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As an essential element in industrial steel, automatic defect recognition
can guarantee the surface quality through focused supervised learning
with ample labelled samples. However, defect recognition inevitably
features with data-limiting characteristic under the influence of costly
expert labelling. To address this problem, a novel framework, Instance
Contrast (InCo), is proposed with the inspiration of contrastive learn-
ing. This framework consists of two streams. One with instance labels
attributed to the unlabelled data in each batch for classification, which
is called Batch Instance Discrimination (BID). The other with different
enhanced samples embedding of the same image aggregated by a new
function named dynamic weighted variance loss (DWV loss). There-
fore, better semantic features can be learned by model due to the mod-
eration of embedding distance between similar steel defect images. Ex-
perimental results on the NEU-CLS database validate that the proposed
method achieves 89.86% classification accuracy with only fine-tuning
on the 1:32 training data, outperforming other general contrastive learn-
ing methods.

Introduction: Defect classification is the main function of automated vi-
sual inspection (AVI) instruments, it is crucial to ensure the quality of
steel surface. In [1] and [2], a convolution neural network (CNN) was
employed as a classifier to identify the surface defects of flat steel, re-
sulting in a favourable performance. Despite great progress has been
made in defect recognition by previous work, their performance is still
highly dependent on labelled samples. And much time and labour are
required to label samples, which is not in line with the efficiency stan-
dard in industry. Thus, limited data on steel defects draws the attention
of researchers, and various methods have been proposed to overcome
these defects [3–5]. Recently, breakthroughs have been witnessed in con-
trastive learning for small sample classification tasks via shortening the
embedding distance among similar samples and lengthening the embed-
ding distance among different samples. Chen et al. [6] brought up Sim-
CLR that fine-tuned on 1% of labels, surpassing the framework AlexNet
with labels less than 100 × . However, current contrastive learning is not
fully applicable to the field of steel defect, since the Intra-class samples
of the steel defect images possess high similarity. Furthermore, for rep-
resentation learning of steel defect images, the case of large differences
existing between different samples of the same category may even bring
a negative impact (Figure 1a).

Fig. 1 Visualisation of NEU-CLS dataset and strongly contrastive learn-
ing architecture. (a) sample from NEU-CLS database. (b) strong contrastive
learning architecture

In this Letter, to provide solution for the problems mentioned above,
we proposed Instance Contrast (InCo), a new contrastive learning
framework with the definition as weakly contrastive learning, whereas
the current contrastive learning framework (Figure 1b) as strongly
contrastive learning. The main contributions of this letter are four-
fold: (1) A novel contrastive learning framework, InCo, is proposed,
which can effectively surmount the effect of small sample in steel
defect images. (2) The Batch Instance Discrimination (BID) is in-
troduced to undermine the intensity of contrastive learning. (3) A
new Dynamic-Weighted Variance loss (DWV loss) function is for-
mulated for feature clustering to effectively adjust the distance be-
tween sample embedding. (4) Results certify that InCo performs bet-
ter than strongly contrastive learning methods on the NEU-CLS [7]
dataset.

Methodology: The method can be divided into two parts: Batch
Instance Discrimination (BID) and the novel Dynamic-Weighted
Variance loss (DWV loss). Figure 2 expounds the framework of this
method.

In the “repel” part, the core of BID shares the similarity with super-
vised learning when assigning an instance label to each sample in each
batch during the training stage of the model. Only by remembering the
different in the label of the samples per epoch, can the model converge
in a common training way. Therefore, K times augmentations are con-
ducted to each sample in order to receive K batches of augmented data

Fig. 2 The pipeline of Instance Contrastive Learning approach
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Fig. 3 Examples of defect samples in the NEU-CLS. (a) crazing. (b) inclu-
sion. (c) patches. (d) pitted surface. (e) rolled-in scale. (f) scratches

for training. The Cross-Entropy loss is adopted to be an objective func-
tion guiding the BID implementation, expressed as:

Lce = −1
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where wi refers to a weight for class i from the fully connected (FC)
layer and T is a temperature coefficient that controls the distribution of
representations.

In the “attract” part, general contrastive learning framework only con-
ducts augmentation twice on per image with the resemblance calculation
between two samples while in BID K-time calculation can be found. In
order to aggregate K different enhanced samples of the same image, a
new loss function called DWV loss is introduced and, written as:

Ldwv = weight(t )
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where zk
i represents an embedding from the global average pooling layer,

