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Abstract

Mean-field games with absorption is a class of games that has been introduced in [9] and
that can be viewed as natural limits of symmetric stochastic differential games with a large
number of players who, interacting through a mean-field, leave the game as soon as their
private states hit some given boundary.

In this paper, we push the study of such games further, extending their scope along two
main directions. First, we allow the state dynamics and the costs to have a very general,
possibly infinite-dimensional, dependence on the (non-normalized) empirical sub-probability
measure of the survivors’ states. This includes the particularly relevant case where the
mean-field interaction among the players is done through the empirical measure of the
survivors together with the fraction of absorbed players over time. Second, the boundedness
of coefficients and costs has been considerably relaxed including drift and costs with linear
growth in the state variables, hence allowing for more realistic dynamics for players’ private
states. We prove the existence of solutions of the MFG in strict as well as relaxed feedback
form, and we establish uniqueness of the MFG solutions under monotonicity conditions of
Lasry-Lions type. Finally, we show in a setting with finite-dimensional interaction that such
solutions induce approximate Nash equilibria for the N -player game with vanishing error as
N → ∞.

Key words and phrases: Nash equilibrium, mean-field game, absorbing boundary, McKean-
Vlasov limit, controlled martingale problem, relaxed control.

2000 AMS subject classifications: 60B10, 60K35, 91A06, 93E20.

∗London School of Economics, Department of Statistics, Columbia House, Houghton Street, London, WC2A
2AE. Università degli Studi di Milano, Dipartimento di Matematica “Federigo Enriques”, Via Saldini 50, 20133,
Milano, Italy. Email: L.Campi@lse.ac.uk.

†Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa. Email: maddalena.ghio@sns.it.
‡Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa. Email: giulia.livieri@sns.it.

1

http://arxiv.org/abs/1902.02670v2


Contents

1 Introduction 2

2 Preliminaries and assumptions 5

3 Existence of solutions of the mean-field game 11

3.1 Approximating MFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Convergence of the approximating MFGs . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Optimality of the limit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Uniqueness of solutions of the mean-field game 26

5 Approximate Nash equilibria for the N-player game with finite-dimensional

interaction 28

5.1 The setting with finite-dimensional interaction . . . . . . . . . . . . . . . . . . . . 28
5.2 The N -player approximation theorem . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Propagation of chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Proof of the The N -player approximation theorem . . . . . . . . . . . . . . . . . 37

A Appendix 41

A.1 Existence and uniqueness of solution of SDEs with sub-linear drift . . . . . . . . 41
A.2 Characterization of the set Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Additional convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1 Introduction

Mean-field games (MFGs for short) are, loosely speaking, limits of symmetric stochastic dif-
ferential games with a large number of players, where each of them interacts with the average
behaviour of his/her competitors. They were introduced in the seminal papers by Lasry and
Lions [45, 46, 47] and, simultaneously, by Huang et al. [36]. An increasing stream of research has
been flourishing since then, producing theoretical results as well as a wide range of applications
in many fields such as economics, finance, crowd dynamics and social sciences in general. For
an excellent presentation of the theory we refer to the lecture notes of Cardaliaguet [10] and the
two-volume monograph by Carmona and Delarue [11].

Motivation. In most of the literature on MFGs, all players stay in the game until the end of
the period, while in many applications, especially in economics and finance, it is natural to
have a mechanism deciding when some player has to leave. Such a mechanism can be modelled
by introducing an absorbing boundary for the state space as in Campi and Fischer [9], which
is the starting point of our study (other related references will be discussed later in detail).
Therein, existence of solutions of the MFG and construction of approximate Nash equilibria for
the N -player games were provided under some boundedness assumptions on the coefficients and
without including the effect of past absorption on the survivors’ behaviour. The present paper
continues the investigation of this kind of games, with the following main extensions.

(i) We recast MFGs with absorption in a more general setting, most common to the MFG
literature, where the dependence of the dynamics and costs on the empirical measure is
infinite-dimensional.

(ii) We introduce a direct dependence on past absorptions in the drift of the Stochastic Dif-
ferential Equations (SDEs) describing the evolution of the players’ states by letting the
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initial distribution of players lose mass over time. Such a loss of mass corresponds to the
exit of the absorbed players from the game, so that the proportion of the absorbed players
has an effect on the future evolution of the survivors. This feature was not present in
[9], where the empirical measure of the survivors was re-normalized at each time. Such a
dependence on past absorptions is also included in the costs.

(iii) We allow both the drift and the cost functional of the players to grow at most linearly
with the state, hence they are not necessarily bounded unlike in [9]. Moreover, the set of
non-absorbing states O can also be unbounded. Dropping the boundedness of the game
data increases the flexibility of our setting, which can include more realistic dynamics from
the viewpoint of applications (for more details, see later in this introduction).

To be more precise, the purpose of this paper is to studyN -player games and related MFGs in the
presence of an absorbing set (i.e. a player is eliminated from the game once his/her private state
leaves a given open set O ∈ Rd), and where the vector of private states XN .

= (XN,1, . . . ,XN,N )
evolves according to

X
N,i
t = X

N,i
0 +

∫ t

0
b̄
(
s,XN,i

s , µNs , u
N,i
(
s,XN

))
ds+ σW

N,i
t , t ∈ [0, T ] , (1.1)

for i ∈ {1, . . . , N}, where u
N .

= (uN,1, . . . , uN,N ) is a vector of feedback strategies, WN,1, . . . ,

WN,N are independent d-dimensional Wiener processes defined on some filtered probability
space, σ is the (non-degenerate) diffusion matrix and b̄ is a given drift functional. Finally, µN

is the random flow of empirical sub-probability measures representing the empirical distribution
of the survivors

µNt (·)
.
=

1

N

N∑

i=1

δ
X

N,i
t

(·) 1
[0,τX

N,i
)
(t) .

Each player evaluates a strategy vector u
N according to his/her expected costs

JN,i
(
u
N
) .
= E

[∫ τN,i

0
f̄
(
s,XN,i

s , µNs , u
N,i
(
s,XN

))
ds+ F

(
τN,i,X

N,i

τN,i

)]
(1.2)

over a random time horizon. In Eq.(1.2), XN is the N -player dynamics under u
N and τN,i

.
=

τX
N,i

∧ T . In the present work, we are interested in drifts b̄ and costs f̄ with sub-linear growth,
hence possibly unbounded. Further details on the setting with all the technical assumptions will
be given in Section 2.

The dynamics above is also motivated by economic models for corporate finance, systemic
risk, and asset allocation. For instance, we can interpret players as firms whose values are
represented by the state variables XN,i for i ∈ {1, . . . , N}. Each company is affected by the
fraction of both defaulted and non-defaulted firms and takes strategic decisions accordingly.
Moreover, sub-linearity of the drift allows to include a mean-reversion term representing some
herding behaviour. A possible application is the pricing of portfolio credit derivatives where the
pricing depends upon the so called distance-to-default of the assets in the portfolio (Hambly and
Ledger [32]). Alternatively, each player can be interpreted as a bank, whose monetary reserve
evolves according to the stochastic dynamics in Eq.(1.1) where the drift depends on both the
rate of interbank borrowing/lending and on a controlled borrowing/lending rate to a central
bank, as in [13]. However, in [13] no absorbing boundary conditions are considered. The latter
features could be incorporated in the model by introducing absorbing boundary conditions at
the default level, similarly to [32]. This would enable to study the impact of defaults on systemic
risk and stability of the financial system described by the game. Last but not least, the proposed
set-up allows for a Brownian motion with an Ornstein–Uhlenbeck type drift modelling for the
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private state, a model that has been used (for instance) for the notion of flocking to default
in the financial literature (Fouque and Sun [26]). However, in the present paper we focus on
the mathematical properties of the proposed family of games and we leave the applications for
future research.

Main results. The main contributions of the paper can be summarized as follows:

• We introduce the MFG with smooth dependence on past absorptions, i.e. the limit model
corresponding to the above N -player games as N tends to infinity. For a solution of the
MFG, the empirical sub-probability measures (µNt )t∈[0,T ] are replaced by flows of sub-

probability measures on Rd; see Definition 2.1.

