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(s, p)-HARMONIC APPROXIMATION

OF FUNCTIONS OF LEAST W s,1-SEMINORM

CLAUDIA BUCUR, SERENA DIPIERRO, LUCA LOMBARDINI, JOSÉ M. MAZÓN,
AND ENRICO VALDINOCI

Abstract. We investigate the convergence as p ց 1 of the minimizers of the W s,p-energy for s ∈
(0, 1) and p ∈ (1,∞) to those of the W s,1-energy, both in the pointwise sense and by means of
Γ-convergence. We also address the convergence of the corresponding Euler-Lagrange equations,
and the equivalence between minimizers and weak solutions. As ancillary results, we study some
regularity issues regarding minimizers of the W s,1-energy.
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1. Introduction

The goal of this paper is to study the limit properties of the minimizers of a nonlinear nonlocal
problem in dependence of its nonlinear exponent. Roughly speaking, we take into consideration the
minimizers of a W s,p-Gagliardo seminorm with s ∈ (0, 1) and p > 1 and discuss the limit as pց 1.
This asymptotic study is important in providing a coherent setting for variational problems for
energy functionals that are homogeneous of degree one and not strictly convex. We try to keep the
presentation of the results as self-contained as possible, so that the paper can be accessible also to
a non-specialist reader.

The classical counterpart of this problem is related to isotropic diffusion models restricted on
level surfaces as well as to hypersurfaces with zero mean curvature. The corresponding local energy
functional is the seminorm in the space of bounded variation functions, whose minimizers are often
called “functions of least gradient”: more specifically, these problems are modeled by the 1-Laplace
operator, and a very fruitful field of investigation consists in understanding the limit of the solutions
of p-Laplace equations as p ց 1, see [26]. An evident structural difficulty in this setting is to give
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an appropriate meaning to the 1-Laplace operator, or even to the normal vector field ∇u
|∇u| , at

points where ∇u vanishes. In these classical problems, the appropriate substitute for the normal
vector field at critical points was introduced by Andreu, Ballester, Caselles and Mazón in [3] via
a suitable vector field z with |z| 6 1 and z · ∇u = |∇u|. We refer to [33] for equivalence results
between functions of least gradient and solutions of 1-Laplace equations. See also [24] and the
references therein for several motivations and perspectives related to nonlinear PDEs involving the
1-Laplacian.

The nonlocal correspondent of these classical problems entails additional difficulties, since the

role played by the normal vector is taken in this setting by the fractional ratio u(x)−u(y)
|u(x)−u(y)| and hence

the singular set is geometrically more difficult to interpret and describe. As a counterpart, finding
a suitable substitute of this ratio that carries over to the singularities is conceptually more difficult
than in the classical case, and a first step towards the understanding of this problem was made
in [34] where the nonlocal ratio was replaced by a convenient choice of a measurable function.

Our objective is to further understand the nonlocal 1-Laplace equation in view of some convenient
limit properties of p-Laplace equations as p ց 1, especially in light of the convergence of the
minimizers, of the Γ-convergence and of the convergence of the weak solutions.

For completeness, we investigate also the asymptotics as s → 1− having fixed p = 1, proving
convergence of the W s,1-energy and of its corresponding minimizers to their local counterparts, i.e.
the BV seminorm and respectively, functions of least gradient. These side results are the content
of the Appendix.

To state precisely our results, we introduce now the formal mathematical setting that we consider
in this paper.

We denote by Ω ⊂ R
n a bounded open set with Lipschitz boundary. We consider also s ∈ (0, 1)

and p ∈ (1,∞). In particular, since our concern is the asymptotic behavior as p ց 1, we will take
p as close to 1 as needed.

For any measurable function u : Rn → R and q ∈ [1,∞) we define the nonlocal (s, q)–energy of
u in a domain Ω as

Eq
s (u) :=

1

2q

∫∫

Q(Ω)

|u(x)− u(y)|q

|x− y|n+sq
dx dy,

where
Q(Ω) := R

2n \ (CΩ)2.

Notice that one can split Eq
s into the contributions occurring inside Ω and the interactions of Ω

with its complement, precisely

Eq
s (u) =

1

2q

∫

Ω

∫

Ω

|u(x)− u(y)|q

|x− y|n+sq
dx dy +

1

q

∫

Ω

∫

CΩ

|u(x) − u(y)|q

|x− y|n+sq
dx dy. (1.1)

In this notation, for the sake of simplicity, we neglect the dependence on Ω in the expression of the
energy Eq

s since the domain Ω will be fixed throughout the paper—unless otherwise specified.
We recall that the fractional (s, q)–Gagliardo seminorm of a measurable function u : Ω → R is

defined as

[u]W s,q(Ω) :=

(∫

Ω

∫

Ω

|u(x)− u(y)|q

|x− y|n+sq
dx dy

)
1
q

.

We consider the fractional Sobolev space

W s,q(Ω) = {u ∈ Lq(Ω) | [u]W s,q(Ω) <∞},

which is a Banach space with respect to the norm

‖u‖W s,q(Ω) := [u]W s,q(Ω) + ‖u‖Lq(Ω).

For details on fractional spaces, see for instance [21].
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We introduce the functional spaces in which we look for minimizers of the energy Eq
s , with given

Dirichlet data. As customary in nonlocal problems, the “boundary” condition is actually an exterior
condition, that is, for the minimizing problem we fix an exterior data ϕ : CΩ → R. We define

Ws,q(Ω) :=
{

u : Rn → R measurable
∣

∣ u|Ω ∈W s,q(Ω)
}

and

Ws,q
ϕ (Ω) :=

{

u ∈ Ws,q(Ω),
∣

∣ u = ϕ a.e. in CΩ
}

.
(1.2)

Definition 1.1. We say that u ∈ Ws,q(Ω) is an (s, q)-minimizer in Ω if Eq
s (u) <∞ and

Eq
s (u) 6 Eq

s (v)

for all v ∈ Ws,q(Ω) such that v = u almost everywhere in CΩ.

When q = 1 we can consider a more general definition of minimizer, that was introduced and
studied in [12].

Definition 1.2. We say that u ∈ Ws,1(Ω) is an s-minimal function in Ω if
∫∫

Q(Ω)

[

|u(x) − u(y)|

|x− y|n+s
−

|v(x) − v(y)|

|x− y|n+s

]

dx dy 6 0, (1.3)

for all v ∈ Ws,1(Ω) such that v = u almost everywhere in CΩ.

We remark that this definition is always well-posed with no conditions on u|CΩ, thanks to the
fractional Hardy-type inequality (see [23, formula (17)] - recalled here in (2.6)). We also point out
that the minimization property in Ω induces a minimization in any subdomain Ω′ ⊂ Ω (see e.g. the
observation below equation (1.1) in [41]).

Throughout this paper, it will be useful to consider the “nonlocal tail” of a function u. Namely,
as in [17], for any q ∈ [1,∞), one defines

Tailqs(u, CΩ;x) :=

∫

CΩ

|u(y)|q

|x− y|n+sq
dy. (1.4)

Notice that an (s, 1)-minimizer is also an s-minimal function, and, when Tail1s(u, CΩ; ·) ∈ L1(Ω),
the two notions of minimizer coincide (see [12, Lemma 2.1]).

This notation of nonlocal tail also sheds some light on the relation between Definitions 1.1 and 1.2.
In particular, the assumption E1

s (u) <∞ is not needed in Definitions 1.2 since the integrand in (1.3)
already provides the necessary cancellations. Regarding Definition 1.1, we stress that the condition
Eq
s (u) <∞ implies that the exterior datum u|CΩ satisfies an appropriate integrability condition for

the tail, according to the following result.

Lemma 1.3. Let q ∈ [1, 1/s) and let u : Rn → R be a measurable function. Then,

Eq
s (u) <∞ if and only if u ∈ Ws,q(Ω) and Tailqs(u, CΩ; ·) ∈ L1(Ω).

Concerning the hypothesis in Lemma 1.3, we point out that it is not necessary to suppose a-priori
that u ∈ L1

loc(R
n) in order to define the functional Eq

s (which might as well be infinite). However,
it turns out indeed that a measurable function with finite (s, q)-energy belongs L1

loc(R
n), see also

Remark 4.2.

We now discuss the equation arising from the minimization problems presented in Definitions 1.1
and 1.2. For p > 1, the Euler-Lagrange equation of the (s, p)–energy gives rise to the fractional
p-Laplacian. We recall that, formally, the fractional p-Laplace operator is defined as

(−∆)spu(x) := P.V.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy.
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Definition 1.4. Let ϕ : CΩ → R be such that

Tailps(ϕ, CΩ; ·) ∈ L1(Ω), (1.5)

for some p ∈ (1, 1/s). We say that a measurable function u : Rn → R is a weak solution to the
problem

{

(−∆)spu = 0 in Ω,

u = ϕ in CΩ,
(1.6)

if u ∈ Ws,p
ϕ (Ω) and

∫∫

Q(Ω)

1

|x− y|n+sp
|u(x)− u(y)|p−2(u(x)− u(y))(w(x) − w(y))dx dy = 0, (1.7)

for every w ∈ Ws,p
0 (Ω).

Notice that, under assumption (1.5), Lemma 1.3 ensures that Ep
s (u) < ∞, hence (1.7) is well-

posed. Indeed, since sp < 1, by Hölder’s inequality and the fractional Hardy-type inequality (2.6)
we have

∣

∣

∣

∣

∣

∫∫

Q(Ω)

1

|x− y|n+sp
|u(x) − u(y)|p−2(u(x)− u(y))(w(x) − w(y))dx dy

∣

∣

∣

∣

∣

6 (Ep
s (u))

p−1
p (Ep

s (w))
1
p 6 C(n, s, p,Ω)(Ep

s (u))
p−1
p ‖w‖W s,p(Ω).

(1.8)

We also remark that, by the density of C∞
c (Ω) in W s,p(Ω) and (1.8), we can consider as test

functions in (1.7) just w ∈ C∞
c (Ω).

When p = 1, the term |u(x) − u(y)|p−2(u(x) − u(y)) in (1.7) reduces to u(x)−u(y)
|u(x)−u(y)| and it is

evidently problematic to give a rigorous meaning to this ratio. For this, recalling [34], we give the
next definition of weak solution for the (s, 1)-Laplacian.

Definition 1.5. We say that a measurable function u : Rn → R is a weak solution to the problem

(−∆)s1u = 0 in Ω, (1.9)

if there exists z ∈ L∞(Q(Ω)), with ‖z‖L∞(Q(Ω)) 6 1, z(x, y) = −z(y, x),
∫∫

Q(Ω)

z(x, y)

|x− y|n+s
(w(x) − w(y))dx dy = 0 for all w ∈ Ws,1

0 (Ω), (1.10)

and
z(x, y) ∈ sgn(u(x)− u(y)) for almost all (x, y) ∈ Q(Ω). (1.11)

If, in addition, u ∈ Ws,1
ϕ (Ω), we say that u is a weak solution of the problem

{

(−∆)s1u = 0 in Ω,

u = ϕ in CΩ.
(1.12)

Concerning the notation used in (1.11), we recall that sgn(x) denotes a generalized sign function,
satisfying

sgn(x)x = |x| and sgn(0) = [−1, 1].

In this setting, equation (1.11) translates into

z(x, y)(u(x) − u(y)) = |u(x)− u(y)|.

In a sense, Definition 1.5 (as developed in [34] for the fractional case), can be seen as a natural
counterpart of the setting presented in [3] and [33] for the 1-Laplace equation.

We now focus on the main results of this paper, namely we study the asymptotics as p ց 1
of nonlocal (s, p)–problems to the corresponding (s, 1)–problems. This aim is threefold, and is
articulated in:
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(1) the convergence of minimizers of the (s, p)–energy,
(2) the Γ-convergence of the (s, p)–energy,
(3) the convergence of weak solutions of the (s, p)–Laplacian.

We now describe in further details the principal results that we give here, according to each of these
three lines of research.

The main result related to point (1) goes as follows:

Theorem 1.6. Let pk ց 1 as k → ∞, ϕk : CΩ → R be such that

sup
k∈N

Tailpks (ϕk, CΩ; ·) ∈ L1(Ω), ϕk −−−→
k→∞

ϕ a.e. in CΩ, (1.13)

and upk ∈ Ws,pk
ϕk

(Ω) be a sequence of (s, pk)-minimizers.

Then, there exist a subsequence pkj ց 1 and u1 ∈ Ws,1
ϕ (Ω) such that

upkj −−−→
j→∞

u1 in L1(Ω) and a.e. in R
n.

Furthermore, Tail1s(ϕ, CΩ; ·) ∈ L1(Ω) and u1 is an (s, 1)-minimizer.

Similar results related to Theorem 1.6 have been also discussed in [10, Section 5].
The proof of Theorem 1.6 relies on “direct methods”, based on compactness properties and

uniform bounds of minimizers. An alternative approach to this type of questions can be taken in
light of the Γ-convergence theory, leading to the research direction presented in point (2). To follow
this line of investigation, we define, for any q ∈ [1,∞),

X q(Ω) :=

{

u ∈ L1
loc(R

n)

∣

∣

∣

∣

∫∫

Q(Ω)

|u(x)− u(y)|q

|x− y|n+sq
dx dy <∞

}

, (1.14)

and we introduce the (extended) functional on the space L1
loc(R

n) defined by

Ẽq
s (u) :=







1

2q

∫∫

Q(Ω)

|u(x)− u(y)|q

|x− y|n+sq
dx dy if u ∈ X q(Ω),

+∞ if u ∈ L1
loc(R

n) \ X q(Ω).

(1.15)

The main result related to point (2) is the following Γ-convergence result in the L1
loc(R

n)-topology.

Theorem 1.7. We have that
Γ- lim

pց1
Ẽp
s = Ẽ1

s ,

in the L1
loc(R

n)-topology.

As a variant of Theorem 1.7, we also discuss the Γ-convergence theory with fixed exterior condi-
tions in the L1(Ω) topology. For this, given ϕ : CΩ → R we define

X q
ϕ(Ω) :=

{

u ∈ L1(Ω)

∣

∣

∣

∣

∫∫

Q(Ω)

|u(x)− u(y)|q

|x− y|n+sq
dx dy <∞, u = ϕ in CΩ

}

. (1.16)

We introduce the (extended) functionals on L1(Ω) given by

Ẽq
s,ϕ(u) :=











1

2q

∫∫

Q(Ω)

|u(x)− u(y)|q

|x− y|n+sq
dx dy if u ∈ X q

ϕ(Ω),

+∞ if u ∈ L1(Ω) \ X q
ϕ(Ω).

We recall that if q ∈ [1, 1/s) and u ∈ X q
ϕ(Ω), then according to Lemma 1.3, u ∈ W s,q(Ω) and

Tailqs(u, CΩ; ·) ∈ L1(Ω). In this setting, we have the following result:
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Theorem 1.8. Let ϕ : CΩ → R be such that

lim sup
pց1

‖Tailps(ϕ, CΩ; ·)‖L1(Ω) <∞. (1.17)

Then

Γ− lim
pց1

Ẽp
s,ϕ = Ẽ1

s,ϕ,

in the L1(Ω)-topology.

As a side observation, note that condition (1.17) cannot be dropped, as detailed in the counter-
example provided in Remark 4.1.

Concerning assumption (1.17), it is also interesting to point out several equivalent formulations
of such a hypothesis, according to the following observation.

Lemma 1.9. Let ϕ : CΩ → R be a measurable function. The following are equivalent:

(i) there exists q > 1 such that

sup
p∈(1,q)

Tailps(ϕ, CΩ; ·) ∈ L1(Ω).

(ii) There exists q > 1 such that

sup
p∈(1,q)

‖Tailps(ϕ, CΩ; ·)‖L1(Ω) <∞.

(iii) There exists q > 1 such that Tail1s(ϕ, CΩ; ·) ∈ L
1(Ω) and Tailqs(ϕ, CΩ; ·) ∈ L

1(Ω).

In the following remark, we give some explanation on the meaning of the condition of integrable
“nonlocal tail”, that we consider throughout the paper.

