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We compute mixed QCD-electroweak corrections to the fully differential production of an on-shell W
boson. Decays of W bosons to lepton pairs are included in the leading order approximation. The required
two-loop virtual corrections are computed analytically for arbitrary values of the electroweak gauge
boson masses. Analytic results for integrated subtraction terms are obtained within a soft-collinear
subtraction scheme optimized to accommodate the structural simplicity of infrared singularities of mixed
QCD-electroweak contributions. Numerical results for mixed corrections to the fiducial cross section of
pp = Wt = [I"v and selected kinematic distributions in this process are presented.
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I. INTRODUCTION

Studies of electroweak gauge bosons produced in hadron
collisions played an important role in establishing the
validity of the Standard Model of particle physics. Given
these successes, it is not surprising that experiments at the
LHC continue the systematic exploration of vector-boson
production processes [1-4]. Although plenty of interesting
physics, ranging from constraints on parton distribution
functions to measurements of the weak mixing angle to
explorations of lepton universality, can be investigated
by studying the production of single W and Z bosons,
the Holy Grail of precision electroweak physics at the LHC
is the measurement of the W-boson mass. Indeed, the
current goal is to measure the W mass with a precision
of about 8 MeV to match the uncertainty in the value of the
W mass obtained from precision electroweak fits [5,6].
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If achieved, it will imply a relative uncertainty on the
(directly measured) W-boson mass of about O(1072)
percent, an astounding precision.

Perturbative computations within the Standard Model
play a central role in providing a precise description of W
and Z production processes at the LHC and are thus crucial
for the success of precision electroweak measurements.
Currently, fully differential cross sections for dilepton
production in hadron collisions are known through next-
to-next-to-leading order (NNLO) in perturbative QCD
[7-17] and through next-to-leading order (NLO) in electro-
weak theory [18-27]. Very recently, the total cross section
for W production was computed through N3LO in pertur-
bative QCD [28].

An exact relation between the quality of the theoretical
description of the process pp — W — [v and the precision
with which the W mass can be extracted is complicated
and observable dependent. However, it has been estimated
that mixed QCD-electroweak corrections to this process,
i.e., effects that are suppressed by a product of QCD and
electroweak couplings O(a,agw) relative to the leading-
order (LO) process, induce a shift of O(10 MeV) in the W
mass measurement [29,30]. Thus, it seems that such QCD-
electroweak corrections need to be accounted for to achieve
O(8) MeV precision. It is also important to compute mixed
corrections at a fully differential level to ensure that they
can be calculated for realistic observables.

Recently, such mixed QCD-electroweak corrections
were calculated for on-shell Z production at the LHC
in Refs. [31,32], extending earlier results on mixed
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QCD-QED corrections presented in Refs. [33-36].]
Although the underlying mechanisms for Z and W pro-
duction at the LHC are quite similar, there are two
outstanding issues with extending the computation of
QCD-electroweak corrections to W production. The first
challenge is that two-loop mixed QCD-electroweak cor-
rections are available for Z-boson production [38] but are
unknown for the W-boson case.” The computation of these
corrections is cumbersome, since they depend on several
mass scales, but definitely feasible. We present the results
of this calculation in this paper.

The second problem that needs to be addressed are soft
and collinear divergences. These divergences originate
from singular soft and collinear limits of loop integrals
and real-emission amplitudes; they are known to disappear
when elastic and inelastic processes are combined. For the
purpose of a fully differential description of W production
in hadron collisions, these divergences need to be extracted
from real-emission contributions without integration over
the resolved phase space. Several ways to do this in practice
were developed in the context of NNLO QCD computa-
tions at hadron colliders [40-47].

In this paper, we employ the so-called nested soft-
collinear subtraction scheme [47] that we adjust to
accommodate particularities of mixed QCD-electroweak
corrections. We note that such an adjustment was not
necessary in the case of Z production since Z bosons are
electrically neutral. For this reason, a simple abelianization
of NNLO QCD corrections to Z production was sufficient
[34]. However, since W bosons are electrically charged
and, hence, interact with photons, it is not possible to adapt
the NNLO QCD description of W production to describe
mixed QCD-electroweak corrections. In what follows, we
derive simple formulas that describe integrated subtraction
terms required to make O(a,agy) corrections to pp — W
finite. Presenting these formulas, alongside results for the
two-loop virtual corrections, is the main goal of this paper.

We note that mixed QCD-electroweak corrections to
pp — W — [v can be split into three categories: (i) mixed
corrections to the production process pp — W, (ii)) QCD
corrections to the production process and electroweak
corrections to the decay, and (iii) nonfactorizable correc-
tions that connect production and decay processes [48]. The
nonfactorizable corrections to on-shell W production are
suppressed by powers of I'y, /My, [29,48,49] and, there-
fore, can be neglected. Similarly, in case of on-shell
production, corrections to the production and decay stages
of the process can be defined unambiguously in a gauge-
invariant way; see, e.g., Ref. [48]. NLO QCD corrections to
the production and NLO electroweak corrections to the

'Very recently, the O(n o agy) corrections to off-shell W/Z
production were computed [37].

*The form factor was computed as an expansion in sin” 0y, in
Ref. [39].

decay—as well as mixed QCD-EW corrections to the decay
coming from renormalization—have already been consid-
ered in Refs. [29,48] and for this reason we do not consider
them here. The unknown contribution is mixed QCD-
electroweak corrections to the production process pp — W
since it is of NNLO type. In this paper, we focus on this
contribution.

More specifically, we derive formulas for the two-loop
corrections to the gg' — W vertex function and for all the
subtraction terms required to compute mixed QCD-electro-
weak corrections to W-boson production at the LHC. As an
application, we provide results for fiducial cross sections
and selected kinematic distributions for the pp —» W —
ITv process. However, we do not perform detailed phe-
nomenological studies related to, e.g., the impact of these
corrections on the W-mass measurement since such studies
warrant a separate publication. We plan to return to this
topic in the near future.

The paper is organized as follows. In Sec. II, we provide
a brief overview of the nested soft-collinear subtraction
scheme and point out differences between the mixed
QCD-EW case studied here and the pure NNLO QCD
cases considered earlier [12,47]. In Sec. III, we describe
the soft limits of scattering amplitudes relevant for comput-
ing mixed QCD-EW corrections. In Sec. IV, we briefly
discuss the computation of NLO electroweak corrections
to pp = W.> In Sec. V, we derive all of the integrated
subtraction terms required for the full mixed QCD-EW
calculation, focusing on the most complicated ¢g’ and gg
partonic channels. In Sec. VI, we present final formulas
for integrated subtraction terms for all partonic channels.
In Sec. VII, numerical results are presented. We conclude in
Sec. VIII. Many intermediate results, including the detailed
discussion of mixed QCD-electroweak corrections to the
qq' — W form factor, are collected in the Appendixes.

II. AN OVERVIEW OF THE NESTED
SOFT-COLLINEAR SUBTRACTION SCHEME
AND ITS MODIFICATION FOR QCD-EW
CORRECTIONS TO W PRODUCTION

In this section, we provide an overview of the soft-
collinear subtraction scheme [12,47]. For the sake of
definiteness, we consider the process pp - W — [Tu,
It is well known that infrared safe observables defined
for this process must receive contributions from elastic
pp — W*H(I*v) and inelastic pp — W*(I*v) + X, chan-
nels. We note that, depending on the type of corrections that
are studied, X, stands for final states composed of gluons,
quarks, and/or photons.

It is conventional to use dimensional regularization to
compute virtual corrections and to regulate real-emission

*The NLO QCD corrections required for computing mixed
QCD-electroweak corrections can be borrowed from Refs. [12,47];
for this reason, we do not discuss them here.
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contributions. In this case, higher-order contributions to the
elastic process contain explicit 1/¢ poles that originate
from an integration over loop momenta, whereas inelastic
processes develop such 1/€ poles only once the integration
over phase spaces of all potentially unresolved particles is
performed. To keep results fully differential, this phase-
space integration should be performed in a way that does
not affect infrared safe observables. A procedure that
allows one to do that defines a particular computational
scheme that is often referred to as a subtraction (or a
slicing) scheme. As we already mentioned, in this paper, we
will use the so-called nested soft-collinear subtraction
scheme introduced in Ref. [47].

The nested subtraction scheme is based on the well-
known notion of factorization of scattering amplitudes in
singular limits and the fact that, thanks to QCD color
coherence, soft and collinear limits of scattering amplitudes
can be dealt with independently of each other. The behavior
of scattering amplitudes in the singular limits is well
known; typically, they split into universal functions that
encapsulate singular behavior and amplitudes that describe
lower-multiplicity processes.

The idea behind the soft-collinear subtraction scheme is
to iteratively subtract such singular limits from differential
cross sections starting from soft singularities. The sub-
traction terms have to be added back and integrated over the
unresolved phase space. In the case of collinear singular-
ities, a similar procedure is followed; the collinear sub-
traction, however, applies to cross sections that are already
soft subtracted. This nested nature of the subtraction
process gives rise to a name—the nested soft-collinear
subtraction scheme.

An important challenge in constructing subtraction
terms is to ensure that the resulting limits are unambigu-
ous. This requires us to resolve overlapping singularities
whenever they arise. In QCD, overlapping singularities
are present in both soft and collinear emissions but there
is no soft-collinear overlap. To deal with soft singularities
in QCD amplitudes, we order gluon energies and
consider the so-called double-soft and single-soft limits.
To deal with overlapping collinear singularities, we follow
Refs. [44,50] and introduce partitions and sectors that
allow us to uniquely specify how singular collinear limits
are approached.

Although similar in spirit to the general QCD case, the
calculation of mixed QCD-EW corrections to ¢gg' — W is
particular. There are a few reasons for that. The first one is
that soft singularities in the process qg' — W gy are not
entangled. To understand this, we note that when both a
gluon and a photon are emitted from quark lines, the
situation is QED-like and soft singularities in QED are
known to be independent from each other. If, however, a
photon is emitted from a W-boson line and a gluon is
emitted from a quark line, the independence of the two
soft limits is obvious. This feature of mixed QCD-QED

corrections allows us to consider soft limits of a photon
and a gluon separately, leading to simplifications of the
integrated subtraction terms compared to the QCD case.
Indeed, only the product of two NLO-like integrated
soft subtractions is required, although we need them to
higher order in the e-expansion compared to a NLO
calculation proper.

Similarly, collinear limits can be simplified because
photons and gluons do not interact with each other.
Since two out of the four collinear sectors described in
Ref. [47] for the NNLO QCD case are introduced to isolate
the g* — gg(qq) splitting, the mixed QCD-EW case can be
simplified at least inasmuch as the Wgy final state is
concerned. Moreover, for gq initial states, the absence of
g — gy splittings leads to a simplified version of the
required partition functions compared to the case discussed
in Ref. [47] and a smaller number of singular limits that
need to be considered. Contrary to the soft case, collinear
sectors still contain genuine NNLO-like contributions
that do not fully factorize into the product of NLO-like
limits. Nevertheless, the features discussed above make the
construction of subtraction terms much easier than in the
generic QCD case.

As we already mentioned in the Introduction, an impor-
tant difference with respect to a computation of NNLO
QCD corrections to pp — W [12] stems from the fact that
W bosons radiate photons. Since W bosons are massive,
such radiation does not affect collinear singularities but it
does change the soft ones. Hence, formulas for the soft
limits need to be modified compared to the QCD case. We
describe the corresponding modifications and how we deal
with them in the next section.

The final difference between the NNLO QCD compu-
tations reported in Refs. [12,47] and the one that we discuss
in this paper is that this time we perform computations in an
arbitrary, i.e., not center-of-mass, partonic reference frame.
The very fact that the soft-collinear subtraction scheme is
perfectly suited to deal with this situation in spite of the fact
that it is not manifestly Lorentz invariant is interesting. It
illustrates the flexibility of this approach and, on a practical
level, it makes the treatment of soft and collinear limits very
natural and transparent.

III. THE SOFT LIMITS

As we mentioned in the previous section, an important
difference between the computations of NNLO QCD and
mixed QCD-electroweak corrections is the soft limits. In
this section, we elaborate on this point and provide the
required formulas to describe them.

The key feature that we exploit to construct soft-
subtraction terms for mixed QCD-EW corrections is the
fact that soft-photon and soft-gluon Ilimits are not
entangled. For this reason, we can consider the two soft
limits independently. The resulting simplifications in com-
puting integrated subtraction terms will become apparent
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when we discuss the NNLO computations in Sec. IV. In this
section, we describe the soft limits relevant for the mixed
case and explain how the required eikonal integrals can be
evaluated.

We focus on the most complicated process u(p;) +
d(p,) = W+ g(ps) +7(ps). We employ notations that
have been used in NNLO QCD calculations [12,47] and
denote the product of the matrix element squared of this
process and the relevant phase space factor for the W boson
(or its decay products) as Fyy(1,.27:4,.5,),

Fim(1i.23:44.5,) :NZ |A(P1, P2s Pws Pas Ps) P

col,pol
x (27)84(py + P2 — pw — Pa — Ps)
dd—l
w_ S Pw (1)
(27[)d_]2EW

A similar notation is used for lower-multiplicity processes.
In Eq. (1), AV stands for all the required (d-dimensional)
initial-state color and helicity averaging factors, and for
all the required final-state symmetry factors. Note that
Fim(1,.25:4,.5,) does not contain the phase-space vol-
ume elements for the potentially unresolved particles py
and ps. We consider the soft-gluon and the soft-photon
limits separately. Similar to the NNLO QCD case, we
describe these limits using two operators, S, and S,. The
operator S; selects the most singular contribution of | M ?
in the E; » 0 limit and removes particle i from the
momentum-conserving ¢ function. For further details,
see Refs. [12,47].

We begin by considering the soft-gluon limit. In the
notation that we have just reviewed, it reads

S,Fim(1,.25:4,.5,) = g*Eik,(p1, p2s pa) Fim(1,. 223 5,).

(2)
where g, is the (bare) strong coupling and
. 2Cr(p1p2)
Eik, (py, p2ipy) = —————, 3
e S T A

with (p;p;) = p; - p;. Also, Cp = (NZ —1)/(2N,) is the
QCD quadratic Casimir and N, =3 is the number of
colors. Note that this limit is independent of whether or not
there is a photon in the matrix element squared; this implies
that an identical formula can be used to describe the soft-
gluon limit of the process u(p,) + d(p,) = W+ g(ps),

SgFLM(1w2ZZ;4g) - g?Eikg(pl’pZ;lM)FLM(lw221)' (4)

The soft-gluon limit of different partonic channels can be
trivially obtained by crossing these results. For example,

S,Fim(1,.25:45.5,) = GiEik,(pa. pa: ps)Fim(1,. 25:47).

(5)
To analyze the soft-photon limit, we write

SyFLM( w2354y, 5}/)

= ¢’Eik, (p1. P2, pwi ps)Fim(1i: 2334,).  (6)
where pyw = p; + p» — p4 is the four-momentum of the W

boson and e is the (bare) electric coupling. The QED
eikonal function reads

Eik,(p1. pa. Pws Py)

_ _2ppa) g P
R G el rs:
2(pwpi) _ 2(pwp2) )}
r (@t et )
(7)
where p?, = M%,. In Eq. (7), we used Qy = Q, — Q4 to

denote the electric charge of the W boson. Note that py,
depends on the gluon four-momentum; hence, it changes if
the soft-photon and the soft-gluon limits are considered
simultaneously.

