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Abstract

The task of classifying the entanglement properties of a multipartite quantum state poses a
remarkable challenge due to the exponentially increasing number of ways in which quantum
systems can share quantum correlations. Tackling such challenge requires a combination of
sophisticated theoretical and computational techniques. In this paper we combine machine-
learning tools and the theory of quantum entanglement to perform entanglement classification for
multipartite qubit systems in pure states. We use a parameterisation of quantum systems using
artificial neural networks in a restricted Boltzmann machine architecture, known as Neural
Network Quantum States, whose entanglement properties can be deduced via a constrained,
reinforcement learning procedure. In this way, Separable Neural Network States can be used to
build entanglement witnesses for any target state.

1. Introduction

As the size of a quantum system grows, the number of accessible states, and thus the Hilbert space dimension,
scales exponentially. Therefore, the amount of information required for a complete description of a many-
body quantum state quickly grows uncontrollably. For this reason, as exact descriptors of many-body
systems becomes intractable, we should quickly turn to mathematical models for the simulation of quantum
states.

Very recently, machine learning has become a prominent numerical tool for the assessment of problems of
overwhelming complexity, with applications in many areas of physics [ 1-3]. In particular, Artificial Neural
Network (ANN) architectures have been shown to provide excellent representations of quantum systems, due to
their efficiency in dimensional reduction, and sufficient expressive power to provide efficient simulations and
insight in quantum problems with high dimensional Hilbert spaces, inaccessible by many other analytical or
numerical means. A key instance of problems where ANN-based approaches hold the promises for a game-
changing contribution is the discrimination of entangled and separable states, which is a known NP-hard
classification problem in quantum information processing [4].

In this work, we employ the recently introduced neural network quantum states (NNSs) [5], which are ANN
architectures of the restricted Boltzmann Machine (RBM) form, to build an accurate entanglement-separability
classifier that we show to be effective in both witnessing multipartite entangled states and identify the k-
inseparability class of generic multipartite quantum states. Our tool requires minimum adaptation to the form
of possible input states, as we show by addressing various multipartite qubit states, including linear cluster states,
which are crucial resources for measurement-based for quantum computation [6].

The remainder of this paper is organized as follows. In section 2 we introduce the concept of NNS and
their parameterization, while section 3 is dedicated to our strategy for the characterization of pure
multipartite entangled states. In section 4 we present the results of our analysis for a series of benchmark
examples including linear cluster states, while section 5 is for our conclusions and a sketch of our future
directions of investigation.

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. [llustration of a N-qubit NNS based on a RBM of N binary artificial visible neurons, and H binary artificial hidden neurons
used to mediate the correlations within the system. There are NH weighted connections and N + H total neural biases.

2. Neural network states

As mentioned above, NNSs provide a parameterisation for the wavefunction of quantum systems by means
of RBM-like architectures [5], which have recently received considerable attention [7]. RBMs consist of a
single visible and hidden layer of neurons, mediated by weighted inter-layer connections and with no intra-
layer links. The visible layer embodies the physical degrees of freedom of the system, whilst the hidden one is
used to distribute information across the network. The optimization of the latter is the intrinsic purpose of
any ANN.

We consider a generic, pure NNS (depicted in figure 1) with N discrete-valued degrees of freedom, for

.....

.....

are mediated by the variational parameters of the network 2 = {a;, b;, W;}, where €; € R . The wavefunction
of this state is thus given by

Z S,'ﬂH*Z W,'jhjs,‘+z hjbj
j .

VoG, )y =Y e T M
h

The hidden layer of binary neurons h canbe readily traced out, due to the lack of intra-layer connections, thus
providing a representation depending only on €2 and the physical spin-like variables in the visible layer

Un(s) = ezi: e H 2 cosh (Z W,‘jsi + b]] )

J

The actual NNS can thus be written as [ U) = 3. Uo(5)|s) (up to an irrelevant normalisation constant). Note
that this ansatz describes pure states.

3. Pure state entanglement classification

The non-local features of the RBM architecture allows for the assessment of entanglement throughout the
system. The capacity of the NNS to represent multipartite entangled state is based on the amount of network
parameters being exploited [8]. Utilising more hidden neurons in the RBM structure increases the sets of
weights and biases, and thus the expressive power of the network state. However, representing a pure state via
the ansatz in equation (2) requires the exact parameterisation of the N-qubit state in terms of the neural
network set of parameters () = {a;, bj, W;}. Fortunately, NNS are constructed so that they can undergo
variational evolution using a learning-optimisation procedure. Therefore it is straightforward to implement a
learning scheme that variationally evolves a NNS |¥) into a known target state | ) through the maximisation
of state fidelity.

