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Abstract
The task of classifying the entanglement properties of amultipartite quantum state poses a
remarkable challenge due to the exponentially increasing number of ways in which quantum
systems can share quantum correlations. Tackling such challenge requires a combination of
sophisticated theoretical and computational techniques. In this paper we combinemachine-
learning tools and the theory of quantum entanglement to perform entanglement classification for
multipartite qubit systems in pure states.We use a parameterisation of quantum systems using
artificial neural networks in a restricted Boltzmannmachine architecture, known asNeural
NetworkQuantum States, whose entanglement properties can be deduced via a constrained,
reinforcement learning procedure. In this way, SeparableNeural Network States can be used to
build entanglement witnesses for any target state.

1. Introduction

As the size of a quantum system grows, the number of accessible states, and thus theHilbert space dimension,
scales exponentially. Therefore, the amount of information required for a complete description of amany-
body quantum state quickly grows uncontrollably. For this reason, as exact descriptors ofmany-body
systems becomes intractable, we should quickly turn tomathematicalmodels for the simulation of quantum
states.

Very recently,machine learning has become a prominent numerical tool for the assessment of problems of
overwhelming complexity, with applications inmany areas of physics [1–3]. In particular,Artificial Neural
Network (ANN) architectures have been shown to provide excellent representations of quantum systems, due to
their efficiency in dimensional reduction, and sufficient expressive power to provide efficient simulations and
insight in quantumproblemswith high dimensionalHilbert spaces, inaccessible bymany other analytical or
numericalmeans. A key instance of problemswhere ANN-based approaches hold the promises for a game-
changing contribution is the discrimination of entangled and separable states, which is a knownNP-hard
classification problem in quantum information processing [4].

In this work, we employ the recently introduced neural network quantum states (NNSs) [5], which are ANN
architectures of the restricted BoltzmannMachine (RBM) form, to build an accurate entanglement-separability
classifier thatwe show to be effective in bothwitnessingmultipartite entangled states and identify the k-
inseparability class of genericmultipartite quantum states. Our tool requiresminimumadaptation to the form
of possible input states, as we show by addressing variousmultipartite qubit states, including linear cluster states,
which are crucial resources formeasurement-based for quantum computation [6].

The remainder of this paper is organized as follows. In section 2we introduce the concept of NNS and
their parameterization, while section 3 is dedicated to our strategy for the characterization of pure
multipartite entangled states. In section 4we present the results of our analysis for a series of benchmark
examples including linear cluster states, while section 5 is for our conclusions and a sketch of our future
directions of investigation.
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2.Neural network states

Asmentioned above, NNSs provide a parameterisation for the wavefunction of quantum systems bymeans
of RBM-like architectures [5], which have recently received considerable attention [7]. RBMs consist of a
single visible and hidden layer of neurons,mediated by weighted inter-layer connections andwith no intra-
layer links. The visible layer embodies the physical degrees of freedomof the system, whilst the hidden one is
used to distribute information across the network. The optimization of the latter is the intrinsic purpose of
any ANN.

We consider a generic, pureNNS (depicted infigure 1)withN discrete-valued degrees of freedom, for
example a systemofN qubits = = ¼s si i N1, ,{ }

, as a visible layer of binary-valued neurons, fully connected to a

hidden layer ofH hidden binary-valued neurons = = ¼h hj j H1, ,{ }


, where = -s h, 1, 1i j { }. These connections
aremediated by the variational parameters of the network W = a b, ,i j ij{ }, where W Î i . Thewavefunction
of this state is thus given by

åY =
å å å

W
+ +

s h, e . 1
h

s a h s h b
i

i i
ij

ij j i
j

j j

( ) ( ) 


The hidden layer of binary neurons h

can be readily traced out, due to the lack of intra-layer connections, thus

providing a representation depending only onΩ and the physical spin-like variables in the visible layer

 åY = +
å

W s s be 2 cosh . 2
s a

j i
ij i ji

i i
⎛
⎝⎜

⎞
⎠⎟( ) ( )

The actualNNS can thus bewritten as Y ñ = å Y ñW W s ss∣ ( )∣ 
 (up to an irrelevant normalisation constant). Note

that this ansatz describes pure states.

3. Pure state entanglement classification

The non-local features of the RBMarchitecture allows for the assessment of entanglement throughout the
system. The capacity of theNNS to representmultipartite entangled state is based on the amount of network
parameters being exploited [8]. Utilisingmore hidden neurons in the RBM structure increases the sets of
weights and biases, and thus the expressive power of the network state. However, representing a pure state via
the ansatz in equation (2) requires the exact parameterisation of theN-qubit state in terms of the neural
network set of parameters W = a b, ,i j ij{ }. Fortunately, NNS are constructed so that they can undergo
variational evolution using a learning-optimisation procedure. Therefore it is straightforward to implement a
learning scheme that variationally evolves aNNS Y ñW∣ into a known target state jñ∣ through themaximisation
of state fidelity.

Under the assumption that any entangled state is learnable, it is interesting to investigate the relationship
between the set of parameters entering aNNS and the separability properties of the state.Wewill see that the use

Figure 1. Illustration of aN-qubit NNSbased on aRBMofN binary artificial visible neurons, andH binary artificial hidden neurons
used tomediate the correlations within the system. There are NH weighted connections andN+H total neural biases.
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of SeparableNeural Network States (SNNS) in conjunctionwith such afidelity-maximisation learning scheme,
target states can be classified based on their entanglement properties.

