
Correlation between vibrational anomalies and emergent anharmonicity of local
potential energy landscape in metallic glasses

Zeng-Yu Yang and Yun-Jiang Wang∗

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190, China and

School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Alessio Zaccone†

Department of Physics “A. Pontremoli”, University of Milan, via Celoria 16, Milan 20133, Italy
Department of Chemical Engineering and Biotechnology,
University of Cambridge, Cambridge CB3 0AS, UK and

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
(Dated: January 13, 2022)

The boson peak (BP) is a universal feature in the Raman and inelastic scattering spectra of both
disordered and crystalline materials. Here, through a set of atomistically-resolved characterizations
of metallic glasses, we uncover a robust inverse proportionality between the intensity of boson peak
and the activation energy of excitations in the potential energy landscape (PEL). Larger boson
peak is linked with shallower basins and lower activation barriers and, consequently, with emergent
anharmonic sectors of the PEL. Numerical evidence from atomistic simulations indicates that THz
atomic vibrations contributing the most to the BP in atomic glasses are strongly correlated with
such emergent anharmonicity of PEL, as evidenced through very large values of the atomic- and
mode-resolved Grüneisen parameter found for the atomic vibrations that constitute the BP. These
results provide a direct bridge between the vibrational spectrum and the topology of the PEL in
amorphous solids.

I. INTRODUCTION

The spectra of atomic vibrations in disordered materi-
als, such as glasses, have been the object of tremendous
experimental, computational and theoretical efforts over
the last decades. Understanding the vibrational Raman
and inelastic neutron/X-ray scattering spectra of glasses
is a central step for the quantitative prediction and un-
derstanding of the thermodynamic and thermal transport
properties of disordered materials. While the electronic
properties of disordered systems are now fundamentally
understood thanks to the pioneering work of Mott [1],
Anderson [2], Efros, Shklovskii [3] and others [4], such a
fundamental understanding for the vibrational and ther-
mal properties of structurally disordered materials is cur-
rently missing.

The vibrational density of states (VDOS), in this con-
text, plays a central role since it is the key factor entering
the integrals in terms of which the specific heat and ther-
mal conductivity of glasses are expressed [5]. Since the
early 1960s, at least, experimental evidence from Raman
and Brillouin scattering of glasses showed the presence
of a large peak in the Debye-normalized Raman inten-
sity (i.e. divided by Debye’s law ∼ ω2), in the THz
regime [6]. The Raman intensity of glasses at low en-
ergy is given by [6, 7] I(ω) ∼ g(ω)[n(ω, T ) + 1], with
n(ω, T ) + 1 = [1− exp (−~ω/kBT )]−1 the Bose function.
Here, g (ω) denotes the VDOS and kB is the Boltzmann
constant [7]. Note that in Raman scattering experiments,
one does not measure g(ω) directly but g(ω)C(ω), where
the function C(ω) describes the coupling of the radiation
with the sample. This gives an additional dependence

on ω and hence the boson peak is not at the same fre-
quency as the one found in neutron-scattering [8]. Since
the peak intensity appeared to depend on temperature
T according to the Bose distribution (likely because the
exponential character of the latter obscures all other de-
pendencies), this prompted researchers to believe that
the boson peak is insensitive to temperature and there-
fore its origin must be purely “harmonic”.

In spite of this, the early theoretical approaches to ex-
plain the boson peak vibrational glassy anomalies were
based on double-well anharmonic models [9–13], follow-
ing in the wake of Ilya M. Lifshitz’s pioneering work on
atomic vibrations around defects in solids [14]. Further
experimental evidence were collected later on, revealing
the profound effects of anharmonicity on the attenua-
tion of sound waves in glasses in the GHz and THz re-
gions, supporting the anharmonic origin of Brillouin (or
Akhiezer) diffusive linewidths Γ ∼ q2 up to the Ioffe-
Regel crossover between ballistic and diffusive propaga-
tion of vibrations [15–18]. Similar evidence for the an-
harmonic damping of transverse acoustic phonons has
been recently found also for metallic glasses [19]. Subse-
quently, the Ioffe-Regel crossover between ballistic prop-
agation and diffusive-like Γ ∼ q2 (transverse) excita-
tions has been suggested based on numerical simulations,
as the possible fundamental process behind the boson
peak [20]. It has been confirmed more recently in the-
oretical calculations [21, 22] that the crossover from a
regime at low ω dominated by the real (acoustic) part
of the excitation into a regime dominated by the imagi-
nary (diffusive) part provides a universal mechanism for
the boson peak. The origin of the diffusive linewidth be-
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ing traced back to anharmonicity [23], this mechanism is
able to provide an explanation to the many recent obser-
vations of boson peak in the spectra of perfectly ordered
or minimally-disordered crystals [24–27].