Remark 1.10. Given ϕ : CΩ → R, extending it to zero inside Ω by letting ϕ̃ : Rn → R be such that
ϕ̃ = ϕ in CΩ and ϕ̃ = 0 in Ω, we observe that

Eq
s (ϕ̃) = q‖Tailqs(ϕ, CΩ; ·)‖L1(Ω). (1.18)

Hence, requiring ϕ to have integrable “nonlocal tail” ensures the existence of a competitor with
finite nonlocal energy. More precisely, the competitor having finite energy must be ϕ̃. In case
sq > 1, such a condition is rather strong and unnatural, since it forces ϕ to be close to zero near
the boundary of Ω from outside, thus unnecessarily restricting the class of admissible exterior data.
For example, if ϕ = c 6= 0 in CΩ and sq > 1, then Eq

s (ϕ̃) = ∞; nonetheless the function u = c in
R
n is clearly a competitor with finite Eq

s energy.
On the other hand, for sq < 1 (which is our working hypothesis in this paper), in light of Lemma 1.3,
the existence of an arbitrary competitor with finite Eq

s energy implies that the nonlocal tail is
integrable, hence the two conditions are equivalent.
In particular, if sq < 1, then, recalling the notations in (1.2) and (1.16),

X q
ϕ(Ω) 6= ∅ if and only if Tailqs(ϕ,Ω; ·) ∈ L1(Ω),

and in this case X q
ϕ(Ω) = Ws,q

ϕ (Ω) .

We also recall that the recent literature has presented some Γ-convergence results related to
the energy Eq

s . Namely, in [7], the authors study the Γ-convergence of Eq
s (u) for s ր 1 and with

zero exterior data, while in [29] the Γ-limit, as q → ∞, of an energy related to ours is studied
(precisely, their energy consists only of the first term in (1.1), thus of only those interactions
occurring inside Ω, and a boundary condition is given). For similar results which consider only
contributions in Ω, concerning more general kind of functionals, see also [9].

Concerning the limit procedure as p ց 1, we also mention the paper [22], where some L1-
inequalities are obtained by passing to the limit in Lp-inequalities as pց 1.
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We come now to point (3) and to the discussion of the limit Euler-Lagrange equation. This
direction of research is inspired by the notion of (s, 1)-Laplacian introduced in [34], in the spirit
of the classical equation for functions of least gradient [32,33]. More precisely, in [34], considering
the Dirichlet problem with zero boundary condition, the limit as p ց 1 of weak solutions of the
(s, p)-problems is proved to be weak solution of the (s, 1)- problem (recall Definitions 1.4 and 1.5).
In this paper, we adapt the approach in [34] and we consider the limit as pց 1 of the problem (1.6),
whose formal limit consists in the fractional 1-Laplacian problem given by (1.12).

What is more, it is known that under a suitable integrability condition on ϕ, weak solutions
of (1.6) are equivalent to minimizers of Ep

s in Ws,p
ϕ (Ω) (see e.g. [20]; for our setting, we discuss

this in detail in Proposition 5.1). We prove here the equivalence between weak solutions of (1.12)
and minimizers of the energy E1

s under the rather strong assumption (1.19) on the exterior data ϕ.
More precisely:

Theorem 1.11. Let u ∈ Ws,1(Ω). The following holds:

(i) If u is a weak solution to the problem (1.9), then u is an s-minimal function in Ω.
(ii) Assume that there exists a weak solution u ∈ Ws,1(Ω) of (1.9). Then any s-minimal

function u in Ω such that u = u almost everywhere in CΩ, is also u a weak solution of
(1.9).

(iii) Let

q ∈

(

1,min

{

n

n− s
,

n

n+ s− 1

})

,

and let
sq := s+ n−

n

q
∈ (s, 1).

Let ϕ : CΩ → R be such that

Tail1s(ϕ, CΩ; ·) ∈ L1(Ω), Tailqsq(ϕ, CΩ; ·) ∈ L1(Ω). (1.19)

Then, there exists a weak solution u ∈ Ws,1
ϕ (Ω) to the problem (1.12).

It is interesting to observe that there is a “mismatch” between the conditions on u|CΩ in points
(i) and (iii) in Theorem 1.11. On the one hand, no requirement—beside measurability—is needed
in (i) in order to ensure that a weak solution is an s-minimal function. On the other hand, in (iii)
ϕ is required to satisfy some appropriate uniform weighted integrability condition, to prove that
weak solutions exist. Once a weak solution is known to exist, by point (ii), any s-minimal function
is still a weak solution.

The reason for the strong assumption (1.19) resides in the asymptotic technique that we employ
in the proof of the theorem, which follows the argument in [32] (basically, the Hölder inequality is
employed, and such an sq appears to be the correct exponent, see page 28). It would be interesting
to understand whether an s-minimal function is necessarily a weak solution, eventually under only
the natural assumption of the integrability of Tail1s.

It is interesting to observe that if ‖ϕ‖L∞(CΩ) <∞, then condition (1.19) is satisfied. In particular,
in the context of characteristic functions, we obtain the forthcoming Corollary 1.12. To state this
result, we recall that the s-perimeter of a measurable set E ⊂ R

n in an open set Ω ⊂ R
n is given

by

Pers(E,Ω) =
1

2

∫∫

Q(Ω)

|χE(x)− χE(y)|

|x− y|n+s
dx dy = E1

s (χE).

We refer to [13], where this operator was first introduced. We recall that a set E is said to be
s-minimal in Ω if Pers(E,Ω) <∞ and

Pers(E,Ω) 6 Pers(F,Ω) for any F ⊂ R
n such that F \Ω = E \ Ω. (1.20)

In this framework, we state the following result.
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Corollary 1.12. Let E ⊂ R
n be such that Pers(E,Ω) < ∞. Then, E is s-minimal in Ω if and

only if χE is a weak solution of (−∆)s1χE = 0 in Ω.

We now state a regularity result for the s-minimal functions as defined in (1.2), which can be
derived from the uniform density and perimeter estimates of the s-minimal sets. Specifically, in
the following result, we will consider a subdomain Ω′ and obtain oscillations and BV estimates. In
further detail, we will control the supremum of s-minimal functions in terms of the mass of their
positive part in the domain and the distance between the given subdomain and the boundary of the
original domain (similarly, one can control the infimum in terms of the mass of the negative part
and the domain distance). Furthermore, we bound the BV seminorm of the s-minimal function by
the mass in the domain. Our precise result goes as follows:

Theorem 1.13. If u ∈ Ws,1(Ω) is s-minimal in Ω, then u ∈ L∞
loc(Ω) ∩ BVloc(Ω). More precisely,

for every Ω′ ⋐ Ω,

sup
Ω′

u 6
1

cdist(Ω′, ∂Ω)n
‖u+‖L1(Ω) and inf

Ω′
u > −

1

cdist(Ω′, ∂Ω)n
‖u−‖L1(Ω), (1.21)

where u+ := max{0, u} and u− := min{0, u}, and c = c(n, s) > 0 is the constant of the uniform
density estimates in [13, Theorem 4.1], and there exists a positive constant C depending only on
n, s,Ω′ and dist(Ω′, ∂Ω), such that

|Du|(Ω′) 6 C‖u‖L1(Ω). (1.22)

We conclude this introduction with some remarks. We notice that we can rephrase the definition
in (1.20) by saying that a set E is s-minimal in Ω if and only if χE minimizes E1

s within the subspace
of Ws,1(Ω) consisting of those characteristic functions which are equal to χE outside Ω.

Actually, by making use of an appropriate co-area formula, recently in [12] it was proved that a
set E is s-minimal in Ω if and only if χE is an (s, 1)-minimizer in Ω—that is, χE minimizes E1

s not

only among characteristic functions, but among arbitrary functions belonging to Ws,1
χE

(Ω).
Furthermore, the connection (in the classical framework) between functions of least gradient

and functions with area minimizing level sets was studied in the seminal paper by Bombieri, De
Giorgi and Giusti [4] and later by Sternberg, Williams and Ziemer [42]. Recently, Bucur, Dipierro,
Lombardini and Valdinoci [12] have obtained the nonlocal counterpart, in the fractional setting, of
the above classical results by establishing, on the one hand, that if u ∈ Ws,1(Ω) is an s-minimal
function in Ω, then, for all λ ∈ R, the set {u > λ} is s-minimal in Ω, and, on the other hand, that
if u ∈ Ws,1(Ω) and {u > λ} is s-minimal in Ω for almost every λ ∈ R, then u is an s-minimal
function in Ω.

The rest of this paper is organized as follows. Section 2 contains the proofs of Lemmata 1.3
and 1.9. In Section 3 we give the proof of Theorem 1.6, while Section 4 is devoted to the proofs of
Theorems 1.7 and 1.8, and the proof of Theorem 1.11 is contained in Section 5. The final appendix
A contains additional comments on the asymptotics as s→ 1− and the proof of Theorem 1.13.

2. Proof of Lemmata 1.3 and 1.9

This section is devoted to the proofs of Lemmata 1.3 and 1.9. We start by considering the second
of these lemmata.

Proof of Lemma 1.9. It is easy to notice that

sup
p

‖Tailps(u, CΩ; ·)‖L1(Ω) = sup
p

∫

Ω

(
∫

CΩ

|u(y)|p

|x− y|n+sp
dy

)

dx

6

∫

Ω

(

sup
p

∫

CΩ

|u(y)|p

|x− y|n+sp
dy

)

dx = ‖ sup
p

Tailps(u, CΩ; ·)‖L1(Ω).
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Thus, we only need to prove the implication (iii) =⇒ (i). For this, notice that for every p ∈ (1, q)
there exists a unique tp ∈ (0, 1) such that p = tp+(1− tp)q. Thus, by Young’s inequality, we obtain

∫

Ω

(

sup
p∈(1,q)

∫

CΩ

|ϕ(y)|p

|x− y|n+sp
dy

)

dx =

∫

Ω

(

sup
t∈(0,1)

∫

CΩ

|ϕ(y)|t

|x− y|(n+s)t

|ϕ(y)|(1−t)q

|x− y|(1−t)(n+sq)
dy

)

dx

6

∫

Ω

(

sup
t∈(0,1)

∫

CΩ
t

|ϕ(y)|

|x− y|n+s
+ (1− t)

|ϕ(y)|q

|x− y|n+sq
dy

)

dx

6 ‖Tail1s(ϕ, CΩ; ·)‖L1(Ω) + ‖Tailqs(ϕ, CΩ; ·)‖L1(Ω).

This concludes the proof of Lemma 1.9. �

Concerning claim (iii) in Lemma 1.9, we stress that in order to have an equivalent statement,
it is not enough to require that there exists q > 1 such that Tailqs(ϕ, CΩ; ·) ∈ L1(Ω), since the tail
Tail1s(ϕ, CΩ; ·) might not be integrable: an explicit example of this phenomenon goes as follows.

Example 2.1. Let Ω ⋐ BR ⊂ R
n, with R > 2. Consider the function

ϕ(y) :=







|y|s

log |y|
in CBR,

0 in BR.

Then, Tailps(ϕ, CΩ; ·) ∈ L1(Ω) for every p > 1, and Tail1s(ϕ, CΩ; ·) 6∈ L1(Ω).
Indeed, notice at first that since Ω ⋐ BR there exist two constants a, b > 0, depending on Ω and

R, such that
a|y| 6 |x− y| 6 b|y| for every x ∈ Ω and y ∈ CBR.

Hence

‖Tailps(ϕ, CΩ; ·)‖L1(Ω) =

∫

Ω

(∫

CBR

|y|sp

(log |y|)p|x− y|n+sp

)

dx 6
|Ω|

an+sp

∫

CBR

dy

(log |y|)p|y|n
<∞,

for every p > 1. On the other hand,

‖Tail1s(ϕ, CΩ; ·)‖L1(Ω) =

∫

Ω

(∫

CBR

|y|s

(log |y|)|x − y|n+s

)

dx >
|Ω|

bn+sp

∫

CBR

dy

(log |y|)|y|n
= +∞.

Remark 2.2. While the equivalent claims in Lemma 1.9 may look, at a very first glance, focused on
rather fussy assumptions, we observe that they are satisfied in many simple cases of interest. For
instance, let ϕ ∈ L∞(CΩ), and let q ∈ [1, 1/s). Then

sup
p∈[1,q]

Tailps(ϕ, CΩ; ·) ∈ L1(Ω). (2.1)

Indeed, we note that if |x − y| > 1, then |x − y|n+sp > |x − y|n+s and if |x − y| 6 1, then
|x− y|n+sp > |x− y|n+sq. Exploiting this observation, we obtain

sup
p∈[1,q]

Tailps(ϕ, CΩ;x) 6 ‖ϕ‖L∞(Ω) sup
p∈[1,q]

∫

CΩ

dy

|x− y|n+sp

6 ‖ϕ‖L∞(Ω)

(

∫

CΩ∩{|x−y|>1}

dy

|x− y|n+s
+

∫

CΩ∩{|x−y|<1}

dy

|x− y|n+sq

)

6 ‖ϕ‖L∞(Ω)

(∫

CΩ

dy

|x− y|n+s
+

∫

CΩ

dy

|x− y|n+sq

)

,

(2.2)

for every x ∈ Ω. We recall that, since Ω is bounded and has Lipschitz boundary,
∫

Ω

∫

CΩ

dx dy

|x− y|n+σ
= Perσ(Ω,R

n) <∞,



(s, p)-HARMONIC APPROXIMATION OF FUNCTIONS OF LEAST W s,1-SEMINORM 10

for every σ ∈ (0, 1). Thus, by (2.2), we conclude that
∫

Ω
sup

p∈[1,q]
Tailps(ϕ, CΩ;x) dx 6 ‖ϕ‖L∞(Ω) (Pers(Ω,R

n) + Persq(Ω,R
n)) <∞,

as claimed in (2.1).

We can further weaken the global boundedness condition on ϕ given in Remark 2.2, providing
a larger class of functions which satisfy the equivalent conditions in Lemma 1.9, according to the
following result:

Lemma 2.3. Let q ∈ (1, 1/s) and let ϕ ∈W s,q(CΩ). Then

sup
p∈[1,q]

Tailps(ϕ, CΩ; ·) ∈ L1(Ω). (2.3)

Remark 2.4. The statement of Lemma 2.3 can be sharpened, by relaxing the assumption that ϕ ∈
W s,q(CΩ). For any η > 0, we use the notation

Ωη := {y ∈ R
n | dist(y,Ω) < η}. (2.4)

As a matter of fact, given η > 0, one can consider the following alternative conditions:

(a) either ϕ ∈ L∞(Ωη \ Ω),
(b) or ϕ ∈W s,q(Ωη \Ω),

and (A) either ϕ ∈ L∞(CΩη),
(B) or ϕ ∈ Lq(CΩη).

Indeed, with computations which are similar to those of the proofs of Lemma 2.3 and Remark 2.2,
one notices that (2.3) holds for any combination (i)&(I), with i ∈ {a, b}, I ∈ {A,B}.

On the other hand, we stress that assuming that Tailqs(ϕ, CΩ; ·) ∈ L1(Ω) is not enough to ensure
the validity of (2.3)—see Example 2.1.

Proof of Lemma 2.3. We notice that for |x− y| < 1

|ϕ(y)|p

|x− y|n+sp
6

|ϕ(y)|q + 1

|x− y|n+sq
,

while for |x− y| > 1 we have that

|ϕ(y)|p

|x− y|n+sp
6 |ϕ(y)|q +

1

|x− y|n+s
.

Then we obtain

‖Tailps(ϕ, CΩ;x)‖L1(Ω) 6

∫

Ω

∫

CΩ∩{|x−y|<1}

|ϕ(y)|q

|x− y|n+sq
dx dy +

∫

Ω

∫

CΩ

dx dy

|x− y|n+sq

+

∫

Ω

∫

CΩ∩{|x−y|>1}
|ϕ(y)|q dx dy +

∫

Ω

∫

CΩ

dx dy

|x− y|n+s

6

∫

Ω

∫

BR\Ω

|ϕ(y)|q

|x− y|n+sq
dx dy + |Ω|‖ϕ‖q

Lq(CΩ) +Persq(Ω,R
n) + Pers(Ω,R

n),

for some R > 0 large enough. Using Fubini-Tonelli’s Theorem and (2.6), we have that
∫

Ω

(

∫

BR\Ω

|ϕ(y)|q

|x− y|n+sq
dy

)

dx 6

∫

BR\Ω
|ϕ(y)|q

(

∫

C(BR\Ω)

dx

|x− y|n+sq

)

dy

6 C(n, s, q,Ω)‖ϕ‖q
W s,q(BR\Ω).

(2.5)

Moreover, for every σ ∈ {s, sq} ⊂ (0, 1), we have that
∫

Ω

∫

CΩ

dx dy

|x− y|n+σ
= Perσ(Ω,R

n) <∞.
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With this, we reach the conclusion of the lemma. �

We point out that the problem of looking for a minimizer of Eq
s , for q close enough to 1, in the

space Ws,q(Ω), is well posed if and only if the tail is summable, as stated in Lemma 1.3, that we
now prove.

