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Abstract

In this paper, we focus on the intuitionistic propositional logic ex-
tended with a local operator [23] (also called nucleus [22]); such logic
is commonly named laz logic after [9]. We prove that unification is
finitary in this logic and supply algorithms for computing a basis of
unifiers and for recognizing admissibility of inference rules, following
analogous known results for intuitionistic logic.

Keywords: nuclei, lax logic, unification theory, admissible inference
rules.

1 Introduction

It is well-known that the algebraic counterpart of intuitionistic logic is given
by Heyting algebras, which are among the most important examples of resid-
uated lattices, whereas the algebraic counterpart of the logic we study in this
paper (namely, lax logic) is given by Heyting algebras with nuclei. So we
believe that this paper sits both in the scope of the journal and in the area
of interest of Antonio Di Nola.

More precisely, in this paper we consider the extension of intuitionism
obtained by adding it a unary modal operator j (a nucleus) subject to the
axiom schemata (2.1) below. This logic comes from Lawvere’s suggestion
that a Grothendieck topology appears in a natural way as a modal operator;
as such, this geometrically inspired modality (and the related algebraic and
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categorical counterparts) found numerous applications in topos theory [23,
28, 29] and point-free topology [22].

The investigation of the basic properties (completeness, finite model
property, decidability) of such logic at the propositional level was first un-
dertaken in [5, 6] and later on in [16]. In more recent times, the logic was
rediscovered (and renamed as laz logic) inside the area of applications to
hardware verification [24, 9, 25]. The problem there is the timing analysis
of logical circuits, implication in lax logic is interpreted as follows: A — B
holds if A gives rise to B in a bounded amount of time.

In the last two decades, there have been increasing interest in lax logic,
from various sources. We give here a list (far from exhaustive) of examples.

In [27] the authors give a new presentation of lax logic and finds that
the lax modality is already expressible using possibility and necessity.

In [17] the author gives two proof-search calculi for lax logic. The first
calculus is useful for enumerating without redundancy all proofs in the logic;
especially where proof-search is for natural deductions. The other calculus
builds on the propositional fragment of the first calculus to give a decision
procedure for propositional lax logic, so useful for hardware verification.

In [10] we find an interpretation of first order lax logic in the theorem
prover HOL.

[8] shows that lax logic can be faithfully embedded into the under-
lying intuitionistic logic and discusses (computational) properties of the
embedding. Using the proposed polynomial-time computable embedding,
PSPACE-completeness of the provability problem of propositional lax logic
is shown.

In the area of algebraic logic, there have been further intersting recent
contributions. In [3], the authors associate to each superintuitionistic logic
its downward and upward subframizations, and characterize them by em-
bedding si-logics into the extensions of the propositional lax logic PLL.

In [7] a study is performed of what we call the {—, j}-fragment of lax
logic. The paper studies the algebraic correspondent of this fragment, called
Lax Hilbert algebras, and their dual objects, lax Hilbert spaces.

In [4] a full duality theorem is given for Heyting algebras with nuclei
and in [2] duality techniques are exploited in order to show the somewhat
surprising result that the disjunction-free fragment of lax logic is locally
finite.



Our main result and plan of the paper

Despite the progresses described above, it seems that the unification problem
for lax logic has not been settled yet, whereas unification for intuitionism
has been investigated in [12] (for a survey on results in unification theory in
modal and description logics, the reader is referred to [1]).

The main result of [12] is the following:

Theorem 1.1. ([12], Theorem 5, p. 871) Intuitionism has finitary unifica-
tion type.

Likewise in this paper we prove:
Theorem 1.2. Lazx logic has finitary unification type.

The proof is given in the following sections. Actually, our proof of The-
orem 1.2 is similar to the one of Theorem 1.1, so we will stress mostly the
points where the two proofs differ.

The paper is entirely self-contained: to this aim, we supply in Section 2
below an essential background on propositional lax logic, tailored to the
semantic results we need in the main sections.

2 Basic syntax and semantics

The formulae of intuitionistic propositional logic are obtained from a count-
able set of atomic propositions (atoms) x1,...,¥1,... by applying them the
connectives T, 1, A, V, —. For a complete Hilbert style axiomatization of in-
tuitionistic propositional calculus (I PC), the reader is referred to textbooks
like [26].

The language of propositional lax logic (PLL) includes also an additional
unary operator j and an axiomatization for such logic is obtained by adding
to the axiomatization of (IPC) the following axiom schemata

A= jA, jjA+ jA, j(AAB) & jANB. (2.1)

Given a formula A, we write Fpp; A if A is provable in (PLL). More
generally, we write Ay,..., A, Fprr B to denote Fprr, Ay A...NA, = B.

