note that this is the case even though most collaborations do change over time, with old

collaborations ending and new ones starting (see Appendix A in S1 File).

Most researchers work in relatively small groups of 10–15 colleagues, with a high number

of internal collaborations, as suggested by the high density (0.78–0.80) and low network diam-

eter (2.1–2.3). Despite the variance in subgroup size, the number of collaborations per investi-

gator (average degree) remains relatively constant, with the average scientist working with 4–5

colleagues in the same subgroup.

The networks of co-membership in collaborative subgroups are visualized in Fig 2, with

some of their structural characteristics displayed in Table 4. Different definitions of co-mem-

bership appear to determine different structural patterns in these networks. The cross-sec-

tional co-membership networks result from a weaker (more inclusive) definition of co-

membership, such that two investigators are connected by co-membership if they were in the

same yearly collaborative subgroup for two (not necessarily consecutive) years or three years,

but not necessarily in the same inter-temporal collaborative subgroup. Thus, two researchers

might share a different collaborative subgroup each year, and still be connected by cross-sec-

tional co-membership. By contrast, a stronger (stricter) definition of co-membership is applied

in the inter-temporal networks, in which two investigators are only connected if they were co-

members of the same inter-temporal subgroup, sharing only one circle of colleagues for two or

three consecutive years.

Table 3. Main characteristics of collaborative subgroups in cross-sectional union networks.

Gu,2013 Gu,2014 Gu,2015 Gu

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Number of nodes (subgroup size) 15.76 (43.16) 13.19 (35.13) 11.26 (28.84) 25.05 (79.27)

Average degree in subgroup 4.74 (4.65) 4.31 (4.09) 4.40 (4.31) 1.96 (1.75)

Subgroup density 0.78 (0.33) 0.78 (0.32) 0.80 (0.31) 0.80 (0.32)

Subgroup diameter 2.38 (2.89) 2.32 (2.77) 2.15 (2.49) 2.32 (2.95)

https://doi.org/10.1371/journal.pone.0182516.t003
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The size of the giant component, which is a measure of overall network connectedness, is

one of the structural characteristics affected by the definition of co-membership. In the cross-

sectional co-membership networks, it is easier for two investigators to be co-members of the

same collaborative subgroup, which results in higher overall connectedness and larger giant

components (as a proportion of the whole co-membership network). By contrast, inter-tempo-

ral co-membership networks are characterized by lower connectedness and smaller giant

components. Secondly, weaker definitions of co-membership are also associated to a lower

number of isolates (nodes with no connections) and consequently larger network size (because

isolates are removed from the co-membership networks). This is the case because, by cross-

sectional definitions of co-membership, investigators are more likely to be co-members of the

same subgroups with other colleagues, and therefore establish co-membership ties and not be

isolates. This is reflected in the larger size of cross-sectional co-membership networks com-

pared to inter-temporal co-membership networks.

Fig 2. Cross-sectional and inter-temporal co-membership networks.

https://doi.org/10.1371/journal.pone.0182516.g002
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Finally, the value of modularity also changes between more inclusive and stricter co-mem-

bership networks. In the inter-temporal co-membership networks investigators coalesce into

closer subgroups representing the small circles of colleagues that they have constantly shared

over the years. This generates a co-membership graph with highly distinct, clear-cut and insu-

lar communities, as indicated by the high modularity. By contrast, in cross-sectional co-mem-

bership networks some investigators are able to maintain co-membership ties with a wider

variety of colleagues, emerging as bridges between different scientific circles. The result is a

less clear-cut division into cohesive subgroups, and correspondingly lower modularity values.

The thresholds (numbers of years) applied in the co-membership definitions seem to affect the

structure of co-membership networks as well. Networks Gc,2 and Gy,2 are very similar even

though they apply different co-membership definitions. This is because in both networks

investigators are only connected if they have been in the same collaborative subgroup for all

the years 2013–2015 (although that must be the same, inter-temporal collaborative subgroup

for a connection to exist in Gy,2).

Table 5 shows means and standard deviations of community attributes used in the ERG

models (see Appendix B in S1 File for the full cumulative distribution functions). Research

communities display similar characteristics in each of the four sets. The generalized variance

of department affiliation (0.51–0.58) indicates a significant level of department diversity in

these communities, with more than 50% probability that two randomly extracted community

members belong to different departments. As expected, college diversity is lower (0.31–0.37),

suggesting that most research communities gather investigators from one or very few colleges.