Proof of Lemma 1.3. First of all we observe that, since sq < 1 and Ω is a bounded open set with
Lipschitz boundary, by the fractional Hardy-type inequality (stated without a proof in [23, (17)]),
we have that for all v ∈W s,q(Ω) it holds

∫

Ω

(∫

CΩ

|v(x)|q

|x− y|n+sq
dy

)

dx 6

∫

Ω

|v(x)|q

(dist(x, ∂Ω))sq
dx 6 C‖v‖q

W s,q(Ω), (2.6)

for some constant C := C(n, s, q,Ω) > 0. For a simple proof of the fractional Hardy inequality,
based on the fractional Hardy inequality on half-spaces of [25], see also [17, Proposition A.2].

Suppose now that Eq
s (u) <∞. Then, from (1.1),

[u]q
W s,q(Ω) 6 2qEq

s (u) <∞.

Interestingly, this is enough to conclude that ‖u‖Lq(Ω) < ∞, without having to make any kind of
integrability assumption on u. Indeed, since u is measurable and finite almost everywhere, we can
find a measurable set E ⊆ Ω such that |E| > 0 and

∫

E
|u|dx < +∞. Then, a simple computation

shows that

‖u‖q
Lq(Ω) 6

2q−1

|E|

{

diam(Ω)n+sq[u]q
W s,q(Ω) +

|Ω|

|E|q−1

∣

∣

∣

∫

E

u(ξ) dξ
∣

∣

∣

q
}

< +∞.

For the details we refer to [31, Lemma D.1.2] and its proof. Thus, if u is a measurable function
such that Eq

s (u) <∞, we have that u ∈W s,q(Ω).
Now, if we denote by ū : Rn → R the function

ū :=

{

u in Ω,

0 in CΩ,

by (2.6) we have

Eq
s (ū) =

1

2q
[u]q

W s,q(Ω) +
1

q

∫

Ω

(
∫

CΩ

|u(x)|q

|x− y|n+sq
dy

)

dx <∞.

Therefore we obtain

‖Tailqs(u, CΩ;x)‖L1(Ω) = q Eq
s (u− ū) 6 q 2q−1(Eq

s (u) + Eq
s (ū)) <∞.

For the converse implication we can argue similarly. Since u ∈W s,q(Ω) by hypothesis, exploiting
once again (2.6) we have Eq

s (ū) <∞. We define also

u0 :=

{

0 in Ω,

u in CΩ,

and we observe that

Eq
s (u0) =

1

q
‖Tailqs(u, CΩ;x)‖L1(Ω) <∞.

As a consequence,
Eq
s (u) = Eq

s (u0 + ū) 6 2q−1(Eq
s (u0) + Eq

s (ū)) <∞.

This concludes the proof of the desired result. �

3. Convergence of minimizers of the (s, p)-energy to minimizers of the (s, 1)-energy

The main goal of this section is to prove Theorem 1.6. For this, we give some auxiliary technical
results of general flavor.



(s, p)-HARMONIC APPROXIMATION OF FUNCTIONS OF LEAST W s,1-SEMINORM 12

3.1. A continuous embedding. As a technical tool, we prove the continuous embeddingW s,p(Ω) →֒
W σ,1(Ω) for any p ∈ [1,∞), with σ < s. For this, we start with an auxiliary inequality.

Lemma 3.1. Let p ∈ (1,+∞) and σ ∈ (0, s). It holds that

[u]Wσ,1(Ω) 6

(

C(n,Ω)(p− 1)

p(s− σ)

)
p−1
p

C(Ω)s−σ[u]W s,p(Ω), (3.1)

where
C(n,Ω) := |Ω|Hn−1(∂B1) and C(Ω) := diam(Ω).

Proof. Notice that if [u]W s,p(Ω) = ∞, there is nothing to prove. Else, if [u]W s,p(Ω) < ∞, using
Hölder’s inequality, we get that

[u]Wσ,1(Ω) =

∫

Ω

∫

Ω

|u(x)− u(y)|

|x− y|
n
p
+s

dx dy

|x− y|
n(p−1)

p
+σ−s

6

(
∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

) 1
p





∫

Ω

∫

Ω

dx dy

|x− y|
n+ p(σ−s)

p−1





p−1
p

= [u]W s,p(Ω) J (p)
p−1
p .

(3.2)

Changing variables z = x − y, using the notation d := diam(Ω) and recalling that s − σ > 0 and
p > 1, we get

J (p) 6

∫

Ω

(∫

Bd(x)

dy

|x− y|n+
p(σ−s)
p−1

)

dx =

∫

Ω

(∫

Bd

dz

|z|n+
p(σ−s)
p−1

)

dx

= |Ω|Hn−1(∂B1)
(p − 1)d

p(s−σ)
p−1

p(s− σ)
.

We raise to the power p−1
p

to obtain that

J(p)
p−1
p 6

(

C(n,Ω)(p − 1)

p(s− σ)

)
p−1
p

ds−σ.

From this and (3.2) we obtain the claim in (3.1). �

As a consequence of Lemma 3.1, we obtain the following embedding result.

Theorem 3.2. Let σ ∈ (0, s). Then the continuous embedding W s,p(Ω) →֒W σ,1(Ω) holds for every
p ∈ [1,∞). In particular, for any u ∈W s,p(Ω),

‖u‖Wσ,1(Ω) 6 C1‖u‖W s,p(Ω),

where C1 := C1(n, s, σ,Ω) > 0 does not depend on p.

Proof. First of all, using the notation of Lemma 3.1, we observe that

C1(n, s, σ,Ω) := sup
p∈(1,∞)

(

C(n,Ω)(p− 1)

p(s− σ)

)
p−1
p

<∞.

Therefore, by Lemma 3.1, we have that

[u]Wσ,1(Ω) 6 C1(n, s, σ,Ω)C(Ω)s−σ [u]W s,p(Ω),

for every p ∈ (1,∞). Moreover, by Hölder’s inequality

‖u‖L1(Ω) 6 |Ω|
p−1
p ‖u‖Lp(Ω) 6 C2(Ω)‖u‖Lp(Ω),
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where

C2(Ω) := sup
p∈(1,∞)

|Ω|
p−1
p <∞.

This implies that

‖u‖Wσ,1(Ω) 6 C1‖u‖W s,p(Ω), (3.3)

for every p ∈ (1,∞), with

C1 = C(n, s, σ,Ω) := C1(n, s, σ,Ω)C(Ω)s−σ + C2(Ω).

We are left to prove the claim in the case p = 1. In order to do this, we exploit an approximation
argument. By the density of C∞

c (Ω) in W s,1(Ω), given u ∈ W s,1(Ω) we can find a sequence
{uk}k ⊂ C∞

c (Ω) such that

lim
k→∞

‖u− uk‖W s,1(Ω) = 0. (3.4)

Notice that, since C1 does not depend on p and uk ∈ C∞
c (Ω), by Lebesgue’s Dominated Convergence

Theorem we have
lim
pց1

C1‖uk‖W s,p(Ω) = C1‖uk‖W s,1(Ω).

Hence, passing to the limit as pց 1 in (3.3), we obtain

‖uk‖Wσ,1(Ω) 6 C1‖uk‖W s,1(Ω),

for every k ∈ N. Then, passing to the limit as k → ∞, exploiting Fatou’s Lemma and (3.4), we find

‖u‖Wσ,1(Ω) 6 lim inf
k→∞

‖uk‖Wσ,1(Ω) 6 C1 lim
k→∞

‖uk‖W s,1(Ω) = C1‖u‖W s,1(Ω),

concluding the proof of the desired result. �

3.2. A priori estimates. Now we state a bound of the ‖ · ‖W s,p(Ω)-norm for (s, p)-minimizers that
is uniform with respect to p.

Lemma 3.3. Let p > 1, and let ϕ : CΩ → R such that Tailps(ϕ, CΩ; ·) ∈ L1(Ω). If up ∈ Ws,p
ϕ (Ω) is

an (s, p)-minimizer, then

‖up‖W s,p(Ω) 6 C0‖Tail
p
s(ϕ, CΩ; ·)‖

1
p

L1(Ω)
6 C0

(

1 + ‖Tailps(ϕ, CΩ; ·)‖L1(Ω)

)

, (3.5)

with C0 := C(n,Ω) > 0, independent of p and s.

Proof. The strategy of the proof is to first control the Gagliardo seminorm of up and then to bound
its Lp-norm by using (1.1) and (3.6). The details go as follows.

As a competitor for up we define v ∈ Ws,p
ϕ (Ω)

v :=

{

0 in Ω,

ϕ in CΩ.

Exploiting the minimality and comparing the energies, we have that

Ep
s (up) 6 Ep

s (v) =
1

p

∫

Ω

∫

CΩ

|ϕ(y)|p

|x− y|n+sp
dx dy =

1

p
‖Tailps(ϕ, CΩ; ·)‖L1(Ω). (3.6)

Whereas using the expression of the energy in (1.1), we get that

[up]W s,p(Ω) 6 2
1
p ‖Tailps(ϕ, CΩ; ·)‖

1
p

L1(Ω)
. (3.7)
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Denoting d := diam(Ω), recalling (2.4) and noticing that for x ∈ Ω, and y ∈ Ωd \Ω, we have that
|x− y| 6 2d, we obtain

‖up‖
p
Lp(Ω) =

∫

Ω
|up(x)− ϕ(y) + ϕ(y)|p dx

=
1

|Ωd \ Ω|

∫

Ω

(

∫

Ωd\Ω
|up(x)− ϕ(y) + ϕ(y)|p dy

)

dx

6
2p−1

|Ωd \ Ω|

∫

Ω

(

∫

Ωd\Ω

|up(x)− ϕ(y)|p + |ϕ(y)|p

|x− y|n+sp
|x− y|n+sp dy

)

dx

6
2p−1(2d)n+sp

|Ωd \ Ω|

[

∫

Ω

(

∫

Ωd\Ω

|up(x)− ϕ(y)|p

|x− y|n+sp
dy

)

dx+

∫

Ω

(

∫

Ωd\Ω

|ϕ(y)|p

|x− y|n+sp
dy

)

dx

]

6
2p−1(2d)n+sp

|Ωd \ Ω|

[

p Ep
s (up) + ‖Tailps(ϕ, CΩ; ·)‖L1(Ω)

]

6
2p(2d)n+sp

|Ωd \ Ω|
‖Tailps(ϕ, CΩ; ·)‖L1(Ω),

(3.8)
according to (1.1) and (3.6). We deduce from (3.8) that

‖up‖Lp(Ω) 6 C(n,Ω)‖Tailps(ϕ, CΩ; ·)‖
1
p

L1(Ω)
, (3.9)

where

C(n,Ω) := 2 sup
s∈(0,1)

(2d)s sup
p∈[1,∞)

(

(2d)n

|Ωd \ Ω|

) 1
p

.

Putting together (3.7) and (3.9) we conclude the proof of the desired result. �

3.3. Convergence results. It is convenient to point out the following semicontinuity property,
which is a consequence of Fatou’s Lemma.

Lemma 3.4. Let pk ց 1 as k → ∞ and let uk, u1 : R
n → R be such that

uk −−−→
k→∞

u1 a.e. in R
n.

Then

E1
s (u1) 6 lim inf

k→∞
Epk
s (uk).

In the next result we prove that any function in the space Ws,1(Ω) can be approximated, in an
appropriate sense, by smooth functions. Precisely:

Lemma 3.5. Let v ∈ Ws,1(Ω) such that Tail1s(v, CΩ; ·) ∈ L1(Ω). Then, there exists a sequence of
functions ψj : R

n → R such that ψj |Ω ∈ C∞
c (Ω), ψj = v in CΩ,

lim
j→∞

‖ψj − v‖W s,1(Ω) = 0

and
lim
j→∞

E1
s (ψj) = E1

s (v).

Proof. By density of C∞
c (Ω) in W s,1(Ω), there exists a sequence (ψj)j ⊂ C∞

c (Ω), satisfying

‖ψj − v‖W s,1(Ω) −−−→
j→∞

0.
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We extend the functions ψj to the whole of Rn by setting ψj := v in CΩ. By the triangle inequality,
∣

∣

∣

∣

∣

∫∫

Q(Ω)

|ψj(x)− ψj(y)|

|x− y|n+s
dx dy −

∫∫

Q(Ω)

|v(x) − v(y)|

|x− y|n+s
dx dy

∣

∣

∣

∣

∣

6

∫∫

Q(Ω)

|(ψj − v)(x) − (ψj − v)(y)|

|x− y|n+s
dx dy.

Now

[ψj − v]W s,1(Ω) =

∫

Ω

∫

Ω

|(ψj − v)(x) − (ψj − v)(y)|

|x− y|n+s
dx dy,

hence

lim
j→∞

∫

Ω

∫

Ω

|ψj(x)− ψj(y)|

|x− y|n+s
dx dy =

∫

Ω

∫

Ω

|v(x) − v(y)|

|x− y|n+s
dx dy. (3.10)

On the other hand, since ψj = v on CΩ, as a consequence of (2.6), it holds that
∫

Ω

∫

CΩ

|(ψj − v)(x) − (ψj − v)(y)|

|x− y|n+s
=

∫

Ω

∫

CΩ

|ψj(x)− v(x)|

|x− y|n+s
6 C(n, s,Ω)‖ψj − v‖W s,1(Ω) −−−→

j→∞
0,

and therefore

lim
j→∞

∫

Ω

∫

CΩ

|ψj(x)− ψj(y)|

|x− y|n+s
dx dy =

∫

Ω

∫

CΩ

|v(x) − v(y)|

|x− y|n+s
dx dy. (3.11)

Summing up (3.10) and (3.11), we establish the desired claim. �

In this next result, we extend the result in Lemma 3.5 to the following context: we prove that the
limit for k → ∞ of the (s, pk)-energy of a sequence ψk of smooth functions, with suitable uniform
bound on the exterior data, is the (s, 1)-energy of the limit function.

Lemma 3.6. Let pk ց 1 as k → ∞ , let ϕk : CΩ → R be such that

sup
k∈N

Tailpks (ϕk, CΩ; ·) ∈ L1(Ω) (3.12)

and let ψk : R
n → R be such that ψk|Ω = ϕk in CΩ, ψk ∈ C∞

c (Ω) and

c := sup
k∈N

‖ψk‖C1(Ω) <∞.

Let also ψ : Rn → R be such that

ψk −−−→
k→∞

ψ a.e. in R
n.

Then
lim
k→∞

Epk
s (ψk) = E1

s (ψ).

Proof. In the next lines, we denote by C a constant, independent of k, that may change value from
line to line. At first, we prove that

lim
k→∞

1

pk

∫

Ω

∫

Ω

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
dx dy =

∫

Ω

∫

Ω

|ψ(x) − ψ(y)|

|x− y|n+s
dx dy. (3.13)

For x, y ∈ Ω such that |x− y| > 1 we have that |x− y|n+spk > |x− y|n+s, hence

1

pk

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
6

C

|x− y|n+s
∈ L1 ({(x, y) ∈ Ω× Ω | |x− y| > 1}) ,

while for |x− y| < 1, we have that |x− y|n+spk−pk > |x− y|n−1+s, thus

1

pk

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
6

C |x− y|pk

|x− y|n+spk

6
C

|x− y|n−1+s
∈ L1 ({(x, y) ∈ Ω× Ω | |x− y| < 1}) .
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By using the Dominated Convergence Theorem, we get (3.13).
Now we show that

lim
k→∞

1

pk

∫

Ω

(∫

CΩ

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
dy

)

dx =

∫

Ω

(∫

CΩ

|ψ(x)− ψ(y)|

|x− y|n+s
dy

)

dx. (3.14)

For x ∈ Ω, y ∈ CΩ and |x− y| > 1 we have that

1

pk

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
6

C

|x− y|n+s
+

2|ψk(y)|
pk

|x− y|n+spk
.