Under the assumption that any entangled state is learnable, it is interesting to investigate the relationship
between the set of parameters entering a NNS and the separability properties of the state. We will see that the use
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of Separable Neural Network States (SNNS) in conjunction with such a fidelity-maximisation learning scheme,
target states can be classified based on their entanglement properties.

3.1. Quantum state representation

In order to provide a systematic way of representing generic N-qubit states inwith a NNS, we use the following
approach: given a blank NNS |\U,) with N visible neurons, H hidden neurons, parametezised by a the set €2, and
given a target state | o), we wish to optimise 2 in a way that |¥) most closely approximates |¢). This can be
achieved using alearning procedure that iteratively updates €2 = {a;, bj, W} so as to achieve the set {2’ for
which the fidelity between the NNS and the target state is maximum Vi € [1, N, Vj € [1, H]. As the target
state is known and fixed throughout the entire optimisation, state fidelity can be computed as a multi-variable
function dependent on the neural network parameters as

[{(Wolo) |?
(TalTo) (ple)

where ¢ denotes the wavefunction of the target state. The quantities in this expression can be computed as
classical expectation values over probability distributions defined by the state at hand, which delivers a readily
computable fidelity between the adaptive RBM state and the target state [9]

= [zg (9/¥o) | ¥ol? ][2; (wé/w*w]
Z§|‘1/Q|2 Z;|<P|2

()
\I/Q g (2] o

where, generally, (A), denotes a statistical expectation value of the quantity A over the probability distribution
|a*. Computation of these expectation values can be achieved via standard Markov Chain Monte Carlo
techniques. This quantity can then be used to implement a learning scheme in which at every iteration of the
optimisation, the network parameters are adjusted to provide a positive fidelity gradient, until convergence at
amaximum (ideally unit) value is achieved. In practice, it is more convenient to consider the negative
logarithm of the overlap as it possesses a more compact form of gradient, converting this maximisation into a
minimisation. Defining O; = 0, In(¥y), the loss function and its gradients for this learning scheme are given
formally as

F(E) = 3

LE) = —In(F)),

00 {L(Y)) = Oy, — ————.
oA LD (il (/Ya)y,

With this at hand, we can now construct a learning scheme using stochastic gradient descent (SGD). Updates to
the ith network parameter of the RBM wavefunction at the kth iteration will be given by

OF 1 = F — 5 D(LO), (©)

where 7is the learning rate of the process. Over enough iterations and a small enough learning rate, convergence
is guaranteed, and the network variational state is optimised to reconstruct the desired target state. The latter

can be generally represented as a sum of Kronecker functions with unique probability amplitudes

o) = Zfil ;6 (s;, sj) where 6 (s;, s;) is equal to unity ifand onlyifs; = s;. However, the use of such Kronecker
functions within the target wavefunction provide a very difficult optimisation problem for the learning
procedure, due to the infinite magnitude of the gradients on the associated free-energy surface. By smoothing
the target wavefunction into a sum over Gaussians, the task becomes much more manageable, while retaining
accuracy if sufficiently small variances are used. The wavefunction for this approximation to the target state thus
becomes ¢ (5)) ~ Zizil aje~ =00/ \where B, = bin(s,) is the binary conversion of the kth N-qubit basis
state, and o2 is the variance of the Gaussian packet.

The ability of a NNS to represent local phase within a target state is dictated by the nature of the ANN
parameters. A NNS with complex weights and biases is able to generate generally complex amplitudes such that
Uo(5) = rel? (r € R, ¢ € [0, 27]) for some input vector of qubit configurations. Thus, NNS with purely real
parameters are only capable of simulating positive wavefunctions, up to a global phase factor.

However, introducing a non-trivial phase structure into a target state increases the complexity of the
optimisation problem. It is instructive to instead utilise an additional layer of hidden neurons, I = (I} =1, M
with an associated set of weights and biases = = {¢;, dy, U} dedicated to learning local phase factors of a target
state [10]. Thus the original hidden layer h and its weights and biases 2 becomes the dedicated amplitude-
learning parameter set (see figure 2). This introduces a new global NNS ansatz, combining the contribution of

3
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Figure 2. Graphical depiction of a NNS describing a system of N qubits, usinga RBM machine of N binary artificial visible neurons, H
binary artificial hidden neurons and M binary artificial hidden neurons that mediate amplitude and phase correlations, respectively.
Thereare N (H + M) weighted connectionsand 2N + H + M total neural biases.

both layers, and reading
[Woz) = > el 2=E0(s)5) @)

with ®=(5) € [0, 1]. In our numerical experiments on target-state reconstruction, the method of natural
gradient descent [11] was found to be more effective than that of SGD, and is thus adopted in what follows.
Updates to the ith parameter of the network at the kth iteration are thus given by

’—‘k+l ':* _ ,}72 z] " (8)

where (S;;) denotes the elements of a covariance matrix and f; the elements of a generalised force vector, both
defined in appendix A. The updates to Z¥ in equation (8) are based on a natural metric of the variational
subspace being explored, which greatly enhances the optimisation process.