μ is the mean value of zk
i , t stands for the training epochs, and weight

(t) denotes the hyperparameter used to adjust the DWV loss. The proper
scheduling of the weight (t) plays an important role in the learning of
the model. A large weight value may cause the model to collapse in the
early stages of training. In contrast, the model can benefit a little from
unlabelled data in a too small weight value. Drawing from [8], the weight
(t) is defined as a gradually increasing function of time t, and the value
of weight will change with T1 and T2, as followed:
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Experiments: In the experiments, for the augmentation of InCo, crop
with resize, brightness, contrast, random horizontal flip, and random ver-
tical flip is performed with the augmentation times K set to 5. ResNet18,
as the ConvNet, is trained at batch size 64 for 200 epochs, which also
incorporates Cross-Entropy loss with a temperature coefficient T of 1.0
and DWV loss with T1 = 30, T2 = 150 and af = 1.0. Adam is adopted
as the optimizer, setting the original learning rate to 0.3. All experiments
are performed in an Ubuntu 18.04 operating system using Intel Core
i7-9800X CPU. The electronic equipment is configured with NVIDIA
GTX 2080 with 12GB memory and implemented by the Pytorch frame-
work. InCo is tested on NEU-CLS, a surface defect benchmark dataset
containing six common steel surface defects, namely crazing (Cr), in-
clusion (In), patches (Pa), pitted surface (PS), rolled-in scale (RS), and
scratches (Sc). There are 300 defect images with a size of 200 × 200 in
each class. 60% of all the samples are randomly selected as the training
samples and 40% as the test samples, some of which can be referred to
Figure 3.

To validate the effectiveness of InCo on a small sample classifica-
tion, five small sample databases are created by randomly selecting pro-
portionally (1:32, 1:16, 1:8, 1:4, 1:2) on each category of the original

Table 1. Comparison with contrastive learning methods on NEU-
CLS small sample database

Method 1:32 1:16 1:8 1:4 1:2

Fine-tuned:

SimCLR[6] 82.50 83.75 85.69 87.92 93.61

MoCov2[9] 63.75 73.47 78.61 84.17 91.81

SimSiam[10] 69.72 73.89 82.92 91.11 95.56

InCo-without-DWV 62.92 68.86 78.06 89.58 93.75

InCo-with-DWV 89.86 92.63 93.89 95.42 98.06

Linear evaluation:

SimCLR[6] 65.56 67.64 72.78 84.86 88.75

MoCov2[9] 89.03 90.64 91.81 93.75 97.78

SimSiam[10] 75.83 77.91 83.47 90.56 94.72

InCo-without-DWV 60.69 65.56 77.08 87.08 89.31

InCo-with-DWV 87.78 91.25 93.75 94.41 97.92

Fig. 4 Classification accuracy on small sample database with various meth-
ods

training set. Fine-tuned, as a transfer learning technology, and linear
evaluation, as a recent unsupervised feature learning evaluation method,
are both selected as the measurement methods in this work. In unsuper-
vised learning, unlabelled data is used to learn visual representations and
fine-tune the few-labelled data model, while linear evaluation devotes to
controlling the weights of the feature extractors only at the FC layer.
The Softmax classifier is utilized for fine-tuning or linear evaluation, the
model is trained for 200 stages, setting the learning rate to 0.03.

Comparisons have been conducted between the proposed one and
other mainstream contrastive learning methods, where they will be
trained with the augmentations raised in this letter at the unsupervised
feature learning stage. Table 1 presents the result of the experiments.
Based on NEU-CLS, it can be found that InCo outperforms the others
[6, 9, 10], that is, other learning methods not absorb valuable semantic
features, which certifies the correctness of our conjecture. Moreover,
DWV loss features have a positive effect on InCo representation
learning.

To compare our method even further, the related methods that use
CNN networks for defect classification in small samples database are
adopted. Records of comparing different methods are detailed in Fig-
ure 4. The results prove that the method possesses higher applicability
for small sample defect classification, and the classification accuracy
of training with 1:32 data is equivalent to the recognition rate of other
methods training with 1:4 data.

Discussion: Verifiable by the experimental above, the performance
of InCo is better than that of other mainstream contrastive learning
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approaches on steel defect data. The reason is that there exist similar
intra-class samples in steel defect data, while mainstream contrastive
learning requires the model to push each instance sample apart as much
as possible, ignoring the potential relationships among samples and de-
stroying the semantic consistency of similar intra-class samples. InCo
weakens the discriminative strength among samples by using cross-
entropy and DWV loss, which indirectly minimize the embedding dis-
tance of similar intra-class samples and improves the quality of repre-
sentation learning.

Conclusion: In this Letter, a new contrastive learning framework
namely Instance Contrast have presented for unsupervised visual rep-
resentation learning of steel defect. This method can effectively address
the problem that strongly contrastive learning damages the learned se-
mantic features, leading to satisfactory results for unsupervised learning
in NEU-CLS dataset. Through experiments, the proposed method can
maintain accuracy even when provided with a small amount of training
data. Therefore, it is believed that this framework can be deployed on au-
tomated visual inspection (AVI) instruments, which bears great signifi-
cance in improving the efficiency of the industry. In the future, the effi-
ciency improvement of InCo, especially at the time of algorithm training,
will be the main focus of our work.
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