Hence, by (3.12) and noticing that
∫

Ω

∫

CΩ∩{|x−y|>1}

dx dy

|x− y|n+s
6 Pers(Ω,R

n) <∞,

we conclude that

1

pk

∫

CΩ∩{|x−y|>1}

|ψ(x) − ψk(y)|
pk

|x− y|n+spk
dy

6

∫

CΩ∩{|x−y|>1}

C

|x− y|n+s
dy + 2

∫

CΩ∩{|x−y|>1}

|ψk(y)|
pk

|x− y|n+spk
dy

6

∫

CΩ∩{|x−y|>1}

C

|x− y|n+s
dy + 2 sup

k∈N
Tailpks (ψk, x) ∈ L1(Ω).

(3.15)

On the other hand, since pk ց 1, there exists some so ∈ (0, 1) such that spk 6 so. Then for
|x− y| < 1, we have that |x− y|n+spk > |x− y|n+so. Therefore we obtain

1

pk

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
6

C

|x− y|n+so
+

2|ψk(y)|
pk

|x− y|n+spk
.

Hence, by (3.12) and noticing that
∫

Ω

∫

CΩ∩{|x−y|<1}

dx dy

|x− y|n+so
6 Perso(Ω,R

n) <∞,

we get that
1

pk

∫

CΩ∩{|x−y|61}

|ψk(x)− ψk(y)|
pk

|x− y|n+spk
dy

6

∫

CΩ∩{|x−y|<1}

c

|x− y|n+so
dy +

∫

CΩ∩{|x−y|<1}

|ψk(y)|
pk

|x− y|n+spk
dy

6

∫

CΩ∩{|x−y|<1}

C

|x− y|n+so
dy + 2 sup

k∈N
Tailpks (ψk, x) ∈ L1(Ω).

(3.16)

Putting together (3.15) and (3.16), we obtain the claim in (3.14) by employing the Dominated
Convergence Theorem. �

3.4. Proof of Theorem 1.6. With the previous preliminary work, we are now in the position of
completing the proof of Theorem 1.6.

Proof of Theorem 1.6. Notice that

sup
k∈N

Tailpks (ϕk, CΩ; ·) ∈ L1(Ω) =⇒ sup
k∈N

‖Tailpks (ϕk, CΩ; ·)‖L1(Ω) < C.

Furthermore, recalling the minimality of upk , we have that (4.9) follows by (3.6). The compactness

result in the subsequent Proposition 4.3 implies the existence of a limit function u1 ∈ Ws,1
ϕ (Ω) for
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a subsequence of {upk}k (that we relabel for simplicity). We notice that, by Fatou’s Lemma,

sup
k∈N

Tailpks (ϕk, CΩ;x) > lim inf
k→∞

Tailpks (ϕk, CΩ;x) = lim inf
k→∞

∫

CΩ

|ϕk(y)|
pk

|x− y|n+spk
dy

>

∫

CΩ

|ϕ(y)|

|x− y|n+s
dy = Tail1s(ϕ, CΩ;x),

(3.17)

and that Tail1s(ϕ, CΩ; ·) ∈ L
1(Ω) follows from (1.13).

To prove that u1 is a minimizer, we proceed along these lines.

We consider ψ : Rn → R to be any competitor for u1 such that ψ ∈ C∞
c (Ω) and ψ = ϕ in CΩ.

We claim that

E1
s (u1) 6 E1

s (ψ). (3.18)

We consider as a competitor for upk the function ψk : R
n → R defined by

ψk :=

{

ψ in Ω,

ϕk in CΩ.

Since ψk satisfies the assumptions of Lemma 3.6, we deduce that

lim
k→∞

Epk
s (ψk) = E1

s (ψ). (3.19)

Moreover, we see that we are in the hypothesis of Lemma 3.4, and we deduce that

E1
s (u1) 6 lim inf

k→∞
Epk
s (upk). (3.20)

Formulas (3.19) and (3.20), combined with the fact that upk are (s, pk)-minimizers, allow us to
obtain

E1
s (u1) 6 lim inf

k→∞
Epk
s (upk) 6 lim inf

k→∞
Epk
s (ψk) = E1

s (ψ),

which concludes the proof of (3.18).

We consider now any competitor v ∈ Ws,1
ϕ (Ω). By Lemma 3.5, there exists a sequence ψj ∈

C∞
c (Ω) and ψj = ϕ in CΩ such that

lim
j→∞

E1
s (ψj) = E1

s (v).

Since (3.18) holds for any ψj here described, we finally obtain

E1
s (u1) 6 lim

j→∞
E1
s (ψj) = E1

s (v).

This gives that u1 is a minimizer, and concludes the proof of the theorem. �

We comment now on the requirement on the exterior data in Theorem 1.6.

Lemma 3.7. Let pk ց 1 and q ∈ (1, 1/s). If ϕk ∈W s,q(CΩ) and

sup
k∈N

‖ϕk‖W s,q(CΩ) < C, (3.21)

for some C > 0, then there exists ϕ ∈W s,q(CΩ) such that

ϕk −−−→
k→∞

ϕ in L1
loc(CΩ) and a.e. in CΩ,

up to subsequences. Furthermore

sup
k∈N

Tailpks (ϕk, CΩ; ·) ∈ L1(Ω) and Tail1s(ϕ, CΩ; ·) ∈ L1(Ω).
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Proof. Reasoning as in the proof of Lemma 2.3 and using (3.21), we get that
∫

Ω
sup
k∈N

Tailpks (ϕk, CΩ;x) dx 6 C sup
k∈N

‖ϕk‖
q

W s,q(CΩ) + 2Pers(Ω,R
n) + 2Persq(Ω,R

n) 6 C,

up to renaming the constants.
Moreover, from (3.21), given any R > 0 such that Ω ⋐ BR, the compact embedding W s,q(BR \

Ω) ⋐ L1(BR \Ω) ensures that there exists ϕR ∈ L1(BR \Ω) such that

‖ϕk − ϕR‖L1(BR\Ω) −−−→
k→∞

0,

up to a subsequence. By a diagonal argument we thus obtain that

ϕk −−−→
k→∞

ϕ in L1
loc(CΩ) and a.e. in CΩ,

up to a subsequence. Then, by Fatou’s Lemma we have

‖ϕ‖W s,q(CΩ) 6 lim inf
k→∞

‖ϕk‖W s,q(CΩ) 6 C,

hence ϕ ∈W s,q(CΩ). Finally, the fact that Tail1s(ϕ, CΩ; ·) ∈ L1(Ω) follows again by Fatou’s Lemma,
as in (3.17). �

4. Γ-convergence of the (s, p)–energy to the (s, 1)–energy

This section contains the proofs of Theorems 1.7 and 1.8.

4.1. Γ-convergence with and without fixed exterior conditions. We focus on the Γ-convergence
setting given in Theorem 1.8 and we will later take into account the requested modification to ad-
dress also Theorem 1.7.

Proof of Theorem 1.8. According to the sequential definition of Γ-convergence (see e.g. [6,18]), we
have to prove

(1) the liminf inequality, i.e. let u ∈ L1(Ω), and let pk ց 1 as k → ∞, then for every sequence
(uk)k∈N ⊂ L1(Ω) such that

uk −−−→
k→∞

u in L1(Ω),

it holds that

Ẽ1
s,ϕ(u) 6 lim inf

k→∞
Ẽpk
s,ϕ(uk),

and
(2) the existence of a recovery sequence: let u ∈ L1(Ω) and let pk ց 1 as k → ∞, then there

exists a sequence (uk)k∈N ⊂ L1(Ω) such that

uk −−−→
k→∞

u in L1(Ω),

and

Ẽ1
s,ϕ(u) = lim

k→∞
Ẽpk
s,ϕ(uk).

We observe that the liminf inequality (1) is warranted by Lemma 3.4.
To build the recovery sequence (2), we proceed as follows. We remark that if u ∈ L1(Ω)\X 1

ϕ(Ω),
there is nothing to prove (as it is enough to consider the sequence upk = u for every k).

Let then u ∈ X 1
ϕ(Ω), hence u ∈ Ws,1

ϕ (Ω), and pk ց 1. Notice that, by (1.17) and Lemma 1.9, we
can assume that pk ∈ (1, 1/s) for every k and

sup
k∈N

Tailpks (ϕ, CΩ; ·) ∈ L1(Ω). (4.1)
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According to Lemma 3.5, since u ∈ Ws,1
ϕ (Ω), there exists v1 : R

n → R with v1 ∈ C∞
c (Ω) and

v1 = ϕ in CΩ, such that

‖u− v1‖W s,1(Ω) <
1

4
and |Ẽ1

s,ϕ(v1)− Ẽ1
s,ϕ(u)| <

1

4
.

Since v1 ∈ C∞
c (Ω), by (4.1) and Lemma 1.3, we have that v1 ∈ X pk

ϕ (Ω) for every k. Thanks to
Lemma 3.6 (applied here to ψk := v1 in R

n), we obtain

lim
k→∞

Ẽpk
s,ϕ(v1) = Ẽ1

s,ϕ(v1).

Therefore, there exists k̃1 > 1 such that for all k > k̃1

|Ẽpk
s,ϕ(v1)− Ẽ1

s,ϕ(v1)| <
1

4
.

Consequently,

|Ẽpk
s,ϕ(v1)− Ẽ1

s,ϕ(u)| 6 |Ẽpk
s,ϕ(v1)− Ẽ1

s,ϕ(v1)|+ |Ẽ1
s,ϕ(v1)− Ẽ1

s,ϕ(u)| <
1

2
,

for all k > k̃1.
Proceeding in the same way, we continue building the sequence (vl)l with vl ∈ C

∞
c (Ω), vl = ϕ in

CΩ (and vl ∈ X pk
ϕ (Ω) for every k), such that there exists k̃l > k̃l−1 > · · · > k̃1, with

|Ẽpk
s,ϕ(vl)− Ẽ1

s,ϕ(u)| <
1

2l
and ‖vl − u‖W s,1(Ω) 6

1

2l+1
,

for all k > k̃l. Now we define

uk := v1 ∀ k < k̃2,

uk := v2 ∀ k ∈ [k̃2, k̃3),

. . .

uk := vl ∀ k ∈ [k̃l, k̃l+1),

. . .

and we have that: for all l ∈ N there exists k̃l such that for all k > k̃l,

|Ẽpk
s,ϕ(uk)− Ẽ1

s,ϕ(u)| <
1

2l
and ‖uk − u‖W s,1(Ω) <

1

2l+1
.

Since l can be taken arbitrarily large, this implies that

lim
k→∞

Ẽpk
s,ϕ(uk) = Ẽ1

s,ϕ(u) and uk −−−→
k→∞

u in L1(Ω),

hence we have built the required recovery sequence uk ∈ X pk
ϕ (Ω). �

Notice that in order to obtain the Γ-convergence result in Theorem 1.8, we need to require and
additional condition (1.17) on the exterior data. Indeed, by constructing the next counter-example,
we point out that in absence of such a condition the result fails.

Remark 4.1 (Counter-example to Theorem 1.8 if assumption (1.17) is dropped). Let R > 1 be such
that Ω ⋐ BR, let

f ∈ L1(Rn) such that f 6∈ Lp(CBR) for every p > 1, (4.2)

and define ϕ : CΩ → R to be

ϕ(x) =

{

f(x)|x|n+s if x ∈ CBR,

0 if x ∈ BR \ Ω.
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Notice that, on the one hand,

‖Tail1s(ϕ, CΩ;x)‖L1(Ω) =

∫

Ω

(
∫

CΩ

|ϕ(y)|

|x− y|n+s
dy

)

dx 6 C

∫

Ω

(
∫

CBR

|ϕ(y)|

|y|n+s
dy

)

dx

= C|Ω|

∫

CBR

|f(y)|dy <∞.

On the other hand, for any p > 1, we have that

‖Tailps(ϕ, CΩ;x)‖L1(Ω) =

∫

Ω

(∫

CΩ

|ϕ(y)|p

|x− y|n+sp
dy

)

dx > C

∫

Ω

(∫

CBR

|f(y)|p|y|n(p−1)dy

)

dx

> C|Ω|

∫

CBR

|f(y)|pdy = +∞.

Now let u : Rn → R be any measurable function such that u ∈ W s,1(Ω) and u = ϕ almost
everywhere in CΩ. In light of Lemma 1.3, we have E1

s (u) < ∞. On the other hand, given any
sequence pk ց 1 and uk : Rn → R such that uk = ϕ almost everywhere in CΩ and uk → u in
L1(Ω), we have Epk

s (uk) = +∞ for every k big enough. This shows that Theorem 1.8 does not hold
true without assumption (1.17).

We focus now on a more general setting for the Γ-convergence, also using the notations for X q(Ω)

and Ẽq
s that were introduced in (1.14) and (1.15).

Remark 4.2. We point out that it is not restrictive to consider functions that are locally summable
in R

n. Indeed, if u : Rn → R is a measurable function such that Eq
s (u) < ∞, for some q ∈ [1, 1/s),

then u ∈ L1
loc(R

n). To see this, recall from Lemma 1.3, that u ∈ Lq(Ω) and furthermore, for any
R > 0 such that Ω ⋐ BR,

∫

BR\Ω
|u(y)|q dy 6 C(R, s, q,Ω)

∫

Ω

(

∫

BR\Ω

|u(y)|q

|x− y|n+sq
dy

)

dx

6 C‖Tailqs(u, CΩ; ·)‖L1(Ω) <∞,

so that, actually, u ∈ Lq
loc(R

n).

We now complete the proof of Theorem 1.7.

Proof of Theorem 1.7. According to the sequential definition of Γ-convergence (see e.g. [6,18]), we
have to prove

(1) the liminf inequality: let u ∈ L1
loc(R

n) and let pk ց 1 as k → ∞, then for every sequence
(uk)k∈N ⊂ L1

loc(R
n) such that

uk −−−→
k→∞

u in L1
loc(R

n),

it holds that

Ẽ1
s (u) 6 lim inf

k→∞
Ẽpk
s (uk),

and
(2) the existence of a recovery sequence: let u ∈ L1

loc(R
n) and pk ց 1 as k → ∞, then there

exists a sequence (uk)k∈N ⊂ L1
loc(R

n) such that

uk −−−→
k→∞

u in L1
loc(R

n),

and

Ẽ1
s (u) = lim

k→∞
Ẽpk
s (uk).
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We observe that the liminf inequality follows from Lemma 3.4, so we focus on building the recovery
sequence.

For this, one of the ingredients in the proof consists in the approximation of a given function
of finite energy by smooth and compactly supported functions (this technique1 was used e.g. also
in [9]). To this end, we remark at first that if u ∈ L1

loc(R
n) \ X 1(Ω), there is nothing to prove (as

we can consider upk := u). Let then u ∈ X 1(Ω), hence u ∈ Ws,1(Ω) and Tail1s(u, CΩ; ·) ∈ L1(Ω) by
Lemma 1.3.

Notice that we can assume that pk ∈ (1, 1/2s) for every k.
Now we cut u at heights −M,M , for a fixed M > 0. Precisely, we define

uM (x) = min {M,max {−M,u(x)}} ,

and notice that

|uM (x)| 6 |u(x)| and |uM (x)− uM (y)| 6 |u(x) − u(y)|. (4.3)

Since uM → u as M → ∞ almost everywhere in R
n, and since, thanks to (4.3),

|uM (x)− uM (y)|

|x− y|n+s
6

|u(x)− u(y)|

|x− y|n+s
∈ L1(Q(Ω)),

from the Dominated Convergence Theorem we have that

lim
M→∞

‖uM − u‖W s,1(Ω) = 0 and lim
M→∞

Ẽ1
s (u

M ) = Ẽ1
s (u). (4.4)

Notice also that, since |uM | 6 |u|, by the Dominated Convergence Theorem we obtain

lim
M→∞

‖uM − u‖L1(BR) = 0, (4.5)

for any R > 0. Let us fix a sequence Rk ր ∞ such that Ω ⋐ BR1 .