• We prove existence of a relaxed feedback MFG solution and, under an additional convexity
assumption, we show that there are optimal feedback strategies in strict form; see Theorem
3.1, Proposition 3.4 and Proposition 3.5. Additionally, we show that there exist relaxed
and strict feedback solutions that are Markovian up to the exit time; see Proposition 3.6.

• We prove uniqueness of the MFG solution under standard monotonicity conditions of the
Lasry-Lions type formulated for sub-probability measures; see Theorem 4.1.

• We study approximate Nash equilibria for the N -player game in a setting where the de-
pendence on the measure variable is finite-dimensional. Precisely, we show that if we have
a feedback solution of the MFG (either relaxed or strict), we can construct a sequence of
approximate Nash equilibria for the corresponding N -player games with a vanishing ap-
proximation error as N → ∞; see Theorem 5.1 and Corollary 5.2. It is worth stressing that
the construction produces approximate N -player equilibria in feedback strategies (instead
of the more common open-loop strategies).

The proof of the existence of feedback solutions of the MFG is inspired by the truncation
procedure introduced by [41]. We construct a sequence of approximating MFGs, each one
with bounded drift and cost functional, to which we can apply the results of [9]. Then, we
prove convergence of the solutions of these approximating MFGs to a solution of the original
one. Nonetheless, the procedure in [41] cannot be applied directly to our case mainly due to
the history dependency and the discontinuities induced by past absorptions. In particular, a
different instance of the mimicking result of [8] applies to our framework.

To establish the uniqueness result we follow standard monotonicity arguments, with some
adjustments due to the dependence of the coefficients on a flow of sub-probability measures
instead of probability measures. In particular, the uniqueness result relies on an additional
(standard) monotonicity assumption on the running cost of the Lasry-Lions type.

The proof of the construction of approximate Nash equilibria for the N -player game is based
on weak convergence arguments and controlled martingale problems. The use of martingale
problems in proving convergence to the McKean-Vlasov limit and propagation of chaos for
weakly interacting systems goes back to [27], [54] and [50]. We observe that, whereas standard
results prove convergence in law of the empirical measures, in the present paper we follow the
approach of [42] to obtain a strong form of propagation of chaos with possibly unbounded and
path-dependent drift. We show that the empirical measures converge in a stronger topology
(the τ -topology), a result that enables us to take the limit as N → ∞ without assuming any
regularity of the feedback strategies with respect to the state process. In our framework, unlike
[9], the continuity of the MFG optimal control for almost every path of the state variable with
respect of the Wiener measure is no longer feasible. Indeed, the PDE-based estimates that were
used in [9] to get such a regularity are not available anymore due to the possible unboundedness
of the drift and the running cost.

Related literature. We have already discussed the paper [9], so here we focus on some other
contributions in the literature of mean-field models and games related to our study. First, we
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cite the works of [29] and [30] where a model based on point processes for correlated defaults
timing in a portfolio of firms is introduced and analysed. [29] prove a LLN for the default rate
as the number N of firms goes to infinity.

Motivated by modelling the contagion effect are the works of [32], [33] and [34] too. The
first work provides a LLN for the empirical measure of a system of finitely many (uncontrolled)
diffusions on the half-line, absorbed when they hit zero and correlated through the proportion
of absorbed processes. In [33] the model is extended to include a positive feedback mechanism
when the particles hit the barrier, thus modelling contagious blow-ups. A mathematical com-
plement to the previous work is provided in [48]. More recently, [34] have proposed a general
model for systemic (or macroscopic) events. By working on a set-up similar to [32], they in-
terpret the diffusions as distances-to-default of financial institutions and model the correlation
effect through a common source of noise and a form of mean-reversion in the drift. A form of
endogenous contagion mechanism is also considered.

On the side of applications to economics, [16] and [17] study oligopolistic models with ex-
haustible resources formulated as MFGs with absorption at zero. Their model keeps track of the
fraction of active players at each time. However, this fraction appears in the objective functions
but not in the state variable.

Two more papers are those by [19] and [20], where a particle system approach is used to
study the mathematical properties of an integrate-and-fire model from neurology. The particles’
dynamics have some resetting mechanism which activates as soon as some particle hits a given
boundary. Besides, we cite two recent papers by Nadtochiy and Shkolnikov [51, 52]. The first
one focuses on the cascade effect in an interbank mean-field model with defaults and a contagion
effect modelled via a singular interaction through hitting times. The second one investigates the
associated mean-field game also including more general dynamics and connection structures.

Finally, we mention a class of MFGs that has been considered quite recently especially in
relation to bank run models, that is MFGs of optimal stopping or timing; see, for instance, [5],
[7], [12] and [53]. Therein, the agents solve an optimal stopping problem so that the terminal
time is directly chosen by them instead of being determined by the evolution of the controlled
state as in our setting. In both settings the terminal time is in fact a random time and the
state evolution might be affected by the fraction of leavers and the empirical measure of the
remainers.

Structure of the paper. In Section 2 we introduce the notation and present both the N -player
and the MFGs along with the main assumptions. Section 3 contains the results on the existence
of feedback MFG solutions. In Section 4 we prove the uniqueness of MFG solutions under some
monotonicity condition of the Lasry-Lions type. In Section 5 we specialize to a finite dimensional
setting and construct approximate Nash equilibria in feedback form for the N -player game using
the MFG solutions. The technical results used in the paper can be found in the Appendix A.

2 Preliminaries and assumptions

In this section, we provide the definitions of the different spaces of trajectories and measures
used in the paper along with the corresponding topologies, distances and notions of convergence.
In addition, we describe the MFG with smooth dependence on past absorptions and give the
definition of solution of the MFG. We conclude the section by introducing the MFGs with
truncated coefficients, which will be used in the proof of existence of MFG solutions.

Spaces of trajectories. Let d ∈ N. We denote by O ⊂ Rd an open subset of Rd representing the
space of the players’ private states and by X

.
= C([0, T ];Rd) the space of Rd-valued continuous

trajectories on the time interval [0, T ], T < ∞. The space Rd is equipped with the standard
Euclidean norm, always indicated by | · |, while X with the sup-norm, denoted by ‖ · ‖∞, which
makes X separable and complete. We use the notation ‖ · ‖∞,t whenever the sup-norm is
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computed over the time interval [0, t], t < T . Besides, we denote with XN .
= C([0, T ];Rd×N )

the space of N -dimensional vectors of continuous trajectories and identify it with X×N .

Spaces of measures. We use flows of probability and sub-probability measures to describe the
distribution of players and its time evolution in O. For E a Polish space, let Mf (E) denote
the space of finite Borel measures on E, P(E) the space of Borel probability measures on E

and M≤1(E) the space of Borel sub-probability measures on E, i.e. measures µ ∈ Mf (E) such
that µ(E) ≤ 1. These spaces are endowed with the weak convergence of measures (Billingsley
[6]). We will often write µn

w
⇀ µ to indicate weak convergence of µn towards µ as n → ∞ and

ξn
L

−→ ξ to denote convergence in law of a sequence of random variables (ξn)n∈N (defined on
possibly different probability spaces) to a limit random variable ξ.

We define by ΥT
P(E) (resp. by ΥT

≤1(E)) the spaces of measurable flows of probability (resp.
sub-probability) measures on E, i.e. the space of Borel measurable maps π (resp. µ) from the
time interval [0, T ] to P(E) (resp. M≤1(E)). Wherever possible without confusion, we use ΥT

P

(resp. ΥT
≤1) when E = Rd. We denote by P1(E) and by M≤1,1(E) the following subsets of

P(E) and M≤1(E):

P1 (E)
.
=

{
π ∈ P (E) :

∫

E

dE(x, x0)π(dx) <∞ for some x0 ∈ E

}
,

M≤1,1 (E)
.
=

{
µ ∈ M≤1 (E) :

∫

E

dE(x, x0)µ(dx) <∞ for some x0 ∈ E

}
.