From this point forward we omit reference to the phase learning layer unless required, but recognise that its
application is synonymous with the original NNS design.

3.2. SNNS and multipartite entanglement

The ability to effectively enforce properties of separability onto a NNS is extremely useful and integral to the
entanglement classification protocol addressed in this paper. In order to enforce a particular form of separability
into a pure multipartite state, we must first determine the number of ways in which it may possess entanglement.
An N-qubit pure quantum state is said to be K-separable if it is the tensor product of K = 2, .., N parties of the
total system, where N-separability coincides with full separability. Differently, if a state is genuinely multipartite
entangled it cannot be factorised into any tensor product representation (K = 1). The hierarchy is shown in

figure 3.
We define a pure K-separable state |¥) = ®,,1|w5i>, suchthat S = {S;};—1,... k isaset of K disjoint subsets
of the N parties of the total quantum system, i.e. $;N S; = @, Vi, j€ {1, ..., K}.

However, at the level of constructing specific separability sets according to S = {S;};=1,... k> the number of
ways a K-separable state can be invoked is highly degenerate (cf appendix B). Therefore, one can describe a state
as Kj-separable (i.e. a K-subseparability) (with j € [1, Py]where Py is the degeneracy of K partitioning) in order
to specify the exact form of K-separability being addressed.
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_— Genuine Multipartite
Entangled

Figure 3. Geometric representation of the hierarchy of multipartite entangled states for N-partite quantum states. For every partition
of an N party system, there exists a set of states that admit K-separability, U . States that are K separable are also representable as

(K + 1)-separable states, thus Uy C Uk C U (where U is the total set of states). If astate p € U but pZUy, VK € [2, N],then pis
genuinely multipartite entangled [12].

We are thus left to deduce a translation of Kj-separability from its fundamental definition into a set of
relations for the parameter set of the NNS. Given a set of partitions {S,,};,=1, .. x We wish to find the network
conditions such that the NNS with N visible neurons and H hidden neurons can only reproduce states with such
form of separability. This can be achieved by solving the following equation

H K
Vo) =5[] ] s

j=1k=1

H
= eXisiai T 2cosh (X Wysi + b)), 9)
j=1
where 15, is an ansatz for a local’ wavefunction for each collection of entangled qubits. In this way we are requesting
that W (5') takes a desired product form, and the required conditions can thus be derived from of the solutions of

H K H
H H Tﬁgk,j = H ZCOSh[Z VV,‘J‘S,‘ + bj] (10)
j=1k=1 j=1 i

since identical products are taken over the hidden neurons in both cases. The goal of this task is to transform the
right-hand side (rhs) of equation (10), currently capable of describing all forms of separable states, into a form
that aligns with the left-hand side (lhs) and therefore the separability properties of the state.

This separation can be achieved by performing segmentations of the neural network architecture according
to the separability being imposed. Each set of potentially entangled qubits S,,, is fully connected to a dedicated set
of hidden neurons H,, Wics,,jen, = 0), butare fully disconnected to all other hidden neurons
Wies,jgH,, = 0). Thus, there exist K disjoint sets of hidden neurons {,,};—,, ... x corresponding to K disjoint
sets of qubits {S,,}n—1,... k. Performing this segmentation, the rhs of equation (10) becomes

K

H H 2 cosh Z ijsi+ bj . (11)
m=1 jeH,;, i€Sy
In this way, an N-qubit Kj-Separable Neural Network State (SNNS, shown in figure 4) is defined as an RBM with
Nvisible neurons segmented into disjoint sets { S, },,=1,... x and H hidden neurons segmented into disjoint sets
{Hum}m=1,... xk mediated by complex variational parameters (2 = {a;, bj, VV;} with the property

i€ [0, N],
WieSmigH, = 0, V3 j € [0, H], (12)
m € [0, K].

Such separable network architecture generally relies on a larger number of hidden neurons than that ofa
conventional NN, due to the need for dedicated sets of neurons for each separable subsystem of the N-qubit set.
However, it is important to recognise that this increase in hidden neurons does not decrease the efficiency of the
optimisation procedure. This is because the null weights in WW; (disconnections) do not require updates during
the learning protocol, and can thus be ignored. Hence the number of meaningful parameters in W; is given by

K
|QSep| =N+ H+ Z IHm“Sml’ (13)

m=1

which is comparable with the number of parameters |2r..] = N + H + NH ina free learner. This returns the
computational complexity of the learning regime for SNNS to that of a typical quantum state reconstruction.
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Figure 4. Graphical depiction of a N-qubit Kj-SNNS based on a RBM of N binary artificial visible neurons and H binary artificial
hidden neurons that mediate the correlations within the system. Separability under the set of partitions {S,, }»—1, .. x is enforced
by performing segmentations throughout the network. Each set of qubits S,,, is fully connected to a set of hidden neurons H,,

(Huml = 1Sl generally) butis independent from all other hidden neurons. There are 25:1|Hm| | S| non-zero weighted connections,
and N + H neural biases.