Because colleges often represent broad disciplinary areas, this is consistent with the idea that

scientific collaboration is facilitated by discipline similarity. In other words, two investigators

from the Department of Neurology and the Department of Neuroscience (both in the College

of Medicine) are more likely to be in the same research community, rather than two

Table 4. Structural characteristics of co-membership networks.

Cross-sectional co-membership networks Inter-temporal co-membership networks

Gc,1 Gc,2 Gy,1 Gy,2

Number of nodes 2919 1219 1672 535

Number of edges 11543 4186 5831 1627

Density 0.0027 0.0056 0.0042 0.0114

Modularity -0.0006 0.0020 0.7654 0.7828

Number of components 37 21 44 24

% of nodes in the giant component 95 94 89 82

https://doi.org/10.1371/journal.pone.0182516.t004

Table 5. Attributes of research communities.

Cross-sectional co-membership

communities

Inter-temporal co-membership communities

Mean (SD) Mean (SD)

TGc;1
TGc;2

TGy;1
TGy;2

Size 23.16 (52.70) 6.44 (10.25) 15.33 (29.14) 10.91 (18.62)

Generalized variance of department affiliation 0.50 (0.3099) 0.5486 (0.23) 0.58 (0.26) 0.5575 (0.28)

Generalized variance of college affiliation 0.33 (0.28) 0.31 (0.26) 0.37 (0.23) 0.34 (0.26)

Within-community density 0.60 (0.32) 0.67 (0.24) 0.64 (0.27) 0.58 (0.30)

Bridging 1.44 (3.64) 1.51 (3.80) 0.31 (0.60) 1.31 (3.56)

N 189 126 109 49

https://doi.org/10.1371/journal.pone.0182516.t005

Detecting and analyzing research communities in longitudinal scientific networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0182516 August 10, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0182516.t004
https://doi.org/10.1371/journal.pone.0182516.t005
https://doi.org/10.1371/journal.pone.0182516


investigators from the College of Medicine and the College of Engineering. Communities

share a similar density of interactions. This shared feature most likely occurs because most of

the researchers have few single-year collaborations, as reported in Table 3. Therefore, all meth-

ods capture similar overall levels of interaction, even though they apply different restriction

criteria to identify persistent collaborations.

The structures of the four cross-community collaboration networks show a higher degree

of variation (Table 6 and Fig 3; also see Figure C in S1 File). Such variation is mostly explained

by the different definitions of co-membership from which the research communities result,

including the weaker, more inclusive cross-sectional definition and the stronger, more restric-

tive inter-temporal definition. These co-membership definitions imply different approaches

for filtering out temporary collaborations and identify persistent professional interactions.

Consistently with Table 4, community networks resulting from cross-sectional co-member-

ship include a higher number of nodes (i.e., research communities). Furthermore, the weaker

cross-sectional definition of co-membership identifies more permeable and open communi-

ties, whose members are more likely to maintain ties with scientists from other communities

as well. As a result, TGc;1
and TGc;2

are characterized by a higher number of cross-community

collaborations, reflected in higher average degree. In contrast, TGy;1
and TGy;2

are sparser and

less cohesive, with fewer cross-community collaborations, fewer communities in the main

component, and a higher proportion (about 50%) of isolated communities. It should be kept

in mind that an isolated research community is one with no collaborations, or lower-than-

median densities of collaborations with other communities. It is an expected finding that all

the four community networks include high numbers of isolates, particularly when they are

generated by stricter definitions of co-membership. By construction, communities are cohe-

sive groups of investigators who tend to work mostly with each other, and more rarely with

other communities. Thus, an isolated research community should be considered the norm in

the networks visualized in Fig 3. The significant portion of isolated communities indicates, as

expected, that most higher-than-median densities of cross-community collaborations are clus-

tered among a limited number of research communities, which are very open to the outside.

4.1. Network formation analysis

While a high number of research communities maintain lower densities of collaborations with

the outside, all networks in Fig 3 do exhibit a significant amount of cross-community collabo-

rations with higher-than-median densities. These inter-community ties can be regarded as the

vehicles for the most interdisciplinary, and likely innovative, collaborations, which occur

Table 6. Structural characteristics of cross-community collaboration networks.