In spite of these many conceptual and experimental
evidences suggesting an important role of anharmonicity
as the driving factor for the phonon decoherence lead-
ing to Ioffe-Regel crossover and the boson peak, there is
no doubt that the current dominant paradigm to explain
the boson peak is based on the idea of “dissipationless”
or “harmonic” disorder as manifested e.g. in spatially
fluctuating elastic constants. In this framework, as de-
veloped in several papers by W. Schirmacher, G. Ruocco
and co-workers [28, 29] and known as “heterogeneous
elasticity theory” (HET), the loss of phonon coherence
at the Ioffe-Regel crossover has nothing to do with an-
harmonicity and stems uniquely from disorder.

In this paper we focus on this debate (i.e. whether
the boson peak in glasses stems from “harmonic” or
“anharmonic” processes), and provide an intimate con-
nection between vibrational anomaly and emergent an-
harmonicity of the potential energy landscape (PEL)
based on atomistic simulations. We are able to di-
rectly quantify the harmonic/anharmonic character of
each atomistically-resolved vibrational eigenmode that
contributes to the boson peak, in a paradigmatic atomic
glass. It is demonstrated that the eigenmodes that make
up the boson peak in the THz regime are strongly related
to anharmonicity, as reflected in their erratic trajectories
through shallow regions of PEL. Furthermore, huge val-
ues of the atomistically- and mode-resolved Grüneisen
parameter are found for the atomic vibrations that con-
tribute to the boson peak. This rich evidence figures out
the critical role of ”anharmonic effect” in glassy thermal
anomalies.

II. METHODS

A. Molecular Dynamics

Extensive molecular dynamics simulations are con-
ducted via the open source code LAMMPS [30]. Pro-
totypical binary CuxZr100−x (x = 30, 40, 50, 60, 70) MG
models, each containing 19652 atoms, are constructed
based on the many-body Finnis-Sinclair-type embedded-
atom potential [31] implemented to describe the inter-
atomic interactions. For the model preparation process,
a NPT ensemble (constant number of atoms, constant
pressure, and constant temperature) is utilized, and the
pressure remains zero by Parrinello–Rahman barostat
[32]. The temperature is controlled through the Nosé–
Hoover method [33]. Each system with randomly dis-
tributed lattice atoms are first heated and equilibrated
at 2000 K for 2 ns to achieve a fully melting state. The
liquid is then quenched to the glassy state at 0 K, with
cooling rates spanning multiple orders of magnitudes, i.e.,
from 109 K/s to 1014 K/s. To prepare the inherent struc-

tures at different temperature, we further thermally relax
the systems at the desired temperature with NV T (con-
stant number of atoms, constant volume and constant
temperature), and then perform energy minimization us-
ing the conjugate gradient algorithm. Periodic boundary
conditions (PBCs) are imposed to all the three directions.
The MD time is set to be 0.002 ps.

B. Single-particle intensity of boson peak

The vibrational analysis of the glass state is performed
by direct diagonalization of the Hessian matrix of the in-
herent structures, which correspond to local energy min-
ima positions in the PEL. The single-particle vibrational
density of states (VDOS) for the ith atom is defined as

gi (ω) =
1

3N

∑
j

δ (ω − ωj)
∣∣eij∣∣2, (1)

where N is the total number of atoms. ωj represents the
phonon frequency. eij denotes the polarization vector of
ith atom in the vibrational mode characterized by ωj .
The sum of gi (ω) equals to the total VDOS g (ω) of the
system. Further, the reduced VDOS, i.e., the value di-
vided by ω2 can be used to characterize the boson peak.
The intensity of single-particle boson peak is thus formu-
lated as the maximum value of the reduced VDOS, i.e.,
IiBP = max

[
gi (ω)

/
ω2
]
.

