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Abstract

Evidence has accumulated that postnatal tissues contain developmentally early stem cells that 

remain in a dormant state as well as stem cells that are more proliferative, supplying tissue-specific 

progenitor cells and thus playing a more active role in the turnover of adult tissues. The most 

primitive, dormant, postnatal tissue-derived stem cells, called very small embryonic like stem cells 

(VSELs), are regulated by epigenetic changes in the expression of certain parentally imprinted 

genes, a molecular phenomenon previously described for maintaining primordial germ cells 

(PGCs) in a quiescent state. Specifically, they show erasure of parental imprinting at the Igf2–H19 

locus, which keeps them in a quiescent state in a similar manner as migrating PGCs. To date, the 

presence of these cells in adult postnatal tissues have been demonstrated by at least 25 independent 

laboratories. We envision that similar changes in expression of parentally imprinted genes may 

also play a role in the quiescence of dormant VSELs present in other non-hematopoietic tissues. 

Recent data indicate that VSELs expand in vivo and in vitro after reestablishment of somatic 

imprinting at the Igf2-H19 locus by nicotinamide treatment in response to stimulation by pituitary 

gonadotrophins (follicle stimulating factor, luteinizing hormone and prolactin) and gonadal 

androgens and estrogens. These cells could be also successfully expanded ex vivo in the presence 

of the small molecule UM177.
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Introduction

Despite a vast amount of work, the hierarchy within the adult stem cell compartment is still 

incompletely understood. Various types of stem cells residing in postnatal tissues that 

possess more than one germline specification potential have been described [1–13]. The 
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undisputed fact that adult tissues contain such cells gives rise to three important questions 

that we will discuss in this review.

The first question is related to the fact that the first stem cells specified in the developing 

embryo in both rodents and humans are primordial germ cells (PGCs). Therefore, one could 

ask: How much germline potential is present in adult stem cells? This question is highly 

relevant to hematopoietic stem cells (HSCs), because as we will discuss there is an 

intriguing developmental link between specification and migration in the embryo of PGCs 

and in the origin of primitive and definitive HSCs [14–17]. Moreover, these cell populations 

also share several markers and respond to stimulation by sex hormones (SexHs) [18–21].

The second question to be answered is: Are some of the stem cells from the embryonic stage 

of development deposited into and reside in adult tissues in the quiescent state? This 

emerging concept suggests a developmental continuum in the stem cell compartment, 

beginning from the fertilized zygote to adult tissue committed monopotent stem cells. If this 

is correct, then the end of organogenesis does not mean complete elimination of 

developmentally early stem cells from postnatal tissues. Such cells described as very small 

embryonic like stem cells (VSELs) survive in the adult body as a potential backup for tissue-

committed stem cells and play a role in their turnover [22–24].

The third question is: Why do some developmentally early VSELs that express markers of 

pluripotency remain in a quiescent state in adult tissues, and why do they not form teratomas 

or complete blastocyst development? To address this question, we demonstrated that the 

most primitive developmentally early VSELs in adult tissues could be kept in a quiescent 

state, similarly as migrating PGCs, by changes in expression of certain parentally imprinted 

genes [25]. Proper expression of these genes is crucial for the initiation of embryogenesis 

and cell proliferation [26]. By contrast, these genes are expressed in embryonic stem cells 

(ESCs) and induced pluripotent stem cells (iPSCs), which enables these cells to complete 

blastocyst development and grow teratomas in in vivo models [25, 27].

Based on the aforementioned, we will discuss these three issues and present evidence that 

developmentally early VSELs, sharing several markers with PGCs and the epiblast, are kept 

in a quiescent state in adult tissues by changes in expression of parentally imprinted genes. 

In particular, we will focus on bone marrow (BM)-residing VSELs. Evidence accumulated 

suggests that BM-residing VSELs can be specified into HSCs, endothelial progenitor cells 

(EPCs) and mesenchymal stem cells (MSCs).

How much germline potential is present in adult bone marrow stem cells?