Cross-sectional co-membership networks Inter-temporal co-membership networks

TGc;1
TGc;2

TGy;1
TGy;2

Number of nodes 189 126 109 49

Number of edges 580 356 230 52

Average degree

(standard deviation)

9.20

(8.89)

8.47

(13.58)

6.3303

(10.66)

3.18

(3.98)

Density 0.0016 0.0022 0.0002 0.0022

Modularity 0.60 0.39 0.39 0.66

Number of components 36 54 61 28

% of nodes in the giant component 78 55 42 30

% of isolates 16 40 52 48

https://doi.org/10.1371/journal.pone.0182516.t006
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between separate and diverse scientific circles. Table 7 reports results of an ERGM analysis of

the formation of inter-community ties. For each TG network, a curved ERGM is used to assess

the impact of a set of factors in shaping the likelihood of connection between two different

research communities. ERGM estimates are in log odds, thus the probability of a connection is

obtained as e� x
1þe� x, where x is the estimated coefficient of a given covariate.

The ERGM estimates return similar findings across the four cross-community collabora-

tion networks. In all networks, three main factors are identified as having a positive and statis-

tically significant effect on the probability of collaboration between different communities:

GwEsp (geometric weighted edge-wise partners), department and college affiliation, and use

Fig 3. Networks of collaborations between research communities. Each node is a community, an edge represents

above-median density of collaborations between communities (DZfZk ). Node size represents the number of investigators in

the community. Node colors represents the modal disciplinary area of investigators in the community (Blue = Health

sciences, Red = Engineering, Green = Agricultural and Food Sciences, Black = College of Liberal Arts and Sciences,

White = Other).

https://doi.org/10.1371/journal.pone.0182516.g003
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of CTSI research services. The GwEsp parameter captures the effect of transitivity, whereby

two communities Cf and Ck have a higher likelihood of collaboration if they tend to work with

the same other communities. GwEsp controls for transitivity, while accounting for diminish-

ing marginal effects of additional shared collaborators. In other words, GwEsp measures tran-

sitivity while accounting for the fact that there is a limit to the number of possible shared

collaborators that two communities can maintain (both for reason of time and for the low

number of communities with similar interests).

The statistically significant impact of department and college affiliation on the probability

of collaboration is an expected result, confirming that even cross-community collaborations

require similar or complementary interests and backgrounds, and perhaps a set of shared

research methods. We find that use of CTSI services has a positive and significant effect on

cross-community collaborations. In addition, spatial closeness, as measured by building and

floor proximity, also has a positive and significant impact on inter-community collaborations.

Table 7. ERGM results.

Dep. Var.: Link in network TG

Cross-sectional co-membership networks Inter-temporal co-membership networks

TGc;1
TGc;2

TGy;1
TGy;2

Edges -4.7159***
(0.1818)

-3.9486***
(0.2767)

-3.6029***
(0.3664)

-4.1178***
(0.7375)

GwEsp 0.9149***
(0.0838)

0.405***
(0.0792)

0.6587***
(0.1328)

0.7287**
(0.4311)

Building (BG) -0.0093

(0.0175)

0.0093**
(0.0042)

0.0058

(0.006)

0.056**
(0.0275)

Floor (FG) 0.1634***
(0.0384)

0.0026

(0.0092)

0.0431**
(0.0181)

0.0237

(0.0606)

Same department: mode value 1.4463***
(0.2336)

1.0095***
(0.3713)

1.7873***
(0.631)

1.7389**
(0.9691)

Same college: mode value 0.9069***
(0.1253)

1.1548***
(0.1701)

0.6787***
(0.2015)

0.7748**
(0.469)

Department variance: difference -0.3728

(0.2888)

-0.0842

(0.391)

-1.3272**
(0.6656)

-1.0146

(1.1975)

College variance: difference -0.4484

(0.2767)

-0.2754

(0.4127)

-0.2292

(0.551)

0.959

(1.1583)

Density:

difference

-0.3017

(0.3076)

-1.2022***
(0.3612)

-0.7617

(0.5236)

-0.2674

(1.0909)

Bridging measure: difference 0.0047

(0.0116)

-0.0309

(0.0322)

-0.0733

(0.0733)

-0.4779

(0.543)

Number of nodes: difference -0.0025

(0.0049)

0.0057***
(0.0012)

-0.0044**
(0.002)

-0.0354

(0.0373)

CTSI: both low -0.2105

(0.1359)

-0.0236

(0.1917)

-0.0224

(0.3055)

0.5112

(0.531)

CTSI: both High 0.4244***
(0.1355)

0.463**
(0.2451)

0.511**
(0.2235)

1.5108***
(0.5492)

Isolates 0.0917

(0.2595)

1.3767***
(0.3309)

1.2412***
(0.3908)

0.4748

(0.5457)

AIC 2433.3995 1101.6016 685.0428 216.6608

N. Obs. 189 126 109 49

Note: ERGM estimated coefficients and standard errors (in parentheses) are reported.