C. Single-particle activation energy

To understand the vibrational anomaly in metallic
glasses in depth, it is necessary to explore the underlying
topological feature of the PEL, including the energy min-
ima and the surrounding saddle points, which have been
demonstrated to be closely related to boson peak behav-
ior [34]. To address this issue, the activation-relaxation
technique nouveau (ARTn) [35, 36] is utilized to extract
the single-particle activation energy. In the framework
of ARTn, an initial perturbation is introduced to a cen-
tral atom and its neighbors by imposing a random small
displacement vector. The magnitude of the perturbation
displacement vector is fixed as 0.1 Å, while the activation
direction is chosen randomly. To restrict the perturba-
tion to a specific atom, the cutoff distance of the atom
cluster is set to be 2 Å, which is shorter than the first
maximum of the radial distribution function of the CuZr
glasses. The state is pulled towards high energy along the
weakest Hessian direction. When the lowest eigenvalue

of Hessian matrix is less than −0.30 eV/Å
2
, the system

is pushed towards the saddle point automatically using a
Lanczos algorithm. The system is considered to converge
to the saddle point state when the force on any atom is
below 0.05 eV/Å. Thereafter, the energy difference be-
tween the saddle point and the initial state is calculated
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FIG. 1. (a) Schematic of a fragment of PEL illustrat-
ing thermodynamic vibration and thermal activation between
neighbouring basins. Here labels (b) and (c) refer to the other
two sub-panels – Fig. 1b and Fig. 1c, respectively. And (b)
denotes the trajectory of vibration near the sub-basin while
(c) represents the activation path between two adjacent sub-
basins. (b) ω2-reduced VDOS, g(ω)/ω2, confirms the exis-
tence of boson peak in Cu50Zr50 glasses. The dashed line
represents the Debye level which is ∼ 87.23 µTHz−3 for the
present Cu50Zr50 glass [38].

The inset shows the original VDOS. (c) Schematic of 1D
activation pathway defines activation energy for a structural

excitation.

as the corresponding activation energy of an atom’s hop-
ping. For a statistical purpose, each atom is activated
for 20 times with random initial perturbation. The av-
erage activation energy of the 20 events for each atom
is further used as a single-particle activation energy. It
should be noted that only a few dozens of searches via
ARTn do not guarantee to find the lowest saddle point
on PEL from an inherent structure or a starting point.
To find the low-lying saddle points, it is possibly more
appropriate to consider other algorithms, e.g., the sim-
ple and robust algorithm proposed by Bonfanti and Kob
to find lowest saddle point in complex energy landscapes
[37].

III. RESULTS AND DISCUSSION

In order to understand what kind of excitations con-
tribute to the boson peak, we start from the analysis of
the PEL of the model binary metallic glass Cu50Zr50, and
we study its relation to the boson peak. Fig. 1(a) shows a
3D illustration of the PEL, where the minima (or basins
of the landscape) represent the inherent structures, while
saddle points (or hills of the landscape) characterize the
dynamical bottlenecks on the pathways of structural ex-
citations and relaxations [39–41]. As sketched in Fig.
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FIG. 2. (a) Distribution of the activation energies for exci-
tation of Cu atoms in two groups, i.e., the highest and lowest
10% of the intensity of boson peak, respectively. (b) The case
for Zr atoms. The activation energies shown are mean values
after 20 ARTn searches.

1(a), the short-time vibration around a minimum or val-
ley is shown by the orange trajectory. The long-time
transition from one local energy minimum to a neigh-
bouring one is characterized by the red line. Clearly, the
short-time vibrations within a single basin are mainly
“harmonic”, whereas the red trajectories are associated
with strongly anharmonic eigenmodes. The goal of the
subsequent analysis is to disentangle the relative preva-
lence of these two types of excitations among those that
form the boson peak in the VDOS.

In amorphous materials, the existence of extra low-
energy modes in excess with respect to the Debye law ∼
ω2, defines the boson peak anomaly, which can be quanti-
fied by the maximum value of the ω2-normalized VDOS.
Fig. 1(b) gives the phonon features for the Cu50Zr50
metallic glass which confirms the existence of the boson
peak anomaly at low frequencies. It shows the position
of the boson peak at a frequency of nearly 5 THz. This
is in accord with experiments [42, 43] which show that
the energy of boson peak in Zr based metallic glasses is
usually ∼ 5 meV. To our knowledge, how to understand
this phenomenon from the perspective of its relation to
the PEL is an interesting and open question.