3.1.Quantum state representation
In order to provide a systematic way of representing genericN-qubit states inwith aNNS, we use the following
approach: given a blankNNS Y ñW∣ withN visible neurons,H hidden neurons, parametezised by a the setΩ, and
given a target state jñ∣ , wewish to optimiseΩ in away that Y ñW∣ most closely approximates jñ∣ . This can be
achieved using a learning procedure that iteratively updates W = a b, ,i j ij{ } so as to achieve the set W¢ for
which thefidelity between theNNS and the target state ismaximum " Î " Îi N j H1, , 1,[ ] [ ]. As the target
state is known and fixed throughout the entire optimisation, state fidelity can be computed as amulti-variable
function dependent on the neural network parameters as

j
j j

W =
áY ñ

áY Y ñá ñ
W

W W
 , 3

2

( ) ∣ ∣ ∣
∣ ∣

( )

wherej denotes thewavefunction of the target state. The quantities in this expression can be computed as
classical expectation values over probability distributions defined by the state at hand, which delivers a readily
computablefidelity between the adaptive RBM state and the target state [9]

j j j
j

j
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where, generally, á ñaA denotes a statistical expectation value of the quantityA over the probability distribution
a 2∣ ∣ . Computation of these expectation values can be achieved via standardMarkovChainMonte Carlo
techniques. This quantity can then be used to implement a learning scheme inwhich at every iteration of the
optimisation, the network parameters are adjusted to provide a positive fidelity gradient, until convergence at
amaximum (ideally unit) value is achieved. In practice, it ismore convenient to consider the negative
logarithm of the overlap as it possesses amore compact form of gradient, converting thismaximisation into a
minimisation. Defining = ¶ YW W lni i

( ), the loss function and its gradients for this learning scheme are given
formally as

j
j

W = - W
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With this at hand, we can now construct a learning scheme using stochastic gradient descent (SGD). Updates to
the ith network parameter of the RBMwavefunction at the kth iterationwill be given by

hW = W - ¶ á W ñ+
W  , 6i

k
i
k1

i
k ( ) ( )

where η is the learning rate of the process. Over enough iterations and a small enough learning rate, convergence
is guaranteed, and the network variational state is optimised to reconstruct the desired target state. The latter
can be generally represented as a sumofKronecker functions with unique probability amplitudes

j a d= å =s s s,j i i i j1
2N

( ) ( )
where d s s,i j( ) is equal to unity if and only if si=sj. However, the use of suchKronecker

functionswithin the target wavefunction provide a very difficult optimisation problem for the learning
procedure, due to the infinitemagnitude of the gradients on the associated free-energy surface. By smoothing
the target wavefunction into a sumoverGaussians, the task becomesmuchmoremanageable, while retaining
accuracy if sufficiently small variances are used. Thewavefunction for this approximation to the target state thus

becomesj a» å b b s
=

- -s ej i i1
2N

i j
2 2( ) ( )

, where b = sbink k( ) is the binary conversion of the kthN-qubit basis
state, and s2 is the variance of theGaussian packet.

The ability of aNNS to represent local phasewithin a target state is dictated by the nature of the ANN
parameters. ANNSwith complexweights and biases is able to generate generally complex amplitudes such that
Y = j
W s rei( ) ( j pÎ Îr , 0, 2[ ]) for some input vector of qubit configurations. Thus, NNSwith purely real

parameters are only capable of simulating positive wavefunctions, up to a global phase factor.
However, introducing a non-trivial phase structure into a target state increases the complexity of the

optimisation problem. It is instructive to instead utilise an additional layer of hidden neurons, = = ¼l l k M1, ,{ }


with an associated set of weights and biases X = c d, ,i k ik{ }dedicated to learning local phase factors of a target
state [10]. Thus the original hidden layer h


and its weights and biasesΩ becomes the dedicated amplitude-

learning parameter set (see figure 2). This introduces a new globalNNS ansatz, combining the contribution of
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both layers, and reading

åY ñ = Y ñp
W X

F
WX s se 7

s

s
,

2i∣ ( )∣ ( )( )  




with F ÎX s 0, 1( ) [ ]
. In our numerical experiments on target-state reconstruction, themethod of natural

gradient descent [11]was found to bemore effective than that of SGD, and is thus adopted inwhat follows.
Updates to the ith parameter of the network at the kth iteration are thus given by

åhX = X - á ñ+ -S f , 8i
k

i
k

j
ij j

1 1 ( )

where á ñSij denotes the elements of a covariancematrix and fj the elements of a generalised force vector, both

defined in appendix A. The updates to Xi
k in equation (8) are based on a naturalmetric of the variational

subspace being explored, which greatly enhances the optimisation process.
From this point forwardwe omit reference to the phase learning layer unless required, but recognise that its

application is synonymouswith the originalNNS design.

3.2. SNNS andmultipartite entanglement
The ability to effectively enforce properties of separability onto aNNS is extremely useful and integral to the
entanglement classification protocol addressed in this paper. In order to enforce a particular formof separability
into a puremultipartite state, wemustfirst determine the number of ways inwhich itmay possess entanglement.
AnN-qubit pure quantum state is said to beK-separable if it is the tensor product of =K N2, .., parties of the
total system,whereN-separability coincides with full separability. Differently, if a state is genuinelymultipartite
entangled it cannot be factorised into any tensor product representation (K= 1). The hierarchy is shown in
figure 3.

We define a pureK-separable state yYñ = ñ= i
K

1 i
∣ ⨂ ∣ , such that = = ¼ i i K1, ,{ } is a set ofK disjoint subsets

of theN parties of the total quantum system, i.e. Ç = Æ " Î ¼  i j K, , 1, ,i j { }.
However, at the level of constructing specific separability sets according to = = ¼ i i K1, ,{ } , the number of

ways aK-separable state can be invoked is highly degenerate (cf appendix B). Therefore, one can describe a state
asKj-separable (i.e. aK-subseparability) (with Îj P1, K[ ]where PK is the degeneracy ofK partitioning) in order
to specify the exact formofK-separability being addressed.