Coefficients are in log–odds.

*, **, *** indicate statistical significance at the 10, 5 and 1 percent levels.

https://doi.org/10.1371/journal.pone.0182516.t007
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A higher number of connections in the proximity networks BG or FG increases the probability

of collaboration between different groups. On the other hand, differences in the bridging cen-

trality measure between communities do not effectively predict collaboration. This suggests

that a common tendency to engage in inter-disciplinary collaborations (i.e., both nodes having

a high bridging centrality) does not necessarily determine a higher likelihood of collaboration

between groups. The effect of size difference on the probability of inter-community connec-

tion is not consistent across the four models. This could be due to the community size coeffi-

cient capturing different effects simultaneously, including the tendency of equally large

communities to maintain more collaborations, and the propensity of smaller communities to

join larger groups.

Each estimated ERGM can be interpreted as a generative model representing a process that

governs local tie formation in each pair of nodes. The baseline is provided by the “Edges” coef-

ficient, a sort of ERGM intercept, indicating the average likelihood of connection between two

nodes in the observed network. In our four cross-community networks, two nodes are con-

nected, on average, with probability 0.009, 0.018, 0.026, and 0.016, respectively (the logistic

transformations of coefficients in Table 7). In addition, for example, if two nodes also share

the same modal value for department affiliation, they have 81%, 73%, 85%, and 85% higher

probabilities of connection, respectively. However, it should be noted that the actual collabora-

tions between the two communities do not necessarily involve investigators from the same

department; they may involve investigators from any of the departments represented in the

communities. The effect is associated to the modal department in the two communities being

the same. In other words, if the majority of the members of two communities are from the

same department, then the two communities have between 73% and 85% higher probability of

displaying a higher-than-median density of collaborations. But these collaborations might take

place between any of the members of the two communities, from any department.

To assess Goodness Of Fit (GOF), these estimates are used to simulate new sets of connec-

tions for each sample of nodes, and obtain 100 new instances of each cross-community net-

work. Then, a number of global characteristics of these simulations are measured, including

the distributions of degree (i.e., the number of connections of each node), of the number of

edgewise shared partners (i.e., the number of partners shared by a linked dyad) [54], and of

minimum geodesic distance (i.e., the minimum number of links between two nodes). The dis-

tribution of these measures in the observed network is compared with the same distributions

in the sample of simulated networks in order to verify if the observed network can be consid-

ered as a typical realization from the generative model. This is the case if the average values of

the measures in the simulated networks are close to the actual measures in the observed net-

work. These GOF tests assess the extent to which our ERGM specification incorporates all the

fundamental drivers of connectivity in the network, and correctly replicates the structural fea-

tures of the observed network, resulting in unbiased coefficient estimates [55]. The results of

the GOF tests on our models are reported in Fig 4. As an example, the top-left figure in the

TGc;1
panel shows a boxplot of the proportions of nodes (y axis) with each given degree value (x

axis) in the networks simulated from the estimated ERGM. Dotted lines indicate the minimum

and the maximum values of the boxplots, while the bold line indicates the proportions of

nodes observed in the actual inter-community network. We find that in most cases the bold

line lies well within the boxplots, showing that, on average, our generative models produce net-

work statistics that are similar to the observed ones, and therefore successfully replicate the

actually observed network characteristics. This indicates an overall good fit of our ERG models

to the observed inter-community networks.
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5. Discussion

This paper develops a new method for the identification of different types of long-term scien-

tific collaborations within and between research communities in academic settings, as they

emerge from networks of actual collaborations between researchers on publications and

grants. We have illustrated two versions on this method. The first, more inclusive and less

restrictive version identifies stable research communities based on sets of investigators who

have been co-members of the same collaborative subgroups for multiple years. These sets of

investigators are allowed to share different collaborative subgroups over time, and to be in the

same collaborative subgroup for non-consecutive years. The second, stricter version of the

method identifies stable research communities on the basis of sets of investigators who have

been co-members of essentially the same inter-temporal collaborative subgroup for multiple

consecutive years. The two versions of the method, with two different parameters (thresholds)

each, result in four sets of research communities.