Figure 1(c) shows the energy difference between the
saddle point and the initial local minimum, which is de-
fined as the activation energy and is used to quantify
structural excitations [44–46] . On the basis of atomistic
molecular dynamics (MD) simulations, we have access to
both sets of information, i.e. the activation energies in
the PEL and the eigenmodes, in an atomistically resolved
way. In other words, for each atom we can extract its
contribution to the vibration spectrum and to the BP, as
well as its ramblings through the PEL and the activation
energies that it goes through.

Hence, to seek quantitative correlations between eigen-
modes and activation energies, the particle-level intensity
of boson peak IBP and the activation energy ∆Q are cal-
culated for each atom. The iso-line plot of single-particle
activation energies as a function of the inverse intensity of
boson peak is given in Fig. S1 in the Supplemental Mate-
rials (SM) [47]. Even though the correlation is somewhat
broad in terms of the raw data especially for the case of Zr
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FIG. 3. Pearson’s correlation coefficient between boson peak
intensity and activation energy as a function of spatial coarse-
graining length. Best correlation achieves with L = 5.9 Å.

atoms, a qualitative trend is clear: ∆Q increases with de-
creasing IBP. In the pioneering work by Manning and Liu
[48], soft spots are identified via participation fraction of
atoms in low-frequency vibrational modes. Here, our cal-
culation is in accord with Ref. [48] and other works which
demonstrated that atoms participating preferentially in
soft modes are prone to undergo shear transformations
under thermal and/or mechanical stimuli [49–52]. In Fig.
2, we compare ∆Q for the group of atoms with the 10%
lowest and the 10% highest IBP values in Cu50Zr50. The
atoms which more prominently contribute to the BP ef-
fectively experience a lower magnitude of activation en-
ergy in their dynamics, and, thus, are more susceptible to
structural rearrangement under thermal and/or mechan-
ical stimuli. This is consistent with the early experimen-
tal work which demonstrated that loose atoms mainly
contribute independent localized vibrational modes with
boson peak frequency [53]. Also, importantly, their mo-
tions are correlated with anharmonicity, as shallow acti-
vation basins are obviously linked to larger anharmonic-
ity, whereas deep valleys and steep barriers are related
to harmonic-type dynamics [54, 55].

Our explanation for the weak correlation shown in Fig.
S1 is that the collective vibrational anomaly and the
structural excitation are not exactly controlled by the
first-shell local structure, but rather their structural fin-
gerprint is embedded in several shells of the radial dis-
tribution function (RDF) via spatial correlations. We
therefore plot the IBP vs ∆Q correlation as a function of
the coarse-graining size in Fig. 3. The best correlation,
quantified by the Pearson’s coefficient, can be achieved
with the coarse-graining length L = 5.9 Å for both IBP

and ∆Q. This is exactly the same length scale which
yields the best correlation, thus indicating a strong link
between the activation energy and the intensity of bo-
son peak. This characteristic length corresponds to the
second valley of radial distribution function (RDF) and
thus contains the short as well as medium range order
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FIG. 4. Boson peak correlates inversely with the difficulty
of the thermally activated structural excitation in glass. (a)
Correlation between the spatially coarse-grained boson peak
intensity [1/IBP]CG and the activation energy ∆QCG with
coarse-graining length L = 5.9 Å. The color indicates the
number density of atoms. (b) Numerical coarse graining of
the data in (a) with binning size of a hundred atoms, which
reproduces a ∆Q ∼ I−1

BP law.

of Cu50Zr50 glass. In Fig. 4(a), we plot the activation
energy versus the reciprocal of the BP intensity for the
spatial coarse-graining size that yields the strongest cor-
relation. Finally, Fig. 4(b) shows the corresponding re-
sult after numerical coarse-graining with bin size of ∼ 100
atoms. It shows a strong, well-defined ∆Q ∼ I−1BP scaling
law. This intimate correlation between boson peak and
activation energy in the PEL implies a scenario beyond
short-range order for the connection between thermody-
namics and dynamics in glasses [56–59].