To compute the soft-subtraction terms, we integrate the
eikonal functions Eik,, over the phase spaces of a soft
gluon and/or photon. Following the NNLO QCD compu-
tations [12,47], we define phase-space elements with an
upper energy cutoff £,

d-13
4

= i

e(Emax - pO)' (8)

In the case of the soft-gluon limit, we easily find

—2e 12 —c
/[dm]ngikg(pl,pz;m): [as]ZCF(zfzmaX) F(El—Zeg’
)
where
B F2QLd-2) (ay (4rm)c
[ar] =20 <ﬂ>m (10)

with a; the (bare) strong coupling.

To describe the soft-photon contribution, we need to
integrate the soft-photon eikonal function Eq. (7) over the
photon phase space. Since this integral is more involved
than the one in the gluon case Eq. (9), it is beneficial to
compute it in two special cases.
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The first case is that of a soft photon but resolved gluon. The relevant eikonal integral was computed in Ref. [51] and we
borrow it from there. We obtain

(1 -e)

I _2€)Jy(1,2, W), (11)

/[dps]einky(m,pz,Pw;ps) [ (2E jax)

where

2 p—
e o) ) el

2 -
—2le§_;Q,»<—1>’1n(1 _Wﬂ> ( ) 2QWZQ, {Lu( )] +0(e).
InEq. (12), 0, = Q,and O, = Q4 Ow = Q, — Oy, f = \/1 = M3,/ E%, and k;5y = (p;pw)/(E;Ey). Note that, similar to

(12)
the QCD case, we introduced in Eq. (11) a convenient notation for the (bare) fine structure constant a,

B e20(d-2) (a (477;)6
=S~ (36 71 ey (13

For the gluon-initiated process g(p,) + d(p,) = W* +ii(p,) + y(ps), we require a similar but slightly different
integrated eikonal function. It reads

(1 —e)

=26 1,(2,4,W), (14)

/ (dps]eEik, (ps. ps. pw: ps) = [a](2Emey)

where

2
J,(2,4,W) = Qd: % +% (QW -20, ln<4K4W ) +2Qd1n< fow )) _ 2294y )
Kiw

V1-p? V1-p2 €
— 02 l 1_ﬁ_l 21 :|_ ( > ( i )
Qw[ﬂlnl—Fﬂ 21 1+ﬂ 2QWIE{;‘}Q1 1= 1“1‘,3

— 20y Z Q0 {Liz <1 - lKiWﬂ) + Liz( lKj_Wﬁ>} +20,0Q. (Liz(l —na) + %lnzmz) +0(e)  (15)

ie{2,4}

and Q) =0y, Q4 =-0, Qw =0, Q4 f=+/1-My/Ejy, and Ky = p;pw/(E;Ew). We also used 1, =
(P2p4)/ (2E;Ey) = (1 = cosBy)/2 in Eq. (15).

We can use the integrated soft-photon eikonal factors shown in Egs. (11) and (14) when a gluon or a quark in the final
state is resolved, so that py # p; + p», and when they are unresolved. However, for the latter case, one needs to evaluate
the integrated photon eikonal function to higher orders in the e-expansion, in the required kinematic configuration. It is
technically more convenient to obtain this result by first taking the required limits in the eikonal function Eq. (7) and
integrating over the photon four-momentum after that, rather than the other way around.

Although soft and collinear parton emissions have a different impact on the QED eikonal function, it is easy to see that we
can accommodate both soft and collinear limits of the emitted parton p, by integrating the eikonal function Eik, in an
arbitrary reference frame with the constraint py = p; + p,. We write such an integral as

K 21 —¢)

'mjy(EhEz)y (16)

/ (Aps)Eik, (p1. pa. o 319 = [2](2Ema)

where the function J,(E,, E,) reads

013008-5
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02+ 0% Ow

jy(ElvE2) - 2 =+

€ 6(1—2€)+€_2

(&) - -el@) -}

Ow E;\¢ E,

=W LYV AFy [ —e,—26,1 26,1 -22) —1
ta Qu E, a\ e < E,

0 E Nk 2e1—2e.1-E1) 1

d E, 21 €, €, €, E,

Oy (Ex\¢ E
— | = F —2e¢,1—-¢,2—-2¢,1—— | —1]. 1
—|— 6(1 — 2€> El 21 €, €, €, Ez ( 7)

We note that entries in the first line in Eq. (17) are divergent
contributions to J »» all other terms in Eq. (17)~have a finite
€ — 0 limit. We also note that the function J, assumes a
particularly simple form in the partonic center-of-mass
frame, £, = E,. We find

Qi+0;, O
€? e(l—2¢)"

J(E\E) = (18)

Although, as we said earlier, we perform all computations
in an arbitrary frame, once the poles cancellation is
achieved, we switch back to the partonic center-of-mass
frame to present analytic results for the finite integrated
subtraction terms. The simplicity of Eq. (18) is an im-
portant reason to expect results in the center-of-mass frame
to be compact and physically transparent.

IV. NEXT-TO-LEADING ORDER
ELECTROWEAK CORRECTIONS

To introduce notations and show how the nested soft-
collinear subtraction scheme is applied to a simple
problem, we briefly discuss the computation of NLO
electroweak corrections. At this order, we need to consider
both the ¢g’ — Wy and the yg — Wq' channels.

We first consider the gg’ channel and begin with the
real-emission process u(p,) +d(p,) = W +y(ps) [see
Fig. 1(a)]. Using the notation introduced in Ref. [47] and
reviewed in the previous section, we write the real-emission
contribution as

u o u

W+

SH]
IS

(a) (b)

FIG. 1.

[
2s- ddg = /[dp4]FLM(1Ll’2L_i;47) - <FLM(1u72[i;4 )>?
(19)

where s =2p, - p, and [dp,] = d9 ' ps/((27)*12E,) x
O(Emax — E4). We do not show the four-momentum of the
W boson in the list of arguments of the function Fyy;; we
assume that it is always derived from energy-momentum
conservation. We note that the phase-space integration
measure for all final-state particles but the photon, as well
as the delta function that ensures energy-momentum con-
servation, are included in the function Fp,y; see Eq. (1).

We begin with the extraction of soft singularities and
write

(Fim(14:22:4)) = (S, Fm(1,,23:4,))
+ (I =S, Fm(1,,23:4,)).  (20)

The first term in Eq. (20) is computed using the integrated
eikonal function given in Eq. (16). We find

<SyFLM(1ua 221;4;/»

— (o] (2B 21 =€)

(1 =) Vr(En E2) Pl 29))-

(21)
The term proportional to (/ — S,) on the right-hand side of
Eq. (20) is soft regulated, but it still contains divergences

when the photon becomes collinear to one of the incoming
quarks. To regulate them, we use the same approach we

T NNV U

wt

]
i

©)

Representative Feynman diagrams contributing the NLO electroweak corrections to ud — W, The real emission correction

ud — W* 4y is shown in (a), the virtual correction is shown in (b), and the real emission y + d — W* + @ is shown in (c).
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used for the QCD case [12,47]. In particular, in analogy to
the soft case, we introduce the collinear operators C,; that
extract the collinear limit from Fyy,; see Refs. [12,47] for
details. We then write

<(1_ Sy)FLM(lwzd;“'y»
= (O{olFim(14:24:4,)])
+ <(I - Sy)(cyl + C}/Z)FLM(luvzd;4y)>v (22)

where O, o = (I = S,)(I = C,; — Cp,). The first term on
the right-hand side of Eq. (22) is fully regulated and we do
not discuss it anymore. In the last two terms, we need to
consider the limit when the photon becomes collinear to
either p; or p,. We start with the case when the photon is
collinear to p;. The corresponding collinear limit can be
directly taken from the QCD case [12,47]. We obtain

e*Q? _ Fim(z-1,.2;
ChFim(1y:2434) = —— (1= Z)qu(Z)M’
4P41 z
(23)
where E, = (1 = 2)E\, p;j = p; - p;/(E;E;) = 1 = cos6,;,

and the splitting function P, (z) is defined as follows:

1+ 22
1-z2

P, (2) = —e(l —2). (24)
Note that compared to a conventional ¢ — g + ¢ splitting
function, we do not include the color factor Cr in qu. The
reason for that is that one and the same splitting function
can then be used to describe both the ¢ — g +y and
q — q + g splittings which is quite convenient.

The next steps are identical to the QCD computation and
involve integration over the photon emission angle in the
soft-regulated collinear term [12,47]. Repeating these steps,
we find

((I=8,)CpiFripm(1,.24:4,)
L 0a(1—e)
= —[a] = T =20
(o [ o, Fone lu2al)
(25)

where L, =InE,,/E, and

PgTqLO(z,L) =(1- z)‘zel_’qq(z) =+ 25(1 —z)e~%L, (26)

The expansion of the function P in powers of € is given
in Appendix C.

To obtain the final result for the soft-regulated collinear
contribution in Eq. (22), we need to account for the term
proportional to C,,(1 —S,). It is easy to obtain it from
Eq. (25) by replacing L, with L, =1InE,,/E, and
Fim(z-1,,2;) with Fpy(l,.z-27). Upon doing that,
we find

; L P(1—e) - )
2s 'dUR - [a} (ZEmax) 2 m(Jy(ElvEZ)FLM(Iu’zd»

+ <(97NL0[FLM<1W221§47>]>

F2 1_6 ZQZ 2E ZePNLO(Z L)
e I'(1-2¢) - A
x <F£§4<1wza|z>>, (27)
where we used the notation Q, = 0, ; and

[ F . 11472_ s | — 1’
A2 = { 00 0 )
Fim(l,,z:23)/z, i=2.

We will use the notation in Eq. (28) and its natural
generalizations in what follows.

To obtain the final result for the NLO corrections, we
have to combine the real-emission contribution Eq. (27)
with virtual corrections [see Fig. 1(b)] and parton distri-
bution functions (PDFs) renormalization. The former is
discussed in Appendix A. We now discuss the latter.
Collinear counterterms depend on the renormalized cou-
pling constant a(,u).4 Since all the above results are written
using unrenormalized couplings, we rewrite the results for
the convolutions through the unrenormalized coupling
constants as well using

oG =29

= e . o)) =——"lal. (29)

The collinear renormalization contribution then reads

r(1- _ 2 i
doyr = AT =€) [api@ > aHEi 2400,
i=1

(30)
where P4:* is the (color-stripped) LO Altarelli-Parisi
splitting function. Its explicit form is given in Appendix D.

Combining virtual and real contributions with the
collinear renormalization contribution, we find the final

result for NLO electroweak corrections to the u + d — W+
process. It reads

“In case of NLO QCD corrections, collinear counterterms
depend on a,(u).
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2s- dag\ﬂvoﬁ - <FRIV’ﬁn(1w2ZJ) + Oly\ILo[FLM(lwzil;47) / dZZQZme z,E;) FLI)\4(1u72d|Z)>
z 2 1/5 2 3
a2 (3100 + 03 -20,04) + 0,041 - costme) (32 |sisri20)
(1 - . 2 (Q*QRE)™>[3 1
il i (B 0B £+ 3 {EEEE R L1 e b, 20). G
i=1

where F E\v}/ fin is defined in Appendix A. The splitting function Pf"‘(z E;) is defined in the following way:

i) =~ [ o) (P00 + 3o -9 ) - =D e ®

ee}/Eﬂ

The representation of the NLO cross section as in Eq. (31) is convenient as it allows us to compute convolutions of
these cross sections with splitting functions, required for the evaluation of mixed QCD-EW corrections, in a straightforward
way. It is easy to check that, upon expanding in ¢, all singularities in Eq. (31) cancel and a finite result is obtained. In the
center-of-mass frame E; = E, and with y = My, E,.« = E;, Eq. (31) becomes

o 2 2
25008l 5 =+ (2 ){ [ dzZ OPOE) (1 2al0) + 5 (03 + 0D + (2= ) 08| (Fin(1,.22)
+ (Fiv ™ (1, 23) + Okpo[Fiu(lu: 23 4,)]) + Ofe). (33)
In Eq. (33), agw is the renormalized coupling5 and we have introduced
In(1 — 1+22
PM%)_4F%7?}—2m+@mu—@+u—@—l+imz (34)
— N —

The extraction of singularities in the yg — W¢q' channel proceeds in full analogy with the discussion above and, for this
reason, we do not repeat it here and limit ourselves to presenting the final result. For definiteness, we consider the
yd — Wi channel [see Fig. 1(c)], work in the center-of-mass frame and set y = My, En.. = E; = E,. We obtain

Fim(z-1,,2; i
25008, = la] [ daN Q3Pe. B (PR 1 (O ol i1 2440, 39
where O%; , = I — C4;. We also defined
, 1[T%(1-¢) I'(l—e)-
fi _ 220 T€) 5 y-2epNLO( ) _ AP0
Pl];(z’ EI) - € |:F(1 _ 26) (2E1) qu <Z) egyEHZg qu (Z) ’ (36)
with P43(z) defined in Appendix D and
PRP(z) =(1—2)[(1 -2 + 22 —¢€]/(1 —¢). (37)

We note that the factor 1/(1 — €) appears because the averaging factors of hard processes, included in the definition of hard
functions Fy, are different for processes with different initial states. In case of Eq. (35), the left-hand side involves a gluon-
quark cross section where the overall factor includes an average over (d —2) = 2(1 — €) gluon polarizations; on the right-
hand side of Eq. (35), the cross section for quark-antiquark annihilation appears where an average over the two quark
(antiquark) polarizations is included. The mismatch between polarizations of gluons and quarks in the initial state leads to
the factor (1 — ¢) that appears explicitly in our definition of PI-C.

After expanding in €, we obtain

’Eventually, we will work in the G, input parameter scheme. In the setup described in Sec. VII, we obtain 1/agy = 132.338.
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U ——————0000000000, g u q u q
5 q Hﬂji_‘_ g

SAViVaViViV las d ———— AN T
(@) (b) (c)

3
I

FIG. 2. Representative Feynman diagrams for the double-real emission contribution u + d — W= £, f,. The final state (f1,f2) =
(g,7) is shown in (a). The final state (f}, f2) = (g, g) is shown in (b) (s-channel) and (c) (t-channel). In diagrams (b) and (c), the internal
vector boson can be either a gluon or a y/W/Z. Because of color conservation, only the s/7 interference leads to a nonvanishing
contribution at O(a,agy ).

a ! Fim(z-1,,2; .

25 - doRyo.g = <2L7V[V> A dzN.QiP}°O(z) <M> + (OkiolFim(1,,25:4:)]) + Ofe), (38)

|
with earlier, we work in an arbitrary reference frame. In
principle, we need to consider two options: either

2 -

NLO( .\ _ [.2 2 (I-2) _ (f1.f2) = (g.7) or (f1,f2) = (¢.g)- Sample Feynman
Pag”(2) =" + (1= 2) ]ln( z ) +2z(1-2). diagrams are shown in Fig. 2. However, the singularity

structure of the second contribution is very simple: since at
O(as0gw), the two-quark final states only contribute
through a s- and t-channel interference [see Figs. 2(b)
and 2(c)] the matrix element is only singular in triple-
collinear configurations py||ps|lp;, i =1, 2. These con-
figurations can be dealt with by abelianizing the corre-

sponding QCD result [12,47]. For this reason, we do not
V. MIXED QCD-EW CORRECTIONS AT NEXT-TO- giscuss it here and focus our attention on the (f,, fa) =

NEXT-TO-LEADING ORDER: DERIVATION (g.7) final state.