The first stem cells that become specified in the earliest stages of embryogenesis in the 

epiblast of the post-implantation blastocyst are PGCs, as mentioned above [28, 29]. The 

epiblast is a precursor of the entire embryo proper, and PGCs are precursors of gametes that 

pass genetic information, encoded in parental DNA, and mitochondria to the next 

generation. These cells, endowed with developmental totipotency, become specified in the 

proximal part of the epiblast and, after specification, leave the embryo proper and migrate 

for a short period of time to the extra-embryonic mesoderm, where they begin to amplify, 
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make a turn, and re-enter the embryo proper through the primitive streak. While continuing 

to amplify in number, the PGCs migrate toward the genital ridges [30], where they settle and 

initiate gametogenesis. On their migratory route through the embryo proper toward the 

genital ridges, they cross the part of the embryo called the aorta–gonado–mesonephros 

(AGM) region [31].

As shown in Figure 1, the developmental route of PGCs overlaps with the emergence of the 

first primitive HSCs in time and space—first in the so-called blood islands at the bottom of 

the yolk sac and later with the emergence of definitive HSCs in the AGM region of the 

developing embryo proper. Both PGCs and HSCs are highly migratory stem cells and it is 

very likely that some of the PGCs, while migrating in the extra-embryonic mesoderm, give 

rise to hemangioblasts, which are precursors for both primitive HSCs and EPCs. 

Subsequently, while they migrate in the embryo proper through the AGM region towards the 

genital ridges, some of them become specified into definitive HSCs detectable in the 

hemangiogenic endothelium of the dorsal aorta [31–34].

Based on this close developmental overlap between PGCs and HSCs, one can ask how much 

germline potential is in HSCs, and, vice versa, whether germline-derived cells share genes 

involved in the development of both lineages. In fact, mounting evidence has accumulated 

that HSCs are responsive to several pituitary gonadotrophins and gonadal sex hormones 

(SexHs) and share certain molecular markers typical of germ development, such as the Sall4 

transcription factor [35, 36]. On the other hand, germline-derived cells express the 

erythropoietin receptor, which is well known to be expressed by hemangioblasts and cells 

from the erythroid lineage. Accordingly, we demonstrated that human and murine germline-

derived teratocarcinoma cells lines as well as ovarian cancer cell lines express functional 

erythropoietin receptors and respond to erythropoietin by chemotaxis, increased adhesion, 

and phosphorylation of MAPKp42/44 and AKT [37].

On the other hand, to better address the potential role of SexHs in the development of HSCs, 

we performed a series of experiments to address the influence of follicle-stimulating 

hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone, androgens, and 

estrogens on murine hematopoiesis [21]. We found that 10-day administration of each of the 

SexHs evaluated in this study directly stimulated expansion of HSCs in BM, as measured by 

an increase in the number of these cells (~2–3x), an observation supported by enhanced 

bromodeoxyuridine (BrdU) incorporation into the nuclei of these cells. The percentage of 

BrdU+ Sca-1+ Lin– CD45+ HSCs, depending on the type of SexH employed, increased from 

~25% to 45–60%. This stimulatory effect paralleled an increase in the number of clonogenic 

BM progenitors (~2–3x). Notably, we also observed that murine Sca-1+ Lin– CD45+ HSCs 

express pituitary and gonadal SexH receptors and respond to stimulation by phosphorylation 

of MAPKp42/44 and AKT. We also observed that administration of SexHs accelerated the 

recovery of peripheral blood (PB) cell counts in sub lethally irradiated mice and slightly 

mobilized HSCs into circulation. Finally, in direct in vitro clonogenic experiments on 

purified murine progenitor cells, we observed a stimulatory effect of SexHs on clonogenic 

potential if added with suboptimal doses of the colony stimulating factors: CFU-Mix, BFU-

E, CFU-Meg, and CFU-GM. Thus, our data indicates that pituitary- and gonadal-secreted 

SexHs directly stimulate the expansion of stem cells in BM [21].
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Finally, in further support of this developmental link between the germline and 

hematopoiesis, it is important to mention that several papers have described the sharing of 

chromosomal aberrations between germline tumors and leukemias or lymphomas, which 

suggests their common clonal origin [17, 38–40]. More direct evidence has also 

demonstrated that murine PGCs isolated from embryos, murine testes, and teratocarcinoma 

cell lines can be specified into hematopoietic stem/progenitor cells [15–17, 41, 42]. These 

findings all support a close developmental relationship between the germline and 

hematopoiesis.