From an algebraic point of view, we consider Heyting algebras with nuclei,
i.e. Heyting algebras H = (H,M,,=,1,0) endowed with a unary operator
j satisfying the following conditions

a < j(a), j(i(a)) =j(a), jlamb)=j(a)n;jb) (2.2)



for every a,b in the support H of #H (the partial order relation a; < ag is
defined as usual as aj Mag = ay). We recall that a Heyting algebra is a
bounded distributive lattice endowed with an extra operation = satisfying
the following condition

afb<c iff a<b=c¢ (2.3)

for all a,b,c in its support (it is well-known that condition (2.3) can be
formulated equationally, so that Heyting algebras are an equational class).
A waluation V for (PLL)-formulae is a map associating with every atom
x an element V(x) of the support of an Heyting algebra with nucleus. The
valuation V is then extended to the set of all formulae by induction in the
obvious way. A Lindenbaum construction easily gives the following

Theorem 2.1. For every formula A, we have that Fprp A iff V(A) =1 for
every valuation V.

The above result can be improved, by restricting to finite valuations,
i.e. to valuations whose codomain is a finite algebra. We give below a quite
short proof of this result, first we need a preliminary Lemma:

Lemma 2.1. Fvery finitely generated bounded distributive lattice endowed
with a nucleus j (i.e. with a unary operation satisfying conditions (2.2)) is
finite.

Proof. The lemma holds because all elements of such a structure can be
written as meets of joins of elements which are either generators or obtained
applying j to a disjunction of generators. It is so because the equality

Jlatj(b)) = jlaUd)
follows from (2.2). O

Theorem 2.2 (Finite Model Property). [5, 6, 16, 9] For every formula A,
we have that Fprr A iff V(A) =1 for every finite valuation V.

Proof. Let A be such that /pr; A and consider a valuation V into a Heyting
algebra with nucleus (H,j) such that V(A) # 1. Consider the (finite, by
Lemma 2.1) bounded distributive latttice with nucleus generated by the
elements of the kind V(B) where B is a subformula of A. Every finite
distributive lattice is a Heyting algebra, hence we have a sub-Heyting algebra
with nucleus (', j) of (H, j), including the valuation of all the subformulae
of A. The inclusion preserves joins, meets, 0,1, 7, but not the implication:



in fact H' has its own implication, that we denote by =’. However, if for
a, b in the support of H’ it happens that a = b belongs to the support of H’,
then a = b coincides with a =’ b: to see this, notice that a = b is the unique
element satisfying (2.3) for all ¢ in the support of H, hence it is also the
unique element satisfying (2.3) for all ¢ in the support of H’. Thus, we can
restrict V' in the codomain to the support of H' and get a finite valuation
V’ such that V'(A) # 1. O

By Post’s theorem (a set is recursive iff both it and its complement are
recursively enumerable), we get decidability:

Corollary 2.1. Given lax formulae Ay, ..., An, B, it is decidable whether
Aq,..., A, Fprr B holds or not.

We now want to recover from Theorem 2.2 a Kripke-style semantics for
(PLL). In fact, whereas various semantics for (PLL) have been proposed in
the literature (in particular, the semantics in terms of Grothendieck cover-
ings remains the most natural and appropriate one),! for the kind of propo-
sitional logic applications considered in this paper, we focus on the simplest
and the most manageable semantics.

A laz Kripke frame is a triple

Py = (P, <,8)

where P is a poset and S is a subset of P. A lax Kripke frame as above in-
duces a Heyting algebra withy nucleus H(Ps) by taking the Heyting algebra
| P of downward closed subsets (downsets)? of P ordered by set-theoretic
inclusion and by endowing this algebra with the nucleus defined in the fol-
lowing way for every downset D €| P:

js(D) = {peP|VseS (s<p=seD)}. (2.4)

Not all the nuclei on the downward closed sets of a poset P are of this kind,
however we shall see that this is the case when P is finite. Since all finite
Heyting algebras (up to isomorphism) are of the kind | P for some finite
poset P, we obtain in this way a complete characterization of finite Heyting

!See [11] for a comparison of the different Grothendieck coverings that can be used to
prove the completeness theorem via canonical models. The lax Kripke frames explained
in this section correspond to special kinds of Grothendieck coverings (called ‘covering by
points’ in [11]).

2We say that D C P is downward closed iff for all p,q € P, if p € D and ¢ < p then
qeD.



algebras with nuclei (this is indeed part of a full duality theorem for Heyting
algebras with nuclei, see [4]).

To prove such characterization (Theorem 2.3 below) we specialize some
techniques from [2]. We need some notation concerning an Heyting algebra
of the kind | P. Forpe P,welet | p={qe€ P|qg<p}andp°={q€ P |
q # p}. For an abitrary downset D, we have

peD iff |[pCD (2.5)
pgD iff DCp®. (2.6)

Thus, D = UpeD dpand D = ﬂpgDpc. If P is finite, the elements of
the kind | p are precisely the join-irreducible elements of | P, whereas the
elements of the kind p¢ are precisely the meet-irreducible elements of | P.3

The minimal downsets of the kind p° for p ¢ D are called the meet-
irreducible components of D.

Lemma 2.2 ([2], Lemma 3.14). Let P be a finite poset and let j be a nucleus
on | P; if p. is a meet-irreducible component of some downset D such that
D = j(D), then j(p°) = p°.