Figure 2.Graphical depiction of aNNSdescribing a systemofN qubits, using aRBMmachine ofN binary artificial visible neurons,H
binary artificial hidden neurons andM binary artificial hidden neurons thatmediate amplitude and phase correlations, respectively.
There are +N H M( ) weighted connections and + +N H M2 total neural biases.
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Weare thus left to deduce a translation ofKj-separability from its fundamental definition into a set of
relations for the parameter set of theNNS.Given a set of partitions = ¼m m K1, ,{ } wewish tofind the network
conditions such that theNNSwithN visible neurons andH hidden neurons can only reproduce states with such
formof separability. This can be achieved by solving the following equation

 



yY =

= å +

W
å

= =

å

=



s

s b

e

e 2 cosh , 9

s a

j

H

k

K

j

s a

j

H

i ij i j

1 1
,

1

i i i
k

i i i ( )

( )

( )



where yk
is an ansatz for a ‘local’wavefunction for each collection of entangled qubits. In thiswaywe are requesting

that YW s( ) takes a desired product form, and the required conditions can thus be derived fromof the solutions of

   åy = +
= = =

 s b2 cosh 10
j

H

k

K

j
j

H

i
ij i j

1 1
,

1
k

⎛
⎝⎜

⎞
⎠⎟ ( )

since identical products are taken over the hidden neurons in both cases. The goal of this task is to transform the
right-hand side (rhs) of equation (10), currently capable of describing all forms of separable states, into a form
that alignswith the left-hand side (lhs) and therefore the separability properties of the state.

This separation can be achieved by performing segmentations of the neural network architecture according
to the separability being imposed. Each set of potentially entangled qubits m is fully connected to a dedicated set
of hidden neuronsm ( ¹Î Î   0i j,m m

), but are fully disconnected to all other hidden neurons
( =Î Î   0i j,m m

). Thus, there existK disjoint sets of hidden neurons = ¼m i K1, ,{ } corresponding toK disjoint
sets of qubits = ¼m m K1, ,{ } . Performing this segmentation, the rhs of equation (10) becomes

  å +
= Î Î


 

s b2 cosh . 11
m

K

j i
mj i j

1 m m

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

In this way, anN-qubitKj-SeparableNeural Network State (SNNS, shown infigure 4) is defined as anRBMwith
N visible neurons segmented into disjoint sets = ¼m m K1, ,{ } andH hidden neurons segmented into disjoint sets

= ¼m m K1, ,{ } mediated by complex variational parameters W = a b, ,i j ij{ }with the property

= "
Î
Î
Î

Î Î  

i N
j H

m K

0,
0, ,
0, ,

0, .

12i j,m m

⎧
⎨⎪
⎩⎪

[ ]
[ ]
[ ]

( )

Such separable network architecture generally relies on a larger number of hidden neurons than that of a
conventional NNS, due to the need for dedicated sets of neurons for each separable subsystemof theN-qubit set.
However, it is important to recognise that this increase in hidden neurons does not decrease the efficiency of the
optimisation procedure. This is because the null weights inij (disconnections) do not require updates during
the learning protocol, and can thus be ignored.Hence the number ofmeaningful parameters inij is given by

åW = + +
=

 N H , 13
m

K

m mSep
1

∣ ∣ ∣ ∣∣ ∣ ( )

which is comparable with the number of parameters W = + +N H NHFree∣ ∣ in a free learner. This returns the
computational complexity of the learning regime for SNNS to that of a typical quantum state reconstruction.

Figure 3.Geometric representation of the hierarchy ofmultipartite entangled states forN-partite quantum states. For every partition
of anN party system, there exists a set of states that admitK-separability, K . States that areK separable are also representable as

+K 1( )-separable states, thus Ì Í+  K K 1 (where  is the total set of states). If a state r Î  but rÎ " Î K N, 2,K [ ], then ρ is
genuinelymultipartite entangled [12].
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3.3. Entanglement classification
With the necessary tools in place, an entanglement classification protocol can be devised. Themaximumfidelity
learning regime allows a blank, randomisedNNS to undergo variational evolution in order to converge towards
a pre-defined pure quantum state, and accurately simulate the target one. Such learning process operates under
the assumption that the target state is simulatable by the theNNS being utilised. If a typicalNNS is used then this
is true, as there are no restrictions/rule on the values the network parameters can take. In this waywe call generic
NNS free learners of target states.

However, if one uses aK-separable SNNS, this is not necessarily the case. AK-separable SNNS is a neural
network state that possesses network parameters in accordance with equation (12)which can only simulate
states with this formofK-separability. Therefore, if aK-separable SNNS (or restricted learner) is used in
conjunctionwith themaximum fidelity learning scheme in order to reconstruct a pure state jñ∣ , it will only
achievemaximum fidelity if the target state is alsoK-separable. Otherwise, if the target state is in fact
¢K -separable the SNNSwill learn to optimise its fidelity to themaximumvalue that aK-separable state can

achievewith the ¢K -separable state jñ∣ . If ¢K -separability is a higher order of entanglement thanK, then the
optimisedfidelity will be a value less that unity. Yet if ¢K -separability is a lower order of entanglement, then it
will be representable asK-separable also.

The classification protocol thus follows: For a pureN-partite quantum state jñ∣ which can be optimally

reconstructed via unrestrictedmaximalfidelity learning, if aKj-separable SNNS Y ñW
Kj∣ (defined by the set of

disjoint sets of qubits = ¼i i K1, ,{ } ) is unable to reconstruct jñ∣ through the same optimisation scheme

j

j j

Y ñ Y ñ º ñ

Y ñ Y ñ º ¢ñ ñ

W W¢

W W¢

,

, 14
K K

Free

optimise

Free

optimise

j j

∣ ⟶ ∣ ∣

∣ ⟶ ∣ ∣ ≢ ∣ ( )

then the target state jñ∣ must possess entanglement within at least one of the partitions i. This approach
provides valid separability criteria for conclusive classification of pure quantum states.