We endow P1(E) with the 1-Wasserstein distance W1

W1(µ, ν)
.
= inf

π∈Π(µ,ν)

∫

E×E
dE (x, y) dπ(x, y) = sup

f∈Lip1(E;R)

∫

E

f(x)d(µ− ν)(x) (2.1)

where Π(µ, ν) ⊂ P1(E × E) represents the set of probability measures with given marginals µ
and ν, and Lip1(E;R) the set of Lipschitz functions on E with unitary Lipschitz constant. The
second equality in Eq.(2.1) is due to the Kantorovich-Rubinstein Theorem (see, for instance,
Theorem 6.1.1 in Ambrosio et al. [2]). Notice that (P1(E),W1) is a separable and complete
metric space whenever (E, dE) is separable and complete. Finally, let ΥT

P,1(E) (resp. ΥT
≤1,1(E))

denote the space of measurable flows of probability measures in P1(E) (resp. in M≤1,1(E)).
Again, wherever possible without confusion, we use ΥT

P,1 and ΥT
≤1,1 when E = Rd.

The canonical space. We will often work on the canonical filtered probability space, denoted by
(Ω,F , (Ft)t∈[0,T ],P) and defined as follows. Set Ω

.
= X , let ξ be an Rd-valued random variable

with law ν ∈ P(Rd) and let W be a d-dimensional Wiener process on X independent of ξ. Define
Wν ∈ P(X ) as the law of ξ + σW . Set F as the Wν-completion of the Borel σ-algebra B(X )
and (F)t∈[0,T ] as the Wν -augmentation of the filtration generated by the canonical process X̂

on X , i.e. X̂t(ϕ)
.
= ϕ(t) for all (t, ϕ) ∈ [0, T ] × X . In particular, (F)t∈[0,T ] satisfies the usual

conditions. Finally set P
.
= Wν and W

.
= σ−1(ξ − X̂), which is a Wiener process on X . Where

no confusion is possible, we will write X for X̂.

Now, let O ⊂ Rd be a non-empty open set, the set of non-absorbing states, and let Γ ⊂ Rd be
the set of control actions. For each ϕ ∈ X we set τϕ

.
= inf{t ∈ [0, T ] : ϕ(t) 6∈ O}, with the

convention inf ∅ = ∞, and τ(ϕ)
.
= τϕ∧T . In order to set up the dynamics of the players’ states,

we need to introduce the following functions:

b̄ : [0, T ] ×Rd ×M≤1,1(R
d)× Γ → Rd, σ ∈ Rd×d,

f̄ : [0, T ]× Rd ×M≤1,1(R
d)× Γ → [0,∞), F : [0, T ]× Rd → [0,∞).

Since we will have to impose some joint continuity property for the functions above, in par-
ticular with respect to the µ-variable, and there is no natural metrizable topology over the
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set of sub-probability measures M≤1,1(R
d), it will be convenient to work with the following

reparameterization of a suitable restriction of b̄ and f̄ :

b(t, ϕ, θ, u)
.
= b̄(t, ϕ(t), g(t, θ), u),

f(t, ϕ, θ, u)
.
= f̄(t, ϕ(t), g(t, θ), u)

where b and f are progressively measurable functionals such that

b : [0, T ]× X × P1(X )× Γ → Rd,

f : [0, T ]× X ×P1(X )× Γ → [0,∞)

while g : [0, T ] × P1(X ) → M≤1,1(R
d) is defined by its action on the test functions of the

1-Wasserstein convergence, i.e., on the functions ψ ∈ C(Rd) with sub-linear growth, as

∫

Rd

ψ(x)g(t, θ)(dx)
.
=

∫

X
ψ(ϕ(t))1[0,τϕ)(t)θ(dϕ). (2.2)

In words, the functions b and f above are reparameterizatons of the restrictions of b̄ and f̄ ,
respectively, to the range of the map

(t, ϕ, θ, u) 7→ (t, ϕ(t), g(t, θ), u).

Moreover, for each µ ∈ M≤1,1(R
d) and θ ∈ P1(X ) we introduce the notation

m(µ)
.
=

∫

Rd

|x|µ(dx) and m(t; θ)
.
=

∫

X
|ϕ(t)|1[0,τϕ)(t)θ(dϕ).

Now, we collect the necessary assumptions on all initial data in order to state our main results.
Some further assumptions will be given later in the paper when necessary.

(H1) The drift b̄ satisfies the following uniform Lipschitz continuity:

∣∣b̄(t, x, µ, u) − b̄(t, x′, µ, u)
∣∣ ≤ L|x− x′|, x, x′ ∈ Rd

for any (t, µ, u) ∈ [0, T ] ×M≤1,1(R
d)× Γ. Moreover it has sub-linear growth, i.e.

∣∣b̄(t, x, µ, u)
∣∣ ≤ C (1 + |x|+m(µ))

for all (t, x, µ, u) ∈ [0, T ]× Rd ×M≤1,1(R
d)× Γ and for a positive constant C > 0.

(H2) The running costs f̄ and the terminal cost F have sub-linear growth, i.e.

f̄(t, x, µ, u) ≤ C(1 + |x|+m(µ)),

F (t, x) ≤ C(1 + |x|),

for all (t, x, µ, u) ∈ [0, T ] × Rd × M≤1,1(R
d) × Γ, (t, x) ∈ [0, T ] × Rd and for a positive

constant C > 0.

(H3) b̄ and f̄ are such that their reparametrizations b and f are jointly continuous at points
(t, ϕ, θ, u) ∈ [0, T ]×X ×P1(X )× Γ such that θ ≪ Wν . Moreover, F is jointly continuous
on [0, T ]× Rd.

(H4) The set O is open, convex and strictly included in Rd with C2-boundary, i.e. ∂O is the
graph of a C2 function. Alternatively, O = (0,∞)×d is also allowed.

(H5) The set Γ ⊂ Rd is compact.
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(H6) The diffusion matrix σ ∈ Rd×d has full rank.

(H7) The initial distribution ν ∈ P(Rd) has support in O and satisfies
∫
O eλ|x|

2

ν(dx) < ∞ for
some λ > 0.

(H8) The initial conditions of the N -player game XN,i
0 , i ∈ {1, . . . , N}, are i.i.d. and with the

initial condition of the MFG X0, they are all distributed as ν ∈ P(Rd).

Before turning to the MFG dynamics, some remarks on the assumptions above are in order.

Remark 2.1. The growth assumptions in (H1) and (H2) could be further refined. For instance,
one could assume sub-linear and sub-polynomial growth of the drift and diffusion matrix with
suitable exponents as, e.g., in [41]. Moreover, the running cost f could certainly take real values;
however, without loss of generality and given the interpretation as a cost term, we have assumed
f ≥ 0.

Remark 2.2. The continuity properties in (H3) are crucial in the passage to the limit performed
in Proposition 3.2. Since the laws of the processes that we consider are absolutely continuous
with respect to the Wiener measure Wν (they belong to the set Q ⊂ P(X ) of laws of Brownian-
driven processes with sub-linear drift that we introduce and characterize in the Appendix A, cfr.
Lemma A.3), it is sufficient to require continuity at points θ ≪ Wν . The passage to the limit
in the measure argument can then be performed by Lemma A.4 together with Lemma A.5.

Remark 2.3. Admittedly, compactness of Γ is a strong assumption, but it will play an important
role in order to obtain existence and uniqueness of weak solutions of the SDEs for the player
state’s dynamics in both the MFG and the N -player games. In particular, it enables a line of
arguments based on Beněs’ condition – ensured by the boundedness of the coefficient in the
control variable – and Girsanov’s theorem (see Remark 2.5 for more precise references), which
is one of the main tools of our approach.