3.3. Entanglement classification

With the necessary tools in place, an entanglement classification protocol can be devised. The maximum fidelity
learning regime allows a blank, randomised NNS to undergo variational evolution in order to converge towards
apre-defined pure quantum state, and accurately simulate the target one. Such learning process operates under
the assumption that the target state is simulatable by the the NNS being utilised. If a typical NNS is used then this
is true, as there are no restrictions/rule on the values the network parameters can take. In this way we call generic
NNS free learners of target states.

However, if one uses a K-separable SNNS, this is not necessarily the case. A K-separable SNNS is a neural
network state that possesses network parameters in accordance with equation (12) which can only simulate
states with this form of K-separability. Therefore, if a K-separable SNNS (or restricted learner) is used in
conjunction with the maximum fidelity learning scheme in order to reconstruct a pure state | ), it will only
achieve maximum fidelity if the target state is also K-separable. Otherwise, if the target state is in fact
K’-separable the SNNS will learn to optimise its fidelity to the maximum value that a K-separable state can
achieve with the K’-separable state | ). If K’-separability is a higher order of entanglement than K, then the
optimised fidelity will be a value less that unity. Yet if K’-separability is alower order of entanglement, then it
will be representable as K-separable also.

The classification protocol thus follows: For a pure N-partite quantum state | ) which can be optimally
reconstructed via unrestricted maximal fidelity learning, if a K;-separable SNNS |\I/£j ) (defined by the set of
disjoint sets of qubits {S;};—1,... k) is unable to reconstruct | p) through the same optimisation scheme

|\I}gree> SN |\Ijgr,ee> = |<P>,

optimise
K K
|\IJQ]> Omse |\IjQ}’> = |90I> -/:é |<P>, (14)

then the target state | ) must possess entanglement within at least one of the partitions S;. This approach
provides valid separability criteria for conclusive classification of pure quantum states.

3.4. Witnesses and measures

The construction of a reliable and consistent entanglement classification procedure requires a quantifiable
measure of performance for NNS target state reconstructions. As ANN learning is numerical in nature, it may be
prone to statistical errors and possible flaws due to the size of Hilbert space being explored, and infinite possible
variational updates that can be made. Hence, we resort to statistics to combat this.

Consider a classification protocol which uses a restricted learner [¥§) in order to classify this form of
entanglement for a target state | ), achieving a set of fidelities { Fi-} ,—, .. »s over all the learning operations. In
order to build a level of reliability and confidence, this protocol is performed M times so to calculate an average
fidelity and their variance (F¢) = > | Fi. /M, (AFx)? = (F£) — (Fx)*. Given enough samples M and enough
hidden neurons (and thus free parameters) to ensure sufficient expressive power, we can define a performance set
Fx = [(Fx) — |AFx|, (Fx) + |AFxg|]that describes a window of reliability in the particular, separable learner
being employed. Doing so equivalently for the free learner [U{;°) is also extremely important, providing a
benchmark for the performance of the NNS without entanglement property restrictions. In fact, the learning
performance of any restricted learner can be expressed relative to the behaviour of the free learner, and provides
asystematic method for conclu-sive entanglement classification. In general there are two cases in doing this

6



10P Publishing

NewJ. Phys. 22 (2020) 045001 CHarneyetal

o Fx N Frree = . In this case there is an intersection between the computed fidelity of the restricted learner
and the free learner, meaning that we can classify this state as possessing entanglement properties according to
this form of K-separability.

* Fx N Frree = 9. In this case there is no intersection between the computed fidelity of the restricted learner
and the free learner. In this case the learner has only been able to reconstruct (ideally) the closest state to | @)
that possesses entanglement properties according to |U§).

This approach provides a consistent rule for deciding how a target state is entangled. The application of this
method relies on the accuracy of the learning regime to maintain a low variance throughout its full spectrum

of fidelities, since an arbitrarily large variance will render the result redundant. Nonetheless, this method

of classifying the entanglement properties of target states resembles that of entanglement witnesses. Ifa
K-separable learner achieves an optimal reconstruction fidelity with a performance similar to the free learner,
then the NNS witnesses this state as entangled in this way. Otherwise, it does not witness the state and this binary
classification delivers the contrary result.