By (4.4) and (4.5), there exists M̃1 > 0 such that for all M > M̃1,

|Ẽ1
s (u

M )− Ẽ1
s (u)| <

1

6
and ‖uM − u‖L1(BR1

) <
1

4
.

Since uM̃1 ∈ Ws,1(Ω), according to Lemma 3.5, there exists vM̃1
1 : Rn → R with vM̃1

1 ∈ C∞
c (Ω) and

vM̃1
1 = uM̃1 in CΩ, such that

‖uM̃1 − vM̃1
1 ‖W s,1(Ω) <

1

4
and |Ẽ1

s (v
M̃1
1 )− Ẽ1

s (u
M̃1)| <

1

6
.

Thus

‖vM̃1
1 − u‖L1(BR1

) 6 ‖vM̃1
1 − uM̃1‖L1(Ω) + ‖uM̃1 − u‖L1(BR1

) <
1

2
, (4.6)

and

|Ẽ1
s (v

M̃1
1 )− Ẽ1

s (u)| 6 |Ẽ1
s (v

M̃1
1 )− Ẽ1

s (u
M̃1)|+ |Ẽ1

s (u
M̃1)− Ẽ1

s (u)| <
1

3
. (4.7)

We now observe that vM̃1
1 ∈ X pk(Ω) for every k. This is a consequence of the fact that vM̃1

1 ∈ C∞
c (Ω),

hence the interaction of Ω with itself provides a bounded contribution to the energy functional, and

of the boundedness of vM̃1
1 outside of Ω, which, thanks to the assumption pk ∈ (1, 1/2s), actually

ensures that

sup
k∈N

Tailpks (vM̃1
1 ,Ω) 6 sup

k∈N

∫

CΩ

M̃1

|x− y|n+spk
dy ∈ L1(Ω),

see the computations in (2.2). Hence (3.12) is satisfied and Lemma 3.6 implies that

lim
k→∞

Ẽpk
s (vM̃1

1 ) = Ẽ1
s (v

M̃1
1 ).

1We stress that we could not employ this method directly in Theorem 1.8, since in that case we need to keep the
exterior data fixed and approximate only from the inside the domain.



(s, p)-HARMONIC APPROXIMATION OF FUNCTIONS OF LEAST W s,1-SEMINORM 22

From this we deduce the existence of k̃1 > 0 such that for all k > k̃1,

|Ẽpk
s (vM̃1

1 )− Ẽ1
s (v

M̃1
1 )| <

1

6
.

Taking into account this, (4.6) and (4.7), we have that there exist M̃1 > 0 and k̃1 > 1 such that

|Ẽpk
s (vM̃1

1 )− Ẽ1
s (u)| <

1

2
, and ‖vM̃1

1 − u‖L1(BR1
) <

1

2
,

for all k > k̃1. Proceeding in the same way, we continue building the sequence M̃l > M̃l−1 > . . . M̃1

and k̃l > k̃l−1 > . . . k̃1, and v
M̃l

l such that

|Ẽpk
s (vM̃l

l )− Ẽ1
s (u)| <

1

2l
, ‖vM̃l

l − u‖L1(BRl
) <

1

2l
,

for all k > k̃l.
We now define

uk := vM̃1
1 ∀ k < k̃2,

uk := vM̃2
2 ∀ k ∈ [k̃2, k̃3),

. . .

uk := vM̃l

l ∀ k ∈ [k̃l, k̃l+1),

. . .

and we have that for all l > 0 there exists k̃l such that for all k > k̃l,

|Ẽpk
s (uk)− Ẽ1

s (u)| <
1

2l
, ‖uk − u‖L1(BRl

) <
1

2l
.

Since l can be taken arbitrarily large, and Rl ր ∞, this implies that

lim
k→∞

Ẽpk
s (uk) = Ẽ1

s (u), uk −−−→
k→∞

u in L1
loc(R

n).

Thus, (uk)k is a recovery sequence, and we conclude the proof of the desired result. �

4.2. Equi-coercivity. We focus now on the equi-coercivity of the family of functionals Ẽs
p
(for

p close enough to 1). We point out that this type of results and arguments have been discussed
previously in [37, Theorem 2 and Section 3] and [10, Theorems 2 and 3]. In what follows, we
suppose that the exterior condition is as general as possible, i.e., that the tails of the sequence of
exterior data ϕk are uniformly bounded. Such a condition is satisfied, for instance, if ϕk ∈W s,q(Ω)
for some q > 1, as proved in Lemma 3.7. More precisely:

Proposition 4.3 (Equi-coercivity with varying exterior data). Let pk ց 1 as k → ∞ and
ϕk : CΩ → R such that

lim sup
k→∞

‖Tailpks (ϕk, CΩ; ·)‖L1(Ω) <∞, and ϕk −−−→
k→∞

ϕ a.e. in CΩ. (4.8)

Let uk ∈ Ws,pk
ϕk

(Ω) such that

lim sup
k→∞

Epk
s (uk) <∞.

Then there exists u1 ∈ Ws,1
ϕ (Ω) such that, up to subsequences,

uk −−−→
k→∞

u1 in L1(Ω) and a.e. in R
n.
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Proof. In the rest of the proof, the constant C may change value from line to line, denoting nonethe-
less a positive quantity independent of k.

We can suppose without loss of generality that

sup
k∈N

Epk
s (uk) 6 C and sup

k∈N
‖Tailpks (ϕk, CΩ; ·)‖L1(Ω) 6 C. (4.9)

Notice that the uniform bound on the energies implies that

sup
k∈N

[uk]W s,pk (Ω) 6 C.

Moreover, arguing as in (3.8), we have

sup
k∈N

‖uk‖Lpk (Ω) 6 C(n,Ω)

(

1 + sup
k∈N

‖Tailpks (uk, CΩ; ·)‖L1(Ω)

)

6 C.

Fixed σ ∈ (0, s), thanks to Theorem 3.2 we obtain

sup
k∈N

‖uk‖Wσ,1(Ω) 6 C1 sup
k∈N

‖uk‖W s,pk (Ω) 6 C.

By the compact embedding W σ,1(Ω) ⋐ L1(Ω), there exists u ∈ L1(Ω) such that

uk −−−→
k→∞

u in L1(Ω) and a.e. in Ω,

up to subsequences. Moreover, using Fatou’s lemma, we have that u ∈W s,1(Ω). Then,

u1 :=

{

u in Ω

ϕ in CΩ,

provides the desired limit function. �

As a direct consequence of Proposition 4.3, we have the equi-coercivity for fixed exterior data.

Corollary 4.4 (Equi-coercivity with fixed exterior data). Let ϕ : CΩ → R be such that

lim sup
pց1

‖Tailps(ϕ, CΩ; ·)‖L1(Ω) <∞.

Let pk ց 1 as k → ∞ and let uk ∈ Ws,pk(Ω) such that

lim sup
k→∞

Epk
s (uk) <∞.

Then there exists u1 ∈ Ws,1
ϕ (Ω) such that, up to subsequences,

uk −−−→
k→∞

u1 in L1(Ω) a.e. in R
n.

We conclude this section by pointing out some observations related to Proposition 4.3.

Remark 4.5. We note that the hypothesis ϕk → ϕ almost everywhere in CΩ as k → ∞, as stated
in (4.8), cannot be removed. Indeed, let ϕk : R → [−1, 1],

ϕk(x) := sin(kx),

and let Ω ⊂ R be any bounded open interval.
Then ϕk satisfies, on the one hand, that

sup
k∈N

Tailpks (ϕk, CΩ; ·) ∈ L1(Ω),

reasoning as in (2.2). On the other hand, no subsequence of ϕk has a limit in CΩ. Indeed, if there
were some ϕ such that ϕkl → ϕ almost everywhere in CΩ, with kl ր ∞, then

(sin (kl+1x)− sin (klx))
2 −−−→

l→∞
0 a.e. in CΩ,
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hence, by the Dominated Convergence Theorem,

lim
l→∞

∫ (2M+1)π

2Mπ

(sin (kl+1x)− sin (klx))
2 dx = 0, (4.10)

with M ∈ N big enough such that Ω ⊂ (−∞, 2Mπ). Nonetheless,
∫ (2M+1)π

2Mπ

(sin (kl+1x)− sin (klx))
2 dx = π,

and this provides a contradiction with (4.10). This shows that assumption (4.8) cannot be dropped.

Remark 4.6. Condition (4.8) can be slightly weakened, without imposing a priori the existence of
a limit function of the exterior data. This can be done in two ways:

• either one fixes the exterior data, as in Corollary 4.4,
• or one requires a more restrictive condition on the exterior data, e.g. that ϕk ∈W s,q(CΩ),
for some q ∈ (1, 1/s), with

sup
k∈N

‖ϕk‖W s,q(CΩ) <∞,

as in Lemma 3.7.

5. Convergence of weak solutions of the (s, p)–Laplacian to weak solutions of

the (s, 1)–Laplacian

We prove here Theorem 1.11.
For this, we focus on the energy functional

E1
s (u) =

1

2

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dx dy,

and we exploit the setting in Definition 1.5.
It is worth stressing that Definition 1.5 makes sense with no a priori assumption on u—besides

measurability, since, by the fractional Hardy-type inequality (2.6) and the global boundedness of
z, we have

∣

∣

∣

∣

∣

∫∫

Q(Ω)

z(x, y)

|x− y|n+s
(w(x) − w(y))dx dy

∣

∣

∣

∣

∣

6 C(n, s,Ω)‖w‖W s,1(Ω). (5.1)

To further dwell on Definition 1.5, we observe that in (1.10) we could consider just test functions
w ∈ C∞

c (Ω)—where it is understood that w is extended by zero outside Ω.

Indeed, if w ∈ Ws,1
0 (Ω), then we can find wk ∈ C∞

c (Ω) such that wk → w in W s,1(Ω) (see [43],
Part i) of the theorem on page 210; see also [17, Proposition A.1] for an elementary and self-
contained proof). Then, in virtue of (5.1), we have

∫∫

Q(Ω)

z(x, y)

|x− y|n+s
(w(x) − w(y))dx dy = lim

k→∞

∫∫

Q(Ω)

z(x, y)

|x− y|n+s
(wk(x)− wk(y))dx dy = 0.

Now, we prove Theorem 1.11.

Proof of Theorem 1.11 (i). Suppose that u is a weak solution to the problem (1.9), and let v ∈

Ws,1(Ω) be such that v = u almost everywhere in CΩ. Consider the function w := u−v ∈ Ws,1
0 (Ω),

and notice that, by definition of z, for almost every (x, y) ∈ Q(Ω) we have

z(x, y)
(

w(x)− w(y)
)

= |u(x)− u(y)| − z(x, y)
(

v(x)− v(y)
)

> |u(x)− u(y)| − |v(x)− v(y)|.

By (1.10) we thereby obtain
∫∫

Q(Ω)

[

|u(x)− u(y)|

|x− y|n+s
−

|v(x)− v(y)|

|x− y|n+s

]

dx dy 6

∫∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+s
dx dy = 0.
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Given the arbitrariness of the competitor v ∈ Ws,1
u (Ω), this implies that u is an s-minimal function

in Ω. �

Proof of Theorem 1.11 (ii). Suppose now that u is s-minimal in Ω, and that u ∈ Ws,1
u (Ω) is a weak

solution of (1.9). That is, recalling Definition 1.5, there exists z ∈ L∞(Q(Ω)), with ‖z‖∞ 6 1, z
antisymmetric satisfying

∫∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+sp
dx dy = 0 for all w ∈ Ws,1

0 (Ω), (5.2)

and

z(x, y) ∈ sgn(u(x)− u(y)) for almost all (x, y) ∈ Q(Ω).

Considering w := u− u ∈ Ws,1
0 (Ω) as a test function in (5.2), and exploiting the s-minimality of u,

we get that

0 =

∫∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+s
dx dy =

∫∫

Q(Ω)

[

|u(x)− u(y)|

|x− y|n+s
−

z(x, y)(u(x) − u(y))

|x− y|n+s

]

dx dy

>

∫∫

Q(Ω)

[

|u(x)− u(y)|

|x− y|n+s
−

|u(x)− u(y)|

|x− y|n+s

]

dx dy > 0.

It follows that

z(x, y) ∈ sgn(u(x)− u(y)) for almost all (x, y) ∈ Q(Ω).

Consequently, u is a weak solution to the problem (1.9). �

It remains now to prove that a weak solution of (1.10) exists, that is to prove Theorem 1.11
(iii). To do this, roughly speaking, one considers a weak (s, p)-solution and then carefully studies
the limit as pց 1. Exploiting such a technique, the weak formulation for the (s, 1)-Laplacian was
introduced in [34]. In [34, Theorem 3.4], the existence of a solution to problem (1.9) is indeed
obtained as the limit case of the solution of the Dirichlet problem for the fractional p-Laplacian, as
pց 1.

To implement this strategy, we sum up the existence (and uniqueness) of minimizers, and the
equivalence between minimizers and weak solutions for p > 1 in the following statement.

Proposition 5.1. Let p ∈ [1, 1/s) and let ϕ : CΩ → R be such that Tailps(ϕ, CΩ; ·) ∈ L1(Ω). Then,
there exists an (s, p)-minimizer u ∈ Ws,p

ϕ (Ω). Moreover, if p ∈ (1, 1/s), then

(i) the (s, p)-minimizer is unique.
(ii) A function u ∈ Ws,p

ϕ (Ω) is an (s, p)–minimizer if and only if it is a weak solution of (1.6).

A few comments about Proposition 5.1 are in order. The proof of the existence of a minimizer can
be carried out by direct methods, exploiting the estimate (3.8)—see for instance [11, Remark 4,
Theorem 5], [12, Theorem A.1] for the case p = 1, and also [20] for different conditions on the
exterior data. The uniqueness for p > 1 is ensured by the strict convexity of the operator. On the
other hand, as proved in [12, Theorem 1.6], when p = 1 the uniqueness, in general, fails.

The equivalence of minimizers and weak solutions follows by the same argument of [20, Theo-
rem 2.3.] (where the formulation appears to be slightly different than ours).

For p > 1/s, the condition Tailps(ϕ, CΩ; ·) ∈ L1(Ω) is still enough to ensure the existence of
an (s, p)-minimizer—and its uniqueness is again ensured by the strict convexity of the functional.
However, while for p < 1/s this condition is very mild and imposes no requirement on the behavior
of ϕ across the boundary of Ω, when sp > 1, roughly speaking, it forces ϕ to be close to zero near ∂Ω.
Moreover, when p > 1/s, Lemma 1.3 no longer holds true. In particular, even if Tailps(ϕ, CΩ; ·) ∈
L1(Ω), a function u ∈ Ws,p

ϕ (Ω) might be such that Ep
s (u) = +∞. As a consequence, point (ii) does

not hold in these hypothesis.
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We also point out that the case sp > 1 is interesting due to its connection to the classical case
in the limit as sր 1.

We prove now the existence of a weak solution of (1.10). We observe that in our formulation
we take slightly different hypotheses than those in [34, Theorem 3.4]. Precisely, the authors of [34]
assume zero exterior condition (corresponding to ϕ = 0) (but consider an L2 right hand side in
(1.10)). This difference, in our case, translates into some extra care when dealing with interactions
Ω with CΩ once the suitable conditions on ϕ are set, hence in some additional computations (that
we carry out in the last part of our proof). Besides these differences, the proof is close to the one
of [34, Theorem 3.4], and we insert it for completeness.

Proof of Theorem 1.11 (iii). We consider a sequence pk ց 1 as k → ∞. We can assume without
loss of generality that pk ∈ (1, q], which implies that spkpk < 1 for every k.