The purpose of this section is to describe the compu- We write the cross section for the partonic subprocess
tation of all the relevant contributions to mixed QCD-  u(p1) +d(p2) = W* 4 g(p4) +7(ps) as follows:
electroweak corrections. At this order, five partonic chan-

(39)

Although Eqs. (33) and (38) are written for 4 = My, the
full scale dependence can be easily restored using renorm-
alization-group arguments.

nels (¢q’, 9q. vq. vg, qq’) contribute. In this section, we 26 - do?, — / dpldp< Feal(l.. 24
focus on the first two channels. The reason for this is that RR (9pa]ldpsiFiu(l. 22 / 7)
the yq channel can be obtained with manipulations similar = (Fim(1,.23:4,.5,)). (40)

(but simpler) to the ones for the gg channel. The yg and g4’
channels can readily be obtained by a simple abelianization  As discussed in Sec. II, we do not order gluon and photon
[34] of the QCD result [12,47]. For completeness, we will  energies since there are no entangled singularities in the
present final formulas for all the channels in the next  kinematic limit when both of these particles become soft.

section. Similar to the NNLO QCD case, we first isolate soft
This section is organized as follows: in Sec. VA, we  singularities. We write

discuss in detail the double-real contribution to the gg’

channel, the most challenging part of the calculation. In ( FLM(1L”2[—1;49’ 5y)>

Sec. V B, we briefly explain how to derive all the other B P (1 245

required contributions for the ¢g’ channel. Finally, in = (S;SeFim(1u: 23:44.5,))

Sec. V C, we discuss the gg channel. +(((I=5,)S, + (I —=5,)S,)Fim(1,.25:4,.5,))

+{(I-S,)I-S,)Fim(1,,25:4,.5,)). 41

A. The g¢' channel: Double-real contribution ( 2 o Finll 223 40:5,)) (“41)
To illustrate the main differences with respect to the  The different terms appearing on the right-hand side in

earlier NNLO QCD computations [12,47], we consider a  Eq. (41) are split according to their type. The first term

real-emission process u(p;) +d(py) = WHfi(ps)fa(ps)  ~S,S, is the double-soft contribution where both the gluon

and explain how to construct subtraction terms and how to  and the photon decouple from the rest of the process. The

integrate them over unresolved phase spaces. As mentioned ~ second group of terms proportional to S,(I—S,) and
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S,(I = S,) describes cases where one of the two massless gauge bosons (a photon or a gluon) is soft and the other one is
hard (i.e., soft regulated). The third term on the right-hand side of Eq. (41) describes a contribution where all soft
singularities are regulated.

We can use the integrals of the eikonal functions discussed in Sec. III to compute the relevant integrated soft-subtraction
terms. The double-soft contribution reads

21— )\ 22C;
(5,81 23405)) = [l CEne)* (555 ) 25

r(1-2¢)) ¢ (J(Ey. Ey)Fry(1,.2;)). (42)

The case when the gluon is soft but the photon is regulated is described by the following formula:

2C, T2(1 - ¢)

(o1 =5, Fi(L.23:4,.5,) = [0~ 5 55

(2Emdx) 2€<(1 S )FLM(1u72d75 )> (43)

The function ((7 —S,)Fm(1,.24:5,)) in Eq. (43) contains collinear divergences that arise when the photon is emitted
along the directions of incoming quarks. They can be extracted following the discussion of NLO QED corrections to
u +d — W in the previous section. Note that at this stage we already benefit from the fact that the energies of gluons and
photons in soft limits are not correlated; compared to the QCD case, this simplifies the calculation considerably. We find the
fully-regulated result

2CT2(1 —¢)
2 T(1=2¢)

F2 1-¢)

A [ ZQ2 CE) PG L) TR | )

<S!1(I_ Sy)FLM(]u’Zd;S}’» = [as] (2Emax)_2€{<OIy\ILO[FLM(1u’221;57)]>

Next, we discuss the soft-photon contribution. We write

2 —€

<SY(1_S9)FLM(1M72’&’497 5]/> [ ](2Emax)_2 F(il_ 2€)> <<1 S) }/(1 2 W)FLM(1L¢»2d’4g)>
2 — €

= [a](zEmax)‘ze%{wNLo[J (1.2, W) Fiy(1,.23:4,)])

2
3 (Cull = 5,)0,01.2, W)FLM<1M,25,;4_(,>>}, (45)

i=1

where O o = (I = S,)(I-Cy — Cp).

The calculation of the soft-subtracted collinear gluon contribution proceeds in full analogy with the NLO QED case
discussed in Sec. I1I. The only difference is the presence of the soft-photon factor J, (1,2, W). It is easy to see, however, that
this factor turns into J, (zE} , E,) if the collinear limit py||p; is considered and into J, (E|, zE, ) if the collinear limit p, || p, is
considered. We thus obtain

(5,1~ ) Fun(12:235%,:5,) = [ QB T (1= 5,0, (1.2, WP 2524)
2(1—¢
— (] (2E )2 F(il_zei{@m[ (12 W) Fian(1,. 23:4,)])
eGP0 [ e et L B Bl P 2ak

where, similar to Eq. (28), we used the notation
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J,(zE|.E,y), i=1,

~(i) v
TO(E, Esl2) = { y . (47)
J},(EI,ZE2>, i=2.

Equations (44) and (46) provide fully regulated results
for single-soft-gluon/photon contributions. It remains to
consider the term ((/ —S,)(I = S,)Fym(1,.25:4,.5,)) in
Eq. (41) where both soft-photon and soft-gluon singular-
ities are regulated. This soft-regulated contribution pos-
sesses collinear singularities that need to be extracted. We
do that following the NNLO QCD computations [12,47],
but we make use of the peculiarities of mixed QCD-EW
correction to simplify their treatment significantly.

Indeed, similar to the QCD case, we deal with collinear
singularities by introducing partition functions that select a
subset of all the possible collinear configurations. We write

1 ="' + @292 4 @192 4 @r291, (48)

and note that partition functions are constructed in such a
way that w9 Fy\(1,.25:4,,5,) develops collinear sin-
gularities if and only if a photon is collinear to parton i
and/or a gluon is collinear to parton j. This is possible
because no singularities appear when a photon is collinear
to a gluon.

The first two contributions in Eq. (48) contain triple-
collinear singularities and, for this reason, require further
partitioning [12,47]. This is done by introducing sectors

that order the gluon and photon emission angles relative to
a particular collinear direction. We therefore write

w9 = @9 (0, + O),

w9 = >0, + Op). (49)

The two sectors A and B are defined in the following way.
In the partition described by the function @’"%", the gluon
and photon emission angles are ordered as

SectorA: 99 < 9", sector B: 6" < 09, (50)

The full partitioning of the phase space becomes

1 = "9 (0, + 0p) + >0, + 0p) + 0’9 + 09",
(51)
We can now insert collinear projection operators in
relevant places taking into account the ordering of angles

in sectors A and B; see Refs. [12,47] for details. We find the
modified partition of unity,

1 =89 =87 + 8 1B 15, (52

where the different Z99-operators read®

= (I =Cpy)(I = Cyp)a" 9" 04 + (I = Cpyy )(I = C, )" 9" 05 + (I = Cpy0 ) (I = C ) "*920),
+ (I = Cpya)(I = Cpp)a"*P0p + (I = Cp)(I = Cp )% + (I = Cyy )(I = Cpp) a9,
BT = Cpyi (I = Cy )" 9' 0, + Cpy (I = )" 9 05 + Cpyry (I — C )00, + C,pyr (I — Cpp) 00905,
B! = —~CpCpa""? — C,,C a9,
EZ?Z — Cgl [a)yl,glgA + a)ﬂ’gl} + Cyl[wyl,gleB + wyl,gZ] + ng[wyz.gng + wyl,gZ] + Cyz[wﬂ,gZQB + (1)72’9]]. (53)

We then rewrite the soft-regulated contribution in Eq. (41) in the following way:

<(I_Sg)(I_Sy)FLM( uvzd’4t}757)>

<(I S,)I—S,)B%

LM(llt’2d74(]’ 5}/)>

LM(lu’2Q’4g’5y>> (54)

Among the four contributions that appear on the right-hand side in Eq. (54), the one proportional to = qu is the fully regulated

one. We compute it numerically in four dimensions. The £47 term describes a triple-collinear smgular contribution which
can be computed following the discussion in Ref. [52]. We note that, because of the different phase-space partition adopted
here, the triple-collinear contribution required here is not identical to the one computed in Ref. [52]. Further details about

the computation are given in Appendix E. The result reads

As explained in Refs. [12,47], there is some freedom in the definition of the collinear operators C;. In particular, one can decide
whether they should act only on the matrix element and momentum-conserving & function or if they should also modify the unresolved

phase space. In this paper, we make the same choice we did in Ref. [12]: all triple-collinear operators C

vg.i 1IN Eq. (53) do not modify the

unresolved phase space, while all the double-collinear operators do act on it; see Ref. [12] for details.
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8]

<(1_Sy)(1 S )quFLM(lu’zd""q’Sy» 2[ Has]CF/ dZPZf] Z 46Q2 (1u’2d|z)> (55)
i=1

where
P =1 (30 -9+ 2@ + o) ) + (5 s =) )12 2w - B g
¥ 47Liy(2) — (z + 7[23((51—E3Zz)2) + 2(1 i ZZQ) Liz(z)> In(z) + 2(51#_3;2) (Lis(z) = ¢3). (56)

The two contributions in Eq. (54) that require further action are the ones proportional to :g‘i These contributions are

computed in a way which is similar to the NNLO QCD case except for the required modifications of sectors and for the fact
that in our case the soft subtractions are done independently for a gluon and a photon.
For definiteness, we now explicitly specify the partition functions

aﬂ’]*g] _ Py2P g2 0)72’!]2 _ Py1Pg1 wyl.gz _ Py2Pgi a)yz’gl _ Py1Pg2

4 4 4 4 (57)

where p;; = p; - p;/(E;E;), and focus first on the contribution to Eq. (54) proportional to _qq It describes singular
emissions of a photon and a gluon collinear to opposite directions, and reads

<(I =S )(I N )quFLM(lu’ 2d’4g75y)> <(1 - Sg)(l - S}')(CgZCylwyl'gz + CyZCglwﬂ’gl)FLM(lw 2[1;49’ 57)> (58)
Proceeding as in the NNLO QCD case [12,47], we obtain

(1= S,)(I = ST Fiu(1u, 23 44. 5,))

g~y
u+Q C —2¢ _2¢ 1 F z-lu,z-2-
:—[a}[a_y](€—2d)F(2El) 2 (2E2) 2 A ledepquo(ZhLl)PquLO(ZzyLz)< LM( ] 2 d)>, (59)

2122

PNLO

where the splitting function is defined in Eq. (26); see also Appendix C.

Next, we consider single-collinear limits described by the operator E ”qq. The corresponding contribution reads
((1=8,)(I=S)EFim(1i:25:40.5,) = Y (I =S,)(I = S,)Cai€iFin(1,: 25545, 5,), (60)

977
a&{y.g}ie{1.2}

where the various quantities Q,; can be deduced from Eq. (53). Again, proceeding as in the NNLO QCD case [12,47], we
obtain the following result for one of the four terms:

<Cgl (wyl,glgA + wylgl)([ - Sg)(l - Sy)FLM(1u72&;4g75y)>

{ IC e ! Fim(z - 1..285,) [pa (Pa\ ™ | P
U oo a2 [tz Ppore, 1) (P 285 (0 (P o

a,[a]Cr O} — <€ —€ —ae [ NL NL LM\Z " "u» 2d
+[ s [2]6(; Q F(l F(zl 11_‘3(3) )<2E1) 46% dZ[quO®P 0](2 E )<F (Zzl 2d)>

][] CrOZ T (1 — €)
- 2¢? dF(l —2e¢)

1 F Z1* lu’ 75+ 2—
) )™ [ a2 4Pl LOPO (s L) (P22, )
The splitting function [P)r© ® P}1°](z, E;) that appears in Eq. (61) is defined as follows:
1
[Peg® ® Pog®l(z. E1) = A dz1dzy 272 Pg® (21, L) Pg® (22, L2, )8(z — 21 22), (62)

where L, = In(E,c/(Ez;)). It can be written as
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1 1 1
[P3i° ® Pag?l(2.Er) = [Pag ® Pyglip(2) = (1 - ™) (PI;;O(Z) —-o(1- z)e-Ml) ——e (1

where [P, ® P, ]2
The remaining three contributions to E
with a few natural replacements. We find

(1= S)(I = S)E{ Fiu(1u: 23344 5,))

_ ,—2eL, 5(1 — ,
- e2¥h)3(1 -2)

(63)

can be obtained from Eq. (A.18) of Ref. [47] by setting Cr — 1.
? can be analyzed in a similar manner; the results can be obtained from Eq. (61)

= __Z/ dz(2E;) ZEPI;qLO(Z’Li)([“s]CFOVNLO[Fim(luv23§5y|Z)A i+l ]Q2ONLO[ LM(lu»221§4g|Z)Agi]>

a,l[a]Cr [T(1 = 2¢)
(ledics (PO 20011
(1 -e)

+ (07 + QQ) F(1=20)

where the functions A,(,); are defined as follows:

Axi_’ﬂ(@) | P

(5 2 je{12)#i (69)

The final result for the differential cross section of the
process it +d — Wt gy is obtained by summing Eqs. (42),
(44), (46), (55), (59), and (64) and the fully regulated
contribution ((I—S,)(I —S,)E{"Fy(1,,25:4,.5,)) that
is computed numerically.

B. The qq¢’' channel: Other contributions

Apart from the double-real contribution discussed in
the previous sub-section, the other contributions that are

u ol u

(0000000000 g

d wt d wt
(a) (b)

FIG. 3. Representative Feynman diagrams for the real-virtual
contribution to the mixed QCD-electroweak corrections to the
u +d — W process. Real photon emission with a gluon loop is
shown in (a) and real gluon emission with an electroweak loop is
shown in (b).

28228 [ dz P0G L) [z PYO(zy, £y) Pl
(2E,)7*(2E,) o 21 Fyq (z1,L1) o 22 Fyq (22, L)

/@QMH%WWWMWWWW»

lw 2 2d)>}
2122 ’

(64)

required for the mixed QCD-EW calculation are the so-
called double-virtual and real-virtual corrections, as well as
collinear renormalization counterterms. The structure of
virtual corrections is discussed in Appendix A. In this
section, we consider the real-virtual and PDFs renormal-
ization contributions.