3.4.Witnesses andmeasures
The construction of a reliable and consistent entanglement classification procedure requires a quantifiable
measure of performance forNNS target state reconstructions. As ANN learning is numerical in nature, itmay be
prone to statistical errors and possible flaws due to the size ofHilbert space being explored, and infinite possible
variational updates that can bemade.Hence, we resort to statistics to combat this.

Consider a classification protocol which uses a restricted learner Y ñW
K∣ in order to classify this formof

entanglement for a target state jñ∣ , achieving a set offidelities = ¼FK
i

i M1, ,{ } over all the learning operations. In
order to build a level of reliability and confidence, this protocol is performedM times so to calculate an average
fidelity and their variance á ñ = å =F F MK i

M
K
i

1 , D = á ñ - á ñF F FK K K
2 2 2( ) . Given enough samplesM and enough

hidden neurons (and thus free parameters) to ensure sufficient expressive power, we can define a performance set
= á ñ - D á ñ + D F F F F,K K K K K[ ∣ ∣ ∣ ∣] that describes awindowof reliability in the particular, separable learner

being employed. Doing so equivalently for the free learner Y ñW
Free∣ is also extremely important, providing a

benchmark for the performance of theNNSwithout entanglement property restrictions. In fact, the learning
performance of any restricted learner can be expressed relative to the behaviour of the free learner, and provides
a systematicmethod for conclu-sive entanglement classification. In general there are two cases in doing this

Figure 4.Graphical depiction of aN-qubitKj-SNNS based on a RBMofN binary artificial visible neurons andH binary artificial
hidden neurons thatmediate the correlations within the system. Separability under the set of partitions = ¼m m K1, ,{ } is enforced
by performing segmentations throughout the network. Each set of qubits m is fully connected to a set of hidden neurons m

( ¹ m m∣ ∣ ∣ ∣generally) but is independent from all other hidden neurons. There are å =  m
K

m m1∣ ∣∣ ∣non-zeroweighted connections,
andN+Hneural biases.
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• Ç ¹ Æ K Free . In this case there is an intersection between the computed fidelity of the restricted learner
and the free learner,meaning thatwe can classify this state as possessing entanglement properties according to
this formofK-separability.

• Ç = Æ K Free . In this case there is no intersection between the computed fidelity of the restricted learner
and the free learner. In this case the learner has only been able to reconstruct (ideally) the closest state to jñ∣
that possesses entanglement properties according to Y ñW

K∣ .

This approach provides a consistent rule for deciding how a target state is entangled. The application of this
method relies on the accuracy of the learning regime tomaintain a low variance throughout its full spectrum
offidelities, since an arbitrarily large variancewill render the result redundant. Nonetheless, thismethod
of classifying the entanglement properties of target states resembles that of entanglementwitnesses. If a
K-separable learner achieves an optimal reconstruction fidelity with a performance similar to the free learner,
then theNNSwitnesses this state as entangled in this way.Otherwise, it does notwitness the state and this binary
classification delivers the contrary result.

Amuchmore detailed classification can be carried out bymore closely investigating the resultantfidelities of
all restricted learners according to a set of separabilities, not just those that achieve optimalfidelities with respect
to the free learner. Instead, one can consider the relative fidelity of theKj-separable learner with respect to the
free learner as ameasure of howmuchKj-separability ismanifestedwithin the target state. Defining the relative
fidelity

=
á ñ

á ñ


F

F
, 15K

K

Free
j

j ( )

an approximate, local entanglementmeasure can be devised in accordancewith the general properties of an
entanglementmeasure [13]

= - 1 . 16K K
2

j j
( )

Note that we now refer toKj-separability, such that this is a sub-genre of themore generalK-separability.
Classification does not necessarily require this distinction, butmeasurement ofKj-separability is not a complete
reflection ofK-separability, as there exist -P 1K other contributions to thismeasure. Thus, a completemeasure
ofK-separability requires an analysis of all such contributions.

The quantifier in equation (16) is inspired from thewell knownGeometricMeasure of Entanglement (GME)
[14]. The quantity Kj

strives at quantifying the lack of representability according toKj-separability. In an ideal

scenario, all optimisation procedures are perfectly convergent such that for a target state jñ∣ , any SNNS Y ñW
Kj∣ will

reconstruct the closestKj-separable state to the target state j¢ ñKj
∣ . One can define the overlap between such states

as the critical fidelity

a j j= á ¢ ñmax , 17K
K

K
sep

j
j

j
∣ ( )

‐
 

as it definesmaximumfidelity between a target state and the set ofKj-separable states. In such ideal case, the
relative fidelity and local entanglementmeasure become

j j

j j j j
j j=

á ¢ ñ

á ¢ ¢ ñá ñ
= á ¢ ñ 18K

K

K K

Kj

j

j j

j

∣ ∣ ∣

∣ ∣
∣ ( ) 

so thatKj
recovers the criticalfidelity and Kj

theGME formultipartite, pure state entanglement.

3.5. Efficiency of entanglement classification viaNNS
The effectiveness and efficiency of our entanglement classificationmethod stems from the reduction of the
problem fromentanglement characterisation to state reconstruction. The question of efficiency of classification
in this setting thus simplifies to a question of learnability of a target state via theNNS ansatz. Recent studies into
the learnability scaling of positive, real valued, pure quantum states viaNNS (in the context of tomographic
reconstruction of ground states)provide a systematic evaluation of the scaling of computational resources in the
RBMsetting [15].Whilst our learning procedure is contextually simpler (as theNNS are trained on complete
phase/amplitude knowledge, not projectivemeasurements), these scaling principles are still appropriate, and
affirmNNS state reconstruction techniques as highly efficient and powerfulmodels. Furthermore, our approach
to classification of states with non-trivial phase structure using co-evolving phase and amplitude RBMs requires
only a linear increase in the number of network parameters. Hence, complex-valued target states do not pose a
great threat to classification efficiency. Classifications of up to nine-qubit systems can be performed on a
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standard laptop, andmuch larger systems are readily investigatedwith greater computational resources, as seen
in [10, 15].