The IBP–∆Q correlation can be studied in terms of
spatial coarse-graining. The spatial distributions of the
particle-level intensity of boson peak IBP and activation
energy ∆Q, as well as their coarse-grained counterparts,
i.e., [1/IBP]CG and ∆QCG, are shown in Fig. 5(a)–(d).
The 3D rendering is further provided in Figs. S2 and S3.
All of them consistently imply that the high-IBP regions
and the low-barrier regions overlap with each other signif-
icantly, once a certain (optimal) value of spatial coarse-
graining length is chosen. Again, the best correlation is
established with coarse-graining size of 5.9 Å. This value
arises as the characteristic decay length of the spatial
autocorrelation function for both quantities. Here, the
normalized spatial autocorrelation function of a physical
entity is defined as

C (r) =
〈∆Pr0∆Pr0+r〉 − 〈∆Pr0〉

2〈
∆Pr0

2
〉
− 〈∆Pr0〉

2 , (2)

where Pr0 and Pr0+r denote the values of the property
“P” at a reference position r0, and that at a distance
of r from the reference atom, respectively. Here, ∆ de-
notes the deviation from the ensemble averaged value.
The operator 〈· · · 〉 represents the operation of ensemble
average. As shown in Fig. 5(e), the spatial autocorrela-
tion function for the particle-level intensity of the boson
peak, and that for the activation energy, exhibit exactly
the same decay with distance r, with exactly the same
value of correlation length. When r = 5.9 Å, C (r) de-
cays to approximately exp (−3) of the reference value for
both quantities, which corresponds to an optimal com-
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60, 70). (a) for Cu atoms, and (b) for Zr atoms.

promise, since lower values would imply losing the ef-
fect of medium-range correlations, whereas larger values
would see the correlation vanish altogether.

As mentioned above, a spatial region with a high-
boson-peak contribution can be used as predictor of a
locally shallow basin with lower activation energy. The
universality of this relationship is demonstrated by ex-
amining different glasses. As shown in Fig. 6 and Fig.
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FIG. 7. Robustness of the inverse proportionality between
the activation energy and the intensity of boson peak against
variation in cooling history. The cooling rates applied during
sample preparation are varying from 1× 109 to 1× 1014 K/s.
(a) for Cu atoms, and (b) for Zr atoms.

7, such correlation is robust against variation in both
composition and cooling history. Since low barriers are
usually associated with asymmetry in PEL topology [60],
one may deduce that there is intimate correlation be-
tween anharmonicity and boson peak in metallic glasses.
On the contrary, large activation energy is linked with
deeper valleys in PEL, which are usually well described
by the harmonic transition state theory. In this sense,



6

lower ∆Q means stronger deviation from harmonicity,
hence “soft” and emergently anharmonic regions of the
PEL. This idea will be justified in the following from dif-
ferent perspectives at the atomic scale.

To demonstrate the anharmonicity of the energy basins
which contribute to the BP, we run MD in Cu50Zr50
glass sample for 1 ps at 100 K, after sufficient thermal
relaxation. The potential energy and the root mean-
squared displacement (RMSD) of the system are recorded
in Fig. 8 as a function of time. We pick two extreme
Cu atoms, with strongest and weakest contribution to
the boson peak, respectively, for demonstration. For the
low-boson-peak atom with ID = 7565 shown in Fig. 8(a),
each fragment of PEL closely resembles a quadratic func-
tion. However, the PEL fragment of the high-boson-peak
atom with ID = 1633 shown in Fig. 8(b) strongly devi-
ates from the harmonic approximation. This indicates
that the atomic motions contributing to boson peak ex-
plore the more anharmonic topology of the local PEL.
These atoms are found to move far away from their equi-
librium positions, as further evidenced by the trajectory
shown in Fig. 8(d). Instead, atoms that do not partic-
ipate in the boson peak are limited in their motions to
the harmonic basins of the PEL. Low-boson-peak atoms
are found to vibrate near their local equilibrium position,
as shown in Fig. 8(c). Moreover, it is interesting to find
that the high-IBP experiences string-like collective mo-
tion, as shown in the inset of Fig. 8(b), in analogy to the
atomic-scale pattern of β relaxation [61–63]. The local
structural changes during such “chain-like” diffusive mo-
tion are further detailed in Fig. S4, which shows that a
significant fraction of neighboring atoms around a high-
boson-peak atom experience essential structural frustra-
tions. It indicates that these atoms which contribute to
the boson peak are not only elastically soft but plasti-
cally soft as well. This new link that we found between
BP and stringlets aligns well with very recent results of
Douglas and co-workers [64]. Further, the generality of
such emergently anharmonic dynamics of high-IBP atoms
is verified by applying this analysis to more atoms in Figs.
S5 and S6.