Real-virtual corrections to the u +d — W* process
account for one-loop corrections to processes with Wty
and W g final states produced in ud annihilation (see Fig. 3
for representative Feynman diagrams). It is straightforward
to analyze these contributions since for both cases the
structure of soft and collinear singularities is very similar to
that of a NLO calculation and, for this reason, the
construction of subtraction terms is less complicated than
for the double-real case discussed in the previous sub-
section. For mixed QCD-EW corrections, the situation 1is,
in fact, simpler than in QCD because soft limits for both
the ud - W+ +y and ud - W+ + g processes are not
affected by loop corrections. The regularization of soft
divergences is then identical to the NLO case discussed in
Sec. IV (soft-photon emission) and in Refs. [12,47] (soft-
gluon emission). The regularization of collinear singular-
ities is identical to the NNLO QCD case. The only point
that requires additional care is the abelianization of the one-
loop QCD collinear splitting function and the replacement
Cr— Qﬁ’ 4 Where appropriate. The result for the Wy final
state reads
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VS - €F2(1 — 6)
2s - doky = o] (2Emae) ™ 77
[a] T2(1 —¢)

€ I'(1-3e)

<‘77(E1’E2)F8\C/D(lu’ 221» +

<Ory\ILo[F8\C/D<1w 221?4y)D

1 2 '
B S d 2E.)"2¢(2 pNLO L. F(z),QCD 1.2,
e (1 —2€)A Z;( )OO Py (2 L) (Fry = (1,.23]2))

n [a][a,]CrT(1 —€)*T(1 + 6)/

2
PRV Z 2E —4€Q2

i=1

(L, 2312)), (66)

with P];qv defined in Appendix C, while the result for the Wg final state is

2 2(1—€)2Cp
(1 -2¢) €

[a,]CrT%(1 =€)

2s- da;]?V = [as](ZEmax)_

€ I'(1-3e)

FEW(]M,ZQ» + <ONLO[FEW(]L4723;4!])]>

€ i), EW
¢ p%/ ZMZW%mﬂém%m

. [a][a,]CrT(1 —€)*T(1 + ¢) /1 dz PRY(z i ) Q2(FY) (1,.24]2)). (67)

i=1

The one-loop contributions F° QCD/ EW are defined in Appendix A.
The PDFs renormalization contnbutlon is obtained by computing convolutions of parton distribution functions with
lower-order cross sections. Following the steps described in Refs. [12,47], we obtain

25 o = 2t ) { -

2¢?

EZ@/“ P © P FR (1220 |

2 2
24 02Cr [ ] ] F
(Qut Q) Cr F/ dZ1d22P[;qP’O(Zl)P9;'O(Zz)< (s
0

) luv 23" 2;1)>

2122

2s -
2 el ()P ® 008l

+doly o ® P + [a()] Q2P ® dogy g o + Q3dol(0 0 ® PAPO)}
[a(u)][ay (1)]Cr AP 1 2F
+ NI [Lazpf @) 3 0HF (102410 68

where [a(y)] and [a,(u)] are the renormalized coupling
constants defined in Eq. (29) and “®” denotes the standard
convolution product. The splitting functions and their
convolutions in Eq. (68) can be found in Appendixes C
and D. The NLO electroweak cross section dUNLo o is

given in Eq. (33), while its QCD equivalent d"NLo, 47 €an
be found in [12,47].

C. The gluon-quark channel

We now turn to the discussion of the gluon-quark
channel. For definiteness, we focus on the process
g+d— Wt +ii. To compute the mixed QCD-EW cor-
rections to pp — W™ arising from this partonic channel,
we require the real-emission contribution g(p,) + d(p,) —
W+ +a(ps) +y(ps), virtual electroweak corrections
to g(p1)+d(py) = W+ +ai(ps), as well as collinear

renormalization. We  display
Feynman diagrams in Fig. 4.

We begin with the real-emission process g +d — W+ +
it + y and write its cross section as

some representative

9900000000000

d —<—\/\/\/€\—§: wt o —— wt

(@ (b)

|

FIG. 4. Representative Feynman diagrams for the gluon-quark
channel contribution to the mixed QCD-electroweak corrections
tou +d — WT. The real emission process g +d — Wt + it 4y
is shown in (a), and virtual electroweak corrections to g+ d —
W + @i are shown in (b).
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25 - dokR = (Fim(1,,25:44.5,)). (69)
A soft singularity can only be caused by a photon. We write

<FLM(1g12[l;4ﬁ5y)> = <SyFLM(1g’2:_1;4i¢’5}/)> + <(I_ Sy)FLM(lg’zzl;4ﬁ’5y)>
_2¢ Fz(l _6)

= [a](2Ema) (1 = 2¢)

<Jy(214’ W)FLM(1g72(_j;4ﬁ)> + <(I - Sy)FLM(lgvzf_i;4ﬁ157)>' (70)

The integrated photon eikonal function J,(2,4, W) is defined in Eq. (14). The single-soft piece in Eq. (70) requires an
additional collinear subtraction; the collinear singularity occurs when the outgoing antiquark becomes collinear to the
incoming gluon. We write

(J,(2,4, W)Fim(1,,23:45)) = <OIL_<ILO[‘]}/(2’4’ W)Fim(1y,23:42)]) + (CarJ, (2,4, W) Frm(1y. 25:42)), (71)
where Of; o = I — Cy4;. To compute the contribution proportional to C4;, we note that Cy,J, (2,4, W) = J ,(zEy, E;) where

z=(E, —E4)/E, and L(EI,EZ) is given in Eq. (17).
Repeating the NLO QED computation of Sec. IV, we find that the soft-photon contribution is given by

2 — € _
(5 Fusa(l 254305,)) = [ ) ™ [ 508 | OkaolUy (2o WP, 25 42)
@ Ta T2(1 =

P SE— —2e ! 7 FLM(Z‘lwz’)
¢ r(1_2€><<2E1) ’ A dZPI;gLO(Z)Jy(zEl,Ez)%ﬂ, (72)

where PYIO(z) is defined in Eq. (37).

The soft-subtracted contribution in Eq. (70) (I = S,)Fym(1,,27:44.5,)) needs to be further analyzed since it contains
collinear divergences. Since the final state antiquark # can only develop a collinear singularity when its momentum is along
the momentum of the incoming gluon, we only need to introduce partition functions for the photon. We write

1 = 0¥ + oY, (73)
where

y_ Py 4 P

= , =" (74)
P2yt Pay P2yt Pay

We now rewrite Eq. (73) by introducing different collinear projection operators for different partition functions. We note
that we have to introduce the same four sectors as in the NNLO QCD case to order the angles of the photon and of the up
antiquark. We find

1 =8+ 5y + 2y + 5y (75)
where’
Bl = (I - Cy)(I = Ca1)@* +0c(I — C14y)(I = Cy1)0" 4 O5(I — Cyg,) (I — Cyp )™
+0,(I = Cay)0" + Op(I = C14,) (I = Cy )",
B! = 0cC4y(I = Cay)0™ + 0pC 14 (I = Cy )" + 0, C g™ + 0pC iy (I = Cuy )™,
qu = —Cz},C41w2y,

Y = Cy 0™ + Cyy (Oca™ + o) + 05Ch0™ + 0,,Cy 00" (76)

"As for the gg' channel, all double-collinear operators in {7 also act on the unresolved phase space, while the triple-collinear
operators do not. See Ref. [12] for details.
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As we mentioned, the four angular-ordered sectors 6, _ p are identical to the NNLO QCD case. We refer the reader
to [12,47] for their explicit definition.

Using the partition of unity Eq. (75) in Eq. (70), we write the soft-subtracted terms as

.....

4
<(I - Sy)FLM(lg’ 2(_1’;412’ 5y>> = Z((l - Sy)E‘?qFLM(lg’ 2[1;4ﬁ’ 57)> (77)
i=1

1

The different terms in Eq. (76) have the following meaning. The term proportional to Z{? is fully regulated and can be

computed numerically in four dimensions. The term proportional to 257 is the triple-collinear subtraction term; Z§

describes collinear emissions of a photon and an up antiquark in opposite directions and Z57 describes the various single-
collinear subtraction terms.

We start by discussing the triple-collinear contribution. Since the triple-collinear subtraction term is independent of
the partition and since for the gg channel we use the same phase-space parametrization as for the NNLO QCD case, the
result for the integrated triple-collinear subtraction term can be borrowed from the NNLO QCD results reported in Ref. [52].

We find

[ TR0> I Fia(z-1,.2;
(1= 8,50 Fun(1 2545, = 002 o i [V prge, ) P 2] (78)
0

where the integrated triple-collinear subtraction term is given in Eq. (C10). We note that, similarly to what we did for Pg{qLO,

we have included in Py a factor 1/(1 — €) to account for the different initial state in the Fy y; structures in the left- and right-
hand sides of Eq. (78).

The double-collinear contribution is straightforward to compute. We find
(I =82 Fim(1y,23:43.5,)) = —((I = S,)Co Cara™ Fry (14, 2544, 5,))

alla,] 05T e e |1 Fim(zi - 14,20 - 2;
:—7[ H jz d R(2E1) 2 (2E2) 2 A dZ]deng‘O(Z])Pl;;O(ZQ)< LM( IZIZZ 2 d)> (79)

—_
—

The last contribution is the single-collinear one, proportional to Zj7. It reads

<(1 - Sy)quFLM<1g’ 2H;4ﬁ’ 57)> = <(I - Sy)(c2yw2y + Cq (ecw4y + wa))FLM(lg?zzi;‘I'E?Sy»
+ <(I - S},)(GBC4J,(I)47 + QDC4J,w4”)FLM(lg, 23,4[{, 5},)> (80)

The computation proceeds in full analogy with the QCD case. For completeness, we present results for the various
contributions to Eq. (80). We start with the term proportional to C,, in Eq. (80). It reads

<(I - Sy>C2yw2yFLM(1g’2[1;412’5}/»
_ 0?a] (2E,) /l dZPI;g‘O(Z)<FLM(1y’ z 2;!;4u)>
0

€ z
2 1  [Fim(l,.2- 2534,
——QdTM(zEz)‘zf/ dzquLO(z,Lz)<(’)fi,Lo[ L ‘fj d )]>
0
2 2(1 — 1 ) ey
N ey e NI LEW I LS A
e T(1-2) 0 4 P,
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Next, we consider the term proportional to Cy;(0* + 6cw™). Since Cq0* = p;,/2, we find

<(I_ Sy)c4lw2yFLM(lg’25_[;412’5]/»
- Tk oy /O 1 dzP2’5°<z)<<1 ) [’ﬂ Fim(z- Lo, 23;5»} >

€ 2 z

a,]T e 1! p1y Fim(zi 1, 23:5,)
= = (2E)? i dzPyr0(2)( Okuo |- . &7

][] TRQZT2(1 — 2¢)
+ €? ; (1 -2e)

—z€ —2€ ! F Z 'luaz '27
B0 [ 40020 PO L) (PRI 220,

The second contribution to Cy(@* + Ocw*) is proportional to C4; 0¥ 0y = Ocpy2/2Cy4. We obtain

((I=8,)Cqa"0cFiy(1,,25:44.5,))
=100 o [ e ( (15, [P () " i 2]

€ 2 \ 4 Z
[a,]T e (! Py (P1y\ "¢ Fum(z - 14, 255,)
= - (2E))7 / dzPgy°(2){ Okwo |57 (5 o
€ 0 2 4 Z
o, | TR Q22 T(1 = 26)T(1 =€) / Fin(z1,.27)
S u 2F 4e PNLO PNLO E u .
2€2 F(l _ 36) ( 1) 0 dZ[ qq 2 q9 KZ’ 1) z (83)
The convolution in Eq. (83) is defined as
NLO NLO : NLO 2e pNLO
[Poq” ® Pyg®l(z. Ey) = A dz1dz,8(z — 212,) Pag " (21) 27 Pag (2, L1y, (84)

where Ly, = In (E,/(Exnaxz,)). The result for this convolution is given in Eq. (C6).
The last contribution to E4? is proportional to Cy,; it describes collinear splitting in the final state; the result can be
borrowed from existing NNLO QCD computations. We find

((I=5,)C4y (05 + QD)C‘)4YFLM(19’ 25:44.5,))

O ) (0801280 T B B 151 (1 =14) Fisa (1254

[a] [, | T g2%T%(1—e)T'(142€)T'(1—2€)
26T (1+€)T'(1-3¢)

2B @ [ 4P O =27, 0 —z>E1,EmM><M>,
0

Z
(85)
where 17” = p;i- p]/(ZElE]) = (1 — COS 0”)/2, and
) (2=5¢+e)T2(1 =2¢) 1 [Epa %
E.Epy) = — - .
ao(E: Emax) 2e(1—4¢) T(1—4¢) e\ E (86)

To complete the computation of mixed QCD-EW corrections to the g + d — W + it channel, we need to account for
one-loop virtual QED corrections. As for the gg’ channel discussed earlier, the result can be easily obtained by abelianizing
the NNLO QCD result [12,47]. We do not go into further details and just quote the result
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(FEv (14, 22:44))

= <01L_(1L0[FR/V<197221§412>]> -

2s - dGRV,gq =

[ax}TR Fz(l—e) _2¢ ! NLO FEW(Z 1u’2d)
(i~ o) T(1 —2¢) 2EV | aer <Z)< >

Z

i (oo QL= 2N (o [z iy oy P 2] v

2el(1 - 3e¢)

The splitting function PYY(z) is given in Eq. (C5), and the various one-loop contributions FEY are discussed in

Appendix A.

The last ingredient that is required for this channel is the PDFs renormalization. It can be easily obtained from the NNLO
QCD result [12,47] with obvious modifications. The result is given by the following formula:

25+ ot = e ) - 03Ty

+

/ dz,d, PAPO () PO (2,)

FLM(Zl Ly 2o 221)

2122

2¢ Z

2s
+={ la(w)] 034088, ® P +

where ® stands for the standard convolution product and
the various (color-stripped) Altarelli-Parisi splitting func-
tions P‘?P’" and their convolutions can be found in [12,47]
for the QCD part and in Appendixes C and D for the
electroweak part.

VI. MIXED QCD-EW CORRECTIONS AT
NEXT-TO-NEXT-TO-LEADING ORDER:
ANALYTIC RESULTS FOR THE FULLY
DIFFERENTIAL CALCULATION IN ALL
PARTONIC CHANNELS

To obtain mixed QCD-EW correction to the u + d —
W™ process, we need to combine the two-loop virtual,
real-virtual, and real-real corrections as well as the
collinear renormalization contributions for all the differ-
ent partonic channels. Each of these contributions is
regulated by constructing subtraction terms as we have
explained in the previous sections. In this section, we
present the finite remainders for all the different partonic
channels.

As we have explained in previous sections, our calcu-
lation is performed in a generic reference frame and with
arbitrary E,,.. We have explicitly checked that the can-
cellation of infrared and ultraviolet poles occurs in an
arbitrary reference frame and for generic E,,,,. However,
for the sake of simplicity in this section, we present results
in the center-of-mass frame of the colliding partons and
choose E.,, = E; = E,. We will denote the center-of-
mass collision energy as 2E, so that £, = E, = E,.. We
also set y = My,; using renormalization-group arguments,
it is straightforward to obtain results for different choices
of p.