Do early-development stem cells reside in adult tissues?

A decade ago, the concept of stem cell plasticity or stem cell trans-differentiation was 

proposed [6, 43–48]. Based on this idea, tissue-committed stem cells, such as HSCs, could 

change their fate and differentiate into stem cells for other lineages, for example, cardiac 

stem cells. This concept, however, did not stand up to critical examination and other 

explanations for why some degree of chimerism has been observed in various tissues after 

transplantation of bone marrow cells have been proposed. One of these alternative 

explanations involves the phenomenon of cell fusion [49–52].

By contrast, our team has from the beginning proposed that stem cell plasticity could be 

explained by the fact that the adult BM contains early-development stem cells, which we 

succeeded in isolating from adult murine BM cells that were slightly smaller than 

erythrocytes and that expressed pluripotency markers, such as Oct-4 and Nanog, which we 

called VSELs [24, 53]. Meanwhile, in the past several years, various cells endowed with 

multi-tissue differentiation potential have been identified by other investigators in adult 

murine or human BM and, depending on the methods for how they were isolated, assigned 

different names. The examples are spore-like stem cells [54], multipotent adult stem cells 

(MASCs) [1], mesenchymal stem cells (MSCs) [55], multi-lineage-differentiating stress-

enduring (Muse) cells [56], multipotent adult progenitor cells (MAPCs) [4], unrestricted 

somatic stem cells (USSCs) [3], marrow-isolated adult multi-lineage-inducible (MIAMI) 

cells [2], or multipotent progenitor cells (MPCs) [1, 57]. Interestingly, in addition to the cells 

listed above, adult bone marrow has been also postulated to contain hemangioblasts [58], as 

well as cells that retain the potential to differentiate into gametes (Table 1) [59, 60].

This has created nomenclatural chaos, and probably several of these stem cells described as 

separate entities are in fact overlapping cell populations. We envision that, most likely, 

VSELs are at the top of the hierarchy of all of these various overlapping populations of stem 

cells that are endowed with pluri/multipotent differentiation potential (Figure 2) [61, 62]. In 

BM tissue, they can give rise to HSCs, MSCs and EPCs. Further studies are needed to 

compare these cell types side by side.

The BM provides a permissive microenvironment for a variety of stem cells (including, as 

we envision, VSELs) circulating in PB during embryonic development to promote their 

homing to this organ. Molecular analysis of gene libraries established from VSELs revealed 

that, despite a similar small size, primitive morphology, and expression of surface markers 

that allow for their purification (Sca-1+ Lin– CD45–), these cells are, in fact, somewhat 
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heterogeneous [63]. We found at least three different types of libraries generated from 

single, sorted VSELs, and some of these libraries exhibited a strong epiblast- or PGC-like 

gene expression pattern. In support of such a connection, we observed that murine BM-

derived VSELs express several genes that are characteristic of epiblast SCs (Gbx2, Fgf5, and 

Nodal) and, more importantly, of germline specification and migrating PGCs (Stella, 
Prdm14, Fragilis, Blimp1, Nanos3, and Dnd1) [64, 65]. The expression of some of these 

crucial genes has subsequently been confirmed by demonstrating the presence of 

transcriptionally active promoters in these genes. Importantly, we recently observed that 

BM-residing VSELs respond in vivo to stimulation by pituitary and gonadal SexHs and 

begin to accumulate BrdU [21]. Furthermore, gene expression analysis and 

immunohistochemical staining confirm that these cells express SexH receptors [21].

Although cells morphologically and phenotypically similar to bone marrow VSELs were 

found in other tissues, adult BM-residing VSELs probably migrate during development, 

along with HSCs from sites where fetal hematopoiesis is initiated, to fetal liver and 

subsequently adult BM [66]. Table 1, reports on early-development stem cells isolated from 

adult BM and skin that express germline markers are listed [67–73], but their relationship to 

VSELs requires further study. Nevertheless, these observations support the concept that 

developmentally early stem cells from embryogenesis could be deposited in adult tissues and 

that there exists in the stem cell compartment a stem cell continuum beginning with 

embryonic development and extending into adulthood [24].