Remark 2.4. The nondegeneracy of σ as in (H6) is justified by the counter-example in [9],
Section 7, where it was shown that a feedback MFG solution does not necessarily induce a
sequence of approximate Nash equilibria with vanishing error. A careful inspection of such a
counter-example reveals that it can be easily adapted to our setting since, in that particular
context, dividing by the initial number of players N (as in our setting) or renormalizing each
time by the current number of players (as in the counter-example) turn out to be equivalent for
N large. Finally, even though state dependency of the diffusion matrix can be handled using very
similar techniques, we have decided to leave it out and focus on other more interesting aspects
of the model. For the same reason we leave aside a possible dependence of σ on the control, as it
would just increase the level of technicality of the proofs due to the use of martingale measures
(see [41]).

The mean-field dynamics. Given a flow of sub-probability measures µ ∈ ΥT
≤1,1 and a feedback

progressively measurable control u : [0, T ] × X → Γ, the representative player’s state evolves
according to the equation

Xt = X0 +

∫ t

0
b̄ (s,Xs, µs, u (s,X)) ds+ σWt, t ∈ [0, T ] , (2.3)

where X is a d-dimensional stochastic process starting at X0
d
∼ ν ∈ P(Rd) and W is a d-

dimensional Wiener process on some filtered probability space (Ω,F , (Ft)t∈[0,T ],P). Solutions of
Eq.(2.3) are understood to be in the weak sense (see Remark 2.5 below).

Let Ufb denote the set of all feedback controls defined as

Ufb
.
= {u : [0, T ]× X → Γ : u is progressively measurable}.
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The cost associated with a strategy u ∈ Ufb, a flow of sub-probability measures µ ∈ ΥT
≤1,1 and

an initial distribution ν ∈ P(Rd) is given by (we omit, for the sake of simplicity, the explicit
dependence on ν)

Jµ (u)
.
= E

[∫ τ

0
f̄ (s,Xs, µs, u (s,X)) ds+ F (τ,Xτ )

]
(2.4)

where (Ω,F , (Ft)t∈[0,T ],P,W,X) is a solution of Eq.(2.3) under u with initial distribution ν, and

τ
.
= τX ∧ T the random time horizon. Finally we set

V µ .
= inf

u∈Ufb

Jµ(u).

Remark 2.5. For a given flow of sub-probability measures µ, thanks to the linear growth of
b̄ in the state variable ϕ and to the boundedness of the action space Γ, we have that both
existence and uniqueness in law of a weak solution of Eq.(2.3) is guaranteed by Lemma A.1,
and by Proposition 5.3.6, Remark 5.3.8 and Proposition 5.3.10 in [39] (see our Lemma A.2).
Precisely, this can be proved by means of Girsanov’s theorem and Beněs’ condition [4].

The notion of solution we consider for the MFG is the following.

Definition 2.1 (Feedback MFG solution). A feedback solution of the MFG is a pair (u, µ) ∈
Ufb ×ΥT

≤1,1 such that:

(i) Strategy u is optimal for µ, i.e. V µ = Jµ(u).

(ii) Let (Ω,F , (Ft)t∈[0,T ],P,X,W ) is a weak solution of Eq.(2.3) with flow of sub-probability
measures µ, strategy u and initial condition ν. Then

µt(·) = P({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Relaxed controls. It will be very convenient to use relaxed controls (see [23] for a precise defi-
nition), which allow us to view progressively measurable controls with values on a compact set
Γ as elements of the space of probability measures on Γ. The latter space is compact when
endowed with the weak convergence of measures. The space V of relaxed controls is given by

V
.
= {q ∈ Mf ([0, T ] × Γ) : q(dt, dγ) = dtqt(dγ), t 7→ qt ∈ P(Γ)Borel measurable}

i.e. it is the set of all finite positive measures on [0, T ]×Γ with Lebesgue time marginal. With a
slight abuse of notation, we denote with Λ̂ both the identity map and the canonical process on V
(where no confusion is possible, we drop the hat and write Λ in place of Λ̂). Precisely, a single-
player relaxed control is a V-valued random variable Λ such that (Λt)t∈[0,T ] is a progressively
measurable P(Γ)-valued stochastic process. We say that Λ is a feedback control if there exists
a progressively measurable functional λ : [0, T ] × X → P(X ) such that Λt = λ(t,X) for all
t ∈ [0, T ], with X denoting the player’s dynamics. Moreover, we say that Λ is a strict and
feedback control if there exists u ∈ Ufb such that λ(t,X) = δu(t,X) for all t ∈ [0, T ].

Let Ũfb be the set of relaxed feedback controls for the MFG. We rewrite the dynamics and
the cost functional of the MFG (Eq.(2.3)) and Eq.(2.4)) using relaxed controls:

Xt = X0 +

∫

[0,t]×Γ
b̄ (s,Xs, µs, u)λ (s,X) (du)ds + σWt, (2.5)

Jµ (λ) = E

[∫

[0,τ ]×Γ
f̄ (s,Xs, µs, u)λ (s,X) (du)ds + F (τ,Xτ )

]

where t ∈ [0, T ] and λ ∈ Ũfb. Moreover, we extend accordingly the notion of feedback solutions
of the MFG.
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Definition 2.2 (Relaxed feedback MFG solution). A relaxed feedback solution of the MFG is a
pair (λ, µ) ∈ Ũfb ×ΥT

≤1,1 such that:

(i) λ is optimal, i.e. V µ = Jµ(λ).

(ii) Let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,W ) be a weak solution of Eq.(2.5) with flow of sub-probability
measures µ, control λ and initial condition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Feedback and open-loop controls. Feedback controls induce stochastic open-loop controls, i.e.
tuples (Ω,F , (Ft)t∈[0,T ],P,X, u,W ) that are weak solutions of

Xt = X0 +

∫ t

0
b̄ (s,Xs, µs, us) ds+ σWt, t ∈ [0, T ] (2.6)

where u is a progressively measurable Γ-valued stochastic process. As a consequence, the com-
putation of the infimum of Jµ(·) over the class of stochastic open-loop controls would imply a
lower value for V µ. However, thanks to Proposition 2.6 in [23], the two minimization problems
are equivalent from the point of view of the value function.
A similar argument holds also in the case of feedback relaxed controls, that induce relaxed
stochastic open-loop controls, tuples (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ) that are weak solutions of

Xt = X0 +

∫

[0,t]×Γ
b̄ (s,Xs, µs, u) Λs(du)ds + σWt, t ∈ [0, T ] (2.7)

where Λ is a progressively measurable P(Γ)-valued stochastic process.
In the rest of the paper we will call U the set of open-loop controls and, for the sake of brevity
and where no confusion is possible, denote with u an element of U implying the whole tuple
(Ω,F , (Ft)t∈[0,T ],P,X, u,W ). Similarly, we will call Ũ the set of open-loop relaxed controls and

denote with Λ an element of Ũ implying the whole tuple (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ).

The extended canonical probability space. When dealing with relaxed controls we will work
on the following extension of the canonical probability space X . Set Ω̃

.
= X × V, let F and

(Ft)t∈[0,T ] be the canonical σ-algebra and the canonical filtration on X , respectively, whereas G
and (Gt)t∈[0,T ] denote the Borel σ-algebra and the filtration generated by the canonical process

Λ̂ on V, respectively. Finally, we set F̃t
.
= Ft ⊗ Gt for all t ∈ [0, T ], and F̃

.
= F ⊗ G.

Approximating MFGs. We conclude this preliminary section by introducing a suitable sequence
of approximating MFGs, which is obtained by truncation of the coefficients of the original MFG
similarly as in [41]. Such a sequence will be useful in the proof of existence of a MFG solution
along the following lines: we will prove existence of feedback MFG solutions of the approximating
MFGs in the sequence by extending the existence result of [9]. Then, by letting the truncation
threshold go to infinity, we will obtain a solution of the original MFG. This approach relies on
two additional assumptions (Assumptions (C1) and (C2) below) that will be introduced later in
this part.

Let (Kn)n∈N ⊂ R+ be an increasing sequence such that Kn ր +∞. The nth approximating
MFG model, denoted by MFG(n), is obtained as follows.