ﬁT | F -1, 25
0 R/ dz PqA;,l(Z) LM(Z d)
0

+ oy ()] TrPgy ™ ® doyy

_QiTR/O [PAP() ®PAP0]( )FLM(Z‘Pth)}

262 Z

oo s | (88)

For convenience, we summarize the notation that we will
use when presenting our results. We define

p=\[1- M/ B

L.=1n(2E./My),

o = PiPw n”:!ﬂ:l’i'l’jzl—cosgty
" EEy’ Y2 2EE; 2 '
Sij = 2pl “Dj- (89)

In the (generalized) splitting functions, we also use

D,(z) = [M} - (90)

1-z2

We express our results in terms of the modified minimal
subtraction scheme (MS)-renormalized strong coupling
constant a,(u). We denote by agw the electromagnetic
coupling constantin the G, scheme. The LO (color-stripped)
Altarelli-Parisi splitting functions without the elastic piece
P'.A.f)l’eo are defined in Appendix D. The splitting functions
déscribing the NLO finite remainders are defined as

PO =4D(z) —2(1 +z)In(1 - 2)

1+2
+(1-2)- _Zz Inz,

Pog(2) = [22 + (1 = 2)’] ln<@> +22(1 - 2),
(91)

see Sec. I'V. We also find it convenient to introduce a slight
generalization of these equations,
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PNO(z,E.) =4D;(z) =2(1+ z)In(1 —z) + (1 = 2) + 21n (if) 2Dy(z) = (1 + 2]
w

> 2F
PE;O(Z,EC) =2[22+ (1 -2)*In(1 —z2) +2z(1 —z) + ZIH(MWC/

)[z2 +(1-2)3. (92)

fin EW/ QCD fin, QCDEW

Finally, the one-loop finite remainders F;. LVVALV?

and the two-loop remainder F
analytic and numerical expressions are glven in Appendix B.

are defined in Appendix A. Their

A. The ¢q’ and gq' channels

We begin by presenting formulas for mixed QCD-EW corrections in the gg’ channel. As we have explained in Sec. VA,
this channel receives contributions from both gy and ¢g final states. We then write

QCD®EW __ 1 QCDREW QCD®EW
do q7'-W(X) — do qq'=W(gy) +do 99’ -W(qq)’ (93)

where the terms in the brackets indicate the possible double-real contribution. We consider the two cases separately.
For definiteness, we present results for the ud initial state.

We discuss the u +d — W+ + (gy) case first. We write the two-loop contributions to the cross section in the
following way:

QCDEW __ lasti boost O regulated
do ud—»W(gy) =do f«;:lsv( ) + do_u?io—iW(qy + daudNiOW(g}/) +do ud—»W(gy) (94)

Below we present results for individual contributions. The elastic contribution reads

< 8 4 4
25 - dotie = <““2(:) ?—X)C [ 02102+ (%—”—) Qw] (Fum(1,.22))
() [T+ o+ (2-5) e 2a)

A (,Ll) 2n in :
() [, 22 i 1,200 + (PR (1,29 9

The boosted contribution g2 can be written as
ud—-W (gy)

aj a?( ) ! - FLM( lu,ZZ 2d)
2 - dghoost _ EW C 2 / dz.d NLO E NLO E
s - O-ud—>W(tl}’) ( o 2 > { F(Q + Qd) o | Z27)qq (Zl c) W2 P ( 2 C)

+Cp/ dZZPZg\ILO QNQ/#U )< LI)VI( M’2dlz)>}

v [ o > [(S) @ (P, 2000) + 0 () (R 1 2i0)] . 99

i=1

Moreover, we write

PINO(Q,, Qur2) = QhPiq 4 (2) + QuQuPag " (2) + Q2Pag > (2). (97)

The individual contributions read
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Or 572
PI;;ILO,u =16D5(z) + (8 _—)Dl( ) +3243Dy(z) +7(1 -2z)+2(8z2-9)-8(1 + Z)1n3(1 -2)

3
N {<1SI+_23Z2> 6 -7~ Z} In(2) (2-3z —Efz_z;zZB)IHZ(Z) . (3 —6|—(i2111;3>(2) —1n2(1 - 2)
y <4(1 ot (17 +1952Z) ln(z)> N lngl_—zz) (;;2(103— 8z%) +(4=2124922) + 6(1 + 22)In2(2)
_ 2 _ 6.3 1n 2 1n 2 _5)In(1 =
N (2-10z +161_ : 6z°)1 (z)> N 2<(5 +1Z_)Z1 () N 3z 15)_1Z(1 z) 21 - z))Liz(z)
N 2(3112_ - 5) L1 —2) 4(3112_ 4; iy + & +1 2_8zz2)63 ’ (98)
PO — (472 _16)D, (z) + 22(1 — 2) + (11_62 —-27%(1 + z)) In(1 - z) +4zIn(z)
(1+2%) 4z(1+ z%)[21n(1 — z) In(z) — In*(z)]
- 14_2111(@ + (L , (99)
PN _ <8 _%)Dl( ) =61 —2) + <2§2( +z2) —%) In(1 - z) —2zIn(z)
L2 =20 =) L2 (o) +221n(1 -2) - (@) L1 - )
+2(1 = z)Liy(1 - 2). (100)

We continue with the contribution that involves NLO-like processes, ud — W+ + g and ud — W+ + y. It reads

OnLo
28 dauﬁﬁW(qr)

= (OkpolFIv " (11 22:4))]) + (OoFIV" (1. 27:4,)])

+ <a2;)>CF[—+6L} ColFim(:22:4)) + (2 ){(Q2+Qd)[ +3L}

1-p 3. (2pi-pw
e fort-st- g (150) pn(155)] + ov oot -Jm()
—4L,In (21’1;4 pW) +In? (2”];4 pW> +2Li, (1 _ﬁ> +2Li2<1 - +ﬁ>:|}(OiLO[FLM(lwzzl;“'y)D

w w Kiw Kiw

/ {( )) Cr{Ool(PYs° (2. E.) + n, In(n,:) Por R (2)) F I(jlz/l(lwzfj;“'yk)p
+<0’2E]‘[V> 0H O ol(Phi (2, Ee) + 1y In(ng) Py (2 ))F(L"gd(1u,2l-,;4g|z)}>}, (101)

The fully regulated contribution has already been discussed. It reads

25-do"B N = (1= 8,)(1 = $,)BI FLn(1, 2:44.5,), (102)

where the operator =, is given in Eq. (53). We compute it numerically.

We now discuss the ud — W + (qg) final state. The corresponding double-real matrix element is only singular if
the final-state gg pair is collinear to the initial-state u or d. We use the same phase-space parametrization as for the
ud — W+ 4 (gy) case, and write
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QCD®EW boost regulated
ud—=W(qq) — dguflﬁW(qt?) + dgu?i*W(q?z)‘ (103)
We write the boosted contribution as
2
. ] ~boost _ (% (u) QEw ! NNLO, int 2/ (i) .
2s dﬁuaqw(qfi) o ( 2r 2r; > A dzPyq (2) ;CFQ,' (Fim(1,.23]2)), (104)
with
< 2n? 24+ 12714z — (5 - 12z +42%)In%(z) = 8In(1 — 2)(8 — 15z + 72°
nyLO"“t(z):i(lJrz)Jr +12z 22— ( z+4z%)In*(z) — 81In(1 —z)( z+72%)
3 2(1—2z)
_4In(1-2)In(z)(5-22%) +1In(z)(6 + 112 =272%) = 8In(z) In(1 +2) (1 = z*) +2(13 - 62— 2*)Li(1 — 2)
-z
. 1+22 . . . .
+8(1 +z)Liy(—z) + - 12Li5(1 — z) 4+ 16Li3(—z) + 18Li3(z) — 6{3 — 8Li,(—z) In(z) + 2[51n(z)
1 3 7 2
—41In(1 - 2)|Liy(1 — z) 4 5In*(z) In(1 — z) — HT(Z) - %ln(z)}. (105)
The fully regulated contribution reads
regulated
2s- d":fi;t/?q@ = ((I = Cis5 — Cyys)Frm(1,s 254, 5q)>- (106)

Finally, we discuss the gg’ channel. At O(a,agw), it receives contributions from interferences among two #-channel
diagrams [see Fig. 2(c)]) with two identical quarks in the final state. As for the u +d — W(gqg) case that we have
just discussed, gg' channels also only have triple-collinear singularities. For definiteness, we present the results for the
u+d — W(qq) channel. We employ the same phase-space parametrization as for the ¢g’ channel and write

QCD®EW __ lated
dgud—»W(qq) - dgz([)io—s»tW(qq) + dafdgiive(qq)‘ (107)
The boosted contribution reads
2
. ~boost _ ay(u) aew ! NNLO,int QiFm(lus2-23)
2s dauzﬁw(qq> = < r g ) A dz CFPqZ] (Z)< Z , (108)

PO (2) = —22(1 4 2) + 15(1 — 2) + 4In?(z) + 16(1 — z) In(1 — 2) + 8(1 + z) In(z) In(1 — z)
+ (11 +192) In(z) — 12(1 4 z) In(z) In(1 + z) + 4(3 + z)Liy (1 — z) — 12(1 + z)Liy(—=z)
1422 {ln3(z)
14z 3

_ 2771.2 2In(l —z) —41n(z) + 31In(1 + z)] —41In(1 — z) In(z)[In(z) + 4 In(1 + z)]

+ 6In*(z) In(1 + z) — 121In(z)In*(1 + z) 4+ 4In’(1 + 2)

—41n(z)Liy(1 — z) +4[31In(z) — 41In(1 — z)|Liy(—z) + 16Li3(1 — z) — 16Li3(z) — 36Li3(—z)

- 24Li3< ) —8Li3(1 - 2%) + 10;3}. (109)

Z
I+z
The fully regulated contribution is

2s- da;edgf;t/e(f,q) = (I - C245)FLM(1u72d;4qv5q)>' (110)
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B. The gg channel

For definiteness, we consider corrections to the g + d — W™ + & annihilation process and write

QCD®EW __ boost OnLo regulated
do o Wiy = Yaowa) T 9@ wa T 9

The boosted contribution reads

1 boost _ as(ﬂ)oﬁi_w ) [! FNLO Fim(zi - 1220 23)\ 2ni0
25 -do 3% ) = ( o 2ﬂ>{TRQdA dz;dzy Py (21, Ee) . Paq (22, E.)

(111)

o1 a2 (), [Mapge (T2,

Z

Z

where
Pi0(2) = QiPyy O (2) + Q3Pay *(2) + QuQaPag " (2) (113)

and

69 255 2(11 — 54z + 46z%) 11 3 —6z7+47%)In3
PI;IELO’U(Z):——+—Z—49Z2+7[( ot Z)+—(1—2Z+2Z2)ln3(l—z)—|—( z +42%)In’(z)

4 4 12 6 12

— 81z + 140z% — 80z3)In? 117
_G-8 Z+8(?Z )807’ Jinz) _ [7— o+ 272 = (1= 2224 262)55 | In(2)
-z

109

3
- |7-21z+ 1722 + <2 -3z- z2) ln(z)} In?(1—z) + [16 ——— 744472 - §(7 - 142+ 2272)

2

(7-29z +40z2 —227%) In(z) (3
+ —_ —

-z 2
+[34+4z-422— (1 -27-62%)In(1 — z) + (1 — 2z — 2z?) In(2)]Lir(z) — (9 — 18z +
— (9 - 18z + 147?)Lis(1 — 2),

2z[In(z) = 21In(1 = z)]In(z)
-z

PR = 2+ (1~ 27 o n(e) - T a1 - ) +

221 -9 =L - 3] +2(1-2) (4Lt -2) - ) 42

Pl (7) = (“il—ff) - nz) [(1 =2z +22)[2In(1 = z) = In(z2)] + 2z(1 = 2)].
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10z2)Lis (1 = z)
(114)
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The contribution involving NLO kinematics is given by
o fin EW i QEw E. 4EE,
2500350 = OG0l 1, 20000 + (2 3 @2 pei - -2 () (0

ie{2.4}

,[13 222 [3 E, M\ _ 5y (2Es o [1 (LEAY L (145
vy () () )] + 0 lan(25) -2 (125)
$24
2
w

- 2Lc:| + QuQq {414 In(n42) +1n*(r42) +31n <M2 ) — In? <L> + 2L (1 = ngo } Z OwQ;

i€{24}

EM 2p; - 2p; I -
« (apom( EMw ) g (2P Pw g (2P Pw o ( TEPY Lo (128
pi-pw/) 2 My, My, Kiw Kiw

) r  [Fim(1, 7 22345
+ﬂzQuQW}«QIl(ILO[FLM(ly’2[1;412)]>+ (0!25_w>/) dZPgLLO(Z)Q§<O§LO{ elly 2 23 )}>

T Z

+< 2(:))/ & TR<ONLO|:<7~)I;;O(Z’E )+n4zln<'7;1>PAP0( )> Frle: IZ”’Z‘_’AV)D, (117)

with O, = O, and Q4 = —0Q,.
The fully regulated gluon-quark contribution reads

1
1

regulated —_
25 -do gc}g—mi( y) = <(1_ Sy)‘:gqFLM(lg’zd""wSy» (118)

,—qq

where Z7" is defined in Eq. (76). We compute it numerically.

C. The gy channel

The structure of the quark-photon channel is similar to the one of the quark-gluon channel. Actually, results in this
case are more compact because of the simplicity of soft-gluon limits. For definiteness, we consider corrections to the
y +d — W' + i channel. We use the same phase-space parametrization as for the quark-gluon channel and write

QCD®EW boost Onio regulated
dayd—»W(ug) =do yd—»W + do.yd—»W +do yd—»W(ﬁg) : (1 19)

The boosted contribution reads

05 ag (1) apw ! ~NLO Frm(zi - 1,220 23)\ anio
25 - do)ey, 0 = ( o ﬁ)NcCFQﬁ{A dz1dz, Py (21, Eo) . Pag (22, E)

1 Fim(z-1,.2; 1 FinQCeD (. o
+ A dng‘;‘LO(z)<—LM<ZZ : d>>}+<azE—Z>NcQﬁ A dng’gLO(z)< LY (j d>>, (120)

where
Phos(2) = P (2) + Pig™ () + P (2). (121)
The dag’t‘;wg) term can be obtained from the analogous result for the gg channel Eq. (117) using the following
replacements:
TR _)NL'Q%’ {Q%{’ Qtzjv Qqu} - CF’ QW _)0’
FLM(lg’ ) g FLM(I}/? ), FLM(Z . ]u,25,4y) g FLM(Z . 1M’2L_1;4§])’

ay(u) < agw, OIY\ILO - Oi(iILO’ F%Ew(lg»zz‘ﬁ“u) - F%QCD(IWZ(};“&)- (122)
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The regulated contributions reads

regul =
25 - do " ;‘;?jq)—«l SOEFim(1,,27:44,5,)), (123)

q

where we define Z'? in analogy to what we did for the gg channel,®

= (I = Coy)(I = C4y)® + Oc(I = Cray)(I — Cay )™ + Op(I — Cr4y) (I — Cyp) ™

+04(I = Cra9)@™ + Op(I = Cay) (I = Cay) ™, (124)
with
. R (125)
p2g + p4g p2g + p4g
See Sec. VC.