The role of parentally imprinted genes in maintaining the quiescence of 

developmentally early adult stem cells.

As discussed above, evidence has accumulated that adult tissues contain certain early-

development stem cells that are endowed with broad trans-germ layer differentiation and 

multi/pluripotent—for example, VSELs. Nevertheless, to call a given stem cell “pluripotent” 

requires satisfying both in vitro and in vivo criteria. For in vitro criteria, a pluripotent stem 

cell candidate has to show undifferentiated morphology, euchromatin, and a high nuclear/

cytoplasmic ratio. Such cells should also express markers of pluripotency, such as Oct-4, 

Nanog, and SSEA, and exhibit bivalent domains in the promoters of genes encoding 

important developmental, homeobox-containing transcription factors, and female pluripotent 

stem cells should reactivate the X chromosome. Moreover, such cells should differentiate in 

appropriate culture conditions into cells from all three germ layers (meso-, ecto-, and 

endoderm). On the other hand, in vivo criteria for pluripotent stem cells include the ability to 

complement blastocyst development and grow teratomas in an in vivo assay after injection 

of these cells into immunodeficient mice.

VSELs fulfill the above-listed in vitro criteria, despite the fact that they are highly quiescent 

in culture, and special conditions are needed to differentiate them into various lineages [61, 

62, 74–80]. However, VSELs do not fulfill the in vivo criteria, as they do not complete 

blastocyst development and do not grow teratomas [25, 81]. The reason for quiescence of 

these cells is the modification of expression of certain parentally imprinted genes. Overall, 

there are ~50–100 paternally imprinted genes in the mammalian genome - expressed from 
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the maternal or paternal chromosome only, that play an important role in embryonal 

development. Some of them, for example the tandem gene insulin-like growth factor 2 

(Igf2)–H19, are of particular importance for the totipotential state of the zygote, 

embryogenesis, fetal growth, and pluripotency of developmentally early stem cells [26, 82–

84].

To explain the developmental role of parentally imprinted genes, mammalian development 

requires proper gene dosage of these genes, which is enabled by their imprinting, so that a 

single parental allele (maternal or paternal) is expressed in the cell. Therefore, genomic 

imprinting is an epigenetic program that ensures the parent-of-origin-specific monoallelic 

transcription of imprinted genes and results in intracellular expression of imprinted genes 

from only one of the two paternal chromosomes—derived either from the mother or the 

father [85]. The epigenetics behind expression of imprinted genes is based on the imposition 

of epigenetic marks by DNA methylation within differentially methylated regions (DMRs), 

which are CpG-rich cis-elements within their loci [26, 82–84]. These epigenetic marks 

imposed on DMRs in the female germline act on the promoters of imprinted genes, which 

results in the heritable repression of the maternal chromosomes. By contrast, the imposition 

of epigenetic marks by methylation of the chromosomes in the male germline does not occur 

at the promoters, but rather within the intergenic regions (e.g., between the tandem genes at 

the Igf2–H19 locus, as shown by black lollypops in Figure 3).

Figure 3A shows that expression of Igf2 and H19 genes is regulated by a distal enhancer. 

Since maternal imprinting at the DMR for this tandem gene is erased (open lollypops) at the 

maternal (M) chromosome, this site binds CTCF protein (insulator), which forms a physical 

barrier between Igf2 and H19 and thereby prevents the distal enhancer from activating 

transcription of Igf2 from the maternal allele. By contrast, the DMR region at the paternal 

chromosome (P) is methylated (black lollypops), and CTCF cannot bind to the DNA. Thus, 

the distal enhancer activates transcription of Igf2 from the paternal allele.

While Igf2 promotes proliferation, H19 gives rise to non-coding mRNA that is spliced into 

several miRNAs that negatively affect cell proliferation. As the result of normal, balanced 

paternal imprinting in cell nuclei, there is balanced expression of Igf2 mRNA from paternal 

and H19 mRNA from the maternal chromosome [86].