(Tn) b̄
n(x) = b̄(x) when |b̄(x)| ≤ Kn, while it is continuously truncated at level Kn, i.e. |b̄n(x)| =
Kn, otherwise. Similarly for the costs f̄n and Fn and for the associated functions bn and
fn.
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Notice that we do not truncate the possibly unbounded set O of non-absorbing states. In each
MFG(n) the representative player’s state evolves as in Eq.(2.3) with b̄ replaced by b̄n, i.e.

Xt = X0 +

∫ t

0
b̄n (s,Xs, µs, u(s,X)) ds+ σWt, t ∈ [0, T ] (2.8)

when the player is using the strict control u, and similarly when he/she is using a relaxed control.
Moreover, in the cost functional f̄ and F are replaced by their truncated counterpart f̄n and
Fn. The associated cost functional is denoted by Jn,µ (u) or Jn,µ (λ) depending on whether the
player is implementing a strict strategy u or a relaxed one λ. The optimal values are defined,
accordingly, by

V n,µ .
= inf

u∈Ufb

Jn,µ(u).

The definitions of strict and relaxed MFG solutions given above for the (un-truncated) MFG can
clearly be applied to the approximating MFG(n)s with the obvious modifications. We associate
to the MFG(n)s the following Hamiltonians:

hn(t, x, θ, z, u)
.
= fn(t, x, θ, u) + z σ−1 bn(t, x, θ, u),

Hn(t, x, θ, z)
.
= inf

u∈Γ
hn(t, x, θ, z, u)

and the set of minimizers

An(t, x, θ, z)
.
= {u ∈ Γ : hn(t, x, θ, z, u) = Hn(t, x, θ, z)}

for (t, x, θ, z) ∈ [0, T ]×Rd ×P1(X )×Rd. In the next section on existence of MFG solutions we
will rely on the following additional convexity assumptions:

(C1) For each n ∈ N, An(t, x, θ, z) is convex for all (t, x, θ, z) ∈ [0, T ]× Rd × P1(X )× Rd.

(C2) The running cost f is convex in the control variable u ∈ Γ.

Remark 2.6. Assumption (C1) is common in control theory and it is crucial in order to apply
fixed point theorems. In our case it is satisfied if, for instance, the running cost f is bounded
and convex in the control variable u ∈ Γ. Indeed in this case, due to the flexibility in the choice
of the truncation thresholds, choosing Kn ≥ ‖f‖∞ for all n ∈ N we have fn = f for all n ∈ N.
Then convexity is preserved by adding any sub-linear term. Finally, we observe that Assumption
(C2) will be used in Section 3.4 for obtaining the existence of strict MFG solutions.

3 Existence of solutions of the mean-field game

Throughout this section Assumptions (H1)-(H8) are in force. Under these and the additional
convexity Assumptions (C1) and (C2) we show that both a relaxed and a strict feedback solution
of the MFG exist; see Theorem 3.1 below together with Proposition 3.4 and Proposition 3.5. In
addition, we guarantee the existence of a feedback solution of the MFG with Markovian feedback
strategy up to the exit time; see Proposition 3.6. Our main existence result can be stated as
follows.

Theorem 3.1 (Existence of relaxed and strict feedback MFG solutions). Under Assumptions
(H1)-(H8) and (C1), there exists a relaxed feedback MFG solution (λ, µ). Moreover, under the
additional Assumption (C2) , there exists a strict feedback MFG solution (u, µ).

To prove Theorem 3.1, we proceed by approximation in the sense that, first, we prove that
each MFG(n) introduced in the previous section has a feedback (strict) solution by extending
the results in [9]; see Subsection 3.1. Then, we prove the convergence of such approximating
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solutions to a feedback (relaxed) solution of the original MFG by passing to the limit with the
truncation thresholds; see Subsection 3.2.

Before proceeding, we ensure the well-posedness of the game in the sense that we show that
the private state X of the representative agent remains in O up to time T with some positive
probability. This is the content of the following lemma.

Lemma 3.1. Grant Assumptions (H1)-(H8). Let (Ω,F , (Ft)t∈[0,T ],P,X,W ) be a weak solution

of Eq.(2.3). Then P(τX > t) > 0 for all t ∈ [0, T ].

Proof. Set bt
.
= b̄(t,Xt, µt, u(t,X)) for t ∈ [0, T ], and define Z

.
= (Zt)t∈[0,T ] as

Zt
.
= Et

(
−

∫ ·

0
σ−1bsdWs

)
, t ∈ [0, T ],

where Et(·) denotes the Doléans-Dade stochastic exponential. By Lemma A.1, Z is a true

martingale. Define Q by dQ
dP

.
= ZT . By Girsanov’s theorem W̃t

.
= Wt +

∫ t
0 σ

−1bsds, t ∈ [0, T ], is
a Q-Wiener process, and under Q the process X has law Wν . As a consequence of the law of
iterated logarithms, any Wiener process remains in an open set, hence in O ⊂ Rd, for a finite
time with strictly positive probability. Therefore Q(τX > T ) > 0 and thus P(τX > T ) > 0.

3.1 Approximating MFGs

In this subsection we prove existence of solutions of the approximating MFG(n)s.

Theorem 3.2 (Existence of solutions of MFG(n)). Let n ∈ N. Under Assumptions (H1)-(H8)
and (C1) there exists a feedback solution (un, µn) of MFG(n).

Proof. The proof follows similar steps to those in Section 6 of [9]: we only sketch here the main
steps. The main difference with [9] is that, due to Assumption (C1), we have to deal with set-
valued maps, hence to apply a version of Kakutani’s fixed point theorem instead of Brouwer’s.
We use the version proposed by [14], Proposition 7.4, which is in turn based on the results of
[15]. Other adjustments are due to the fact that µ is a flow of sub-probability measures (instead
of probability measures) and that O can be unbounded.

Fix n ∈ N. The proof is based on the construction of a suitable map Ψ : P(X )×U → P(X )
on an appropriate compact and convex subset of P(X ), where U is the space of progressively
measurable Γ-valued stochastic processes. The fixed points of Ψ will provide MFG(n) solutions.
More in detail, define Qν,K as the set of laws θ ∈ P(X ) of any process of the type

ξ +

∫ t

0
bsds+ σWt, t ∈ [0, T ]

defined on some filtered probability space with a Wiener process W , ξ
d
∼ ν, drift (bt)t∈[0,T ]

adapted and bounded by K > 0. Let us consider

Ψ : Qν,Kn × U ∋ (θ, u) 7→ Pθ,u ◦X−1 ∈ Qν,Kn ,

where X is the canonical process on X and the probability measure Pθ,u is defined as follows.
Let (θ, u) ∈ Qν,Kn × U and let µθ ∈ ΥT

≤1 be defined as µθt (·)
.
= θ({Xt ∈ ·} ∩ {τX > t}) for all

t ∈ [0, T ]. Let (Ω,Fu, (Fu
t )t∈[0,T ],P

θ,u,X,W u) be the weak solution of

Xt = X0 +

∫ t

0
b̄n(s,Xs, µ

θ
s, us) ds+ σW u

t , t ∈ [0, T ]
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on the canonical space (Ω
.
= X ,F , (Ft)t∈[0,T ],P). Moreover, for θ ∈ Qν,Kn we call uθ an optimal

control for the cost

Jn,µ
θ

(u)
.
= EPθ,u

[∫ τ

0
f̄n(s,Xs, µ

θ
s, us)ds + Fn (τ,Xτ )

]
.

Such optimal controls uθ can be constructed by standard BSDE techniques as in [9], Section
6.1, by means of [18], Theorem 3.4, due to the random terminal times. Under Assumption (C1)
optimal controls uθ are in general not unique. Indeed

An(θ)
.
=
{
uθ ∈ U : uθ ∈ An(·,X·, θ, Z

θ
· ), LT ⊗ P− a.e.

}

provides an entire set of optimal controls, where Zθ is part of the the solution of the associated
adjoint BSDE and LT denotes the Lebesgue measure on [0, T ]. Moreover, by measurable selection
there exists a measurable function ûn,θ : [0, T ]× Rd ×Qν,Kn × Rd → Γ such that

ûn,θ(·,X·, θ, Z
θ
· ) ∈ An(θ), LT ⊗ P− a.e.