D. The gy channel

This channel can be obtained straightforwardly by abelianizing the NNLO QCD gg channel. Following Refs. [12,47], we
do not order the final state partons either in energy or in angle and we do not introduce any partitioning.
For definiteness, we consider the partonic process g +y — W + (it + d) and write

Ao W) = 905 ) + 90, ) + 40 (126)
The boosted contribution reads
2s - dUg(y)SftW(ud) = (0!2(7/:)052EW>N TR/1 dz1dzy PO (21, E.) PR © (2. E,)
y <QdFLM(Zl L2 27) + QaFim(zi - la 2o - 2d)>‘ (127)
2122
The term with NLO-like kinematics reads
oy = () [ acePigo(o) oo | E et EInE L i
n <6¥2E_7\;v> /01 dz N PO (g )<ONL0 [QéFLM(g, 2-25:4) 1’ QiFim(g.z- 2u§4d):| > (128)
Finally, the regulated contribution reads
dazj%,l;;?;d) =((I = C4y = Cy = Cs5; = Cs5 + CCsy + C41 Csp) Frni(14,2,547,5,4)) (129)

In this case, the collinear operators always act on the unresolved phase space; see Refs. [12,47] for details.

VII. NUMERICAL RESULTS

We have implemented the above results for all the relevant partonic channels in a FORTRAN computer code that enables
the computation of mixed QCD-electroweak corrections to the production of an on-shell W* boson in proton collisions at a
fully differential level. Tree-level decays of the W boson are included in the computation. Note that in this paper we do not
consider mixed corrections that originate from QCD corrections to W production followed by electroweak corrections to W

¥Similar to what we did for qg channel, all double-collinear operators in ZJ?

collinear operators do not. See Ref. [12] for details.

also act on the unresolved phase space, while the triple-
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decay. Such corrections are, essentially, of NLO-type and,
for this reason, are much easier to deal with; in fact, they
have already been studied in Ref. [29].9

We note that all the finite remainders of one-loop
electroweak and QCD corrections that we require are
computed with OpenLoops [53-55]. The calculation of the
two-loop finite remainder of the mixed QCD-EW correc-
tions to the Wqg' form factor is presented in Appendix B.

Before presenting selected results for the mixed QCD-
electroweak corrections, we describe the various checks of
the calculation that we have performed to ensure its
correctness. First, we checked all fully resolved contribu-
tions by using our code to compute cross sections and
kinematic distributions for the process pp — W +y + jet
and comparing the results with MadGraph5_aMC@NLO [56]
and MCFM [57]. Such a comparison has been performed
separately for all the different partonic channels that
contribute to the above process allowing for a thorough
check of our code.

Second, we have used our code to compute NLO QCD
and NLO electroweak corrections to the processes pp —
W 4y and pp — W + jet and checked the results of the
calculation against MCFM and MadGraph5_aMC@NLO, respec-
tively. In both cases, excellent agreement for these NLO
contributions was found.

Finally, we have checked some unresolved contributions
by considering the limit of equal up and down quark
charges Q, = Q, and comparing the results with our earlier
computation of mixed QCD-electroweak corrections to Z
production in proton collisions [31]. This check is particu-
larly useful since, compared to the case of Z production, we
have modified the parametrization of the phase space and
the partitions for the computation reported in this paper.

We now turn to the presentation of numerical results.
We renormalize weak corrections in the G, scheme and

use, as input parameters, Gy = 1.16639 x 107 GeV~2,
M7=91.1876 GeV, My, =80.398 GeV, M, = 173.2 GeV,
and My = 125 GeV. We also use I'yy = 2.1054 GeV. The
fine-structure constant that is obtained with this setup is
apw = 1/132.338. We use the NNLO NNPDF3.1luxQED
parton distribution functions [58-60] for all numerical
computations reported in this paper. The value of the
strong coupling constant is provided as part of the PDF
set. Numerically, it reads a,(M,) = 0.118.

Since we do not aim at performing extensive phenom-
enological studies in this paper, we apply very mild cuts
on the final state of the process pp — W (ev) + X. We
require that the transverse momentum of the positron p ,
and of the neutrino p . are larger than 15 GeV and
that the absolute value of the positron rapidity does not
exceed |y,| <2.4. We also set the factorization and

9Similarly, we do not consider mixed QCD-EW corrections to
the decay process. These are also very simple since they only
come from the renormalization of the W — [v form factor.

TABLE 1. Fiducial cross sections for pp - Wt(e*v,) at the
13 TeV LHC for three different values of the renormalization and
factorization scales at different orders of perturbation theory.
Contributions of different partonic channels are displayed sep-
arately. See text for details.

clpb] Channel pu=My pu=My/2 u=My/4
610 6007.6 5195.0 4325.9
AGNLO ., all 508.8 1137.0 1782.2
q7 1455.2 1126.7 839.2
q9/99 —946.4 10.3 943.0
AoNLO all 2.1 -1.0 -2.6
qq' 22 -52 -6.7
qr/rq 4.2 42 4.04
AGNNLO o, all 24 -23 -2.8
q7' /94’ -1.0 -12 -1.0
q9/9q —-14 -1.2 -2.1
qr/rq 0.06 0.03 —0.04
agr/vg —0.12 0.04 0.30

renormalization scales to be equal yz = pr = u and choose
u = My,/2 as the central scale for our computations.

To present the results, we write the fiducial cross
section as

O pp—w+ = 0L0 + AONLOG, T AONLO.as TAONNLOGa, T+ 7 s
(130)

where the first term on the right-hand side is the leading
order cross section, the second term is the NLO QCD
contribution, the third term is the NLO electroweak con-
tribution, and the last one is the mixed QCD-electroweak
contribution. Ellipses in Eq. (130) stand for other contri-
butions to the cross section, e.g., NNLO QCD ones.

We show the fiducial cross sections pp — W + X, using
the cuts described above, in Table 1. It follows from this
table that NLO electroweak contributions are tiny—they
modify the leading order cross section by just about —0.02
percent. For comparison, we note that both the NNLO
and N3LO QCD corrections are in the range of 2%—4%.
We emphasize that the smallness of the NLO electroweak
corrections is partially related to our choice of the G,
renormalization scheme which appears to reduce the impact
of electroweak corrections significantly. Although quite
small as well, mixed QCD-electroweak corrections turn out
to be larger than the NLO electroweak ones, at least for the
setup considered here, due to the suppression of the latter in
the G, scheme.

The relative importance of mixed QCD-electroweak
corrections, at least compared to NLO electroweak correc-
tions, is also apparent from the kinematic distributions
shown in Fig. 5. These distributions are computed with the
fiducial cuts described above; results shown in Fig. 5 are
obtained for u = My, /2. The y-axes in the lower panes

013008-25



ARND BEHRING et al.

PHYS. REV. D 103, 013008 (2021)

o
oo,
0 . . . S——— . . .
__.-" —11_-.

—0.0002 F. Fan - o
4|2 b= ——————
< |

—0.0004 e - r e e

NLO EW ===~
—0.0006 } NNLO QCD-EW — i
-2 -15 -1 —05 0 05 1 15 2
Ye

2[3

3
S| 4
=]

]

‘?
— | O

&}
A 0

3
3|5

< —0.005 | NLO EW = === i

NNLO QCD-EW ———
—0.01 L n n n n L L
0 10 20 30 40 50 60 70
PLev [GCV]

FIG. 5.

)

%@ 500 |
— 0
of o L L .
| S T T T
"3 0.004 NLO EW - - —-
: | NNLO QCD-EW ——
‘> 0.002
— L
o [
d|s o002
~0.004 | ,
1
—0.006 N N N M N N N
20 25 30 35 40 45 50 55
pL,E [GeV]
= s00 [ . . . . . . . —
5|8 NLO QCD —— jl_l_r"
Y
of I 0 -
©|g
5 NLO EW == =- o
NNLO QCD-EW —— L L
‘> 0 P d
— | O _,r"-—
_Ul Lad=T r==
3 4t
4| 5 —0.0005 fy=! E
tls W
,0001 1 1 1 1 1 1 1 1

45 50 55 60 65 70 75 80
my e [GeV]

The impact of mixed QCD-electroweak corrections to pp — W (e*v) production at 13 TeV LHC on various kinematic

distributions including lepton rapidity and transverse momentum, the transverse momentum of the W-boson, and the transverse mass.

NLO electroweak corrections are also shown. See text for details.

correspond to bin-by-bin ratios of NLO electroweak and
mixed QCD-electroweak contributions to NLO QCD cross
sections,

dAGi

dAl' == .
doro + dAoNL0.q,

(131)

In Fig. 5, we show the rapidity and transverse momentum
distributions of the charged lepton as well as the transverse
mass'’ and the transverse momentum distributions of the W
boson. It follows from Fig. 5 that mixed QCD-electroweak
corrections are often larger than NLO electroweak ones and
that the two types of corrections often have different
shapes. It remains to be seen how these small effects
impact the extraction of the W-boson mass from LHC data;
we will investigate this important question in a separate
publication.

VIII. CONCLUSIONS

A better understanding of mixed QCD-electroweak
corrections to W-boson production in hadron collisions
is important for the precision electroweak physics program

%We  define the transverse
\/ZPL.I : pi.miss(] — Cos A¢lb)'

mass as  my g, =

at the LHC. The calculation of these corrections is
complicated by the fact that they require two- and one-loop
virtual corrections with several internal and external masses
as well as control on infrared and collinear singularities that
appear when photons and partons are radiated.

However, thanks to recent progress in developing sub-
traction schemes for QCD computations at the LHC and in
technology for multiloop computations, the calculation of
mixed QCD-electroweak corrections to on-shell vector-
boson production becomes relatively straightforward. To
demonstrate this, in this paper, we have presented results
for the two-loop QCD-EW corrections to the gg’ —» W
interaction vertex and explained how to construct a suitable
subtraction scheme for real-emission contributions. We
provided relatively simple analytic results for fully and
partially unresolved integrated subtraction terms as well as
analytic formulas and a numerical value for the two-loop
form factor that describes mixed QCD-electroweak con-
tributions to the gg’ — W on-shell interaction vertex.

We have implemented our calculation in a flexible
parton-level numerical code and used it to calculate mixed
QCD-electroweak corrections to pp — Wt (eTv) at the
LHC. We presented results for fiducial cross sections and
selected kinematic distributions. In the setup that we have
considered, we have found that, in general, mixed QCD-
electroweak corrections are rather small, often below a
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permille. However, they appear to be larger than one-loop
electroweak corrections to pp — W™, due to the fact that
the latter are suppressed when computed in the G, scheme.

The calculation reported in this paper provides one of the
last missing theoretical ingredients whose understanding is
considered to be essential for achieving few MeV accuracy
in the W-boson mass measurement at the LHC. Needless
to say that the actual impact of these corrections on the
W-mass measurement is unknown; we plan to study this
question in a future publication.
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APPENDIX A: INFRARED STRUCTURE OF
LOOP CORRECTIONS

The computation of mixed QCD-EW corrections to
ud - W™ requires virtual corrections to a number of

FSSDu,z;...):N(%‘)) | ¥ ol @aoup, -y

FEV(1,2;...

<2—W>

LVV+LV?

processes including (i) two-loop mixed QCD-EW correc-
tions to ud — W+, (i) one-loop QCD corrections to ud —
W, (iii) one-loop electroweak corrections to ud — W+,
(iv) one-loop QCD corrections to ud — W+ 4y, (v) one-
loop electroweak corrections to ud — W+ + g as well as
crossings of these processes. To demonstrate the cancella-
tion of 1/e¢ poles and identify the ¢ — O limit of the
integrated subtraction terms, we need to isolate infrared
divergent contributions to these amplitudes. In case of QCD
corrections, this can be accomplished with the help of
Catani’s formula [61]. In this Appendix, we use the results
of Ref. [61] to explicitly extract the infrared part of
renormalized QCD amplitudes and generalize them to deal
with the electroweak case as well.

We use the following notation. We write a generic
(renormalized) amplitude as

sl )>A, (‘?—X) A

A (%

n (aS(ﬂ)aE_W>Amix+”' (A])
2 2rx
and then define
|
A py
col,pol (277'-)[1_1 2EW ’
e d dd_lpW
D 2R A0AL) 2m)5,(Pi = Py) g3 s s
col,pol
H) dgw N T d d=py,
> 2R[AgA; + A A5 (2n) 5d(Pi_Pf)mv (A2)

FQCDREW (1,2) =
275 2w

col,pol

where P;(y) stands for the sum of initial(final) momenta and
N stands for all the required (d-dimensional) initial-state
color and helicity averaging factors; see Eq. (1) and
Refs. [12,47]. In this Appendix, we also use the notation

a = [(47) e Jagw. (A3)
Formulas provided in this Appendix are used in the main

text to construct subtraction terms for mixed QCD-EW
|

corrections and to demonstrate cancellation of 1/€ singu-
larities analytically.

1. The infrared structure of real-virtual amplitudes

We begin with QCD corrections to the electroweak
processes u +d — W +y. The infrared and collinear
structure of the one-loop amplitude directly follows from
Catani’s formula [61]. We write

(12540 = () [ () o costme (3 2 )] (10 2364, + FRCP(1,.25),

S12

(A4)

where s, = 2p; - p,. The required formula for QCD corrections to the photon-quark collision process reads
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QCD B () ere 1\ ¢ 13 . fin QCD .
#2020 = () [ | () |20 (Gt ) | ot 2ade) + (FRO2 0, 2000, 89
with $54 = 2p5 - py-

We also require one-loop electroweak corrections to the process u + d — W + g. We parametrize them in the following
way:

€YE 2 \e€
(FEY (1,.25:4,)) = (“)[ < K“ ) = 0u0uft = QuQuf + 0uOu s (Fisa(Lus2a:4,)) + (FIEY(1,.25:4,)).

2n) [T(1—¢€)| \M?,
(A6)
where Qw = Q, — Q, and
2 3-2L
fi=>+ *—3L,+ L — 1%,
€ €
1 5/2-2L, 3
/2 :_2+¥__L1+L121
€ € 2
1 5/2-2L, 3
=4+ "L L2 A7
f3 €2 + € n + Ly, ( )
with Ly = In(s/M%,), L, = In(1 —t/M%,), L, = In(1 — u/M3,). The Mandelstam invariants are defined as
s = (p1+p2),
t=(p1—pw)
u=(p—pw)* (A8)

A related quantity is the one-loop electroweak corrections to the gluon-initiated process g +d — W+t +ii. We
parametrize it in the following way:

€YE 2\ e
<FE$<1g,za;4ﬁ>>—<“)[ ¢ ](” )[—Qquf«‘fq—QuQszq+QdQWf§ﬂ<FLM<1g,23;4B>>

2z) [T(1 =€) | \M3,
+(FIV™Y (1. 23.40)), (A9)
where Qw = Q, — Q, and

2 3-2Ly

i :6_2+f—3L24+L%4’
1 5/2-2L4;y 3

!21(1 :€_2+7_§L4W+L£W_ﬂ27
1 5/2-2L 3

3= €—2+7/ . 2 _ELZW + Ly, (A10)

with Loy = In(2p; - pa/My), Law = In(2py - pw/M7y), Loy = In(2p; - pW/M%V):
In all the formulas above, the infrared 1/e poles are explicitly extracted and F E@QCD/ EW are finite remainders.

2. Infrared structure of the Wqq' form factor

The only two-loop amplitude that we require describes mixed QCD-EW corrections to the ¢ + g’ = W™ process. For
definiteness, we present results for the u + d — W™ channel.
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At one loop, we parametrize QCD corrections as

(FRP 002000 = () fsqcoFusa(L 201 + (ISP 20)
(FRY(120) = () Foaw Pl 2a) + (FIRP (11, 22), (A1)
with
/ [ e u \ € " 1 3
oo ) () i)
€YE 2\ € B B B
Iopw = [F(i - e)] (”—%V) ~0uQuf1 — QuQu2 + QuQu 3] (A12)
and
- 2 3 - - 1
fl—COS(”G)L—z‘FE} fz—f3—€—2+—€ (A13)

We note that these formulas agree with the s — M3, t, u — 0 limit of Eqs. (A4) and (A6).