As mentioned above, erasure of genomic imprints is one of the crucial mechanisms that 

prevents PGCs and VSELs from proliferation, blastocyst complementation, and teratoma 

formation [25, 81]. As a result of erasure of the DMR at the Igf2–H19 locus (Figure 3B), 

both maternal and paternal DMRs bind insulator protein, and the distal enhancer activates 

transcription of H19 from both parental alleles. Cells affected by this epigenetic mechanism 

do not express insulin-like growth factor 2 (IGF-2), which promotes cell proliferation, and 

overexpress noncoding H19 mRNA, thereby negatively affecting cell proliferation. This 

epigenetic change in expression at the Igf2–H19 locus explains why PGCs and VSELs 

remain quiescent [25, 87].

To get a full picture of these epigenetic changes, in addition to erasure of imprinting at the 

Igf2–H19 locus, murine BM-residing VSELs also erase the paternally methylated imprints 
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within the DMRs for RasGrf1. In parallel, they hypermethylate the maternally methylated 

DMR for the insulin-like growth factor 2 receptor gene (IGF2R). As a result of these 

changes, VSELs, like PGCs, are resistant to insulin/insulin-like growth factor signaling. 

Specifically, the changes in expression of imprinted genes lead to a perturbation of insulin/

insulin-like growth factor signaling by downregulation of i) IGF-2, which is an autocrine 

factor involved in proliferation of VSELs, and ii) RasGRF1, which is a GTP-exchange factor 

(GEF) crucial for signaling from the activated insulin-like growth factor 1 receptor (IGF-1R) 

and the insulin receptor (InsR). In addition, since the IGF2R serves as a decoy receptor that 

prevents IGF-2 from binding to IGF-1R, hypermethylation of the DMRs on the maternal 

chromosome encoding IGF-2R, which leads to overexpression of this gene, has an additional 

negative effect on IGF-2 signaling in VSELs [88]. Our recent data suggests that a very 

similar mechanism is also most likely responsible for the quiescent state of human VSELs 

not only in bone marrow but also in adult tissues. This mechanism, characteristic of PGCs 

and VSELs [25, 87], keeps them in a quiescent state. As we have shown, the finding that the 

most primitive stem cells in adult bone marrow are endowed with long-term reconstituting 

potential [25] has recently been confirmed by another group [89].

In summary, these epigenetic modifications of imprinted loci (including Igf2–H19, 
RasGRF1, and IGF2R) hampers efficient expansion of these cells in ex vivo cultures but, on 

the other hand, prevents them from undergoing uncontrolled proliferation and teratoma 

formation in vivo. Curiously, we noticed that a proper somatic imprinting at this locus could 

be re-established after exposure of VSELs to nicotinamide.

Conclusions

Evidence has accumulated for the existence of a developmental link between PGCs, VSELs 

and HSCs, shedding new light on the developmental hierarchy of the stem cell compartment 

in adult BM. Our group has identified VSELs in adult tissues and demonstrated that 

epigenetic modification of certain imprinted genes in these cells plays a crucial role in 

controlling their proliferation. On the other hand, reversal of this imprinting mechanism is 

crucial to employing these cells in regenerative medicine. Currently, we are testing whether 

modulation of parental imprinting to activate genes involved in insulin/somatotropins 

signaling will promote VSEL expansion, as has recently been demonstrated for PSCs 

derived by parthenogenesis [90]. Our encouraging data indicate that we are able to expand 

and specify VSELs ~ 3×106 in serum free medium in the presence of nicotinamide and 

cocktail of FSH, LH, BMP-4 and KL [91]. Most important in this chemically defined 

medium VSELs undergo asymmetric divisions what is an important hallmark of primitive 

stem cells [92]. Moreover, another team was successful in ex vivo expression of VSELs in 

the presence of the small pyrimido-indole derivative molecule UM177 [93]. In sum, to date a 

presence of these cells in adult postnatal tissues have been demonstrated by at least 25 

independent laboratories [94–97]. There are also reported new strategies to enrich for 