A much more detailed classification can be carried out by more closely investigating the resultant fidelities of
all restricted learners according to a set of separabilities, not just those that achieve optimal fidelities with respect
to the free learner. Instead, one can consider the relative fidelity of the K;-separable learner with respect to the
free learner as a measure of how much K;-separability is manifested within the target state. Defining the relative
fidelity

Fy.
Ry = 8 (15)
<F Free>
an approximate, local entanglement measure can be devised in accordance with the general properties of an
entanglement measure [13]
Eg=1-— R§<j. (16)

Note that we now refer to Kj-separability, such that this is a sub-genre of the more general K-separability.
Classification does not necessarily require this distinction, but measurement of Kj-separability is not a complete
reflection of K-separability, as there exist Px — 1 other contributions to this measure. Thus, a complete measure
of K-separability requires an analysis of all such contributions.

The quantifier in equation (16) is inspired from the well known Geometric Measure of Entanglement (GME)
[14]. The quantity E; strives at quantifying the lack of representability according to Kj-separability. In an ideal

. o Ky .

scenario, all optimisation procedures are perfectly convergent such that for a target state |¢), any SNNS [¥ /) will

reconstruct the closest K-separable state to the target state | ', ). One can define the overlap between such states
)

as the critical fidelity

/
g, = max [l a7)
Kj-sep /
as it defines maximum fidelity between a target state and the set of Kj-separable states. In such ideal case, the
relative fidelity and local entanglement measure become

(el )|
Rig = === = (el ) (18)
(P 1#k,) (#le)

so that R . recovers the critical fidelity and £, the GME for multipartite, pure state entanglement.

3.5. Efficiency of entanglement classification via NNS

The effectiveness and efficiency of our entanglement classification method stems from the reduction of the
problem from entanglement characterisation to state reconstruction. The question of efficiency of classification
in this setting thus simplifies to a question of learnability of a target state via the NNS ansatz. Recent studies into
the learnability scaling of positive, real valued, pure quantum states via NNS (in the context of tomographic
reconstruction of ground states) provide a systematic evaluation of the scaling of computational resources in the
RBM setting [15]. Whilst our learning procedure is contextually simpler (as the NNS are trained on complete
phase/amplitude knowledge, not projective measurements), these scaling principles are still appropriate, and
affirm NNS state reconstruction techniques as highly efficient and powerful models. Furthermore, our approach
to classification of states with non-trivial phase structure using co-evolving phase and amplitude RBMs requires
only alinear increase in the number of network parameters. Hence, complex-valued target states do not pose a
great threat to classification efficiency. Classifications of up to nine-qubit systems can be performed on a

7



IOP Publishing NewJ. Phys. 22 (2020) 045001 CHarneyetal

(b)

j=4
=}
1

F(Q) - Fidelity
=}
i

07 7 074

T T T T T T
0 50 100 150 200 0 50 100 150 200
Steps Steps

Figure 5. Classification of two-qubit quantum states. Panel (a) reports the learning paths of a free learner [¥;°) (blue) and a separable

learner (orange) attempting to reconstruct a two qubit Bell state [T+) = (|01) + [10))/~/2 such that the separable learner [¥H?) is
unable to acquire a maximal fidelity, whilst the free learner easily achieves unit fidelity. Instead, |‘IJ}2|2> converges to the maximum
fidelity that the set of separable states can acquire with [¥+), which is 1/+/2 . Panel (b) illustrates the behaviour of both the entangled
learner [Uf;**) and the separable learner [W}?) converging to unit fidelity while reconstructing a separable two qubit state

o) = 141102

standard laptop, and much larger systems are readily investigated with greater computational resources, as seen
in[10, 15].

4. Results

The following results and simulations are used to illustrate the effectiveness of the entanglement classification
protocol. We begin with the simplest classification problem of bipartite separability and proceed to more
complex states of up to six qubits. Such sizes allow for the investigation of non-trivial multipartite entangled
systems without the complications entailed by large many-body systems. Each classification is characterised by a
‘learning path’ which depicts the evolution of the fidelity of the free learner and a separable learner throughout
the state reconstruction procedure. Learning paths which follow a convergent trajectory towards unit fidelity
indicate a correct classification of the state with the separability properties of the learner in question. Paths which
converge with sub-optimal fidelities, or which do not converge at all, indicate a witnessing of entanglement with
respect to the appropriate form of separability.

We start addressing the two-qubit case, a situation for which entanglement classification is a binary decision
problem as a pure two-qubit state is simply either entangled or fully separable. Figure 5 illustrates the use of
SNNS for classification purposes when the target state is either the Bell state [¥+) = (|01);, + |10)5)/~/2 or
the separable state | ) = |+);|0), with o,|+) = |+) and o, the x Pauli matrix. The learning paths of the SNNS
performs the classification successfully, whilst the free, entangled learner learns both states with ease. Note that
SNNS when targeting the Bell state achieves a fidelity of |, ~ 1/+/2 which aligns with the maximum overlap
between any Bell state and the set of all separable bipartite states.