We now discuss the infrared structure of two-loop mixed QCD-EW corrections. As we have explained in the main text,
IR singularities in this case almost factorize into the product of two NLO-like structures. The only exceptions are genuinely
NNLO hard triple-collinear configurations. As a consequence, we can write

ee}/E

H

QCDREW (o) @
(Fiyviy: (Lus 23)) = < o E) [IIZ.QCD T2 Ew +F(

In Eq. (A14), F ﬁ“’SiEff’zEw is the two-loop finite remainder.
The constant H{cpgrw 1s related to the quarlf apqmalous
dimension and can be extracted by abelianizing the
corresponding contribution in Ref. [61]. It reads

7.[2

3
Hicpgew = (7 — 605 - g) CrlQ2+02]. (Al5)

We present explicit formulas for the one- and two-loop
finite remainders in the next Appendix.

APPENDIX B: ANALYTIC EXPRESSION FOR
THE MIXED QCD-EW FORM FACTOR

The double-virtual corrections to single on-shell W-
boson production require the form factor for the gg' — W
vertex at O(a,apw). The on-shell condition simplifies
the problem significantly; in particular, we do not need
complicated two-loop four-point functions [62-65] re-
quired to describe the process pp — v with O(a,agw)
accuracy in the off-shell case. Moreover, if one assumes

1-¢)

(15(/1) fin,
+ < o )IIZ,QCD<FLVEW(114’2¢_Z)> + <2ﬂ

w
CDREW
SN (£ (1,,24)

a
LVV+4LV?2

_) 112,EW<FE$QCD(1LN 2:_1)> + <Fﬁn’QCD®EW(1uv 2[1’)>

(A14)

|
equal masses for internal W and Z bosons, all necessary
integrals are available in the literature and can be
extracted from Refs. [62-67]. However, to the best of
our knowledge, results for on-shell W form factor that
accommodates different masses of W and Z bosons are not
publicly available. We compute the relevant form factor in
this paper.

An example of a diagram that has to be computed is
shown in Fig. 6. In order to calculate the form factor, we use
QGRAF [68] to generate diagrams, FORM [69-72] to perform
the Dirac and Lorentz algebra, COLORH [73] for the color
algebra, and Reduze2 [74—76] to reduce integrals that appear
to master integrals using integration-by-parts relations
[77-79]. We work in the Feynman gauge and use
Feynman rules from Ref. [80]. Since we only require
contributions of massless quarks and work at O(a,agy),
there are no axial couplings on closed fermion loops in the
diagrams for the form factor. The Dirac matrix y5 can only
appear on fermion lines that are connected to external lines.
For this reason, we consider y5 to be anticommuting [81].
Effectively, the vector and axial-vector form factors are
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u

d

w

g

FIG. 6. Examples for mixed QCD-electroweak two-loop diagrams. A form factor diagram with simultaneous internal W- and Z-boson
propagators is shown on the left. A self-energy diagram which contributes to the wave function renormalization of the external quarks at

O(ayagw) is shown on the right.

identical in this case. Closed fermion loops only occur in
the calculation of vector boson self-energy diagrams for the
renormalization constants. However, since the two-point
functions of the vector bosons only depend on the external
momentum ¢*, there are not enough quantities to construct
a nonvanishing anomaly term that is proportional to the
totally antisymmetric tensor. Thus, we again use an anti-
commuting prescription for ys.

The form factor has to be renormalized in order to
remove ultraviolet divergences. We choose to follow the
procedure described in Ref. [82] and renormalize the wave
functions and masses in the on-shell scheme. We use the
MS scheme to renormalize the strong coupling constant a;
and the G, scheme'" for the electroweak input parameters.
The weak mixing angle is defined as cos 0y = My, /M, in
terms of the on-shell W and Z boson masses. The necessary
renormalization constants at the one-loop order are given
explicitly in Ref. [82]. The two-loop mixed QCD-electro-
weak corrections to the self-energies of electroweak gauge
bosons are calculated in Ref. [84]. In addition, we need the
two-loop self-energies for massless fermions which enter
through the wave function renormalization of external
quarks. A typical diagram that appears in this context is
the self-energy diagram shown in Fig. 6. The required wave
function renormalization has already been calculated in
Ref. [31]; it reads

1= (55 = v

<((F) am (2))
(B3
x T(1 = €)T(1+ e)T(1 + 2e)

M2\ —2¢ 1 M2\ —2¢
> (HMz B il 4
: (gf - ( w ) " 2sin?(0y) ( W ) ) ‘

"See Ref. [83] for a recent review.

(B1)

The bare strong and electromagnetic coupling constants are
a, and a, respectively, and the subscript f € {u, d} denotes
the type of fermion. The Z-boson coupling is defined as

_ I3f — Qf Sinz(ew)
It sin(Qy ) cos(Qy)

(B2)

where I3 ; = 4-1/2 and Q/ are the third component of the
weak isospin and the electric charge of the fermion f. We
have checked the renormalization constants by rederiving
them using the same set of programs as described above.
We have also checked the renormalization constants related
to vector bosons by comparing numerically against results
of Ref. [29].

We note that the one-loop renormalization constants also
enter the two-loop renormalization where they are multi-
plied by infrared divergent quantities. Therefore, one would
a priori also need higher-order terms beyond O(e”) for
these renormalization constants. However, once one-loop
squared and genuine two-loop contributions are combined,
the higher-order terms cancel out and so there is no need to
compute them.

To check the correctness of our result, we performed two
independent calculations and found agreement. We have
also checked that the 1/¢ infrared poles of the renormalized
form factor agree with the general structure discussed in the
previous Appendix.

We now discuss some details of the calculation. After
integration-by-parts (IBP) reduction, we find ten master
integrals with two different internal masses. We compute
them using differential equations [85-87]. The integration
constants are fixed by matching to the known results in the
equal mass limit which we take from Refs. [62,66,67].]2 To
verify the computed master integrals, we have numerically
checked our results using pySecDec [69—72,89-93].

To write down the differential equations that the master
integrals satisfy, we find it convenient to rationalize the
square root present in the alphabet by introducing the
standard Landau variable y defined as follows:

12Partially, Loopedia [88] was used to identify references for
these integrals.
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Mz (1 2
My (L) (B3)
My, y

When written in this variable, the differential equation for
the vector of master integrals / can be written as

(B4)
S -a)
where
S ={0, %1, +i, ¥, -2, -2}, (B5)
and ¢ = # is the golden ratio.

The differential equation Eq. (B4) is solved in terms of
Goncharov polylogarithms (GPLs). Manipulations of GPLs
were done using different tools, including HarmonicSums
[94-104] and PolyLogTools [105—-107]. We have simplified
GPLs that appear in the calculation using relations from
Refs. [99,108]. In the solutions of the master integrals, the
letters a = i no longer appear. Although the result
expressed in terms of the y variable is straightforward to
evaluate, its analytic form is somewhat unwieldy. Because
of this, we decided to present our analytic result expressed
in terms of

M3y
7 =—5 +i0.
M3

(B6)

Results in terms of y can be obtained from the authors upon
request.

We express our results in terms of iterated integrals
defined as

HopooaD) = [ Q8f0 0o, (0. (BT)
with the alphabet
1 1 1
fo(x):;’ fl(x):]_x’ f_l(x):1+x’
1
fr(x) = m (B8)

We also find it convenient to define the following
combinations:

H,=H,(z7") -,

Hy = nHo(2) + Ho(z7'),

Hs = in® = 3izH,(z7") = 3H,,(z7"),
Hy = H,o(z7h),

Hs =—aH, (z7") + H,,(z7"),

He = —nHy(z7") + Ho, (z7"),

Hy = —aH,o(z7") + H,o,.(z7"),

HS = Hr,r,O(Z_l)’
3

Hy = —i%+ in?Hy (™) = 3irH . (z7) = 3H,,.1 (7).

3
Hyo = i%Ho(Z> +in*Ho (z7") = 3inHy, ,(z7")

—3Hg,,0(z7") =3Hy,,1(z7") — 4ind;. (B9)

These combinations evaluate to real numbers in the relevant
physical region M3, < M2, i.e., 0 < z < 1. However, note
that the iterated integrals where the square-root-valued
letter f, occurs are evaluated at argument z~! > 1.
Therefore, the individual iterated integrals with simulta-
neous letters f, and f; develop an imaginary part that
cancels against the explicit imaginary parts in Hs, Hog, and
H1o- The representation given in Eq. (B9) relies on the i0
prescription of Eq. (B6), but as stated before, the final result
is real for physical input parameters.

We now present our results. For completeness, we first
report expressions for one-loop corrections. We write the
finite remainders defined in Appendix A as

in as\H in
<F£\;QCD(1L¢723)> = ( 2(” )>'7:(u2¢§:Df <FLM(1uv23>>’
in a fin
(FIV™Y (1,.22)) = (;j)f‘” (Fua(1,:23))-
(B10)

With this notation, the (renormalized) form factors read"

FEPIN — _8Cy, and

“Higher orders in the e-expansion of the finite remainders are
not needed for our calculation, so we do not report them here.
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- z—=1)(142)? 1(z=1)(3z+2 1922 +3z+4
fl‘;:;\’f — (Q% + Qé) ( )(3 ) H—I,O(Z) __( )(2 )HO(Z> 0 .
Z 2 z 4 Z
1(z,—1)(z,+ 1) 1477 —z,—-2] 1222 -2z+1)(1+2)?
N,|-——————H|(zy) —=———————| — = H_ 4z
[4 (z—1)z 1) 8 (z—1)72 2 (z—-1)7 10(2)
1 474 — 2273, + 1773, — 6z + 1 1 162° +20z* = 11823 +79z2 =2z -1
e Ho(2y) — . Ho(z)
16 (z=1)(zyg = 1)zp 16 (z—=1)*z
1 =622 +21z%zy — 3023, — 69223, + 418z°z3, 12247 , z+2
— — H
48 (z—1)%2% 6z-1" "z-1 00(2) + Hs(2)
Vadzg —1 12823, —207% + Tz — 1 Vaz—112834+5222-13z-1
VR T D - S8 T T IS T 2 () e S 2 TS T T D (). (B11)

w16 (z—=1)dzy — 1)z

In Eq. (B11), we used"

M3,
7z =—= 1410,
M,

M3, M3
iy =—2+i0, z,=—2+i0. (BI2)
H M%—] t Mt2
We now present results for the mixed QCD-EW correc-
tions. We find it convenient to factor out the LO amplitude
and separate factorizable and nonfactorizable contributions.
We write
Anix = AO[MIMI + Mmix,n.f.]’ (B13)
where A; are defined in Eq. (Al) and we used
analogous definitions for M;. Following what was done
|

- 1 3 1
= 2 2 S22
Mmlx (Qu + Qd)CF |:€ ( 16 + 47[ 3C3

301 M3
) + (g—EﬂZ +6C3> ln<ﬂ—;/) +

16 (z—=1)7?

|
in Ref. [38] for the Z boson, we also separate the
renormalization contribution coming from two-loop
gauge-bosons self-energy corrections, which is finite. We
then write

Mmix,n.f. = Mmix + 5Zmix,2’

Mmix = Mmix,bare + 5Zmix,lv (B14)

where 6Z..; ; contains the mixed fermion wave function
renormalization Eq. (B1) and 6Z, , contains the remain-
ing renormalization. In analogy with Ref. [38], we now
present results for /\~/lmix. We obtain

1272+ 13)(1 —2)

4 e !

1-2)%2(1+2) /3 9 9 1(5z+3)(1 =2)(1+z

+()Z# <4_1H1ﬂ2 —§H1,00—§H1,0,1) _Z( U 3 X )H—I,O
1-2)(1+2)? 3 3

+ % <—§H—1,—1,0 + EH—I,O.O +3H_ 101 +2H_ 1 _10—2H_ 1 _100—6H_| _19,

1 1 1 ,

—2H_ 910+ H_ 1001 +Ho-100+4Ho_101 + _ZH—l +6H_]"_l _EHO,—I n°—3H_;{3
1722 =72z4+64 15022 -5z—16 , 38z72-z-2 11, (1-2)/1
_ L S Sk S P S92+ 1A,
32 2 24 2 i T e T Zz (302 1DHo,
1 17 1 1

—5(32 +4)Hyo, + (32 +2) —§Ho +§Ho,—1,0 +Z(23Z +16)H,

+(22+3z+1)(1—z) 1

Z3

7+2

<§Ho.177-'2 - 21"10,1,0,0 - 2H0,1.0,1

1(5z-2)(22% + 12z + 11)

)

14322 + 7716

1
+ CF|: <—8Ho,0’52 +4H (3

)

1-z2 +§

+

"“Note that since we are below the Z, H, and ¢ threshold, the sign of the imaginary parts in Eq. (B12) is immaterial for physical values

of the masses.
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1 823 + 14272 + 237 — 34 1 1022 + 5724+ 20z - 16 ) 1 5z-36 , 1472 =177+ 8
i E— ot —=

16 (1-2)72 0748 (1-2)22 120 1—z 8 (1-2)2

272 -2z +1 3 1 1 (222 -6z+3)(1+2z) (3
+W <(3Z+2) <_ZC3 _ZHO,—1,0> +Z(3Z+4)Ho,0,1> + = 7100
+§H H H +1(92—8—)C+5H

21101~ 17 l—z 000 T 5 Z Z 3748 o’

272 —2z+1)(1+z2 3 3 3

( (1-2)2 <4H 1-1,0 — 4H—1,0,0—§H—1,0,1 —H_ y_j0+H_j_100+3H_1_101

I I 1 1 1 , 3

+H_19-10 _EH_I’O’O’I _EHO.—I,O,O —2Hy 101 + §H—1 _EH_I’_I +EHO’_1 7 +§H—1C3

1473 + 64z =z - 13 1(52+3)(2z2 =22+ 1)(1 +2) 14—4zz+z+1<

- Hy +< Ho+——"*" (H

8 Z3 1 8 (1 _ Z)Z3 1,0 (1 _ Z>Z3 0,1,0,0

1 Vviaz—1 110z 43 1 16z+1 117z4+4

+H0.1,0.1—6H0.1ﬂ2) +{ - (—g 11— Hl—gHz 3= H3 3 1= H4)

13z42 1 1 1622 -4z +1 13072 - 20z -1 13z-2 7+2
- Hs+—-—+——He——-—— - H;———————Hg+ —— H —’H