4. Results

The following results and simulations are used to illustrate the effectiveness of the entanglement classification
protocol.We beginwith the simplest classification problemof bipartite separability and proceed tomore
complex states of up to six qubits. Such sizes allow for the investigation of non-trivialmultipartite entangled
systemswithout the complications entailed by largemany-body systems. Each classification is characterised by a
‘learning path’which depicts the evolution of the fidelity of the free learner and a separable learner throughout
the state reconstruction procedure. Learning paths which follow a convergent trajectory towards unit fidelity
indicate a correct classification of the state with the separability properties of the learner in question. Pathswhich
convergewith sub-optimal fidelities, or which do not converge at all, indicate awitnessing of entanglement with
respect to the appropriate formof separability.

We start addressing the two-qubit case, a situation for which entanglement classification is a binary decision
problem as a pure two-qubit state is simply either entangled or fully separable. Figure 5 illustrates the use of
SNNS for classification purposes when the target state is either the Bell state Y ñ = ñ + ñ+ 01 10 212 12∣ (∣ ∣ ) or
the separable state jñ = +ñ ñ01 2∣ ∣ ∣ with s +ñ = +ñx∣ ∣ and sx the xPaulimatrix. The learning paths of the SNNS
performs the classification successfully, whilst the free, entangled learner learns both states with ease. Note that
SNNSwhen targeting the Bell state achieves afidelity of » 1 21 2∣ which alignswith themaximumoverlap
between any Bell state and the set of all separable bipartite states.

Increasing the target system size to three qubits immediately increases the complexity of the classification
problem, such that a state is tripartite entangled, biseparable (which is three-fold degenerate) or fully separable.
The degeneracy of biseparability is due to the arrangement of entanglement between parties, which the
appropriate SNNS are able to distinguish. Figure 6 displays the ability of SNNS to both detectK-separability and
identify the particular permutation of entangled parties (Kj-separability). A similar investigation is illustrated for
the four/six qubit cases infigure 7, which show the power of the classification protocol that is capable of
providing complete entanglement descriptions of pure target states.

FurthermoreGMEs can be created to compliment the classification process and provide better insight into
the entanglement properties of a target state. The example target states infigures 5(a) and (b) convey the extreme
cases ofmaximal entanglement and complete separability respectively, however a bipartite state can contain any
amount of entanglement such that its classification is less obvious. In this way,figure 8(a) depicts the relative
fidelity andGMEof a variable Bell state j ñ = ñ + - ñp p p00 1 11∣ ( ) ∣ ∣ constructed bymonitoring the
performance of the separable learner with j ñp∣ ( ) formany values of p in the interval Îp 0, 1[ ]. Similarly

considering a variable, three qubit state j = + -p p W p W1∣ ( )⟩ ∣ ⟩ ∣ ⟩, it is by nomeans trivial to ask
whether this state is separable for any value of p. Constructing an approximateGME for any formof
entanglement, as seen infigure 8(b), shows that j ñp∣ ( ) possesses a degree of entanglement for all values of

Figure 5.Classification of two-qubit quantum states. Panel (a) reports the learning paths of a free learner Y ñW
Free∣ (blue) and a separable

learner (orange) attempting to reconstruct a two qubit Bell state Y ñ = ñ + ñ+ 01 10 2∣ (∣ ∣ ) such that the separable learner Y ñW
1 2∣ ∣ is

unable to acquire amaximalfidelity, whilst the free learner easily achieves unit fidelity. Instead, Y ñW
1 2∣ ∣ converges to themaximum

fidelity that the set of separable states can acquire with Y ñ+∣ , which is 1 2 . Panel (b) illustrates the behaviour of both the entangled
learner Y ñW

Free∣ and the separable learner Y ñW
1 2∣ ∣ converging to unitfidelity while reconstructing a separable two qubit state

jñ = +ñ ñ01 2∣ ∣ ∣ .
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Figure 6.Examples of the ability of SNNS to distinguish betweenKj-separable learners. Here, three tri-separable learners of the forms
Y ñW

12 3∣ ∣ (green), Y ñW
13 2∣ ∣ (orange) and Y ñW

1 23∣ ∣ (blue) are employed to distinguish between the exact formof separability of target state. In
each case, only the learner with the correct form of tri-separability can conclusively classify the target state through convergent
learning. In panel (a)wehave considered jñ = F ñ +ñ+

1,2 3∣ ∣ ∣{ } , in panel (b) jñ = F ñ +ñ+
1,3 2∣ ∣ ∣{ } , while panel (c) is for

jñ = +ñ F ñ+
1 2,3∣ ∣ ∣ { }.

Figure 7.Entanglement witnessing viaNNS. Panel (a) depicts a four-qubit ‘double Bell State’, i.e. a product state of twoBell states in
the {1, 2}-versus-{3, 4} bipartition.We show results gathered by employing learners prepared in the states Y ñW

Free∣ (orange curve),
Y ñW

12 34∣ ∣ (blue curve), Y ñW
12 3 4∣ ∣ ∣ (green curve), Y ñW

1 2 34∣ ∣ ∣ (purple curve), Y ñW
1 2 3 4∣ ∣ ∣ ∣ (red curve). TheNNSwith in the appropriate separable

form (blue curve) achievesmaximal fidelity throughout the optimisation process, whilst the triseparable and fully separable learners
achieve sub-optimal convergences. Panel (b) depicts a similar situation but with a biseparable state in the splitting {1, 2, 3}-versus- 4{ }
containing a tripartite entangled ñGHZ∣ state, with a set of learners in the separable forms Y ñW

123 4∣ ∣ (blue), Y ñW
12 34∣ ∣ (orange), Y ñW

1 2 34∣ ∣ ∣

(green), Y ñW
12 3 4∣ ∣ ∣ (red). TheNNS in the appropriate separable form (blue line) achievesmaximal fidelity throughout the optimisation

process, whilst the triseparable learners achieve suboptimal convergences. Panel (c) reports a similar classification process for a
random six-qubit state that is biseparable in the {1, 2, 3}-versus-{4, 5, 6} bipartition using Y ñW

Free∣ (blue), Y ñW
123 456∣ ∣ (orange), Y ñW

1 3 2456∣ ∣ ∣

(red), Y ñW
1 2 3 4 5 6∣ ∣ ∣ ∣ ∣ ∣ (green). Panel (a) is for jñ = F ñ F ñ+ +

1,2 2,3∣ ∣ ∣{ } { }, panel (b) for jñ = ñ +ñGHZ 1,2,3 4∣ ∣ ∣{ } and panel (c)was a
Ä1, 2, 3 4, 5, 6{ } { }biseparable 6 qubit state.