Proof. Let ¢f,...,q; be the meet-irreducible components of D; for every
i=1,...,n we have

jlgi)n---njlan) =3lgiN---Ngy) =j(D) =D C gi .
Since ¢f is meet-irreducible, there is k = 1,...,n such that ¢ C j(q}) C ¢f;
by minimality, ¢f = ¢f and so ¢f = j(qy). O

Theorem 2.3. Let (H,j) be a finite Heyting algebra with nucleus. Then
there exists a finite lax Kripke frame Ps = (P,<,S) such that (H,j) is
isomorphic to H(Ps).

Proof. Tt is a basic well-known fact (see e.g. [15],Theorem 2.1) that H is
isomorphic to the Heyting algebra | P of the downsets of a finite poset P.
Hence, we only need to identify some S C P such that H(Ps) is isomorphic
to (L P,7). We take?

S = {qeP|j)=q}

SRecall that an element a of a lattice is said to be join-irreducible iff the relation
a<biU---Uby, (for some n > 0 and by, ...,by,) implies a < b; for some i. The definition
of a meet-irreducible element is dual.

“In view of (2.6), this is the same as taking S to be {g € P |VD €l P (g€ j(D) = q €
D)}. Such alternative definition of S matches the definition of the ‘covering by points’
Grothendieck topology in the canonical model [11].




Now for p € P and D €| P, we have that p € j(D) iff j(D) C p© iff there
is some meet-irreducible component ¢¢ of j(D) such that j(D) C ¢° C p°.
Taking into consideration Lemma 2.2 and the fact that j(j(D)) = ( ), this
happens iff there is ¢ € S such that j(D) C j(¢°) = ¢¢ C p°, i.e. iff there
is ¢ € S such that D C ¢° C p¢ (in fact, since j(¢°) = ¢¢, the inclusion
Jj(D) C ¢ is equivalent to the inclusion D C ¢¢). However ¢ C p° holds iff
q < p; thus, in conclusion we have that p & j(D) iff there is ¢ € S such that
qg¢ D and q <piff p¢& js(D). Since p and D are arbitrary, this shows that
J = js, as wanted. ]

Let us call a finite lax Kripke model (or simply a finite laz model or a
finite Kripke model) any valuation V' whose codomain is an algebra of the
kind H(Ps), for a finite Pg. Putting together our results, we get the following
completeness/finite model property theorem for (PLL) with respect to finite
lax Kripke frames:

Theorem 2.4. For every formula A, we have that bpry, A iff V(A) =1 for
every finite lax Kripke model V.

It is customary to reformulate Kripke semantics in terms of forcing; this
is a purely mechanical translation, taking in mind that “the point p € P of
the model induced by the valuation V forces a formula A” must be defined in
such a way that it is equivalent to “p € V(A)”. Also, notice that the forcing
relation at p € P defined in this way only depends on the restriction of the
model to the points ¢ < p. This is why sometimes it is preferred to formulate
Kripke semantics using rooted posets (a poset (P, <) is rooted when there is
p € Psuchthat | p = P). We directly give below such reformulation in terms
of rooted posets, leaving the reader to convince himself that Theorem 2.5
below is just a rewording of Theorem 2.4 above. We adopted such rewording
to make our notation fully compliant with [12]; for the same reason, we
prefer to introduce Kripke models defined only over finite subsets of the set
of atomic propositions. We nevertheless maintain the name ‘(lax) Kripke
models’ for the models introduced below, despite these light and immaterial
differences.

For a finite set of atoms X, we let F/(X) the set of all (PLL)-formulae
built up from atoms in X (we often write A(X) to mean that A € F(X)).

A lax Kripke model (or, simply, a Kripke model or, again, a lax model)
is a tuple

u=(X,P<,5,V) (2.7)



where X is a finite set of atoms, (P, <) is a finite rooted poset, S, C P% and
V. X — | P is a function.

Often the elements of P are called ‘worlds’ of the model and < is called
the ‘accessibility relation’. When u is a model as in (2.7), we say that u is
a model over X or that it is an X-model.

Given such a model, it is possible to define the forcing relation u =, A
(where p € P and A € F(X)) as follows, by induction on A:

- u =, T always;
- u B5, L always;
- ul=paiff pe V(x) for all z € X;

ul=p AN B if and only if u =) A and u |=, B;

ul=p AV B if and only if u =) A or u |=), B;

- u |=p A — B if and only if for every point ¢ < p of P, if u |z, A, then
u f=q B;
- u |=p JA iff for every point s < p belonging to S, we have that u =, A.

When we write v = A (without specifying p), we mean u |=, A, where p is
the root of P. Actually, it is always possible to avoid the specification of p
by considering submodels: for p € P, we denoted by u, the model obtained
from u by restricting P and S, to the subset {q € P | ¢ < p} (p will be the
root of this restricted model). Then it is easily seen that we have

uwky A iff u, = A

for every formula A (we shall systematically adopt this model restriction
notation in the paper).

The semantics of a formula A € F(X) (denoted by A*) is the class of
models over X validating A; formally, we define

A ={u=(X,P,<,S., V) |ul A} . (2.8)

Then we can reformulate the completeness theorem 2.4 in the style of [12]
(Theorem 1 p. 862) as follows:

Theorem 2.5. For every formulae A, B € F(X), we have that A Fpr; B
iff A* C B*.
®Note that S,, is not necessarily a downset of P (otherwise we would collapse our logic

inside intuitionism with a distinguished atom). However, it is still true that lax formulas
are interpreted as downsets.