Additionally, ûn,θ(t,Xt, θ, Z
θ
t ), for t ∈ [0, T ], is a progressively measurable control process that

can be written in feedback form. Indeed, since Zθ is progressively measurable for the canon-
ical filtration, it can expressed as Zθt = ζθ(t,X) for some progressively measurable functional
ζθ : [0, T ] ×X → Rd and for any t ∈ [0, T ].

Now, a fixed point for the map Ψ is a probability measure θ ∈ Qν,Kn such that θ ∈ Ψ(θ,A(θ)).
Existence is provided by Proposition 7.4 in [14], so to conclude the proof it suffices to check that
all the required assumptions are satisfied in our case. The set Qν,Kn ⊂ P(X ) is a (weakly)
compact, convex and metrizable subset of C∗

b (X ), the dual of the space of bounded and contin-
uous functions on X , which is a locally convex topological vector space with the weak* topology
(that induces the weak convergence of measures on P(X )). We endow the vector space U with

the norm ‖·‖U defined as ‖u‖U
.
= E[

∫ T
0 |ut|dt]. As a consequence of Berge’s maximum theo-

rem [1, Theorem 17.31] and of Assumption (C1) the set-valued map An : Qν,Kn → U is upper
hemicontinuous and has non-empty convex and closed values (see the proof of Lemma 7.11 in
[14]). Therefore, Proposition 7.4 in [14] applies, yielding the existence of a feedback solution of
MFG(n).

A-priori estimates. Here, we show that the moments up to any order α ≥ 1 of the state
process remain bounded uniformly in n. Such estimates will be very useful when we will relax
the truncation in the next section.

Lemma 3.2 (A-priori estimates). Grant Assumptions (H1)-(H8) and (C1). Consider feed-
back solutions (un, µn)n∈N and (u, µ) of the MFG(n)’s and of the MFG, respectively. Let
(Ωn,Fn, (Fn

t )t∈[0,T ],P
n,Xn,W n)n∈N be a sequence of weak solutions of the SDEs in Eq.(2.8)

and (Ω,F , (Ft)t∈[0,T ],P,X,W ) a weak solution of the SDE in Eq.(2.3). Then for any α ≥ 1

sup
n∈N

EPn

[‖Xn‖α∞] ≤ K(α) and EP [‖X‖α∞] ≤ K(α)

where K(α) <∞ is a positive constant independent of n.

Proof. This follows from standard estimates that rely on the drift’s sub-linear growth and on
Grönwall’s lemma.

13



3.2 Convergence of the approximating MFGs

Let (un, µn)n∈N be a sequence of feedback solutions of the approximating MFGs introduced in
the previous Subsection 3.1, whose existence is guaranteed by Theorem 3.2. In addition, let
(Ωn,Fn, (Fn

t )t∈[0,T ],P
n,Xn,W n)n∈N be a sequence of weak solutions of the SDEs in Eq.(2.8)

associated to (un, µn)n∈N. Let θn be defined as θn
.
= Pn ◦ (Xn)−1 for each n ∈ N.

To prove the convergence of the approximating MFGs we proceed in the following way.
First, we show that there exists a subsequence of (θn)n∈N, say (θnk)nk∈N, that converges in
P1(X ) to some limit θ ∈ P1(X ). To prove this, we interpret (un, µn)n∈N as relaxed feedback
solutions, (λn, µn)n∈N. Second, we show that also the sequence of the corresponding extended
laws (Θn)n∈N ⊂ P(X × V) converges in P1(X × V) to some limit Θ ∈ P1(X × V). Finally, we
characterize the limit points by means of the martingale problem of Stroock and Varadhan (see
Stroock and Varadhan [55, 56]).

Lemma 3.3 (Relative compactness). (θn)n∈N is relatively compact in P(X ).

Proof. First, we prove tightness by applying Aldous’ criterion (see, e.g., [37], Condition VI.4.4),
that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Pn (|Xn
σ −Xn

τ | ≥ r) = 0

for all r > 0 and where τ and σ are stopping times bounded by T . Indeed, we have

Pn (|Xn
σ −Xn

τ | ≥ r) ≤
EPn

[|Xn
σ −Xn

τ |]

r

and

EPn

[|Xn
σ −Xn

τ |] ≤ EPn

[∫ (τ+δ)∧T

τ

∣∣b̄n(t,Xn
t , µ

n
t , u

n(t,Xn))
∣∣ dt
]
+ |σ|((τ + δ) ∧ T − τ)

1

2CWT

≤ EPn

[
C

∫ (τ+δ)∧T

τ

(1 + ‖Xn‖∞,t + sup
n∈N

EPn

‖Xn‖∞,t + |un(t,Xn)|)dt

]

+|σ|((τ + δ) ∧ T − τ)
1

2CWT

≤ EPn

[
C

∫ (τ+δ)∧T

τ

(1 + ‖Xn‖∞ +K + |un(t,Xn)|)dt

]

+|σ|((τ + δ) ∧ T − τ)
1

2CWT

for some constants CWT ,K > 0 independent of n ∈ N. Then we conclude by Lemma 3.2. Relative
compactness then follows from Prohorov’s Theorem.

Now, let θ ∈ P(X ) be a limit point for (θn)n∈N and let (θnk)nk∈N be a subsequence of (θn)n∈N
such that θnk

w
⇀ θ as nk → ∞. With a slight abuse of notation, in what follows we identify

(θnk)nk∈N with (θn)n∈N. We now show that the latter convergence is actually stronger by proving
that (θn)n∈N converges to θ in the 1-Wasserstein distance.

Lemma 3.4 (Convergence in the 1-Wasserstein distance). Let (θn)n∈N be as above. Then
W1(θ

n, θ) → 0 and θ ∈ P1(X ).

Proof. Notice that by Lemma 3.2 we have (θn)n∈N ⊂ P1(X ). To prove convergence in the
1-Wasserstein distance, we have to show that (see, for instance, Theorem 7.12.ii in Villani [58])

lim
R→∞

sup
n∈N

EPn [
‖Xn‖∞1{‖Xn‖∞≥R}

]
= 0.
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Set α, β > 1 such that 1
α
+ 1

β
= 1. Then, for any ǫ > 0 by Young’s and Markov’s inequalities,

and by Lemma 3.2 we have

EPn [
‖Xn‖∞1{‖Xn‖∞≥R}

]
≤ ǫα

EPn
[‖Xn‖α∞]

α
+

Pn(‖Xn‖∞ ≥ R)

ǫββ

≤ ǫα
K(α)

α
+

K

ǫββR

for some positive constants K(α) and K independent of n ∈ N. The conclusion immediately
follows thanks to the fact that convergence in the 1-Wasserstein distance preserves the finiteness
of the first moment.

Proposition 3.1 (Absolute continuity of limit measures). Let θ, (θn)n∈N ⊂ P1(X ) be as in
Lemma 3.4. Then θ ≪ Wν , i.e. θ is absolutely continuous with respect to Wν .

Proof. By construction θn ≪ Wν for all n ∈ N, hence we have to make sure that the absolute
continuity is also preserved in the limit. For doing so, we apply Theorem X.3.3 in [37]. In
particular, we have to verify that all assumptions therein are fulfilled, which in our setting are
reduced to the following properties:

(i) The contiguity of the sequence of θn with respect to the Wiener measure Wν , i.e. for any
sequence of measurable sets Bn with Wν(Bn) → 0 we have θn(Bn) → 0 as n → ∞ (see,
e.g., Definition V.1.1 in Jacod and Shiryaev [37]).

(ii) The tightness of the sequence of Wν -martingales (Mn)n∈N, where each Mn = (Mn
t )t∈[0,T ]

is defined as

Mn
t
.
= Et

(∫ ·

0
σ−1b̄n(s,Xs, µ

n
s , u

n(s,X))dWs

)
, t ∈ [0, T ].