We begin by observing that, arguing as in Lemma 1.9, (1.19) is equivalent to

sup
p∈(1,q]

Tailpsp(ϕ, CΩ; ·) ∈ L1(Ω) (5.3)

and to
sup

p∈(1,q]
‖Tailpsp(ϕ, CΩ; ·)‖L1(Ω) <∞. (5.4)

Hence, by (5.4), we can apply Proposition 5.1, which ensures that there exists a sequence of unique

(spk , pk)-minimizers upk ∈ W
spk ,pk
ϕ (Ω), that are also weak solutions of

{

(−∆)
spk
pk upk = 0 in Ω,

upk = ϕ on CΩ.
(5.5)

As a consequence of (3.5) and (3.6), by (5.4) we also have that

sup
k∈N

‖upk‖W spk
,pk (Ω) < C and sup

k∈N
2pkE

pk
spk

(upk) < C. (5.6)

Now we fix an index σ ∈ (0, s) and we consider the constant C1(n, s, σ,Ω) of Theorem 3.2. Since
spk > s for every k and spk ց s, a careful inspection of the proof of Theorem 3.2 reveals that

C2(n, s, σ,Ω) := sup
k∈N

C1(n, spk , σ,Ω) <∞.

By (5.6) and Theorem 3.2, this implies that

sup
k∈N

‖upk‖Wσ,1(Ω) <∞.

Hence, by compactness, there exists a subsequence of pk (that we relabel for simplicity) such that

upk −−−→
k→∞

u in L1(Ω) and a.e. in Ω. (5.7)

We extend u to the whole of Rn by setting u|CΩ := ϕ.

Also, by (5.6) and Fatou’s Lemma, we get that u ∈ Ws,1
ϕ (Ω). We now proceed to prove that u

is an (s, 1)-minimizer, arguing as in the proof of Theorem 1.6.

Given v ∈ Ws,1
ϕ (Ω), by Lemma 3.5 there exists a sequence of functions ψj : Rn → R such that

ψj |Ω ∈ C∞
c (Ω) and ψj = ϕ almost everywhere in CΩ, with

lim
j→∞

‖ψj − v‖W s,1(Ω) = 0 and lim
j→∞

E1
s (ψj) = E1

s (v).

Since ψj |Ω ∈ C∞
c (Ω), under the hypothesis (5.3), by a minor modification of the proof of Lemma 3.6,

we have that

lim
k→∞

Epk
spk

(ψj) = E1
s (ψj).
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Since ψj ∈ W
spk ,pk
ϕ (Ω) for every j, by (spk , pk)-minimality of upk and exploiting Fatou’s Lemma,

we have that

E1
s (u) 6 lim inf

k→∞
Epk
spk

(uk) 6 lim
k→∞

Epk
spk

(ψj) = E1
s (ψj),

for every j. Hence, passing to the limit as j → ∞,

E1
s (u) 6 lim inf

j→∞
E1
s (ψj) = E1

s (v).

Given the arbitrariness of v ∈ Ws,1
ϕ (Ω), this concludes the proof of the (s, 1)-minimality of u.

We consider M > 0 and we define

Cpk,M :=

{

(x, y) ∈ Q(Ω)
∣

∣

∣

∣

∣

∣

∣

upk(x)− upk(y)

|x− y|n+s

∣

∣

∣

∣

> M

}

.

Then, recalling that sp = s+ n− n/p, we notice that for any p one has n+ spp = (n+ s)p, hence

Mpk |Cpk,M | 6

∫∫

Cpk,M

(

|upk(x)− upk(y)|

|x− y|n+s

)pk

dx dy

=

∫∫

Cpk,M

|upk(x)− upk(y)|
pk

|x− y|n+spkpk
dx dy 6 2pkE

pk
spk

(upk),

and by (5.6), this yields that

|Cpk,M | 6
C

Mpk
. (5.8)

On the other hand,
∣

∣

∣

∣

|upk(x)− upk(y)|
pk−2(upk(x)− upk(y))

|x− y|(n+s)(pk−1)
χQ(Ω)\Cpk,M

(x, y)

∣

∣

∣

∣

6 Mpk−1,

hence, since pk ց 1, the left hand side is uniformly bounded independently of k. Thus, for any
M ∈ N, there exists a subsequence of {pk}k, denoted {pMk }k, such that

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))

|x− y|(n+s)(pM
k

−1)
χQ(Ω)\C

pM
k

,M
(x, y)⇀ zM (x, y), (5.9)

as k → ∞, weakly∗ in L∞(Q(Ω)), with zM antisymmetric such that

‖zM‖L∞(Q(Ω)) 6 1.

Furthermore, there exists a subsequence of {zM}M (which we still call {zM}M with a slight abuse
of notation) such that,

zM ⇀ z weakly∗ in L∞(Q(Ω)), as M → ∞, (5.10)

with z antisymmetric and

‖z‖L∞(Q(Ω)) 6 1.

We claim that, for any w ∈ C∞
c (Ω),

lim
M→∞

[

lim
k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) − w(y))

|x− y|
n+s

pM
k

pM
k

dx dy

]

=

∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+s
dx dy.

(5.11)
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To this end, let us fix M ∈ N, and denote by C different constants, possibly depending on
n, s, q,Ω, w, but always independent of k,M . We notice that, by Hölder’s inequality we have
that
∣

∣

∣

∣

∣

∣

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) − w(y))

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy

∣

∣

∣

∣

∣

∣

6





∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

|x− y|n+spkp
M
k

dx dy





pM
k

−1

pM
k





∫∫

Q(Ω)

|w(x) − w(y)|p
M
k

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy





1

pM
k

6 C





∫∫

Q(Ω)

|w(x) − w(y)|p
M
k

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy





1

pM
k

,

(5.12)
by (5.6). Using again Hölder’s inequality,

∫∫

Q(Ω)

|w(x) − w(y)|p
M
k

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy 6

(

∫∫

Q(Ω)

|w(x)− w(y)|q

|x− y|n+sqq
dx dy

)

pM
k
q

|CpM
k

,M |
q−pM

k
q ,

where we have used that (n + spM
k
pMk ) = (n + s)pMk and n + sqq = (n + s)q. Using also (2.6), we

have that
∫∫

Q(Ω)

|w(x) −w(y)|q

|x− y|n+sqq
dx dy 6 C‖w‖q

W sq,q(Ω).

We point out that ‖w‖q
W sq,q(Ω) is finite, since w ∈ C∞

c (Ω). Substituting into (5.12), we have
∣

∣

∣

∣

∣

∣

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) − w(y))

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy

∣

∣

∣

∣

∣

∣

6 C|CpM
k

,M |

q−pM
k

qpM
k 6 CM

−
q−pM

k
q ,

(5.13)

where the last inequality follows from (5.8). It follows that

lim
M→∞

[

lim
k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) −w(y))

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dx dy

]

= 0.
(5.14)

On the other hand, noticing that |x− y|
n+s

pM
k

pM
k = |x− y|(n+s)(pM

k
−1)|x− y|n+s, recalling (5.9),

and pointing out that (w(x) − w(y))/|x − y|n+s ∈ L1(Q(Ω)), by taking the limit as k → ∞

lim
k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) − w(y))

|x− y|
n+s

pM
k

pM
k

χQ(Ω)\C
pM
k

,M
(x, y)dx dy

= lim
k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))

|x− y|
(n+s

pM
k

)(pM
k

−1)
χQ(Ω)\C

pM
k

,M
(x, y)

w(x) − w(y)

|x− y|n+s
dx dy

=

∫∫

Q(Ω)

zM (x, y)(w(x) − w(y))

|x− y|n+s
dx dy.
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We take now the limit as M → ∞ counting on (5.10) and obtain

lim
M→∞

[

lim
k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))(w(x) − w(y))

|x− y|
n+s

pM
k

pM
k

χQ(Ω)\C
pM
k

,M
(x, y)dx dy

]

=

∫∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+s
dx dy.

This, together with (5.14), proves (5.11).
Since upk is a weak solution to the Dirichlet problem (5.5), we have for any w ∈ C∞

c (Ω) that

∫∫

Q(Ω)

|upk(x)− upk(y)|
pk−2

|x− y|n+spkpk
(upk(x)− upk(y))(w(x) − w(y))dx dy = 0, (5.15)

hence, by (5.11),
∫∫

Q(Ω)

z(x, y)(w(x) −w(y))

|x− y|n+s
dx dy = 0. (5.16)

To obtain the above equality for any w ∈ Ws,1
0 (Ω), it is enough to use the density of C∞

c (Ω) into

Ws,1
0 (Ω). Indeed, let w ∈ Ws,1

0 (Ω), then there exists wj ∈ C∞
c (Ω) such that ‖w − wj‖W s,1(Ω) → 0

as j → ∞. Consequently,
∣

∣

∣

∣

∣

∫∫

Q(Ω)

z(x, y)(w(x) − w(y))

|x− y|n+s
dx dy −

∫∫

Q(Ω)

z(x, y)(wj(x)− wj(y))

|x− y|n+s
dx dy

∣

∣

∣

∣

∣

6

∫∫

Q(Ω)

|(w − wj)(x)− (w − wj)(y)|

|x− y|n+s
dx dy 6 C‖w − wj‖W s,1(Ω),

using also that w − wj = 0 in CΩ, and (2.6). Passing to the limit as j → ∞, it follows that (5.16)

holds for any w ∈ Ws,1
0 (Ω).

It remains to prove that z(x, y) ∈ sgn(u(x) − u(y)) to conclude the proof of the theorem, so it
remains to prove that

∫∫

Q(Ω)

z(x, y)(u(x) − u(y))

|x− y|n+s
dx dy >

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dx dy. (5.17)

To do this, we consider ϕ : Rn → R, with ϕ = ϕ in CΩ and ϕ = 0 in Ω. For a fixed M > 0 using
again the definition of the set CpM

k
,M , we consider the sequence upM

k
satisfying (5.9). In (5.15), we

take w := upM
k

− ϕ, and obtain that

0 =

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

|x− y|
n+s

pM
k

pM
k

dx dy

+ 2

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

dy



 dx.

By Fatou’s Lemma

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dx dy 6 lim inf

k→∞

∫∫

Q(Ω)

|upM
k
(x)− upM

k
(y)|p

M
k

|x− y|
n+s

pM
k

pM
k

dx dy.
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Now we prove that

lim
M→∞



 lim
k→∞

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

dy



 dx





=

∫

Ω

∫

CΩ

z(x, y)ϕ(y)

|x− y|n+s
dx dy.

(5.18)

To prove (5.18), we observe that

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

dy



 dx

=

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dy



 dx

+

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))

|x− y|(n+s)(pM
k

−1)
χ(Ω×CΩ)\C

pM
k

,M
(x, y)

ϕ(y)

|x− y|n+s
dy



 dx.

Reasoning as in (5.12) and (5.13), we get that
∣

∣

∣

∣

∣

∣

∫

Ω





∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M
(x, y)dy



 dx

∣

∣

∣

∣

∣

∣

6 C

[∫

Ω

(∫

CΩ

|ϕ(y)|q

|x− y|n+sqq
dy

)

dx

]
1
q

|CpM
k

,M |

q−pM
k

qpM
k

= C‖Tailqsq(ϕ, CΩ; ·)‖
q

L1(Ω)
M

−
q−pk

q

6 CM
−

q−pk
q ,

making use of (1.19). Recalling that, again from (1.19), ϕ(y)/|x − y|n+s ∈ L1(Ω × CΩ), it follows
that

lim
M→∞



 lim
k→∞

∫

Ω

∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))ϕ(y)

|x− y|
n+s

pM
k

pM
k

χC
pM
k

,M(x, y)dy dx



 = 0.

On the other hand, making use of (5.9) and (5.10), we have that

lim
M→∞



 lim
k→∞

∫

Ω

∫

CΩ

|upM
k
(x)− upM

k
(y)|p

M
k

−2(upM
k
(x)− upM

k
(y))

|x− y|(n+s)(pM
k

−1)
χ(Ω×CΩ)\C

pM
k

,M
(x, y)

ϕ(y)

|x − y|n+s
dy dx





=

∫

Ω

(
∫

CΩ

z(x, y)ϕ(y)

|x− y|n+s
dy

)

dx

This proves (5.18).
From this, we obtain that

0 >

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dx dy + 2

∫

Ω

∫

CΩ

z(x, y)ϕ(y)

|x− y|n+s
dx dy. (5.19)
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Now, in (5.16), we use w := u− ϕ and obtain that
∫∫

Q(Ω)

z(x, y)(u(x) − u(y))

|x− y|n+s
dx dy + 2

∫

Ω

(∫

CΩ

z(x, y)ϕ(y)

|x− y|n+s
dy

)

dx = 0.

Together with (5.19), this implies (5.17), and the proof of the theorem. �

Appendix A. Asymptotics as s→ 1−

In this Appendix we focus on the (s, 1)-energy, and study the asymptotics as s ր 1, proving
convergence of (s, 1)-minimizers to functions of least gradient, both in a pointwise sense and using
a Γ-convergence approach.

We point out that the asymptotics as s ր 1 of fractional seminorms, nonlocal energies, the
fractional perimeter and s-minimal sets, both in a pointwise and in the Γ-convergence sense, have
been studied in numerous papers. See [1, 5, 8, 14, 15, 19, 27, 28, 35, 36, 38–40] for further references
and details. In particular, we refer to Theorem 1.15 in [39] for related results. We stress that
the aforementioned papers deal with an energy defined either on Ω × Ω or on Rn × Rn, with the
exception of [1, 14, 15], which deal only with characteristic functions. Since our energy is defined
on Q(Ω), and for functions that are not necessarily characteristic functions of some set, some extra
care must be taken in order to treat the interaction Ω × CΩ. As a matter of fact, our results,
which we include for completeness, do not plainly follow from known results, even though they are
principally based on [1, 19].

We start by proving the regularity result in Theorem 1.13.

Proof of Theorem 1.13. It was recently proved in [12] that if u is an s-minimal function, the level
set {u > λ} is s-minimal in Ω for every λ ∈ R. On these grounds, we now establish (1.21) and
(1.22) by making use of uniform volume and perimeter estimates that hold for s-minimal sets.

We prove only the first inequality in (1.21), since the second one is obtained in a similar way.
For this, we observe that

sup
Ω′

u 6 sup
Ω′

u+ = sup
{

λ > 0 |
∣

∣{u > λ} ∩ Ω′
∣

∣ > 0
}

.

Clearly, we can not have that
∣

∣{u > λ} ∩ Ω′
∣

∣ = |Ω′| for every λ > 0, as otherwise u = +∞ in Ω′.
Hence,

sup
Ω′

u 6 sup
{

λ > 0 | 0 <
∣

∣{u > λ} ∩ Ω′
∣

∣ < |Ω′|
}

. (A.1)

Now we observe that if λ > 0 is such that

0 <
∣

∣{u > λ} ∩ Ω′
∣

∣ < |Ω′|

then there exists xλ ∈
(

∂{u > λ}
)

∩Ω′. Therefore, if we denote by d := dist(Ω′, ∂Ω), we have that
{u > λ} is s-minimal in Bd(xλ) ⊂ Ω, and the uniform density estimates [13, Theorem 4.1] give that

|{u > λ} ∩Bd(xλ)| > c(n, s)dn.

Thus

‖u+‖L1(Ω) > λ |{u > λ} ∩Bd(xλ)| > λc(n, s)dn, (A.2)

for every λ > 0 for which 0 <
∣

∣{u > λ} ∩ Ω′
∣

∣ < |Ω′|. By (A.1) and (A.2) we obtain the first
inequality in (1.21).

In order to prove (1.22) we exploit the uniform perimeter estimate of [16, Theorem 1.1]. More
precisely, recalling (2.4), we observe that

Ω′ ⊂
⋃

x∈Ω′

B d
2
(x) ⊂ (Ω′) d

2
⋐ Ω,
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hence, since Ω′ is compact, there exist N = N(Ω′, d) and x1, . . . , xN ∈ Ω′ such that

Ω′ ⊂

N
⋃

i=1

B d
2
(xi).

Since {u > λ} is s-minimal in Bd(xi) ⊂ Ω for every i = 1, . . . , N , we can exploit [16, Theorem 1.1]
to obtain that

Per({u > λ},Ω′) 6
N
∑

i=1

Per
(

{u > λ}, B d
2
(xi)

)

6 N(Ω′, d)C(n, s)

(

d

2

)n−1

.