Increasing the target system size to three qubits immediately increases the complexity of the classification
problem, such that a state is tripartite entangled, biseparable (which is three-fold degenerate) or fully separable.
The degeneracy of biseparability is due to the arrangement of entanglement between parties, which the
appropriate SNNS are able to distinguish. Figure 6 displays the ability of SNNS to both detect K-separability and
identify the particular permutation of entangled parties (Kj-separability). A similar investigation is illustrated for
the four/six qubit cases in figure 7, which show the power of the classification protocol that is capable of
providing complete entanglement descriptions of pure target states.

Furthermore GMEs can be created to compliment the classification process and provide better insight into
the entanglement properties of a target state. The example target states in figures 5(a) and (b) convey the extreme
cases of maximal entanglement and complete separability respectively, however a bipartite state can contain any
amount of entanglement such that its classification is less obvious. In this way, figure 8(a) depicts the relative
fidelity and GME of a variable Bell state |0 (p)) = /p|00) + /1 — p|11) constructed by monitoring the
performance of the separable learner with | (p)) for many values of p in the interval p € [0, 1]. Similarly
considering a variable, three qubit state [¢(p)) = /p|W) + /1 — p|W),itis by no means trivial to ask
whether this state is separable for any value of p. Constructing an approximate GME for any form of
entanglement, as seen in figure 8(b), shows that | (p)) possesses a degree of entanglement for all values of
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Figure 6. Examples of the ability of SNNS to distinguish between Kj-separable learners. Here, three tri-separable learners of the forms
|12 (green), |W512) (orange) and [UH*) (blue) are employed to distinguish between the exact form of separability of target state. In
each case, only the learner with the correct form of tri-separability can conclusively classify the target state through convergent
learning. In panel (a) we have considered |¢) = |97 )12 [+)3, in panel (b) [p) = [®T )13} |4)2, while panel () is for
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Figure 7. Entanglement witnessing via NNS. Panel (a) depicts a four-qubit ‘double Bell State’, i.e. a product state of two Bell states in
the {1, 2}-versus-{3, 4} bipartition. We show results gathered by employing learners prepared in the states [Utr®) (orange curve),
|23 (blue curve), [T21°14) (green curve), [WH?3*) (purple curve), [THP!) (red curve). The NNS with in the appropriate separable
form (blue curve) achieves maximal fidelity throughout the optimisation process, whilst the triseparable and fully separable learners
achieve sub-optimal convergences. Panel (b) depicts a similar situation but with a biseparable state in the splitting {1, 2, 3 }-versus-{4}
containing a tripartite entangled |GHZ) state, with a set of learners in the separable forms |¥{7>!*) (blue), | ¥{1**) (orange), [¥{/21**)
(green), [¥7!) (red). The NNS in the appropriate separable form (blue line) achieves maximal fidelity throughout the optimisation
process, whilst the triseparable learners achieve suboptimal convergences. Panel (c) reports a similar classification process for a
random six-qubit state that is biseparable in the {1, 2, 3 }-versus-{4, 5, 6} bipartition using |\I!5r“) (blue), |\II§223|456) (orange), |@g3‘2456>
(red), |\I/})|2‘3|4|5|6> (green). Panel (a)is for |¢) = |®F )12y [P ) 2,31, panel (b) for |p) = |GHZ)1 3} |+ )2 and panel (c) was a

{1, 2,3} ® {4, 5, 6} biseparable 6 qubit state.
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Figure 8. Panel (a) shows the approximate GME plotted for the two-qubsit state [ (p)) = /p[00) + /1 — p[11). The orange curve
plots the fully separable Relative Fidelity R|,, whilst the blue curve plots the GME &, |,. Panel (b) is for the approximate geometric
measure of entanglement &) |,|; (orange) and relative fidelity ;)3 (blue) for the state | (p)) as a function of p. Panel (¢) depicts a
classification protocol aimed at the target state | (p = 1/2)) by employing the learners [¥£1°) (blue), [#121%) (orange), |vs 12) (green),
vy ! " (red) and |\Il§)|2 ' %) (purple), which deduce that the state is still multipartite entangled but to a lesser degree. Panel (b) is for & 1213

for [p(p)) = p|W) + /1 — p|W), while panel (c) for the choicep = 1/2.
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Figure 9. Entanglement classification for a four-qubit cluster state | C;) built on a one-dimensional lattice, using an SNNS with a
double hidden layer architecture, separating phase and amplitude learning. The free learner [V %) (blue) reconstructs | Cy) to the
maximal degree over a sufficient number of learning iterations, whilst the biseparable learner |\I’§72 134) (orange) reaches a maximal

value of fidelity of 1/~/2.

p € [0, 1], and is never fully separable. Similar investigations could be performed to measure biseparability
throughout the interval and this concept may extend to any form of separability of interest in an N qubit state
(provided stable, convergent learning).