S(-2: " " 8(1-22 "8 (I-2: 778 (-2 7 21-¢"" “’H

. 9(1-2)*(1+z 1-2)(1+2)% /3 3
+ im4 (Qs + 03)Cr —( ) 3( )Hl,O +< )(3 ) SH 1 —5H 1 0—2H
2 z z 2 2
(1-2)/ 1 1
+2H_ 190 +2H 1901 —Ho_1p | + 2 —5(32 +2)Ho ——<232 +16)H,
1(5 3)(1—=2z)(1 243 1)(1 - 15422 -17z-34 1
+_( z+3)( : z)( +Z)H_l+(z + z+3 )( Z)2H01o—— z zz e e
4 Z b4 8 z 2
1822 +37222 4172 =34 3222 —62+3)(1 +2) 1(2z—1)(23z + 16)
+Cr|—— - 3 Hyo—~ 5 0
16 (1-2)z2 4 z 8 (I-2)z
272 =272+ 1)(1+2)% (3 3 1
+ ( (- Z))Zg ) <ZH_1‘0 _ZH—I,—l —H_j 1ot H = Hojo +§Ho,—1,0>
1(3z+2)(2z2 =2z +1) 1(52+3)(2z2 =2z + 1)(1 +2) -4 +z+1
- . Hy_, —= . H_ - 57— Hoao
4 (l—z)z 8 (1-2)z (1-2)z
l
——n =12 B15
2 | (BI5)

In Eq. (B15), we omit writing down the argument z of the iterated integrals. Real and imaginary parts in Eq. (B15) are
explicitly separated.
For completeness, we also present results for the 6Z,;, , term. We obtain

N.C z+ 1)1 —2z) |1 I (172, +15)(1 =z
0Zix2 = 4(1 _FZ) {( : ;; 2 |:8H1(Zt)”2 —Ho.1(z) + Hioa1(z)| + ﬁ( : Z?)( J H(z)
12223 1(4z2 =5z, —17)(1 = z,) 14z22-3z,-6 , 13627 - 35z, -30
~—5—H —— H o e - el Sl S
T3z Huk)=g e T Y 2

(B16)

Starting from the definitions Eqs. (B13) and (B14), it is straightforward to obtain the two-loop finite remainder

FIvIO8EY Eq. (Al14). It reads

013008-33



ARND BEHRING et al. PHYS. REV. D 103, 013008 (2021)

w
fin, QCDQEW R as(ﬂ) Apw - HQCD®EW fin,QCD ~fin,EW B
(PP (1,,20) = (%) ML) + 2620 = DI 4 FO N (71,2, (B17)

where HgCD®EW is given in Eq. (A15) and ]:sg’i are defined in Eq. (B10).
We conclude this section by presenting numerical results for the finite remainders of the one- and two-loop form factors.
Using the numerical values for the various input parameters reported in Sec. VII, we obtain

(P 1,,22)) = (%20 ) (-8CR Frna(120), (B18)
(R (10,2) = () (-4:52495) Fraa(120), (B19)
(FIv DY (1,.2)) = <%‘:)“2E—:> [ 7.2702 + 3.92969 In (AZ—EVH (Fun(1,:22))- (B20)

APPENDIX C: AUXILIARY SPLITTING FUNCTIONS AND THEIR CONVOLUTIONS

In this Appendix, we collect the various splitting functions that we used in our derivations.
For the NLO calculation, we used

PYO(z, L) = (1 = ) 2Py (2) + -6(1 = 2)e L. (1)

Its expansion in powers of € is given by

P°(z, L) = =2L5(1 = 2) +2Dy(z) = (1 +2) + (2L?8(1 = 2) = 4Dy (2) +2(1 + 2) In(1 = 2) = (1 = 2))e

4
+ <4D2(z) - §L35(1 —2)+2(1 =z)In(1 = z) = 2(1 + z)In?*(1 - z))62
2.4 8 2 4 3 3
+ §L 5(1 —z) —§D3(z) -2(1 =z)In*(1 -z) +§(1 +2)In*(1 - z) | €. (C2)
The expansion of the analogous contribution for the yq channel

PiC(z) = (1—2)*[(1 -2+ 2% —¢]/(1—¢) (C3)

is straightforward.
When discussing real-virtual contributions, we introduced the following splitting functions:

2 2
P = [ﬂ*fz 1n<z>] - (1 -2+ 3001 - ) (@) - £ - (1= 2) (o)
+€[_<1 +z21>L_i3Z<1 ~9 (1 - o) (3“ “?fi;“ 94500 1n<z>) (1= 2)Lis(1 - 2)
9(1 +Z;(1;1(f)zh)l (1-2) _%(1 H)] (C4)

and
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PRY(2) — T -eP(e+1) {2<1 —z)‘%{l _2(1 —z)z} {l+eLi3(1 2 —M—Liz(l _Z>]

(1 -2e¢) l—¢ ||ée €
2(1 —2) (1 =201 — )T (e +1)> (264 1)(z—€)(1 — )¢
B (1 —12€)F(2€ +1) - 1—¢ } (©5)

When discussing the double-real contribution in the gg channel, we introduced the following convolution:

[PNEO @ PNLOY(z, E) = =2 + 52 =322 +2(22 =2z + 1) In(1 — 2) — (42> =2z + 1) In(2) + 6{4(1 —27)Liy(2)
+ % [4(x* = 12)z22 + 572 = 9] — 6(22% — 2z + 1)In*(1 — z) + (42> = 2z + 1)In*(2)
+[8(222 =37+ 1) +4(222 =2z + 1) In(z)] In(1 — z) + (3 + 62 — 47%) ln(z)}

+ 62{16(2Z — 1)Liz(1 — z) + 8(2z — 1)Li3(z) + Li(2)[4(2z + 3) + 16(2z — 1) In(1 — z)]
2 27 2 2,28, 3
+8(3-6z+4z )C3_T(1+9Z_5Z ) — 16 + 84z — 68z +?(2z —2z+ 1)In°(1 -z)

- % (422 =2z + 1)Ind(2) —4[(922 = 13z + 4) + (222 — 6z + 3) In(z)]In*(1 — 2)

+ {—g [(47% = 51)22 4+ 60z — 9] — 4(22% — 2z + 1)In?(z) — 8z(1 — 2) ln(z)} In(1 -z)

2 1 E ax —2e
+ (422 =62 = 3)In*(z) = 2|1 — z + 27> - % (1- 21)] ]n(z)} - EPZI;“O 2) {z‘ze - (Ea> }

(Co)

For the collinear renormalization counterterms, we also need the convolution of Altarelli-Parisi splitting functions
(defined in Appendix D) and the finite one-loop remainder Py, (z, E) Eq. (32). We obtain

2E) —2e12 ( 1= 6) PI;T;,OCV (Z)
T(1 - 2¢)

_ 1 o _ _
P55 @ Pil(e.B) = - e (1 - P ® P ).

] 1 (T2(1 = €)RE)™> (3 _ - _ o _ _
P @ Pil(e.B) = = (U DGR (S P + POSYe) ) = e T - P @ PG ).

(C7)
where the convolutions of Altarelli-Parisi splitting functions are reported in Appendix D and

7‘[2
PO (@) = (600(2) +801(2) + (3= )o(1 =) +¢(57D0le) = 6D1(2) - 1202
—8¢36(1 — z)> +é? <16C3D0(z) —%877:2[)1 (z) + 6D, (z) + 321)33(Z) - %ﬂ45(1 - z))

N <_ (3z2+ 1) In(2)

11—z

—z—4(z+ 1)In(1 —z) — 5> + e((z + 1)(2Liy(z) + 6In*(1 — z) — 3In?(z) — #?)

41n(z) — 61n(z)

3
-2(1=
2( 9+ 1-z2

+ (z4+35)In(1 —z) +2(z+3) ln(z)>
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+ée? ((z + 1)(=4Li3(1 — z) — 4Li3(z) + (27% — 4Li5(z)) In(1 — z) —13—61n3(1 -2)

— (2In(z) + 3)In(1 - 2) + %”2 In(z) — 4¢3) — 2g1(1+—_3zz)2)ln3(z) + (6 — 2z)Liy(z) + * (Z - g)
~2(z +3)In(z) + ﬂi_(? = 21In(z) + (1-2)(3In(1 - 2) - 2>>, (C8)

POV (z) = =322 +2(222 =2z + 1) In(1 — 2) + (=422 + 2z = 1) In(z) + 5z =2

+ €<2(1 —27)Liy(2) + % (7*(2z=1) =3(822 =9z + 1)) —2(2z° = 2z + 1)In*(1 — )
+ (422 =2z 4+ DIn*(z) +2(322 = 5z +2) In(1 — 2) + (22 + 3) ln(z))
+ €? <4(ZZ — 1)Liz(1 — z) +4(2z = 1)Lis(z) + Li»(2)(2(2z + 3) + 4(2z = 1) In(1 — 2))

+ = (=12(422 + 2(2¢(3) = 5) = ¢(3) + 1) = 7*(2z + 3)) +%(222 —2z+ DInd(1 - z)

(422 =2z + D)In’(z) + (2(2z = 1) In(z) = 2(3z> = 5z + 2))In?(1 — 2)

W WIN W —

+= (2422 =272 =27z 4+ 7 +3)In(1 — z) — (22 + 3)In*(2) + 2 (7*(1 =2z) = 3) ln(z)>. (C9)

3

The triple-collinear splitting function for the gg channel reads

PU(z.E) = ! 'ZSZ n (5-1lz 2912)111(2) n B_ In(2) (l_ Z)} In(z) - (3-6z +44Z2)1n2(2)

+[2+ (1 =2)% {Liz(z) +In(1 -z)In(z) +31n(2) In <E(limixz>> - %] + e{l +437Z - %z(l -2)

27> 8—17 15z%)In%(2 51 E
—%(1—22+322)ln(2)+( ”4 D’@) <8—7Z+24zz) ln(2)—6z(1—z)ln(2)ln(%>

+ [% - (% + z) n(2) - L= 29°(2) 2?1n2(2) + %2 (5- 10z + SZZ)} In(z) + 12238 —|1—22812)1n3(z)

+ [G - z) In(2) - (15%“&2)] In?(z) — [1 + 5z + (10 = 282 + 24z%) In(2) + 2z(1 — z) In(z)] In(1 — 2)

+[3 =2z +27% — (2 —4z)In(2)]Liy(z) — [z* + (1 — 2)?] [31n2 (%) In(2) — %m( Emax >1n2(2)

E(l1-72)
+ (6 In(2)In(1 —z) — ZTHZ> In <E2ax> +[41n(z) = 91In(2)]In?>(1 — z) + (lnzz(z) - ZTHZ> In(1 -z)
+ [41In(1 — 2) — In(2)]Liy(z) + 4Lis (1 — z)} — (9= 182 + 1422)Lis (2) + 2(1 — 21)53}. (C10)

APPENDIX D: ALTARELLI-PARISI SPLITTING FUNCTIONS AND THEIR CONVOLUTIONS
Here we list the Altarelli-Parisi splitting functions that we use in this paper. These functions do not contain color factors

because in many cases they are used to describe QED and QCD radiation at the same time. At NLO, we need

Po0(z) = 2Dy(z) = (1 + 2) +%5(1 -2), PorP(z) = (1 =22 + 22 (D1)
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At NNLO, we also used the following (abelianized) one-loop splitting functions:

1 2 1+3 2 1 2 3 2
Pir'(z) =3-22+ 2(1 - 1tzz In(1 - Z)> In(z) +2(;L_ZZ) In*(z) +21+—_ZZLi2(1 —2)+6(1-2) <§—%+ 64“3),
— _ 2 2 _ _
Pgy(2) = 2—22+21n(1—2) ! 4;>IH(Z)_(1 2Z2)1n (Z)+[z2+(1—z)2][5—%—21n(1ZZ>+ln2<1zz>]'

(D2)
We note that the 13‘;; I splitting function in Eq. (D2) subtracts collinear singularities arising from the gy final state only (and
not from the ¢g final state). The equivalent result inclusive over all possible final states (i.e., gy and gg) can be obtained by

abelianizing the standard NLO Altarelli-Parisi nonsinglet splitting function.
We also need the convolution of two LO splitting functions which are as follows:

P ® P Ie) = 600(c) + 80120+ (522 Jo1 -0 - B e - -,

PR @ PAYPI(e) = =2+ 52322 = (1 =22 +42) ) + (21n(1 = 2) 43 ) P °Ce). (03)

APPENDIX E: CALCULATION OF THE TRIPLE-COLLINEAR INTEGRATED COUNTERTERM FOR
THE GLUON-PHOTON FINAL STATE

According to the discussion in the main text, the triple-collinear limit of the process u + d — W + g + y is described by
the following formula:

Tre = ((I=S,)(I = S,)B Fiam(1,.25.4,.5,)). (E1)
where
B =Cppi(I = Cp)a" 90,4 + Cpy (I = Cpp )" 9" 05 + C,pr (I = Cpp) "0, + Cpyr (I = Cpp)a?*96p,  (E2)

and 04 = 0(p,; — p,;) and O = O(p,; — p,;); see Eq. (53). We remind the reader that triple-collinear operators do not act on
the unresolved phase space, while double-collinear ones do; see Refs. [12,47] for details.

We write
=qq _ =(1) | =2
Bl = ng )+ :g ) (E3)
to describe emissions off incoming u and d quarks, respectively, and focus on Egl). Taking into account that C,, ;"' =
C,,.1 and factoring out color factors, we find
1 1
730 = Q2R ({1 0= )l = €00 + (1 = Ca)ou] - Pry () Ful1 =7 =900 (B4
lgr

where P, gv 18 the Abelian part of the ¢ — ggq* splitting function computed in Ref. [109]. Using the fact that 1 = 6, + 05,
we write this contribution as

Py, (..0)

TC = QiCre’yg <(1 = 8,)(1=S5,)[1 = (Cy104 + C)105)] 1
qr

FLM(l_V_gv'“)>’ (ES)

where terms proportional to C,; are referred to as strongly ordered. We would like to rewrite the expression for Z <T1C) in such

a way that the result in Ref. [52] can be employed. We recall that our current parametrization differs from the one considered
in Ref. [52] because (i) we do not order the energies of the gluon and the photon in the final state and (ii) we only consider
two angular sectors instead of four. We first consider the issue of energy ordering, introduce the partition of unity
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| =0(E,— E,) +0(E, - E,) (E6)

and write

1gr(-o0)

Z.'([‘l(% = QﬁCFe2g§<(l - Sg)(l - Sy)[l - (CgleA + CJ/IHB)][H(Eg - E}') + H(Ey - Eg)] F FLM<1 -r=9 )>

(E7)

Sigy

We note that this expression is symmetric upon exchanging g <> y. This is because, upon replacing g <> y, we find
that C;,04 < C,10p. All other terms in Eq. (E7), including the triple-collinear splitting function P, are manifestly
symmetric under g <> y. This allows us to remove one of the energy orderings. Accounting for the extra factor of 2, we write

P,(..)
I(TIC) =2x QgCFEZQ%<(1 = 8,)(1 - S;')[l —(Cy104 + CyleB)]e(Ey - Eq)lsw—

This form is now energy ordered and, except for a different
definition of sectors, compatible with the integrals studied
in Ref. [52].

It is very simple to adapt the calculation [52] to the
definition of sectors used in this paper. Indeed, the new
sector definition only affects the strongly ordered
terms proportional to the double-collinear operators
C,, whereas the purely triple-collinear term remains

L FLM(I_J/_Q"")>' (E8)

Lgy

|
unchanged and we can borrow it directly from
Ref. [52]. At this point, we recall that double-collinear
operators act on the unresolved phase space and that the
corresponding integrand drastically simplifies upon tak-
ing the limit [52]. The integration with the new sector
definition is again straightforward, which allows us to
compute the required integrated triple-collinear contribu-
tions with minimal effort.
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