Figure 8.Panel (a) shows the approximateGMEplotted for the two-qubit state j ñ = ñ + - ñp p p00 1 11∣ ( ) ∣ ∣ . The orange curve
plots the fully separable Relative Fidelity 1 2∣ , whilst the blue curve plots theGME 1 2∣ . Panel (b) is for the approximate geometric
measure of entanglement 1 2 3∣ ∣ (orange) and relative fidelity 1 2 3∣ ∣ (blue) for the state j ñp∣ ( ) as a function of p. Panel (c) depicts a
classification protocol aimed at the target state j = ñp 1 2∣ ( ) by employing the learners Y ñW

Free∣ (blue), Y ñW
12 3∣ ∣ (orange), Y ñW

13 2∣ ∣ (green),
Y ñW

23 1∣ ∣ (red) and Y ñW
1 2 3∣ ∣ ∣ (purple), which deduce that the state is still multipartite entangled but to a lesser degree. Panel (b) is for 1 2 3∣ ∣

for j ñ = ñ + - ñp p W p W1∣ ( ) ∣ ∣ ¯ , while panel (c) for the choice p=1/2.
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Îp 0, 1[ ], and is never fully separable. Similar investigations could be performed tomeasure biseparability
throughout the interval and this conceptmay extend to any formof separability of interest in anN qubit state
(provided stable, convergent learning).

Finally, on the investigation of entangled states with non-trivial phase structures, one can utilise SNNSwith
network architectures according to section 3, with the applied separability conditions applied, and a natural
gradient descent optimisation protocol. Particularly interesting states that fall into this category are that of
cluster states, which are of great significance to quantum computing [6, 16]. Given a d-dimensional square lattice
of vertices = ¼V N1, ,{ }, with connections between sites that define a neighbourhood,  connecting
vertices (i, j), a cluster state is given by

ñ = +ñ
Î Î




C U , 19d
i j

i j

k V
k,

,

,∣ ⨂ ∣ ( )
( )

( )

where = -U diag 1, 1, 1, 1i j, ( )( ) is a controlled-phase gate between qubits on sites (i, j). The four-qubit cluster
state built on a one-dimensional lattice ñ = ñ + ñ + ñ - ñC 0000 0011 1100 1111 24 1234∣ (∣ ∣ ∣ ∣ ) can be recast into
the form ñ = ñ F ñ + ñ F ñ+ -C 00 114 12 34 12 34∣ ∣ ∣ ∣ ∣{ } { } { } { }with sF ñ = Ä F ñ- +

z∣ ( )∣ . The local-phase difference
between F ñ+∣ and F ñ+∣ removes the Ä1, 2 3, 4{ } { }biseparability seen in the double Bell state F ñ Ä F ñ+ +∣ ∣ ,
investigated infigure 7 and produces the behaviourwitnessed via SNNS infigure 9.

5. Conclusions and further look

SNNSs offer a powerful and versatile tool in order to attack the problemof entanglement classification.With a
sufficiently powerful learningmechanism, this classificationmethod could be far reaching and proven powerful
for larger,many body quantum systems.

Nonetheless, the problemof entanglement classificationwill remain a considerable roadblock. For systems
of largeN, the number of ways inwhich a statemay be entangled is overwhelmingly large, and thus demanding a
complete, global search of separability properties by using all possibleK-separable learners is unfeasible. The
need for some a priori knowledge about the state, or about the formof separability onewishes to classify (such as
full separability, or genuineN-partite entanglement) becomes essential, and greatly narrows the search. In this
way, classification of larger systems becomesmuchmore realistic using the SNNSmethod.

There aremany further extensions and investigations worth pursuing following the introduction of SNNSs
to classify entanglement.Most importantly is the extension frompure states tomixed states in amanner that
maintains the power and efficiency thatmotivates this approach. Efficient ANNparameterisations ofmixed
states have been developed through the addition of a hidden ‘mixing’ layer to the RBMarchitecture to create a
NeuralDensityMatrix [17, 18]. Research into encoding separability properties into thesemachine architectures
is worth exploring. An initial starting pointmay be aimed at generalising network conditions that invoke
Kj-separability intoK-separability, which could improve both pure andmixed state simulation abilities. A

Figure 9.Entanglement classification for a four-qubit cluster state ñC4∣ built on a one-dimensional lattice, using an SNNSwith a
double hidden layer architecture, separating phase and amplitude learning. The free learner Y ñW X,

Free∣ (blue) reconstructs ñC4∣ to the
maximal degree over a sufficient number of learning iterations, whilst the biseparable learner Y ñW X,

12 34∣ ∣ (orange) reaches amaximal

value of fidelity of 1 2 .
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further, exciting, extension of this researchmay be to introduce generative neural networkmodels that can
numerically simulate higher dimensional quantum systems i.e qudits, and even infinite dimensional systems by
constructingmodels within afinite-dimensional phase space. Reworking the neural network framework in a
way that allows for this versatility, whilstmaintaining the ability tomanufacture properties such as separability
and potentially Gaussianity, could provide aworthy tool that has far reaching applications in quantum
communications, computing andmore.