Temperature dependence provides further insights into
the anharmonic contribution to the boson peak. If the
local PEL were completely harmonic for a certain vi-
bration mode, there would be no dependence on tem-
perature. Here, we performed the vibrational analysis
at different temperatures. To do this, VDOS was ob-
tained by direct diagonalization of Hessian matrix of sta-
ble structures minimized from equilibrated configurations
at different temperatures. Fig. 9 shows the VDOS and
its Debye-normalized at different temperatures. Increas-
ing temperature leads to the shift of VDOS and boson
peak towards smaller values of frequency. Meanwhile,
the intensity of boson peak is enhanced as temperature
increases in agreement with the behaviour seen for poly-
mer glasses [65]. The phenomena are more conspicu-
ous across the glass transition temperature, Tg = 650 K
for Cu50Zr50 (The glass transition temperature is deter-

mined by examination of the discontinuity in the slope of
volume-temperature curve upon cooling a glass-forming
liquid to glass by MD). Thus, temperature-dependent
VDOS points to intimate correlation between the emer-
gent anharmonicity and the boson peak. It is of note
that this is a mean-field-type scenario, which assumes
the glass remains in the same energy basin without es-
caping upon rising temperature. If the inherent struc-
ture is changed during heating, then the physical pic-
ture becomes intricate due to existence of hierarchical
PEL structures in the general glasses. Note that some
early experiments observed that the Raman scattering
intensity is proportional to n (ω) + 1 [6, 7]. Therefore,
the peak in the VDOS was concluded to be temperature
independent. This is possibly caused by either 1) the
Bose-Einstein exponential function at room temperature,
which makes the temperature dependence of the BP not
visible, or 2) experimental error bars, or a combination
of 1) and 2).

Another evidence to intuitively demonstrate the emer-
gent anharmonicity is the potential of mean force w (r),
which is defined as the reversible work to move two atoms
from infinite distance to separation with distance r. This
reversible work is the effective interaction in the mean-
field sense since it denotes the change of free energy for
the process and its gradient gives the average of the force
over the equilibrium distribution of all other atoms. Ac-
cording to e.g. [66], the exact definition of potential of
mean force is w (r) = −kBT ln g(r), where g(r) denotes
the radial distribution function. We test the idea in an
inherent structure of 10 K with atoms interacting via the
present empirical EAM potential. The result is shown in
Fig. 10, in which the potential of mean force is plotted
as a function of distance. The red scattered data rep-
resent EAM calculations and the blue line denotes the
best quadratic fitting of points at the valley. It shows
strong anharmonicity expressed by the strong deviation
from the quadratic curve once the state leaves the poten-
tial bottom. Therefore, large values of cubic and quartic
terms are expected in the Taylor expansion of the real
interactive potential.

The final discussion, which further demonstrates and
quantifies the emergent anharmonicity of boson peak
vibrations, comes from the mode- and atomic-resolved
Grüneisen parameter γ, which is directly associated to
the third- and higher-order anharmonic coefficients in the
Taylor expansion of the interatomic interactions [60, 67–
69]. The atomistic Grüneisen parameter can straightfor-
wardly quantify the level of anharmonicity of a local PEL
fragment experienced by a given atom, furthermore the
linewidth of acoustic phonons can be shown [20, 23] to be
Γ ∼ Dq2, with the vibration diffusivity D being propor-
tional to the average Grüneisen parameter γ of the ma-
terial at hand [69, 70]. First of all, the mode-Grüneisen
parameter, γk, is calculated according to the derivative
of the phonon frequency with respect to volume variation

γk = − V
ωk

∂ωk (V )