We focus on the collaborations between research communities in each set. These are

among the most interdisciplinary, cutting-edge, innovative collaborations in a research univer-

sity because they involve scientists from different academic circles, or clusters of similar disci-

plinary backgrounds, interests, and approaches. We use ERGMs to identify the main drivers of

the generative process of these inter-community collaborations. Some of our findings are

Fig 4. Goodness of fit.

https://doi.org/10.1371/journal.pone.0182516.g004
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expected and consistent with previous research, confirming that similar institutional affilia-

tions, spatial proximity, and network transitivity increase the propensity of collaboration

between research communities.

The positive effect of department and college affiliation suggests that homophily plays an

important role in scientific networks, with collaborative research usually relying on similar

backgrounds and interests among investigators [39]. At the same time, the effect of affiliation

indicates that the administrative organization of a university can be both an incentive and a

barrier to scientific collaboration. Department meetings, for example, can be a frequent occa-

sion of interaction between colleagues in the same institution. Lack of clear rules on the distri-

bution of indirect costs from extramural awards between different administrative units might

discourage grant collaborations between investigators from different colleges. We also find

that, at least in the aggregate, overlapping interests between communities (i.e. homophily)

have a greater impact than an expertise complementarity on the formation of collaborations,

as suggested by the non-significant estimates for department and college generalized variance.

Spatial proximity has a well-known influence on the likelihood of interaction and collabora-

tion [36–38]. In line with this finding, our results show that groups of researchers located in

the same floor or building have higher chances to work together. Consequently, one might

argue that an appropriate collocation of different departments can mitigate the negative effects

of administrative boundaries on interdisciplinary collaborations by creating informal places

and occasions of interaction.

The positive effect of network transitivity suggests that scientists tend to introduce their col-

laborators to one another, a finding which is consistent with a number of previous studies

[55–58]. At the same time, network distance is also a proxy for similar backgrounds and inter-

ests, as investigators working on the same topics tend to share many collaborators. Thus, the

transitivity coefficients might indicate a positive effect of interest similarities on collaborations,

above and beyond the similarities captured by common department and college.

Finally, our models find that CTSA services play an important role in increasing the number

of interdisciplinary collaborations. All the models consistently indicate that communities with a

high number of members who are affiliated with the UF CTSI or use its services have a higher

propensity to activate cross-community collaborations. Different mechanisms might be hypoth-

esized to explain this effect. First, common CTSI affiliation might create occasions for informal

encounters and interactions in the buildings and offices of the UF CTSI. Second, the use of

CTSI services might reveal shared interests in translational science, beyond the interest homo-

phily captured by department and college affiliation (and perhaps by transitivity). Third, CTSI

intramural funding opportunities, especially when targeted to interdisciplinary projects, might

provide a further incentive for affiliates and service users from different communities to join in

common research efforts. These findings, which are consistent with several previous studies

[11–15], suggest that research institutes such as the UF CTSI can effectively operate as strategic

hubs for diverse groups of scientists located in different areas of the university networks.

6. Conclusions

This paper proposes a method to detect research communities in academic settings using lon-

gitudinal data on publication co-authorship and co-participation in awarded grants. The same

data are used to construct networks of cross-community, interdisciplinary collaborations. The

main drivers behind the formation of these networks are identified by ERGMs. We consis-

tently find that interdisciplinary collaborations between research groups are positively affected

by homophily and network transitivity; spatial proximity; and the activities of cross-disciplin-

ary academic institutes such as the UF CTSI.
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We believe that two points are worth emphasizing about the proposed method. First, this

method is particularly useful to summarize data from large-scale, individual-level longitudinal

networks. Such networks, including thousands of actors over multiple years, can require

extremely high computing power, making statistical analysis unfeasible. Our method provides

a way of aggregating individual-level information into more manageable sets of research com-

munities and community-level collaboration networks, which are amenable to both traditional

and network-specific statistical analysis.

Second, while we illustrate it with an application to data from the University of Florida and

its Clinical and Translational Science Institute, this method can be applied to comparable data

from any research university and any academic institute. Such analyses may prove particularly

useful to (1) Summarize and describe the research profile of a large university, by identifying

its research communities and the interactions among them; (2) Assess the growth of interdisci-

plinary research at a university, and how that is impacted by specific research policies and ser-

vices; and (3) Evaluate the role of particular research institutes, such as the UF CTSI, in

fostering interdisciplinary collaboration and team science within their institution.
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