3 Unification and Projectivity

A substitution is a map o : X — F(Y'), where X,Y are finite sets of atoms.
A substitution extends naturally to a map from F(X) to F(Y). The com-
position of the substitutions o : F(X) — F(Y) and 7 : F(Y) — F(Z)
is the substitution 70 : F(X) — F(Z) defined by (70)(z) = 7(o(x))
for all x € X. A substitution o7 : F(X) — F(Y) is less general than
o9 : F(X) — F(Z), written o1 < 09, if there is 7 : F(Z) — F(Y) such that
'_PLL T(O’g(aj)) — 0'1(1,‘).

We say that the substitution o is a wunifier of A if Fppr o(A).

A set S of unifiers for A is said to be a complete set of unifiers for A if
every unifier for A is less general than a member of S. A complete set of
unifiers for A is said to be a basis of unifiers for A if and only if its members
are pairwise incomparable with respect to the preorder <. A unifier a for
A is said to be a most general unifier (mgu) for A if and only if {o} is a
complete set of unifiers for A.

A logic has finitary unification type if every every unifiable formula
has a finite complete set of unifiers. Among logics with finitary unifica-
tion types, we can mention intuitionistic logic [12] and the modal systems
K4,54,Grz,GL [13]; however the modal system K lacks this property [20].

Given o : F(X) — F(Y) and u a model over a finite set Y of atoms,
o*(u) is the model on the same frame but over the atoms X, such that
0*(u)p = if and only if u, |= o(z), for all p in the domain of u and for all
z € X (by an easy induction, this implies

u
u

o*(u)p = A iff u, = o(A) (3.1)

for all A € F(X)). Notice that for composition of substitutions, we have
the following equality (70)(u) = o*(7*(u)); for restrictions to submodels,
we have 0*(u), = 0*(uy) for all p in the domain of w.

Projective formulas

A lax formula A(X) is said to be projective if there is a unifier o : F(X) —
F(X) of A such that
Abprr x < o(x) (3.2)

for every atom z € X. By the replacement theorem (which holds in lax
logic), the previous formula implies

Al—pLLBHU(B) (3.3)



for every lax formula B € F(X). A unifier o of a formula A satisfying (3.2)
is sais to be a projective unifier of A; it is immediate to see that projective
unifiers of A are most general unifiers of A.
Like in [12], it is easily seen that substitutions satisfying (3.2) (indepen-
dently on the fact whether they unify A or not) are closed under composition.
Moreover, like in [12], given a formula A € F(X) and given a subset a
of X, we define the substitution

0 () A—zx, ifzxeca
xTr) =
4 ANz, ifxda.

4% satisfies (3.2) and the same holds for every composition of such substi-
tutions.

The aim of this Section is to give a semantic characterization of projective
formulae. Such characterization is in term of the extension property and is
the same as the characterization given in [12] for intuitionistic projective
formulae (of course, the extension property now refers to lax Kripke models,
but this is the only formal difference). Proofs follows the same schema and
the same arguments as in [12], so they are reported here only in a synthetic
way.

Lemma 3.1. Let A(X) be a lax formula, a C X, x € X. We have:
1. Fprp 05(x) < 05(0%(x));
2. for every other b C X, A« 0%(A) Fprr 05(04(x)) < 0%(z).
The semantic analog of the previous lemma is the following:

Lemma 3.2. Let A be a lax formula over X, a C X, u be a lax model. We
have:

1. ifu= A then (09)*(u) = u
2. ifult A then (69)*(u)(p) C a
3. (02)"((02)" (w) = (03)" (u)
4. given another b C X, if for all p € u
(0%) (up) = A iff upl= A

then (6%)*((0%)* (u) = (0%)* (u).

10



A lax model is a variant of a model on the same lax frame if they are
equal or they differ only on the semantics of the atoms at the root.

Lemma 3.3. Let A be a lax formula over X and let u be a lax model such
that w = A but u, = A for every nonroot p. If there is a variant v’ of u
which is a model of A, then for some a C X we have both (0%)*(u) = A and

(0%)" (w)(p) = a.
Like [12] we define a substitution 04 as follows. Let a; be an ordering of
all subsets of X such that a; C a; implies ¢ < j. Let
Oa=(0%)...(0%).
Note that

Oa(u) = (0%) ... (03)" ()

for every lax model v over X. In this way we obtain:

Lemma 3.4. Let A be a laz formula and u a laz model such that 6% (u) = A.
Leti=1,...,s such that a; C 0% (u)(p). Then

(05)" .. (6%)"(u) = A.

A class K of lax models has the extension property if for every model u
such that u, € K for every nonroot p in the domain of u, there is a variant
of u which belongs to K.