As a consequence, recalling (1.21) and exploiting the coarea formula for the BV seminorm, we can
now estimate

|Du|(Ω′) =

∫ ‖u‖L∞(Ω′)

−‖u‖L∞(Ω′)

Per({u > λ},Ω′) dλ 6 2‖u‖L∞(Ω′)N(Ω′, d)C(n, s)

(

d

2

)n−1

6
2

c(n, s)dn
‖u‖L1(Ω)N(Ω′, d)C(n, s)

(

d

2

)n−1

,

thus concluding the proof of Theorem 1.13. �

Remark A.1. In particular, we observe that if Tail1s(u, CΩ; ·) ∈ L
1(Ω), then it is possible to estimate

the L∞ norm and the BV seminorm purely in terms of the exterior data u|CΩ by exploiting the a
priori estimate on the L1 norm given in Lemma 3.3, as indeed

‖u‖L∞(Ω′) 6
C1

cdist(Ω′, ∂Ω)n
‖Tail1s(u, CΩ; ·)‖L1(Ω),

and
|Du|(Ω′) 6 CC1‖Tail

1
s(u, CΩ; ·)‖L1(Ω),

for every Ω′ ⋐ Ω, where C1, depending only on n and Ω, is defined in Lemma 3.3.

We turn now to studying the asymptotics as sր 1 of minimizers of theW s,1-energy, establishing
the relation to functions of least gradient. We recall that a function u ∈ BV (Ω) is said to have
least gradient in Ω if

|Du|(Ω) 6 |Dv|(Ω) for every v ∈ BV (Ω) s.t. spt(u− v) ⋐ Ω.

Since in this Appendix the parameter p = 1 is fixed and the domain Ω may vary, we employ the
notation

Es(u,Ω) :=
1

2

∫∫

Q(Ω)

|u(x)− u(y)|

|x− y|n+s
dx dy.

Let ωk denote the volume of the unit ball in R
k, for k > 1, and ω0 := 1. Also, given a measurable

set E ⊂ R
n, we denote by

PerLs (E,Ω) :=
1

2
[χE]W s,1(Ω) =

∫

E∩Ω

∫

Ω\E

dx dy

|x− y|n+s
.

We have the following pointwise convergence result, which is a consequence of [19, Theorem 1] and
a suitable geometric argument. A different proof could be obtained employing the results in [40].

Theorem A.2 (Pointwise convergence). Let u : Rn → R be such that u|Ω ∈ BVloc(Ω) and
∫

Rn

|u(y)|

(1 + |y|)n+σ
dy <∞, (A.3)

for some σ ∈ (0, 1). Then

lim
sր1

(1− s)Es(u,O) = ωn−1|Du|(O) for every O ⋐ Ω with Lipschitz boundary.
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Proof. First of all we recall that by [19, Theorem 1] we have

lim
sր1

(1− s)
1

2
[u]W s,1(Ω′) = ωn−1|Du|(Ω

′),

for any open set Ω′ ⋐ Ω with Lipschitz boundary. For the computation of the constant ωn−1 see,
e.g., [30, Section 2.2.1].

Now let us fix an open set O ⋐ Ω with Lipschitz boundary. In order to compute the limit of the
interactions occurring in O × CO we proceed by adapting the argument in [30, Section 2.2]. We
first prove that

lim sup
sր1

(1− s)

∫

O

∫

CO

|u(x)− u(y)|

|x− y|n+s
dx dy 6 2ωn−1|Du|(∂O). (A.4)

The idea simply consists in splitting appropriately the domain and exploiting once again [19,
Theorem 1]. More precisely, since O has Lipschitz boundary, there exists r0(O) ∈ (0,dist(O, ∂Ω))
such that Or is a bounded open set with Lipschitz boundary for every r ∈ (−r0, r0), where, for
r < 0 we use the notation

Or := {y ∈ O | dist(y, ∂O) > |r|}, (A.5)

recalling that for positive values of r the notation (2.4) is in place. With this notation, for any δ ∈
(0, r0) we write
∫

O

∫

CO

|u(x)− u(y)|

|x− y|n+s
dx dy =

∫

O−δ

∫

CO

|u(x)− u(y)|

|x− y|n+s
dx dy +

∫

O\O−δ

∫

Oδ\O

|u(x)− u(y)|

|x− y|n+s
dx dy

+

∫

O\O−δ

∫

COδ

|u(x)− u(y)|

|x− y|n+s
dx dy

6

∫

O−δ

∫

CO

|u(x) − u(y)|

|x− y|n+s
dx dy + [u]W s,1(Nδ(∂O)) +

∫

O

∫

COδ

|u(x)− u(y)|

|x− y|n+s
dx dy,

where

Nδ(∂O) := {y ∈ R
n | dist(y, ∂O) < δ} = Oδ \ O−δ (A.6)

is a bounded open set with Lipschitz boundary.
We also observe that there exists a constant C(δ,O) > 0, depending only on O and δ, such that

C(δ,O)|x − y| > 1 + |y|, for every (x, y) ∈
(

O−δ × CO
)

∪
(

O × COδ

)

.

Using this, we estimate
∫

O−δ

∫

CO

|u(x)− u(y)|

|x− y|n+s
dx dy 6

∫

O−δ

|u(x)|

(
∫

CO

dy

|x− y|n+s

)

dx+

∫

O−δ

(
∫

CO

|u(y)|

|x− y|n+s
dy

)

dx

6

∫

O−δ

|u(x)|

(

∫

CBδ(x)

dy

|x− y|n+s

)

dx+ C(δ,O)n+s

∫

O−δ

(∫

CO

|u(y)|

(1 + |y|)n+s
dy

)

dx

6 ‖u‖L1(O)
Hn−1(∂B1)

sδs
+ C(δ,O)n+s|O|

∫

Rn

|u(y)|

(1 + |y|)n+σ
dy,

for every s ∈ [σ, 1). Similarly
∫

O

∫

COδ

|u(x)− u(y)|

|x− y|n+s
dx dy 6 ‖u‖L1(O)

Hn−1(∂B1)

sδs
+ C(δ,O)n+s|O|

∫

Rn

|u(y)|

(1 + |y|)n+σ
dy.

Notice that

lim
sր1

(1− s)

(

‖u‖L1(O)
Hn−1(∂B1)

sδs
+ C(δ,O)n+s|O|

∫

Rn

|u(y)|

(1 + |y|)n+σ
dy

)

= 0.
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Hence, these computations yield

lim sup
sր1

(1− s)

∫

O

∫

CO

|u(x)− u(y)|

|x− y|n+s
dx dy

6 lim sup
sր1

(1− s)[u]W s,1(Nδ(∂O)) = 2ωn−1|Du|(Nδ(∂O)),
(A.7)

for every δ ∈ (0, r0). Since Nδ(∂O) ց ∂O as δ ց 0 and |Du|xΩ is a Radon measure, taking the
limit as δ ց 0 in (A.7) we obtain (A.4).

Notice that the set {δ ∈ (0, r0) | |Du|(∂Oδ) > 0} is at most countable and pick δ for which
|Du|(∂Oδ) = 0. We have just proved that, for such a δ,

lim
sր1

(1− s)Es(u,Oδ) = ωn−1|Du|(Oδ).

Now we write

Es(u,Oδ) = Es(u,O) +
1

2
[u]W s,1(Oδ\O) +

∫

Oδ\O

∫

COδ

|u(x)− u(y)|

|x− y|n+s
dx dy,

and we remark that by (A.4) we have

lim sup
sր1

(1− s)

∫

Oδ\O

∫

COδ

|u(x) − u(y)|

|x− y|n+s
dx dy 6 lim sup

sր1
(1− s)

∫

Oδ

∫

COδ

|u(x)− u(y)|

|x− y|n+s
dx dy = 0.

Thus

lim
sր1

(1− s)Es(u,O) = lim
sր1

(1− s)

(

Es(u,Oδ)−
1

2
[u]W s,1(Oδ\O)

)

= ωn−1

(

|Du|(Oδ)− |Du|(Oδ \ O)
)

= ωn−1|Du|(O).

This concludes the proof of Theorem A.22. �

We investigate now the Γ-convergence of the W s,1-energy, starting with the following Γ-liminf
inequality.

Proposition A.3 (Γ-liminf inequality). Let u ∈ L1
loc(Ω), sk ր 1 and uk ∈ Wsk,1(Ω) such that

uk → u in L1
loc(Ω). Then

ωn−1|Du|(Ω) 6 lim inf
k→∞

(1− sk)
1

2
[uk]W sk,1(Ω) 6 lim inf

k→∞
(1 − sk)Esk(uk,Ω). (A.8)

Proof. We begin by observing that, since uk → u in L1
loc(Ω), we have

χ{uk>t} → χ{u>t} in L1
loc(Ω),

2 We point out the following alternative way to compute the asymptotics, which was suggested by one of the
anonymous referees. By the estimates developed in the first part of the proof we have

lim
sր1

(1 − s)

∫

O

∫

CO

|u(x) − u(y)|

|x− y|n+s
dx dy = lim

sր1
(1 − s)

∫

O\O
−δ

∫

Oδ\O

|u(x) − u(y)|

|x− y|n+s
dx dy.

Since
∫

O\O
−δ

∫

Oδ\O

|u(x) − u(y)|

|x− y|n+s
dx dy =

1

2

(

[u]Ws,1(Oδ\O−δ)
− [u]Ws,1(Oδ\O) − [u]Ws,1(O\O

−δ)

)

,

we obtain

lim
sր1

(1 − s)

∫

O\O
−δ

∫

Oδ\O

|u(x) − u(y)|

|x− y|n+s
dx dy = ωn−1

(

|Du|(Oδ \ O−δ) − |Du|(Oδ \ O) − |Du|(O \ O−δ)
)

= ωn−1|Du|(∂O),

concluding the proof.



(s, p)-HARMONIC APPROXIMATION OF FUNCTIONS OF LEAST W s,1-SEMINORM 35

for almost every t ∈ R. Next we recall the generalized coarea formula for the (local part of the)
fractional perimeter:

1

2
[v]W s,1(Ω) =

∫ ∞

−∞
PerLs ({v > t},Ω) dt,

for any measurable function v : Ω → R—see, e.g., [44], [1, Lemma 10]—and the classical coarea
formula:

|Dv|(Ω) =

∫ ∞

−∞
Per({v > t},Ω) dt,

for any v ∈ L1
loc(Ω)—see, e.g., [2, Theorem 3.40]. Now, exploiting the Γ-liminf inequality for the

perimeter functionals in [1, Theorem 2] and Fatou’s Lemma, we obtain

ωn−1|Du|(Ω) =

∫ ∞

−∞
ωn−1 Per({u > t},Ω) dt 6

∫ ∞

−∞
lim inf
k→∞

(1− sk) Per
L
sk
({uk > t},Ω) dt

6 lim inf
k→∞

∫ ∞

−∞
(1− sk) Per

L
sk
({uk > t},Ω) dt = lim inf

k→∞
(1− sk)

1

2
[uk]W sk,1(Ω).

This proves the first inequality in (A.8). The second inequality trivially follows by the definition
of Esk . �

The following equi-coercivity property is proved, e.g., in [1, Section 2].

Proposition A.4 (Equi-coercivity). Let sk ր 1 and let uk ∈W sk,1(Ω) such that

lim sup
k→∞

(

‖uk‖L1(Ω′) + (1− sk)[uk]W sk,1(Ω′)

)

<∞ for every Ω′ ⋐ Ω.

Then {uk}k is relatively compact in L1
loc(Ω) and any limit point u belongs to BVloc(Ω).

We now prove the convergence of (s, 1)-minimizers to functions of least gradient, exploiting the
results of [1], which hold for sets.

Theorem A.5 (Convergence of minimizers). Let sk ր 1 and ϕk : CΩ → R be such that

lim sup
k→∞

‖ϕk‖L∞(ΩR\Ω) <∞, (A.9)

for some R = R(n,Ω) > 0 big enough, and

lim sup
k→∞

(1− sk)

∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy <∞. (A.10)

Let uk ∈ Wsk,1
ϕk

(Ω) be any sequence of (sk, 1)-minimizers. Then, there exist u ∈ L∞(Ω)∩BV (Ω) of
least gradient in Ω and a subsequence skh ր 1 such that ukh → u in L1(Ω).

Moreover, if

lim
k→∞

(1− sk)

∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy = 0, (A.11)

then
lim
h→∞

(1− skh)Eskh (ukh ,O) = ωn−1|Du|(O), (A.12)

whenever O ⋐ Ω is an open set with Lipschitz boundary such that |Du|(∂O) = 0.

Proof. We begin by observing that by (A.9) we can assume without loss of generality that

‖ϕk‖L∞(ΩR\Ω) 6M,

for every k ∈ N, for some M > 0. Next we prove that

lim sup
k→∞

(1− sk)‖Tail
1
sk
(ϕ, CΩ; ·)‖L1(Ω) <∞. (A.13)
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Indeed, we observe at first that there exists a constant C = C(Ω, R) > 1 such that

C|x− y| > 1 + |y| for every (x, y) ∈ Ω× CΩR. (A.14)

Hence we can estimate

‖Tail1sk(ϕ, CΩ; ·)‖L1(Ω) =

∫

Ω

(

∫

ΩR\Ω

|ϕk(y)|

|x− y|n+sk
dy

)

dx+

∫

Ω

(∫

CΩR

|ϕk(y)|

|x− y|n+sk
dy

)

dx

6M

∫

Ω

∫

CΩ

dx dy

|x− y|n+sk
+ Cn+sk

∫

Ω

(∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy

)

dx

6M Persk(Ω,R
n) + Cn+1|Ω|

∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy.

(A.15)

Since Ω is a bounded open set with Lipschitz boundary, we have

lim
k→∞

(1− sk) Persk(Ω,R
n) = ωn−1H

n−1(∂Ω).

Together with (A.15) and (A.10), this concludes the proof of (A.13).
Thus, by the a priori estimate (3.5) we have

lim sup
k→∞

(1− sk)‖uk‖W sk,1(Ω) 6 C1 lim sup
k→∞

(1− sk)‖Tail
1
sk
(ϕ, CΩ; ·)‖L1(Ω) <∞. (A.16)

Moreover, we recall that by [12, Theorem 4.4] we have that there exists Θ(n, sk) > 1 such that

‖uk‖L∞(Ω) 6 ‖ϕk‖L∞(ΩΘ(n,sk) diam(Ω)\Ω).

A careful inspection of the proof of [12, Theorem 4.1]—in particular of the last equation in display
in the proof—reveals that Θ(n, s) > 1 can be chosen in such a way that 1 < Θ(n, s) 6 Θ(n, 1/2)
for every s ∈ [1/2, 1). Since sk ր 1, we can suppose without loss of generality that sk > 1/2 for
every k, hence, setting R = R(n,Ω) := Θ(n, 1/2) diam(Ω), we obtain

‖uk‖L∞(Ω) 6 ‖ϕk‖L∞(ΩR\Ω) 6M (A.17)

for every k.
By (A.16) and (A.17), we can apply Proposition A.4 to obtain that—up to a subsequence that we

relabel for simplicity—there exists a function u ∈ BVloc(Ω) such that uk → u in L1
loc(Ω). Actually,

by (A.17) we have that u ∈ L∞(Ω) and uk → u in L1(Ω). Moreover (A.8) and (A.16) ensure that

ωn−1|Du|(Ω) 6 lim inf
k→∞

(1− sk)
1

2
[uk]W sk,1(Ω) <∞,

hence u ∈ BV (Ω).
We proceed now to prove that u is a function of least gradient in Ω. In order to do this, notice

that the convergence uk → u in L1(Ω) implies that there exists a set Σ ⊂ R such that |Σ| = 0 and

χ{uk>λ}
k→∞
−−−→ χ{u>λ} in L1(Ω),

for every λ ∈ R \ Σ. By [12, Theorem 1.3] we know that the level set {uk > λ} is sk-minimal in
Ω for every λ ∈ R and k ∈ N. Thus [1, Theorem 3] ensures that the level set {u > λ} is a local
minimizer of Per( · ,Ω) for every λ ∈ R \ Σ—indeed we observe that the assumption χEi

→ χE in
L1
loc(R

n) in [1, Theorem 3] is not really needed, since it suffices to assume the convergence in L1(Ω)
and to exploit the uniform global boundedness of the characteristic functions.