In order to check property (i), we first show that the sequence of Radon-Nikodym derivatives
( dθ

n

dWν )n∈N is uniformly integrable under Wν . This is a consequence of the following bound:

sup
n∈N

EWν

[(
dθn

dWν

)p]
<∞, p ∈ [1,∞) (3.1)

which follows from Corollary A.1 and by fact that, by inspection of the proofs of Lemma A.1
and Corollary A.1, all bounds are uniform in n ∈ N.

Now, property (i) can be obtained as follows: for all sequences of measurable sets Bn with
Wν(Bn) → 0, we have

θn(Bn) = EWν

[
dθn

dWν
1Bn

]
→ 0, n→ ∞,

by an application of dominated convergence theorem due to the bound in Eq.(3.1). Hence the
sequence of measures θn is contiguous to Wν .

Property (ii) follows from Aldous criterion [37, Condition VI.4.4], that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Wν (|Mn
σ −Mn

τ | ≥ r) = 0 (3.2)

for all r > 0 and where τ and σ are stopping times bounded by T . As a consequence, we will
also have the tightness property for the pair (X,Mn)n∈N under the measure Wν . By Theorem
VI.4.13 in [37] it is sufficient to check the tightness property for the corresponding quadratic
variation processes

〈Mn〉t =

∫ t

0

∣∣σ−1b̄n(s,Xs, µ
n
s , u

n(s,X))Mn
s

∣∣2 ds, t ∈ [0, T ].
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First, by Markov’s inequality Wν(|〈Mn〉σ−〈Mn〉τ | ≥ r) ≤ 1
r
EWν

[|Mn
σ −M

n
τ |]. Then, by Young’s

inequality for all p, q > 1 such that 1
p
+ 1

q
= 1 we have

EWν

[|〈Mn〉σ − 〈Mn〉τ |] ≤ EWν

[∫ (τ+δ)∧T

τ

∣∣σ−1
∣∣2 ∣∣b̄n(s,Xs, µ

n
s , u

n(s,X))
∣∣2 |Mn

s |
2 ds

]

≤
1

p

∣∣σ−1
∣∣2
∫ (τ+δ)∧T

τ

EWν
[∣∣b̄n(s,Xs, µ

n
s , u

n(s,X))
∣∣2p
]
ds

+
1

q

∣∣σ−1
∣∣2
∫ (τ+δ)∧T

τ

EWν
[
|Mn

s |
2q
]
ds

≤

(
K(p)

p
+
K(q)

q

) ∣∣σ−1
∣∣2 ((τ + δ) ∧ T − τ)

for some positive constants K(p) and K(q) > 0 independent of n ∈ N. Notice that the last
inequality is a consequence of Lemma 3.2 and Property (i). Therefore, Aldous’ criterion in
Eq.(3.2) is satisfied.

After checking properties (i) and (ii) above, we can at last apply Theorem X.3.3 in [37], yielding
that the tightness of (Wν◦(X,Mn)−1)n∈N implies the tightness of (θn◦(X,Mn)−1)n∈N. In partic-
ular, if (Wν ◦(X,Mn)−1)n∈N weakly converges to some Θ′ in P(X×X ) then (θn◦(X,Mn)−1)n∈N
weakly converges to some other Θ′′ ≪ Θ′ in P(X × X ), and the same holds true for their first
marginals on X . Therefore, we can conclude that θ ≪ Wν .

Compactification method. So far we have established the convergence of the laws (θn)n∈N to
some limit law θ in the 1-Wasserstein distance. Now, in order to prove the convergence of the
approximating feedback solutions (un, µn)n∈N to some feedback MFG solution (u, µ), we need
to show that the sequence of optimal controls (un)n∈N converges to a control u, which is optimal
for the limit game.

To do this, we interpret the sequence of strict feedback solutions (un, µn)n∈N as a se-
quence of relaxed feedback solutions (λn, µn)n∈N, by defining λn : [0, T ] × X → P(Γ) as
λn(t, ϕ)

.
= δun(t,ϕ) for all (t, ϕ) ∈ [0, T ] × X and for all n ∈ N. Furthermore, we identify

each λn with a stochastic relaxed control Λn. We then fix a sequence of associated weak solu-
tions (Ω̃n, F̃n, (F̃n

t )t∈[0,T ],Q
n,Xn,W n) of Eq.(2.5) and set Θn .

= Qn ◦ (Xn,Λn)−1 ∈ P(X × V)
for all n ∈ N. Finally, we associate to each MFG(n) and to the limit MFG a martingale problem
(Stroock and Varadhan [55, 56]) and show that the limit points Θ ∈ P(X ×V) of (Θn)n∈N solve
the limit relaxed martingale problem. We start with the following lemma.

Lemma 3.5 (Tightness in the 1-Wasserstein distance and absolute continuity). Let (Θn)n∈N be
as above. Then the following two properties hold:

(i) (Θn)n∈N is tight in P1(X × V);

(ii) Any limit point Θ of the sequence (Θn)n∈N in P1(X × V) satisfies Θ ◦X−1 ≪ Wν .

Proof. (i). It follows from Lemma 3.4 and the compactness of Γ.
(ii). This is a consequence of Proposition 3.1, the fact that by construction θn = Θn ◦X−1

for all n ∈ N, and the fact that weak convergence of the joint laws implies weak convergence of
the marginals.

By the previous lemma, we can assume without loss of generality that the original sequence
(Θn)n∈N converges to some limit measure Θ in P1(X×V). In order to characterize the limit point
Θ, we associate to each approximating MFG(n) and to the limit MFG a (relaxed) martingale
problem, henceforth RM(n) and RM, respectively. Then, we show that Θ is also a solution of
RM. We will use the notation Dg and D2g for the gradient and the Hessian of a smooth function
g : Rd → R, while Tr[A] denote the trace of a square matrix A. Notice that in the following
definition we have used the repameterization b of the drift b̄.
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Definition 3.1. The approximating martingale problems (RM(n)) We say that Θ̂ ∈ P(X × V)
is a solution of RM(n) if for all g ∈ C2

c (R
d) the process

M
n,g
t (ϕ, q; Θ̂)

.
= g(ϕ(t)) − g(ϕ(0)) −

∫

[0,t]×Γ
bn(s, ϕ, θ̂, u)⊤Dg(ϕ(s))q(ds, du)

−
1

2

∫ t

0
Tr
[
σσ⊤D2g(ϕ(s))

]
ds, t ∈ [0, T ]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦X−1 and X is the canonical process on X .

Observe that, by construction, each Θn solves RM(n). In Proposition 3.2 below we will charac-
terize the limit points as solutions of the following (relaxed) martingale problem.

Definition 3.2. The limit martingale problem (RM) We say that Θ̂ ∈ P(X × V) is a solution
of RM if for all g ∈ C2

c (R
d) the process

M
g
t (ϕ, q; Θ̂)

.
= g(ϕ(t)) − g(ϕ(0)) −

∫

[0,t]×Γ
b(s, ϕ, θ̂, u)⊤Dg(ϕ(s))q(ds, du)

−
1

2

∫ t

0
Tr
[
σσ⊤D2g(ϕ(s))

]
ds, t ∈ [0, T ]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦X−1.

Remark 3.1. The martingale property in both RM(n) and in RM is understood to hold on
(X × V,B(X × V)) with respect to the Θ-augmentation of the canonical filtration made right
continuous by a standard procedure. Nonetheless, to conclude it is sufficient to check that the
martingale property holds with respect to the canonical filtration on X × V (see, for instance,
Problem 5.4.13 in Karatzas and Shreve [39]).

Now, we can characterize the limit points via the martingale problems.

Proposition 3.2 (Characterization of limit points via martingale problems). Θ solves RM as
in Definition 3.2.

Proof. Fix t1, t2 ∈ [0, T ], t1 < t2, g ∈ C2
c (R

d) and ψ ∈ Cb(X × V) measurable with respect to
Bt1(X × V). Define Ψ,Ψn : P(X × V) → R as

Ψ
(
Θ′; Θ

) .
= EΘ′ [

ψ
(
M

g
t2
(· ; Θ)−M

g
t1
(· ; Θ)

)]
,

Ψn
(
Θ′; Θ

) .
= EΘ′ [

ψ
(
M

n,g
t2

(· ; Θ)−M
n,g
t1

(· ; Θ)
)]

for Θ′,Θ ∈ P(X ×V) and for all n ∈ N. Since Ψn(Θn; Θn) = 0 for all n ∈ N, it suffices to prove
that Ψn(Θn; Θn) → Ψ(Θ;Θ) as n→ ∞.