The projectivity criterion of [12] (Theorem 5, page 866) for intuitionism
extends to lax logic, because the sets of special worlds S appearing in the
models play no role in the proofs. In particular we have:

Theorem 3.1. (see [12], Theorem 5, page 866) If A is a lax formula, then
the following properties are equivalent:

1. 04 unifies A.
2. A is projective.
3. A* has the extension property.

Proof. 1 — 2 follows because 04 satisfies (3.2).

2 — 3 Suppose o is a unifier for A satisfying (3.2) and take a lax model
u such that u, € A* for every nonroot p. Then o*(u) € A*. It is sufficient
to show that o*(u) is a variant of u: this follows from the fact that o*(u), =

11



0*(up) for all p € u and from the fact that if w € A* then o*(w) = w for
every lax model w, because o satisfies (3.2).

3 — 1 let u be a lax model. Our aim is to show 6% (u) = A. Suppose
not. We can assume 6% (u,) = A for all nonroot p, since u is finite.

Since A* has the extension property, by Lemma 3.3 thereisi =1,...,s
such that

(05%)7 (04 (w) = A
and
a; = (03)" (04 (w))(p),

hence a; C 6% (u)(p) for every nonroot p because lax models are monotonic
and because of Lemma 3.2. By Lemma 3.4 we infer

(%) (05)" (up) = A

for all nonroot p. Now we can repeatedly apply the hypothesis of Lemma
3.2(4) to all Kripke models

(67 (05" (6" (w) (1< <)
relatively to 0% = 0% and 0?4 = 93{71 (in fact, A is true at points different
from the root and false at the root both for (85 )* ... (0%)* ... (0%)*(u) and
for (0%)*(05)* ... (05)" ... (0%)*(u)). With the same calculations of [12]
we obtain the equation
(057 (04)"(w) = (0" .. (0%)" (u)

because of Lemma 3.2(3). So from (0% )*(04)*(u) = A and the above equa-
tion, we get (6%)* ... (6% )" (u) = A, hence also % (u) = A by Lemma 3.2(1),
contradiction. O

Corollary 3.1. The projectivity of a lax formula A is decidable.

Proof. Let A be a formula over a finite set X of atoms. A is projective if
and only if 64 unifies A, i.e. iff Fpry 04(A), which is decidable because
(PLL) is decidable. O

We conclude the section by supplying some information which is spe-
cific for (PLL). There are projective formulae in lax logic which are not
intuitionistic formulae; an example is

jr —x

whose most general unifier is the substitution mapping z to (jz — x) — =.
However, the following proposition says in particular that, up to logical
equivalence, the main connective of a projective formula cannot be j:

12



Proposition 3.1. If P is projective, then for every formula A we have
Fprr P — jA <— Ftprp P—A.

Proof. One side is trivial, as Fpy;, A — jA. For the other side, suppose
that we have Fprp P — jA but that there is a model v such that v = P
and v £ A. Let p be the root of v and let v be an extension of v with
a new root p’ such that v/ = P and p is in the set of the selected worlds
S, relatively to the lax Kripke frame underlying v": such v’ exists because
P* has the extension property. Then we obtain v' = P, v/ = jA and also
v = A because the root of v is in S,». By monotonicity of the forcing
relation, it follows that v; = = A, a contradiction. O

4 Lax simulation

To carry out the proof of Theorem 1.2 we need a notion of simulation in
lax logic. The idea is to modify the simulation for intuitionism of [12] so
to take account of the j operator. We define simulation in an alternating
sequence of steps, where the odd steps are as in [12] and the even steps take
into account the j operator.

Definition 4.1. Let u,v be X-models; for n > 0 we define the relations
U~ voand u <, v as follows, by induction on n.

- Wesay v ~puifv<,u andu <, v.

- We say v <g u if every atom of X true in the root of u is true in the root

of v.

- We say v <ont1 u if v <o, u and for every p € S, there is ¢ € Sy such
that vy <oy, uy.

- We say v <opt2 u if v <ont1 u and for every p € dom(v) there is q €
dom(u) such that v, ~ap41 Uq.

Lemma 4.1. For every n, X there are only finitely many non ~,-equivalent
lax models over X.

Proof. By induction. O

Lemma 4.2. For every finite set of atoms X, for every X-model u and
for every n > 0, there exists a laz formula X' (called the n-characteristic
formula of u) such that for every X-model v we have that

vEX,] ifand only if v<,u.

13



Proof. For n =0, X0 is the conjunction of the atoms of X true in the root
of u.
For the even case 2n + 2 we take (as in [12]):

X3n+2 — Xgn—i-l A /\ (X3/n+1 s \/ Xin—i—l).

{u’WpEP. u/’762n+1up} {w\u’$2n+1w}

For the odd case 2n + 1, we take:

A RNV
TESu

Now we prove by induction on n that for every X-model v we have

v<,u = vEX].

The even case is similar to [12]. Let us check the odd case.

Suppose v <gp4+1 u; since v <g, u, by induction we have v |= Xg". To
show that v = j(V,es, ng), take p € Sy; from v <911 u, we get that
vp <op uq for some g € Sy, thus we have v, = ng, yielding what required.