∂V
, (3)
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where V is the volume of the simulation box, and ωk

is the phonon frequency of the kth normal mode. It can
be approximated by the numerical differentiation method
[71]:

γk = − V
ωk

〈
∆ωk (V )

∆V

〉
. (4)

To obtain the mode-Grüneisen parameter, a three-step
diagonalization of the Hessian matrix is carried out ac-
counting for the variation of phonon frequency at 0.99
V0, 1.0 V0 and 1.01 V0, respectively. V0 is the volume
of the system at ground state. As shown in Fig. 11(a),
γk is then plotted as a function of the phonon frequency.
Surprisingly, huge values of the mode-Grüneisen param-
eter appear at low frequencies. It should be noted that
the apparent extreme values of the mode-Grüneisen pa-
rameter corresponding to the low-frequency modes must
originate from the local structural rearrangements (made
possible due to low activation energies; see Fig. 1) upon
volumetric expansion or contraction. Actually, even an
extremely small volume change will cause some tiny vari-
ation of local inherent structures since there are certain
abundant local soft structures similar to liquids with ac-
tivation energies close to zero; see further evidence in
Refs. [72, 73]. However, it is such diffusive phonon that

identifies the soft modes. It also generally indicates that
the definition of the kth normal mode – sorted by the
magnitude of the normal mode frequency ωk at ground
state V0 – is not invariant against volumetric variation.
This is in line with the work by Fabian and Allen [74, 75]
which shows exactly similar trend of mode-Grüneisen pa-
rameter vs mode frequency for amorphous silicon. Fig.
11(a) implies that the boson peak is correlated to the
emergently anharmonic interactions, and that the energy
flows from one mode to another, in analogy to the anhar-
monic/nonlinear Fermi-Pasta-Ulam problem. Moreover,
the dashed vertical line in Fig. 11(a) indicates the fre-
quency of boson peak, which appears right at the in-
flection point of the γ vs ω function. The inset of Fig.
11(a) is a semi-logarithmic plot, which shows that a large
part of data points for the mode-Grüneisen parameter are
near zero. Only a small fraction of modes contribute to
the big absolute value of γk and thus to the boson peak.
The discontinuity in γk in the inset can be attributed to
the periodic boundary condition used in atomistic simu-
lations.

Further, the anharmonic feature is demonstrated also
at the system level. In Fig. 11(b), γave, which denotes the
average value of the mode Grüneisen parameter within
ω < ω0, is plotted as a function of frequency. Even on
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a system level, the average γk has quite large values (in
range between 1 and 2), suggesting emergently anhar-
monic effects, especially, at low frequencies. It is inter-
esting to note that γave (ω < ω0) has a maximum at 2.5
THz, which is in accord with the position of boson peak
(2.5–5.5 THz) as shown in Fig. 9(b).

The above picture, where anharmonicity dominates
the THz and the lower-energy spectrum, whereas the
high-energy spectrum is less anharmonic, is also in line
with experiments by Monaco and co-workers on vari-
ous glasses, which showed that anharmonic damping is
active at low wavenumber, while the more “harmonic”
Rayleigh scattering/damping [76] dominates at higher
frequencies [18].

 Potential of mean force
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FIG. 10. Potential of mean force as a function of distance.
Scattered points in red are raw data. The blue line is the best
quadratic fitting of points at the valley.

Finally, to show the robustness of the correlation be-
tween intensity of boson peak and anharmonicity, we fur-
ther define a particle-level Grüneisen parameter γi via
summation of all contributions from individual mode-
Grüneisen parameters projected onto the polarization di-
rection of a specific atom i. That is

γi =
∑
k

− V
ωk

〈
∆ωk (V )