Consider now v ∈ BV (Ω) such that spt(u − v) ⋐ Ω. Since spt(χ{u>λ} − χ{v>λ}) ⋐ Ω, by local
minimality we have that

Per({u > λ},Ω) 6 Per({v > λ},Ω),
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for every λ ∈ R \ Σ. Hence, by the coarea formula for the BV seminorm,

|Du|(Ω) =

∫

R

Per({u > λ},Ω) dλ =

∫

R\Σ
Per({u > λ},Ω) dλ

6

∫

R\Σ
Per({v > λ},Ω) dλ =

∫

R

Per({v > λ},Ω) dλ = |Dv|(Ω),

proving that u is a function of least gradient in Ω.

It remains to prove the convergence of the energies (A.12) under the hypothesis (A.11), for which
we adapt the argument of the proof of [1, Theorem 3].

We consider the monotone set functions αk(O) := (1−sk)
1
2 [uk]W sk,1(O) for every open set O ⊂ Ω,

extended to

αk(B) := inf {αk(O) |B ⊂ O ⊂ Ω, O open} ,

for every Borel set B ⊂ Ω. Each αk is a monotone, regular and super-additive set function in the
sense of [1, Section 5.2]. By (A.16) and [1, Theorem 21], up to extracting a subsequence that we
relabel for simplicity, αk weakly converges to a regular, monotone and super-additive set function
α, as k → ∞.

Let O ⋐ Ω be an open set with Lipschitz boundary such that α(∂O) = 0. We remark that there
exists r0 := r0(O) ∈ (0,dist(O, ∂Ω)) small enough such that Or has Lipschitz boundary for every
r ∈ (−r0, r0).

Let us fix ̺ ∈ (0, r0/3) and consider a function ψ ∈ C∞
c (Rn) such that 0 6 ψ 6 1, ψ ≡ 1 in O−2̺,

ψ ≡ 0 in CO−̺, and |∇ψ| 6 2/̺ (we recall the notation (A.5)). We define the function vk : Rn → R

by setting vk := ψu+ (1− ψ)uk. Since vk = uk in CO−̺, by the minimality of uk we have

Esk(uk,O) 6 Esk(vk,O).

We now estimate the energy of vk, beginning with the contributions occurring inside of O.
Arguing as in the proof of [1, Proposition 11]—see in particular formula (27) there—and taking
into account the fact that ‖u‖L∞(Ω), ‖uk‖L∞(Ω) 6M , we obtain

[vk]W sk,1(O) 6 [u]W sk,1(O) + [uk]W sk,1(O\O−3̺)
+C(O, ̺)

‖u − uk‖L1(O−̺\O−2̺)

1− sk

+ C(O, ̺)‖u− uk‖L1(O) +
M C(O)

̺n+sk
.

Thus, by [19, Theorem 1], and since uk → u in L1(Ω), we have

lim sup
k→∞

(1− sk)
1

2
[vk]W sk,1(O) 6 ωn−1|Du|(O) + lim sup

k→∞
αk(O \O−3̺). (A.18)

On the other hand, we can write

∫

O

∫

CO

|vk(x)− vk(y)|

|x− y|n+sk
dx dy

=

∫

O−̺

∫

CO

|vk(x)− uk(y)|

|x− y|n+sk
dx dy +

∫

O\O−̺

∫

CO

|uk(x)− uk(y)|

|x− y|n+sk
dx dy

=: I + II.
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Then, recalling (A.14), we can estimate

I =

∫

O−̺

∫

CO

|vk(x)− uk(y)|

|x− y|n+sk
dx dy

=

∫

O−̺

∫

ΩR\O

|vk(x)− uk(y)|

|x− y|n+sk
dx dy +

∫

O−̺

∫

CΩR

|vk(x)− uk(y)|

|x− y|n+sk
dx dy

6 2M

∫

O−̺

∫

ΩR\O

dx dy

|x− y|n+sk
+

∫

O−̺

|vk(x)|

(
∫

CΩR

dy

|x− y|n+sk

)

dx

+C(Ω, R)n+sk

∫

O−̺

∫

CΩR

|uk(y)|

(1 + |y|)n+sk
dx dy

6 3M |O−̺|
Hn−1(∂B1)

sk̺sk
+ C(Ω, R)n+1|O−̺|

∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy.

As for the contribution II, arguing similarly we have

II =

∫

O\O−̺

∫

CO

|uk(x)− uk(y)|

|x− y|n+sk
dx dy

=

∫

O\O−̺

∫

O̺\O

|uk(x)− uk(y)|

|x− y|n+sk
dx dy +

∫

O\O−̺

∫

CO̺

|uk(x)− uk(y)|

|x− y|n+sk
dx dy

6 [uk]W sk,1(O̺\O−̺)
+ 2M

∫

O\O−̺

∫

ΩR\O̺

dx dy

|x− y|n+sk
+

∫

O\O−̺

|uk(x)|

(
∫

CΩR

dy

|x− y|n+sk

)

dx

+ C(Ω, R)n+sk

∫

O\O−̺

∫

CΩR

|uk(y)|

(1 + |y|)n+sk
dx dy

6 [uk]W sk,1(O̺\O−̺)
+ 3M |O \ O−̺|

Hn−1(∂B1)

sk̺sk
+ C(Ω, R)n+1|O \ O−̺|

∫

CΩR

|ϕk(y)|

(1 + |y|)n+sk
dy.

Therefore, exploiting (A.11) we obtain

lim sup
k→∞

(1− sk)

∫

O

∫

CO

|vk(x)− vk(y)|

|x− y|n+sk
dx dy 6 2 lim sup

k→∞
αk(O̺ \ O−̺). (A.19)

Thus, by Proposition A.3 and the minimality of uk, and exploiting (A.18) and (A.19), we conclude
that

ωn−1|Du|(O) 6 lim sup
k→∞

(1− sk)Esk(uk,O) 6 lim sup
k→∞

(1− sk)Esk(vk,O)

6 ωn−1|Du|(O) + 3 lim sup
k→∞

αk(O̺ \ O−3̺),
(A.20)

for every ̺ ∈ (0, r0/3). Since α(∂O) = 0, by [1, Proposition 22] we have that

lim
̺ց0

lim sup
k→∞

αk(O̺ \ O−3̺) = 0.

In light of (A.20), this proves (A.12) in every open set O ⋐ Ω with Lipschitz boundary, such
that α(∂O) = 0.

Hence, in order to conclude the proof of Theorem A.5, we are left to show that |Du|(∂O) = 0
implies that α(∂O) = 0. For this, we first observe that, by definition of weak convergence of
monotone set functions, we have in particular that

α(Ω′) 6 lim inf
k→∞

αk(Ω
′),
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for every open set Ω′ ⊂ Ω. Therefore, if Ω′ ⋐ Ω is an open set with Lipschitz boundary, such
that α(∂Ω′) = 0, by (A.12) we obtain that

α(Ω′) 6 lim inf
k→∞

αk(Ω
′) 6 lim sup

k→∞
(1− sk)Esk(uk,Ω

′) = ωn−1|Du|(Ω
′). (A.21)

Let us now consider an open set O ⋐ Ω with Lipschitz boundary, such that |Du|(∂O) = 0. We
point out that, since α is locally finite in Ω, as a consequence of the super-additivity and the
monotonicity of α, the set

Σα(∂O) :=
{

δ ∈ (0, r0) |α
(

∂(Oδ \ O−δ)
)

> 0
}

is at most countable. Therefore, we can find δh ց 0 such that Oδh \ O−δh is a bounded open set

with Lipschitz boundary, with α
(

∂(Oδh \ O−δh)
)

= 0 for every h. By the monotonicity of the set
function α, exploiting (A.21) and the fact that |Du|xΩ is a Radon measure, we obtain that

α(∂O) 6 lim sup
h→∞

α
(

Oδh \ O−δh

)

6 lim sup
h→∞

ωn−1|Du|
(

Oδh \ O−δh

)

= ωn−1|Du|(∂O) = 0.

This concludes the proof of Theorem A.5. �

We stress that in order to obtain the convergence of the energies in (A.12) it is necessary to
make the stronger assumption (A.11) in place of (A.10), as shown by the following example.

Example A.6. Let R = R(n,Ω) be as in Theorem A.5 and consider the function ϕs : Rn → R

defined by ϕs :=
1

1−s
χCΩR

. By (A.17), since here ϕs = 0 in ΩR \ Ω, we have that ϕs is the unique

minimizer in Ws,1
ϕs (Ω) for every s ∈ [1/2, 1). Clearly, as s ր 1 the functions ϕs converge in L1(Ω)

to the function u ≡ 0, which is of least gradient in Ω. We observe that ϕs satisfies (A.10), as indeed

(1− s)

∫

CΩR

|ϕs(y)|

(1 + |y|)n+s
dy =

∫

CΩR

dy

(1 + |y|)n+s
6

∫

CΩR

dy

(1 + |y|)n+
1
2

<∞,

for every s ∈ [1/2, 1). On the other hand, given any O ⋐ Ω we have that

lim inf
s→1

(1− s)Es(ϕs,O) = lim inf
s→1

∫

O

∫

CΩR

dx dy

|x− y|n+s
> c > 0,

proving that the convergence of the energies (A.12) can not hold true, since |Du|(O) = 0.

For the sake of completeness, we provide also a proof of the Γ-limsup inequality, in the case in
which ∂Ω is of class C2.

Theorem A.7 (Γ-limsup inequality). Let Ω ⊂ R
n be a bounded open set with C2 boundary, u ∈

L1
loc(R

n) such that u|Ω ∈ BV (Ω) and let sk ր 1. Then, there exists a sequence uk ∈ Wsk,1(Ω) such
that uk → u in L1

loc(R
n) and

lim
k→∞

(1− sk)Esk(uk,Ω) = ωn−1|Du|(Ω).

Proof. The main difficulty of the proof resides in properly approximating u around ∂Ω. In order
to do this, we exploit the signed distance function d̄Ω, which is defined as

d̄Ω(x) := dist(x,Ω)− dist(x, CΩ),

for every x ∈ R
n. For the properties of the signed distance function that we employ here, we refer

to [31, Appendix B.1] and the references cited therein. Since Ω is bounded and has C2 boundary,
there exists r0(Ω) > 0 such that d̄Ω ∈ C2(N2r0(∂Ω)), where we use the notation introduced in (A.6).
For any δ ∈ (0, r0) we consider the projection πδ : Ωδ \ Ω−δ ։ ∂Ω−δ defined by

πδ(x) := x− (δ + d̄Ω(x))∇d̄Ω(x),
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and we observe that πδ ∈ C1(Ωδ\Ω−δ,R
n)—see, e.g., [31, Proposition B.1.6] for related computations—

with

Dπδ(x) = Idn − (δ + d̄Ω(x))D
2d̄Ω(x)−∇d̄Ω(x)⊗∇d̄Ω(x).

In particular,

|Dπδ(x)| 6 C1(Ω) for every x ∈ Ωδ \ Ω−δ, (A.22)

for some constant C1(Ω) > 0 that does not depend on δ ∈ (0, r0). For every ̺ ∈ (0, δ) we consider
also the function Φ̺ : ∂Ω−δ → ∂Ω−̺ defined by

Φ̺(x) := x+ (δ − ̺)∇d̄Ω(x),

which is a bijection of class C1. We observe that

πδ(Φ̺(x)) = Φ̺(x)− (δ + d̄Ω(Φ̺(x)))∇d̄Ω(Φ̺(x))

= x+ (δ − ̺)∇d̄Ω(x)− (δ − ̺)∇d̄Ω(x+ (δ − ̺)∇d̄Ω(x))

= x+ (δ − ̺)∇d̄Ω(x)− (δ − ̺)∇d̄Ω(x)

= x,

(A.23)

for every x ∈ ∂Ω−δ, and

sup
x∈∂Ω−δ

|DΦ̺(x)| 6 C2(Ω), (A.24)

for some constant C2(Ω) > 0 that is independent of δ ∈ (0, r0) and ̺ ∈ (0, δ).
With these preliminaries at hand, we recall that, since u ∈ BV (Ω), given ε > 0 there exists

v ∈ C∞(Ω) ∩BV (Ω) such that

‖u− v‖L1(Ω) +
∣

∣|Du|(Ω)− |Dv|(Ω)
∣

∣ < ε.

Notice that we can find δ0 ∈ (0, r0) small enough such that
∫

Ω\Ω−δ0

|v(x)| dx + |Dv|(Ω \ Ω−δ0) =

∫

Ω\Ω−δ0

(

|u(x)|+ |∇v(x)|
)

dx < ε.

Now, by using the coarea formula for d̄Ω we can write

∫

Ω\Ω−δ0

(

|u(x)|+ |∇v(x)|
)

dx =

∫ 0

−δ0

(

∫

{d̄Ω=r}

(

|u(x)| + |∇v(x)|
)

dHn−1
x

)

dr.

This implies that we can find a sequence {δh}h ⊂ (0, δ0) such that δh ց 0 and
∫

{d̄Ω=−δh}

(

|u(x)|+ |∇v(x)|
)

dHn−1
x <

ε

δh
, (A.25)

for every h ∈ N. Now, for any h ∈ N we define the function vh : Rn → R by setting

vh := vχΩ−δh
+ (v ◦ πδh)χΩδh

\Ω−δh
+min{1/δh,max{−1/δh, u}}χCΩδh

.

We observe that vh ∈ C0(Ωδh) ∩BV (Ωδh) ∩ C
1(Ωδh \ ∂Ω−δh), hence

|Dvh|(∂Ω−δh) = 0, |Dvh|(∂Ω) = 0,

and

|Dvh|(Ω) =

∫

Ω−δh

|∇vh(x)| dx +

∫

Ω\Ω−δh

|∇vh(x)| dx

=

∫

Ω−δh

|∇v(x)| dx +

∫

Ω\Ω−δh

|Dπδh(x) · (∇v)(πδh(x))| dx.
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By using the coarea formula for d̄Ω, exploiting (A.22), (A.23), (A.24), and (A.25), we can estimate
∫

Ω\Ω−δh

|Dπδh(x) · (∇v)(πδh(x))| dx 6 C1(Ω)

∫

Ω\Ω−δh

|(∇v)(πδh(x))| dx

= C1(Ω)

∫ 0

−δh

(

∫

∂Ω̺

|(∇v)(πδh(x))| dH
n−1
x

)

d̺

= C1(Ω)

∫ 0

−δh

(

∫

Φ−̺(∂Ω−δh
)
|(∇v)(πδh(x))| dH

n−1
x

)

d̺

6 C(Ω)

∫ 0

−δh

(

∫

∂Ω−δh

|∇v(y)| dHn−1
y

)

d̺

6 C(Ω)
δhε

δh
= C(Ω)ε.

Moreover, we observe that
∣

∣

∣

∣

∣

∫

Ω−δh

|∇v(x)| dx − |Dv|(Ω)

∣

∣

∣

∣

∣

=

∫

Ω\Ω−δh

|∇v(x)| dx 6

∫

Ω\Ω−δ0

|∇v(x)| dx < ε,

for every h. Therefore, we obtain that
∣

∣|Dvh|(Ω)− |Du|(Ω)
∣

∣ 6
∣

∣|Dvh|(Ω)− |Dv|(Ω)
∣

∣ +
∣

∣|Dv|(Ω)− |Du|(Ω)
∣

∣ < ε+ C(Ω)ε+ ε,

for every h.
A similar argument yields that

‖u− vh‖L1(Ωδh
) < (2 + C(Ω))ε,

for every h. On the other hand, we remark that, for every fixed R > 0 such that Ω ⋐ BR we have,
by Lebesgue’s Dominated Convergence Theorem, that

lim
h→∞

∫

BR\Ωδh

|vh − u| dx = 0.

By considering a sequence εℓ ց 0 in the above computations, we have just proved that we can
find a sequence δℓ ց 0 and a sequence of functions wℓ : Rn → R such that wℓ ∈ BV (Ωδℓ), with
|Dwℓ|(∂Ω) = 0, and wℓ ∈ L∞(Rn), such that

wℓ → u in L1
loc(R

n) and lim
ℓ→∞

|Dwℓ|(Ω) = |Du|(Ω).

For any such function wℓ we can apply Theorem A.2, with Ωδℓ in place of Ω and Ω in place of O,
to obtain that

lim
k→∞

(1− sk)Esk(wℓ,Ω) = ωn−1|Dwℓ|(Ω).

The conclusion of Theorem A.7 then follows by a standard diagonal argument—similar to the one
employed in the proofs of Theorems 1.7 and 1.8. �
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