Vice versa, suppose that v = X2"*1; this implies that v = X2" and
also that v <o, u. Pick now p € Sy; since v = j(V,eg, Xa), we have
vp E V,es, X2n which means that there is ¢ € S, such that v, = Xg?,

Up )

that is there is ¢ € S, such that v, <o, u,. O

5 Invariance

A set K of finite models over X is said to be <, -invariant iff v € K and
v <, uwimply v € K. Likewise we speak of ~,, invariance.

Lemma 5.1. There are only finitely many <,-invariant sets of X-models
for every X and for every n > 0.

Proof. This holds because every <,-invariant set is defined by a union of
sets of of the kind (X')* and the latter are finitely many. O

We say that a formula A is <,-invariant (~p-invariant) iff the set of
models A* is <,-invariant (resp. ~,-invariant).

Lemma 5.2. For every n > 0, we have that <,-invariance implies ~,-
invariance and <,, invariance for every m > n.

14



Proof. Obvious, because <,, C <,, and ~,, C <,,. O
Lemma 5.3. Invariance has the following further properties:

1. The atoms z € X and T, L are <g-invariant;

2. if A, B are <,-invariant, then AN B, AV B are <,-invariant;

3. if A, B are ~gp41-invariant, then A — B is <gnyo-invariant (in par-
ticular, if A, B are <gp1-invariant, then A — B is <opio-invariant);

4. if A is <gp-invariant, then jA is <on11-invariant.

Proof. The first two statements are easy.

For the third, we reason by contradiction. Suppose A, B are ~o,11
invariant, u = A — B and v <g,42 u. Suppose for a contradiction that
v = A — B. Then there is z < v such that v, = A and v, £ B. By
the definition of <o, o there is 2/ < u with u, ~g,41 v,. So uy E A and
u, = B, contrary to the fact that u = A — B.

For the fourth, we again reason by contradiction. Suppose A is <s,
invariant. Suppose u = jA and v <9,41 u. Suppose by contradiction
v f= jA. Then there is p € S, such that v, = A. By the definition of <941,
there is ¢ € S, with v, <9, u,. But u, = A, so v, |= A, a contradiction. [

From the lemma we infer:

Theorem 5.1. For every formula A there is n such that A is <,-invariant.
It is enough to take n = 2% N(A), where N(A) is the mazimum number of
nested occurrences of the symbols —,j in A.

Proof. By induction. O

We remark that the bound for n = 2% N(A) given in Theorem 5.1 is not
optimal. For instance, the 4 = 2 x 2 bound for jjz is due to the following
chain of arguments: one begins by observing that x is <g-invariant; then
one infers by Lemma 5.3.4 that jz is <j;-invariant, hence also <s-invariant;
finally, again by Lemma 5.3.4, one could conclude that jjz is <s-invariant
and also <y-invariant. However, it is easily seen that jjx is <j-invariant
(being logically equivalent to jz).

For the purpose of this paper, we do not need to compute optimal bounds
for <,,-invariance, the information that some bound exists being sufficient.
However, better bounds could improve algorithms for computing projective
approximations and complete sets of unifiers. In addition, it is interesting
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to notice that, applying only A,V, 7, an odd invariance bound does not in-
crease. For this reason, we conclude this section by relating invariance to a
syntactically defined ‘complexity’ measure (we make this further investiga-
tion just for the sake of completeness, the result we obtain will not be used
in the sequel).

We define the complexity ¢(A) of a formula A, by induction as follows:

- if Aisan atomor L, T, ¢(A) = 0;
- if Ais BV C, then ¢(A) = max(c(B),c(C));
- if Ais BAC, then ¢(A) = maz(c(B),c(C));

- if Ais B — C, then ¢(A) is the smallest even number strictly greater then
c(B), ¢(C);

- if A is j(B), then ¢(A) is the smallest odd number greater or equal to
c(B).

Lemma 5.4. If ¢(jA) = ¢(A), then there is a formula B whose complexity
is strictly less than c¢(A) and such that jA is logically equivalent to jB.

Proof. We use the fact that
j(CVjD) « j(CV D) (5.1)

is a valid formula (the argument is similar to the argument used in the
proof of Lemma 2.1). We first rewrite jA as A, j(\/, Aix), where the main
connective of the formulae A;; is either j or —. Since ¢(jA) = ¢(A), the A
whose main connective is — have complexities less than c(A): we let A}, be
A, for such A;,. The A;i, that are of the kind j A}, have complexity less or
equal to ¢(A). According to (5.1), we have that j A is logically equivalent to
Ni 7 (Vi Al,). We can repeat the above procedure until possible, i.e. until all
the A}, have complexity less than ¢(A). The procedure terminates because
we can associate with any formula of the kind A; j(\/ Aix) the multiset of
the numbers of the j operators occurring in the subformulae A;j. O

Using the above lemma together with Lemmas 5.2 and 5.3, one can easily
prove by induction the following improvement of Theorem 5.1:

Proposition 5.1. If ¢c(A) < n, then A is <,-invariant. Vice versa, if A is
<n-invariant, then there exists A’ which is logically equivalent to A and is
such that c(A") < n.