∆V

〉 ∣∣eik∣∣2, (5)

where ek is the eigenvector of the kth eigenmode, and
eik denotes the corresponding polarization vector of the
atom i in the kth normal mode. Fig. 11(c) shows the sta-
tistical IBP–γi correlation. Here, the background shows
the raw data colored by the number density, while the
scattered points are the result of numerical coarse grain-
ing with proper bin size. Throughout the whole fre-
quency domain, the particle-level intensity of boson peak
reveals a strong positive correlation with the particle-
level Grüneisen parameter, with a robust exponential
correlation. It should be noted that there is a con-
siderable deviation from the exponential trend at high
γi values larger than 10. This is probably due to the
change of inherent structure upon volumetric variation
when the Grüneisen parameter is estimated according to
Eq. 5. Therefore, the correlation for γi > 10 is appar-
ent and should not be understood as the actual value
of Grüneisen parameter for the softest modes. Gener-
ally, it is evident from this picture that the atoms with
the largest atomic-level Grüneisen parameter values con-
tribute the most to the boson peak intensity. Hence, also
the particle-level information strongly indicates that the
emergent anharmonicity plays an important role of the
boson peak in disordered materials.
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IV. CONCLUSIONS

We presented a detailed quantitative characterization
of atomic vibrations in atomic glasses from the point of
view of emergent anharmonicity. In contradiction with
the current dominant paradigm [28, 29, 77] that postu-
lates that the excess of vibrational modes in the THz
range of glasses (known as boson peak anomaly) is due
to “harmonic” dissipationless processes induced solely
by disorder, we have demonstrated quantitatively at the
atomistic level that the boson peak is emergently corre-
lated with anharmonic vibrations. This is in line with
early theoretical models [10–12] and confirms the uni-
versal mechanism proposed in [21] for the origin of the
boson peak due to the Ioffe-Regel crossover from bal-
listic to diffusive anharmonic propagation of vibrational
excitations in glasses as well as in ordered crystals [24–
26]. The above framework provides a natural connection
between PEL and vibrational eigenmodes in solid-state

systems. The emerging picture of disorder and anhar-
monicity being the two sides of the same coin, opens up
plenty of opportunities for structure-property relations
and for material discovery in the area of amorphous mate-
rials for mechanical and thermal transport applications,
as well as for crystalline strongly anharmonic thermoelec-
tric materials [60, 78–80] where the boson peak plays an
increasingly important role [80–84].
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[80] Y. Xia, V. Ozoliņš, and C. Wolverton, Microscopic mech-
anisms of glasslike lattice thermal transport in cubic

cu12sb4s13 tetrahedrites, Phys. Rev. Lett. 125, 085901
(2020).

[81] K. Suekuni, C. H. Lee, H. I. Tanaka, E. Nishibori,
A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi,
T. Hasegawa, M. Nakamura, S. Ohira-Kawamura,
T. Kikuchi, K. Kaneko, H. Nishiate, K. Hashikuni,
Y. Kosaka, K. Kuroki, and T. Takabatake, Retreat from
stress: Rattling in a planar coordination, Adv. Mater.
30, 1706230 (2018).

[82] M. Baggioli, B. Cui, and A. Zaccone, Theory of the
phonon spectrum in host-guest crystalline solids with
avoided crossing, Phys. Rev. B 100, 220201 (2019).

[83] M. Simoncelli, N. Marzari, and F. Mauri, Unified theory
of thermal transport in crystals and glasses, Nat. Phys.
15, 809 (2019).

[84] S. Ren, H.-X. Zong, X.-F. Tao, Y.-H. Sun, B.-A. Sun,
D.-Z. Xue, X.-D. Ding, and W.-H. Wang, Boson-peak-
like anomaly caused by transverse phonon softening in
strain glass, Nat. Commun. 12, 5755 (2021).

https://doi.org/10.1103/PhysRevLett.79.1885
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1039/D0SM00814A
http://arxiv.org/abs/2009.05970
https://arxiv.org/abs/arXiv: 2009.05970
https://doi.org/10.1038/nmat3035
https://doi.org/10.1038/s41467-020-18121-4
https://doi.org/10.1103/PhysRevLett.125.085901
https://doi.org/10.1103/PhysRevLett.125.085901
https://doi.org/https://doi.org/10.1002/adma.201706230
https://doi.org/https://doi.org/10.1002/adma.201706230
https://doi.org/10.1103/PhysRevB.100.220201
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41467-021-26029-w

	Correlation between vibrational anomalies and emergent anharmonicity of local potential energy landscape in metallic glasses
	Abstract
	I Introduction
	II Methods
	A Molecular Dynamics
	B Single-particle intensity of boson peak
	C Single-particle activation energy

	III Results and discussion
	IV Conclusions
	 Acknowledgments
	 References