Finally, on the investigation of entangled states with non-trivial phase structures, one can utilise SNNS with
network architectures according to section 3, with the applied separability conditions applied, and a natural
gradient descent optimisation protocol. Particularly interesting states that fall into this category are that of
cluster states, which are of great significance to quantum computing [6, 16]. Given a d-dimensional square lattice
of vertices V.= {1, ..., N}, with connections between sites that define a neighbourhood, A/ connecting
vertices (i, j), a cluster state is given by

ICan) = [T U QI+ (19)

(peN kev

where U®) = diag(1, 1, 1, —1)isa controlled-phase gate between qubits on sites (i, /). The four-qubit cluster
state built on a one-dimensional lattice |C,) = (|0000) + |0011) + |1100) — |1111));,34/2 can be recast into
the form [Cy) = [00)12) |97 )34y + [11)12) [P )34y with |®7) = (I ® 0,)|PT). Thelocal-phase difference
between |®1) and |PT) removes the {1, 2} ® {3, 4} biseparability seen in the double Bell state |PT) ® |PT),
investigated in figure 7 and produces the behaviour witnessed via SNNS in figure 9.

5. Conclusions and further look

SNNSs offer a powerful and versatile tool in order to attack the problem of entanglement classification. With a
sufficiently powerful learning mechanism, this classification method could be far reaching and proven powerful
for larger, many body quantum systems.

Nonetheless, the problem of entanglement classification will remain a considerable roadblock. For systems
oflarge N, the number of ways in which a state may be entangled is overwhelmingly large, and thus demanding a
complete, global search of separability properties by using all possible K-separable learners is unfeasible. The
need for some a priori knowledge about the state, or about the form of separability one wishes to classify (such as
full separability, or genuine N-partite entanglement) becomes essential, and greatly narrows the search. In this
way, classification of larger systems becomes much more realistic using the SNNS method.

There are many further extensions and investigations worth pursuing following the introduction of SNNSs
to classify entanglement. Most importantly is the extension from pure states to mixed states in a manner that
maintains the power and efficiency that motivates this approach. Efficient ANN parameterisations of mixed
states have been developed through the addition of a hidden ‘mixing’ layer to the RBM architecture to create a
Neural Density Matrix [17, 18]. Research into encoding separability properties into these machine architectures
is worth exploring. An initial starting point may be aimed at generalising network conditions that invoke
Kj-separability into K-separability, which could improve both pure and mixed state simulation abilities. A
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further, exciting, extension of this research may be to introduce generative neural network models that can
numerically simulate higher dimensional quantum systems i.e qudits, and even infinite dimensional systems by
constructing models within a finite-dimensional phase space. Reworking the neural network framework in a
way that allows for this versatility, whilst maintaining the ability to manufacture properties such as separability
and potentially Gaussianity, could provide a worthy tool that has far reaching applications in quantum
communications, computing and more.

With growing interest being accrued at the interface of quantum information and machine learning [10, 19],
the integration of entanglement classification protocols offers an exciting avenue of exploration.
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Appendix A. Natural gradient descent for quantum state reconstruction

Here we derive the quantum state reconstruction scheme using the natural gradient [ 11], utilising an NNS with
two parallel hidden layers as described in section (II.B). As before we ask the question: how can we optimise the
parameters of the NNS, v = {2, =} in order to minimise the ‘distance’ (maximise the fidelity) between the NNS
and the target state? That is

) = 102©) = 19 (), (AD
a={Q,Z} — o ={0,Z}, (A2)
optimise

where aadmits the complete set of parameters for both amplitude and phase learning. Consider an
infinitesimally small perturbation dcay, performed on the kth parameter of the neural network. A linear
approximation to the state is given by,

91%,)

|\Ija+§ak> = |\Da> + Z (50£k—

= W) + ) 6axOx¥h), (A3)
k

where the Oy are defined as diagonal matrices whose non-zero elements the partial derivative of the natural
logarithm of the NNS vector with respect to the kth network parameter [18], i.e.,
Oln(1%) 1 9%)

O = = .
oy [W.) Oay

(A4)

In order to reconstruct the target quantum state we wish to force the parameters of the network « to evolve such
that the state |¥,,) is equivalent to that of the target state | ). Therefore, we wish to minimise the ‘distance’
between the target state and the NNS at every variational perturbation of the parameters. One way of measuring
this distance is using the Schatten-2 norm,

6= [[1%) + 3 8w Ou%) — 1)3- (A5)
k
Through the minimisation of this functional, it is possible to obtain an expression for the perturbation dcy to the

kth parameter of the network that will optimise the NNS towards the target state. In fact, minimisation of § in
return of dcy; provides a metric,

ay = ay + 1 Say, (A6)

where nis the learning rate. Using this iterative update rule to the network, with a small enough 77and enough
variational updates, convergence towards the target state should be guaranteed. Defining the operator F,