Proof. For the vice versa claim, take A’ to be the disjunction of the (finitely
many) characteristic formulae X!, varying u among the models of A. O
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6 On the extension property

A class K of lax models over the same set of atoms X is stable if u € K
implies u, € K for every point p of u. Let (K), be the closure of K under
<p, i.e. is the smallest <,-invariant class extending K.

Lemma 6.1. (see also [12], Lemma 3, page 870) Let K be a stable class of
lax models over a finite set X of atoms. If K has the extension property, so
does (K)opt2 for every n > 0.

Proof. Let u be such that u, € (K)an42 for all nonroot p. We look for a
variant of u belonging to (K)s,+2. By definition, every nonroot p is such
that there is v” € K such that u, <s,42 vP; as K is stable, for every nonroot
p there is w? € K with

Up ~2n+1 wP (6.1)

(wP will be a submodel of v?).

Take the model wg given by the disjoint union of the models w? plus a
root where every atom is false, and the root belongs to S, if and only if
the root of u belongs to S,. A variant w’ of wg belongs to K since K has
the extension property.

Define now a variant u’ of u by putting u/(p) = w’(p). Note that the root
of ' is in Sy if and only if the root of w’ is in S,; also u/(p) C u/(p) = u(p)
for all nonroot p € dom(u') = dom(u) because w'(p) C wP(p) = u(p), as
Uy ~o wr.

It is enough to show that

!/ /

U Sopio W

and by construction, it is sufficient to show
/ /

U ~oan1 W

(in particular, this implies u’ <9,4+1 w’, as required by Definition 4.1, even
case). So we prove that
o ~r, w'

for all K =0,...,2n + 1 by induction on k.
For k = 0, v/ ~g w’ holds by definition of v/. For k > 0 we must show
(this is different from [12]):

(i) if k is even, for all p € dom(u') there is ¢ € dom(w') with u) ~_1 w
/

(ii) if % is even, for all ¢ € dom(w') there is p € dom(u') with u

/.
qQ’

/
7 7
~E—1 Wg;

p
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/.
qQ
/

q

(iii) if & is odd, for all p € Sy there is ¢ € Sy with u;, <p_ 1 w
(iv) if k is odd, for all ¢ € S, there is p € Sy with u;, <j 1 w

The case (i) follows by (6.1) and induction (induction is needed when p is
the root). The case (ii) follows again by induction when g is the root; if ¢ is
not the root, then ¢ belongs to the domain of some w? for some p € dom(u')
different from the root. By (6.1), we have u;; = Up ~optl WG = wg,
g is the root of wP. Then u% ~on w%, so there is p in the domain of u;
with wy ~2,-1 uy,. Since k is even, from k < 2n + 1, we get k& < 2n and
k—1<2n—1, so we are done.

Consider the case (iii). So let k& > 0 be even. Let us pick p € S, and
distinguish two subcases.

(iii.1) Suppose that p is the root of u'. If p is the root, since the root of
w' is in Sy, we have u, = v’ ~,_1 w’ by induction and (iii) is satisfied.

(iii.2) Suppose instead that p is different from the root of u'; then, since
u;, = up ~ap+1 WP by (6.1), there is ¢ € S,y such that u;, <on w:; and we are
done since kK —1<2n+1—1=2n.

In the case (iv), we argue as in (iii.1) if ¢ is the root of S,; if not, then
q belongs to the domain of some w? for some j € dom (') different from the
root. By (6.1), we have u% = Uj ~optl Wi = wé, where § is the root of w?”.
This implies that there is p € S,/ such that u;, <o, wj and we are done since
k—1<2n+1-1=2n.

Summing up, v <o,12 w' and v’ € (K)9,42. Hence (K)g,12 has the
extension property. ]

where

7 End of the proof

As in [12], given two models w,v on the same set of atoms X, we write
U ~oo v if u ~p, v holds for every n > 0.

Lemma 7.1. For rooted finite models u,v on X, we have that u ~o v if
and only if for every p there is q such that u, ~o v4 and viceversa.

It follows that if u(p),v(p) both force the same atoms from X and both
are in Sy, (resp. Sy) or both not in S, (resp. Sy ), then in order to conclude
that u ~« v holds, it is sufficient to show that for every nonroot p there is
q such that u, ~o vq and viceversa.

Proof. The claim is due to the fact that the domains of our models are finite.
Thus u ~ap42 v for every n > 0 implies that for every p € dom(u) there is
q € dom(v) such that u, ~2,4+1 vq (and vice versa); for infinitely many n,
this ¢ must be the same, thus there is ¢ € dom(v) (independent on n) such
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that u, ~2p41 74 (and vice versa). From Up ~2op41 Vg, SINCE ~vop D ~opd,
we also obtain u, ~2, v, for all n. In conclusion, for every p there is ¢ such
that u, ~o v4 and vice versa.

This proves the left-to-right part of the first claim; the right-to-left part
of the first claim is proved by showing that (under the assumptiom that for
every p there is ¢ such that u, ~ v, and vice versa) we have that v <, u
and u <,, v hold for every n, by induction on n. Let us show for instance
v <, u in the odd n > 0 case: pick p € S, and consider ¢ € S, such
that v, ~ uz. Then we have v, <, ug and so there is ¢ € 5, such that
vp <p—1 Ug, as required.