VSELs from hematopoietic tissues [98, 99].
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Figure 1. Migration of PGCs and the developmental origin of primitive and definitive 
hematopoiesis.
The specification of the first primitive HSCs in the yolk sac blood islands as well as the 

origin of definitive HSCs in the aorta–gonado–mesonephros (AGM) region are 

chronologically and anatomically correlated with the developmental migration of primordial 

germ cells in extra- and intra-embryonic tissues. For reasons of simplicity, the 

developmental difference between the times when primitive and definitive hematopoiesis are 

initiated is not reflected on this figure by changes in embryo maturation.
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Figure 2. Adult bone marrow as a home for various stem cells.
We propose that VSELs are primitive, small, dormant, stem cells that, upon proper 

activation, give rise to other, larger multi/pluripotent stem cells identified by other 

investigators in hematopoietic tissues and may also give rise to hematopoietic/stem 

progenitor cells, mesenchymal stem cells, and endothelial progenitor cells. Abbreviations: 

VSEL, very small embryonic-like stem cell, HSC, hematopoietic stem cell, EPC, endothelial 

progenitor cell, MSC, mesenchymal stroma cells, MASC, multipotent adult stem cell, 

MIAMI, marrow-isolated adult multilineage-inducible cell, MAPC, multipotent adult 

progenitor cell.
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Figure 3. Regulation of expression of the Igf2–H19 tandem gene.
Panel A. The Igf2 and H19 coding regions are separated by a differentially methylated 

region (DMR) that is unmethylated (open lollypops) on the maternal chromosome (M) and 

methylated (filled lollypops) on the paternal chromosome (P). Expression of both genes is 

regulated by a 3’ distal enhancer depicted in green. Since the DMR is unmethylated on the 

maternal chromosome, it binds CTCF, and this prevents activation of the Igf2 promoter by 

the distal enhancer. As a result, only H19 mRNA is transcribed from the maternal 

chromosome (red arrow). By contrast, methylation of the DMR on the paternal chromosome 

prevents binding of the CTCF insulator protein and allows activation of the Igf2 promoter by 

the distal enhancer and transcription of Igf2 mRNA from the paternal chromosome (red 

arrow). Normal somatic imprinting observed in all somatic cells results in properly balanced 

expression of Igf2 from the paternal chromosome and H19 from the maternal chromosome. 

Panel B. Erasure of imprinting at the Igf2–H19 locus, as seen in PGCs and VSELs, leads to 

a situation in which DMRs on the maternal and parental chromosomes both bind CTCF, and 

the 3’ distal enhancer activates transcription of only H19 from both chromosomes. 

Therefore, erasure of imprinting at the Igf2–H19 locus leads to overexpression of 

proliferation-inhibiting H19 mRNA. We noticed that a proper somatic imprinting at this 

locus is re-established after exposure of VSELs to nicotinamide.
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Table 1.

Selected publications from other authors indicating that stem cells endowed with germline potential reside in 

postnatal non-gonadal tissues. [100]

Cells endowed with germline markers residing in BM and skin Reference

Stem cells with germline potential isolated from newborn mouse skin – Oct-4+ cells isolated by FACS from Oct-4–GFP mice, 
which are able to give rise in vitro and in vivo to early oocytes. Similar cells were also identified in newborn porcine skin.

[67]

Multipotent stem/stromal cells isolated from porcine skin – Oct-3/4+, Nanog+ Sox-2+ cells isolated from porcine skin and 
adipose tissue and able to differentiate into oocyte-like cells.

[68]

SSEA-1+ murine BM cells – Isolated from murine BM by anti-SSEA-1 immunomagnetic beads. In the presence of bone 
morphogenetic protein 4 (BMP4), these cells differentiate into Oct-4+Stella+Mvh+ gamete precursors.

[69]

BM-derived germ cell candidates – Oct-4+ Mvh+ Dazl+ Stella+ cells present in BM that may affect the recurrence of oogenesis 
in mice sterilized by chemotherapy.

[70, 71]

BM-derived male germ cells – Oct-4+ Mvh+ Stella+ cells isolated as Stra8–GFP cells from bone marrow of Stra8–GFP 
transgenic mice. These murine bone marrow-derived cells express several molecular markers of spermatogonial stem cells and 
spermatogonia.

[72]

Chicken BM-derived precursors of male germ cells – GFP+ transgenic chicken Oct-4+SSEA-1/3/4+ cells isolated from bone 
marrow, which give rise to functional sperm after injection into testes.

[73]
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