(%) — Il

A7
[0, |2 (A7
one reveals the system of equations for which the minimisation of equation (A5) is achieved are
> Subay = f, (A8)
1
Skt = (ValOf Ol W) + (Wl O Ol T,), (A9)
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fi = (W FTOW,) + (L,|Of FIL,). (A10)

Here, Sy denote the elements of a covariance matrix S, and f; the elements of a generalised force vector f By
constructing this set of equations, the method of natural gradient descent for the this optimisation scheme can
be achieved by defining the metric oy which is natural to the variational subspace being explored

Sar =7 Sk fio (A1)
k
and an update to the variational parameters at every iteration in the optimisation is thence,

o=+, Sk f (A12)
P

where S ! denotes the Moore—Penrose pseudo inverse, since this matrix is generally non-invertible. The
quantum expectation values throughout Sy;and f; can be efficiently computed as statistical expectation values
(+++)q according to the probability distribution of the NNS. Rewriting the covariance matrix and generalised
forces in this way,

St < Re (OFO01)o, f; ox Re(OFF),, (A13)

they can be incorporated into an iterative numerical method to compute the update rule at every iteration.

Appendix B. Degeneracy of specific separabilities for multipartite states

Consider an N-partite state |1)) whose entanglement properties are described by the set of K disjoint subsets
S = {Sj}i=1,... k which defines the subsets that contain the indices of potentially entangled qubits (arbitrarily
qubits, could be qudits) in the state. A state is deemed S-separable if it is described by this set of exact partitions.
This is the most detailed level of entanglement classification we can achieve.

Now let M be the set that defines the size of each of these entangled subsets, i.e M for S is given by
{m; = |Sjl}j=1,... k. Astate is deemed M-separable if it is described by entangled sub-collections of these
dimensions. Given an arbitrary form of K-separability we wish to deduce how many forms of S-separability are
attributed to it.

Whilst S-separability describes a specific separable order of entangled qubits, we can define M-separability
as a specific separable order of 1;-dimension entangled qubit sets, which is therefore less degenerate than S
(many ordered sets S may correspond to a single M). By finding the number of ways that a state may be
M-separable, we can then use the degeneracy of M with respect to the creation of K partitions to find total
degeneracy.

When constructing an entanglement set (S, M), as each S] is filled with indices of entangled qubits, the
possible choices of qubits for subsequent subsets diminishes (since they are all disjoint). Hence for m; € M, the
number of possible permutations are given by the multinomial coefficient,

_KN—Zi-ZM'_ N . N
P= H( mlj = (ml, mz,...,mK)_ (M) (Bl)

i=1
However, counting in this manner disregards cyclic invariance of separabilities i.e shuffling subsets in S does
not alter the separability of the state. Hence we must further reduce P by removing these duplicates. Such
duplicates will only occur whenever the total set contains subsets of equivalent size, m; = m; for some
i=je {1, ..., K}.Wedefine the function g(I) = Zle 6 (m;, 1) as that which counts the degeneracy of
subsets of size [, where § is the Kronecker delta function.

We can then find the number of ways that a M-separable state is S-separable,

Py = [ ﬁ ¢! ]1(}\\2) (B2)

I=1

where 7 = max(M). We are now left to find how many ways a K-separable state can be constructed using

M -separability. This is equivalent to searching for the number of solutions to "% , m; = N, for m; € M and
fixed K. That is, how many ways can constructaset {1, ..., mg} such that these elements sum to N. The
solution to this is given by the partition function of exactly K parts P(n, K) [20], which has the generating
function,

XK

I, (1 = x)

and can thus use to determine the degeneracy of M-separability with respect to K-separability. Hence for an
N-partite state, the number of ways in which we can arrange the N-qubits into K entangled collections is
given by,

> P(n, K)xK = (B3)
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PIN,K[ i, -1 N
Gk= ) [Hg(l)!] (M) (B4)

n=1 =1

Therefore the total number of unique forms of separability (discounting genuine, complete multipartite
entanglement)is G = Zg: , Gk. This result indeed agrees with the more concise answer to the total number of
S-separabilities attributed to an N-partite quantum system. This is given by the Bell numbers which can be
calculated using Dobinski’s formula [21],
0 LN
By = 1 k— (B5)
ei—o k!

It can be seen that the first few Bell numbers do indeed generate the number of S-separabilities for N elements,
Bi=1, B=2, B; =5, By =15, Bs = 52,....

The Bell numbers count all forms entanglement for an N-partite system with respect to S-separability. However
they do not detail the degeneracy of the more specific K-separability, which is instead given by equation (B4).
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