To show the second claim, it is sufficient again to check by induction
on n > 0 that (under the hypotheses of the claim) we have v <, u and

u <, v. OJ
Now the proof of Theorem 1.2 is concluded as follows.

Theorem 7.1. Each unifiable lax formula A(z) admits a finite complete set
of unifiers.

Proof. Let A be <,-invariant with unifier o : F(X) — F(Y). Note that we
can suppose n even and positive, see Theorem 5.1.

As in [12], the theorem is proved once we find a projective formula B
which is <,-invariant such that B Fpr;, A and o is a unifier for B, because
then o would be less general than the mgu of B and the latter would also
be a unifier for A.

Define the set

K = {v model on X| there isuonY s.t. v~y o*(u)}

K is stable by Lemma 7.1 (recall the equalities 0*(u), = 0*(up) coming
from the definition of ¢*). We show that K has the extension property.

Suppose v is a model on X such that v, € K for every nonroot q. Let
u? € K such that 0*(u?) ~o v4. Call u the disjoint sum of the u? plus a
root where all the atoms are false, and the root is in S, if and only if the
root of v is in S,,.

Define a variant v" of v by v'(p) = o*(u)(p). Note that the root of v/ is
in S, if and only if the root of o*(u) is in S, = Sy+(). By Lemma 7.1, we
have v/ ~o 0*(u). So v' € K and K has the extension property.

Since n is even and positive, we can apply Lemma 6.1 to (K),. So (K),
has the extension property and has the form B* where B is <,-invariant
and B is projective by Theorem 3.1. Since B is <,-invariant for a fixed n,
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the search for B ranges over a finite set (recall that our n comes from the
<p-invariance of A).

Moreover ¢ unifies B because for every lax model u on Y, we have
o*(u) € K C (K)y, = B*, which implies u € (¢(B))*) by (2.8) and (3.1): in
other words, o(B) is provable in PLL as (0(B))* contains all models.

It remains to show that B Fpr; A. As o unifies A we have o*(u) = A
for every lax model uon Y, so K C A*. But A is <,, invariant, so (K), C A*
and (K), = B* C A*, that is Btpr1 A. O

We notice that the finite complete set mentioned in Theorem 7.1 can be
effectively computed. In fact, given a formula A, we can easily compute an
even number n such that A is <,-invariant (see Theorem 5.1). Then one
can go through the formulae which are <,-invariant (their representatives
can be syntactically enumerated via Proposition 5.1), select those which are
projective and imply A and finally take their most general unifiers (given by
Theorem 3.1.1). This algorithm is quite heavy (actually non elementary),
however we believe that it can be improved along the lines of [14].

Notice also that for projective formulae P;, P>, we have that the mgu 0p,
of P is less general, as a substitution, than the mgu of P iff Fprr, P — P
(this is easily established, see in any case the argument in [12]). Thus we
can introduce the notion of a projective approximation [12, 13].

Given a formula A, a projective approrimation of A is a finite set of
projective formulae 114 such that:

1. every P € I14 implies A, i.e. Fprp P — A;
2. if P, P, € l4 and Fpr;, P — P», then P, = Ps;

3. for every projective formula () such that Fpr;, Q@ — A, thereis P € 114
such that Fpr;, Q — P.

The content of the proof of Theorem 7.1 is that projective approximations
exist, are computable for every formula A and can be taken to be formed by
formulae having the same even invariance as A;% moreover, every unifier of
A is less general then the mgu of some P € 114. In particular, A is unifiable
iff it has a non empty projective approximation.

Projective approximations can be used to decide admissibility of rules.
An inference rule

from A infer B (7.1)

Tt is immediate to see that two projective approximations are equal up to provable
equivalence in (PLL).
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is admissible iff every unifier of A is also a unifier of B (the rule is derivable
iff l_PLL A— B)

Theorem 7.2. The inference rule (7.1) is admissible iff we have Fpr; P —
B for every P € 11 4.

Proof. Immediate from the above results and definitions (notice also that for
a projective formula P, we have that Fpr;, P — B iff Fprr 0p(B), where
Op is a projective unifier of P). O

As an example, notice that the inference rule
from jx infer x

is admissible (and not derivable), because {x} is a projective approximation
of jx, according to Proposition 3.1.

8 Conclusions

We have studied unification and admissibility for propositional lax logic (in
the parameter-free case) and we showed that this logic essentially behaves
like intuitionistic logic. Altough our approach closely follows [12] and conse-
quently gives a non elementary algorithm for admissibility, we are confident
that an improved calculus similar to that introduced in [14] should produce
a more practical algorithm and that an optimal CONEXPPTIME complexity
bounds should be available by applying the techniques from [19] (see also
the recent paper [21] for a deep picture concerning complexity results of uni-
fication and admissibility in various modal logics, including the extensions
where parameters are included).

Another interesting research direction would consist in designing analytic
calculi for admissibility (in the style of [18]) specific for lax logic.
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