With growing interest being accrued at the interface of quantum information andmachine learning [10, 19],
the integration of entanglement classification protocols offers an exciting avenue of exploration.
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AppendixA.Natural gradient descent for quantum state reconstruction

Herewe derive the quantum state reconstruction scheme using the natural gradient [11], utilising anNNSwith
two parallel hidden layers as described in section (II.B). As beforewe ask the question: how canwe optimise the
parameters of theNNS,α={Ω,Ξ} in order tominimise the ‘distance’ (maximise thefidelity) between theNNS
and the target state? That is

jY ñ Y ñ º ña a¢s s s , A1
optimise

∣ ( ) ⟶ ∣ ( ) ∣ ( ) ( )  

a a= W X ¢ = W¢ X¢, , , A2
optimise

{ } ⟶ { } ( )

whereα admits the complete set of parameters for both amplitude and phase learning. Consider an
infinitesimally small perturbation δαk performed on the kth parameter of the neural network. A linear
approximation to the state is given by,

å åda
a

daY ñ = Y ñ +
¶ Y ñ
¶

= Y ñ + Y ña da a
a

a a+ O , A3
k

k
k k

k kk∣ ∣ ∣ ∣ ∣ ( )

where theOk are defined as diagonalmatrices whose non-zero elements the partial derivative of the natural
logarithmof theNNS vector with respect to the kth network parameter [18], i.e.,

a a
=

¶ Y ñ
¶

=
Y ñ

¶ Y ñ
¶

a

a

aO
ln 1

. A4k
k k

(∣ )
∣

∣ ( )

In order to reconstruct the target quantum state wewish to force the parameters of the networkα to evolve such
that the state Y ña∣ is equivalent to that of the target state jñ∣ . Therefore, wewish tominimise the ‘distance’
between the target state and theNNS at every variational perturbation of the parameters. Oneway ofmeasuring
this distance is using the Schatten-2 norm,

åd da j= Y ñ + Y ñ - ña aO . A5
k

k k 2
2∣ ∣ ∣ ( ) 

Through theminimisation of this functional, it is possible to obtain an expression for the perturbation δαk to the
kth parameter of the network that will optimise theNNS towards the target state. In fact,minimisation of δ in
return of δαk provides ametric,

a a h da¢ = + , A6k k k ( )

where η is the learning rate. Using this iterative update rule to the network, with a small enough η and enough
variational updates, convergence towards the target state should be guaranteed. Defining the operator  ,

j
=

Y ñ - ñ áY
Y

a a

a
 A7

2

(∣ ∣ ) ∣
∣ ∣

( )

one reveals the systemof equations forwhich theminimisation of equation (A5) is achieved are

å da =S f , A8
l

kl l k ( )

= áY Y ñ + áY Y ña a a aS O O O O , A9kl k l l k∣ ∣ ∣ ∣ ( )† †
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= áY Y ñ + áY Y ña a a a f O O . A10k k k∣ ∣ ∣ ∣ ( )† †

Here, Skl denote the elements of a covariancematrix  , and fk the elements of a generalised force vector f

. By

constructing this set of equations, themethod of natural gradient descent for the this optimisation scheme can
be achieved by defining themetric dal which is natural to the variational subspace being explored

åda = -S f , A11l
k

l k k,
1 ( )

and an update to the variational parameters at every iteration in the optimisation is thence,

åa a h¢ = + -S f A12l l
k

lk k
1 ( )

where -Slk
1 denotes theMoore–Penrose pseudo inverse, since thismatrix is generally non-invertible. The

quantum expectation values throughout Skl and fk can be efficiently computed as statistical expectation values
á ña according to the probability distribution of theNNS. Rewriting the covariancematrix and generalised
forces in this way,

µ á ñ µ á ña aS O O f ORe , Re , A13kl k l k k* * ( )

they can be incorporated into an iterative numericalmethod to compute the update rule at every iteration.

Appendix B.Degeneracy of specific separabilities formultipartite states

Consider anN-partite state yñ∣ whose entanglement properties are described by the set ofK disjoint subsets
= = ¼ j j K1, ,{ } which defines the subsets that contain the indices of potentially entangled qubits (arbitrarily

qubits, could be qudits) in the state. A state is deemed  -separable if it is described by this set of exact partitions.
This is themost detailed level of entanglement classificationwe can achieve.

Now letbe the set that defines the size of each of these entangled subsets, i.e for  is given by
= = ¼mj j j K1, ,{ ∣ ∣} . A state is deemed-separable if it is described by entangled sub-collections of these

dimensions. Given an arbitrary formofK-separability wewish to deduce howmany forms of  -separability are
attributed to it.

Whilst  -separability describes a specific separable order of entangled qubits, we can define-separability
as a specific separable order ofmj-dimension entangled qubit sets, which is therefore less degenerate than 
(many ordered sets  may correspond to a single). Byfinding the number of ways that a statemay be
-separable, we can then use the degeneracy ofwith respect to the creation ofK partitions tofind total
degeneracy.

When constructing an entanglement set  ,( ), as each j isfilledwith indices of entangled qubits, the
possible choices of qubits for subsequent subsets diminishes (since they are all disjoint). Hence for Îmj , the
number of possible permutations are given by themultinomial coefficient,

= - å = ¼ =
=

=


P
N m

m
N

m m m
N

, , , . B1
i

K
j
i

j

i K
1

1
1 2

⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( )

However, counting in thismanner disregards cyclic invariance of separabilities i.e shuffling subsets in  does
not alter the separability of the state. Hencewemust further reduce P by removing these duplicates. Such
duplicates will only occurwhenever the total set contains subsets of equivalent size,mi=mj for some
¹ Î ¼i j K1, ,{ }.We define the function d= å =g l m l,i

k
i1( ) ( ) as that which counts the degeneracy of

subsets of size l, where δ is the Kronecker delta function.
We can thenfind the number of ways that a-separable state is  -separable,

=
=

-

P g l N . B2
l

m

1

1⎡
⎣⎢

⎤
⎦⎥ ( )( )! ( )

˜

where = m max˜ ( ).We are now left tofind howmanyways aK-separable state can be constructed using
-separability. This is equivalent to searching for the number of solutions to å == m N ,i

K
i1 for Îmi and

fixedK. That is, howmanyways can construct a set ¼m m, , K1{ } such that these elements sum toN. The
solution to this is given by the partition function of exactlyK parts  n K,( ) [20], which has the generating
function,

å =
 -=

 n K x
x

x
,

1
B3

n

K
K

i
K i

1

( )
( )

( )

and can thus use to determine the degeneracy of-separability with respect toK-separability. Hence for an
N-partite state, the number of ways inwhichwe can arrange theN-qubits intoK entangled collections is
given by,
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å =
= =

-





G g l
N

. B4K
n

N K

l

m

n1

,

1

1
n

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠( )! ( )

( ) ˜

Therefore the total number of unique forms of separability (discounting genuine, completemultipartite
entanglement) is = å =G G .K

N
K2 This result indeed agrees with themore concise answer to the total number of

 -separabilities attributed to anN-partite quantum system. This is given by the Bell numbers which can be
calculated usingDobiński’s formula [21],

å=
=

¥

B
e

k

k

1
. B5N

k

N

0 !
( )

It can be seen that the first fewBell numbers do indeed generate the number of  -separabilities forN elements,

= = = = = ¼B B B B B1, 2, 5, 15, 52, .1 2 3 4 5

The Bell numbers count all forms entanglement for anN-partite systemwith respect to  -separability. However
they do not detail the degeneracy of themore specificK-separability, which is instead given by equation (B4).

ORCID iDs

CillianHarney https://orcid.org/0000-0002-9333-3407
Stefano Pirandola https://orcid.org/0000-0001-6165-5615
Mauro Paternostro https://orcid.org/0000-0001-8870-9134

References

[1] Biamonte J,Wittek P, Pancotti N, Rebentrost P,WiebeN and Lloyd S 2017Nature 549 195
[2] SchuldM, Sinaskiy I and Petruccione F 2015Contemp. Phys. 56 172
[3] CarleoG, Cirac I, CranmerK,Daudet L, SchuldM,TishbyN,Vogt-Maranto L andZdeborová L 2019Rev.Mod. Phys. 91 045002
[4] Horodecki R,Horodecki P andHorodecki K 2009Rev.Mod. Phys. 81 865
[5] CarleoG andTroyerM2017 Science 355 602
[6] BriegelH J, BrowneDE,DürW,Raussendorf R andVen denNestM2009Nat. Phys. 5 19
[7] Jia Z-A, Yi B, Zhai R,WuY-C,GuoG-C andGuoG-P 2019Adv.QuantumTechnol. 2 1800077
[8] DengD-L, Li X and Sarma SD2017Phys. Rev.X 7 021021
[9] JónssonB, Bauer B andCarleoG 2018 arXiv:1808.05232
[10] Torlai G,MazzolaG, Carrasquilla J, TroyerM,MelkoR andCarleoG2018Nat. Phys. 14 447
[11] Sorella S andCapriotti L 2000Phys. Rev.B 61 2599
[12] Das S, Chanda T, LewensteinM, Sanpera A,DeA S and SenU 2019Quantum Information: FromFoundations toQuantumTechnology

Applications (Hoboken,NJ:Wiley)
[13] Vedral V, PlenioMB, RippinMAandKnight P L 1997Phys. Rev. Lett. 78 2275
[14] WeiT-C andGoldbart PM2003Phys. Rev.A 68 042307
[15] SehayekD, GolubevaA, AlbergoMS, Kulchytskyy B, Torlai G andMelko RG2019Phys. Rev.B 100 195125
[16] NielsenMA2006Rep.Math. Phys. 57 147
[17] Torlai G andMelko RG2018Phys. Rev. Lett. 120 240503
[18] HartmannM J andCarleoG 2019Phys. Rev. Lett. 122 250502
[19] Torlai G andMelko RG2019Machine LearningQuantumStates in theNISQEra arXiv:1905.04312
[20] WilfH 2000 Lectures on Integer Partitions
[21] RotaGC1964Am.Math.Mon. 71 498

13

New J. Phys. 22 (2020) 045001 CHarney et al

https://orcid.org/0000-0002-9333-3407
https://orcid.org/0000-0002-9333-3407
https://orcid.org/0000-0002-9333-3407
https://orcid.org/0000-0002-9333-3407
https://orcid.org/0000-0001-6165-5615
https://orcid.org/0000-0001-6165-5615
https://orcid.org/0000-0001-6165-5615
https://orcid.org/0000-0001-6165-5615
https://orcid.org/0000-0001-8870-9134
https://orcid.org/0000-0001-8870-9134
https://orcid.org/0000-0001-8870-9134
https://orcid.org/0000-0001-8870-9134
https://doi.org/10.1038/nature23474
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/nphys1157
https://doi.org/10.1002/qute.201800077
https://doi.org/10.1103/PhysRevX.7.021021
http://arxiv.org/abs/1808.05232
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevB.61.2599
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevA.68.042307
https://doi.org/10.1103/PhysRevB.100.195125
https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1103/PhysRevLett.120.240503
https://doi.org/10.1103/PhysRevLett.122.250502
http://arxiv.org/abs/1905.04312
https://doi.org/10.1080/00029890.1964.11992270

	1. Introduction
	2. Neural network states
	3. Pure state entanglement classification
	3.1. Quantum state representation
	3.2. SNNS and multipartite entanglement
	3.3. Entanglement classification
	3.4. Witnesses and measures
	3.5. Efficiency of entanglement classification via NNS

	4. Results
	5. Conclusions and further look
	Acknowledgments
	Appendix A.
	Appendix B.
	References