First, we observe that Ψn(Θn; Θn) and Ψ(Θ;Θ) can be written as

Ψn(Θn; Θn) =

∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
bn(s, ϕ, θn, u)⊤Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

+

∫

X×V
ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ⊤D2g(ϕ(s))

]
dsΘn(dϕ, dq)

and

Ψ(Θ;Θ) =

∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
b(s, ϕ, θ, u)⊤Dg(ϕ(s))q(ds, du)Θ(dϕ, dq)

+

∫

X×V
ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ⊤D2g(ϕ(s))

]
dsΘ(dϕ, dq).
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The convergence of the diffusion terms is a straightforward consequence of the weak convergence
Θn w

⇀ Θ and the fact that the map

(ϕ, q) 7→ ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ⊤D2g(ϕ(s))

]
ds

is in Cb(X × V), leading to

∫

X×V
ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ⊤D2g(ϕ(s))

]
dsΘn(dϕ, dq)

−→
n→∞

∫

X×V
ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ⊤D2g(ϕ(s))

]
dsΘ(dϕ, dq).

Hence, we only need to study the convergence of the drift terms. We split the rest of the proof
in two steps.

Step 1. We prove that
∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))⊤Dg(ϕ(s))q(ds, du)Θn(dϕ, dq) −→

n→∞
0.

Indeed,
∣∣∣∣∣

∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))⊤Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

∣∣∣∣∣

≤ CDgCψ

∫

X×V

∫

[t1,t2]×Γ
|bn(s, ϕ, θn, u)− b(s, ϕ, θn, u)| q(ds, du)Θn(dϕ, dq)

≤ CDgCψ

∫

X×V

∫

[t1,t2]×Γ
|b(s, ϕ, θn, u)| 1{|b|≥Kn}q(ds, du)Θ

n(dϕ, dq)

≤ CDgCψ
ǫα
∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ

∫
X×V

∫
[t1,t2]×Γ 1{|b|≥Kn}q(ds, du)Θ

n(dϕ, dq)

2βǫβ

≤ CDgCψ
ǫα supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ
supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)| q(ds, du)Θn(dϕ, dq)

2Knβǫβ

for all ǫ > 0, where CDg and Cψ are uniform bounds on Dg and ψ, respectively. We applied
Young’s inequality with exponents α, β > 1, 1

α
+ 1

β
= 1 for the third inequality, while for

the last one we used the Markov’s inequality with respect to the measure π(ds, du, dϕ, dq)
.
=

q(ds, du)Θn(dϕ, dq) on X × V × [0, T ] × Γ:

∫

X×V

∫

[t1,t2]×Γ
1{|b|≥Kn}q(ds, du)Θ

n(dϕ, dq) ≤

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)| q(ds, du)Θn(dϕ, dq)

Kn
.

The suprema over n ∈ N are bounded due to Lemma 3.2. We conclude this step by letting first
n→ ∞ (so that Kn ր ∞) then ǫ→ 0.

Step 2. We prove that
∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
b(s, ϕ, θn, u)⊤Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

−→
n→∞

∫

X×V
ψ(ϕ, q)

∫

[t1,t2]×Γ
b(s, ϕ, θ, u)⊤Dg(ϕ(s))q(ds, du)Θ(dϕ, dq).
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To this aim we show that:

(θ, ϕ, q) 7→ ψ(ϕ, q)

∫

[t1,t2]×Γ
b(s, ϕ, θ, u)⊤Dg(ϕ(s))q(ds, du)

is continuous on P1(X )×X × V at points such that θ ≪ Wν and that it has sub-linear growth
in (ϕ, q) ∈ X × V so that we can conclude by using the property W1(Θ

n,Θ) → 0 together
with Theorem 7.12.iv in [58]. Since ψ ∈ C(X × V), we only need to show the continuity of the
second (integral) term. Let (θn, ϕn, qn, un)n∈N ⊂ P1(X ) × X × V × Γ converge to some point
(θ, ϕ, q, u) ∈ P1(X )× X × V × Γ where θ ≪ Wν . Then

b(t, ϕn, θn, un)⊤Dg(ϕn(t)) −→
n→∞

b(t, ϕ, θ, u)⊤Dg(ϕ(t))

for all t ∈ [t1, t2] by the continuity assumptions on b and Dg, i.e. b(t, ·)⊤Dg(·) is jointly contin-
uous for each t ∈ [t1, t2] at points (θ, ϕ, q, u) with θ ≪ Wν . Moreover

∣∣∣b(t, ϕ, θ, u)⊤Dg(ϕ(t))
∣∣∣ ≤ CDgC (1 + ‖ϕ‖∞,t +m(t; θ) + |u|)

≤ CDgC (1 +K + ‖ϕ‖∞,t + |u|)

for some constants CDg, C,K > 0 (this replaces Assumption (2) of Corollary A.5 in [41]). We
conclude by means of Corollary A.5 in [41].

We conclude this subsection by characterizing any limit measure Θ as the joint law of state and
(relaxed) control for a weak solution of the limit SDE in Eq.(2.7) with drift b̄. The next corollary
is a fairly standard result establishing a well-known connection between solutions of RM and
weak solutions of SDEs:

Corollary 3.1 (Representation of limit points). Let Θ be a solution of RM, as in Definition
3.2. Then there exists a weak solution (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ) of

Xt = X0 +

∫

[0,t]×Γ
b̄ (s,Xs, µs, u) Λs(du)ds + σWt, t ∈ [0, T ]

such that Θ = Q ◦ (X,Λ)−1, θ = Θ ◦X−1 and µt = g(t, θ) with g : [0, T ]×P1(X ) → M≤1,1(R
d)

as in Eq.(2.2).

Proof. Arguing analogously as in the proofs of Proposition 5.4.6 and Corollary 5.4.8 in [39] gives
the existence of a weak solution (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ) of the SDE

Xt = X0 +

∫

[0,t]×Γ
b (s,X, θ, u) Λs(du)ds + σWt, t ∈ [0, T ] (3.3)

such that Θ is the law of (X,Λ) under Q and θ = Θ ◦X−1. The conclusion is obtained by going
back to the original drift b̄, that we recall is given by

b̄(t, ϕ(t), g(t, θ), u) = b(t, ϕ, θ, u), (t, ϕ, θ, u) ∈ [0, T ]× X × P1(X )× Γ,

and g(t, θ) = µt as in Eq.(2.2).
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3.3 Optimality of the limit points

In this subsection, we show that any limit point Θ ∈ P(X ×V) of (Θn)n∈N is optimal according
to the cost functional of the MFG. In order to do that, we will extend the notion of relaxed
MFG solution to controls that are not necessarily in feedback form. In this case we evaluate
optimality according to the following cost functional:

Jµ (Λ)
.
= E

[∫

[0,τ ]×Γ
f̄ (s,Xs, µs, u) Λs(du)ds + F (τ,Xτ )

]
,

where Λ is any relaxed stochastic control and τ
.
= τX ∧ T , subject to the dynamics

Xt = X0 +

∫

[0,t]×Γ
b̄ (s,Xs, µs, u) Λs(du)ds + σWt, t ∈ [0, T ]. (3.4)

We set V µ = infΛ J
µ(Λ), where the minimization is actually performed over the set of relaxed

stochastic open-loop controls, i.e. over the tuples (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ) that are weak
solutions of Eq.(3.4) and where Λ is a progressively measurable P(Γ)-valued stochastic process.
To simplify the notation, we will just write Λ to refer to the whole tuple. Moreover, when working
on the canonical space X × V, where the canonical process (X,Λ) is completely characterized
by its law Θ, we will simply write Jµ(Θ) in place of Jµ(Λ).

Definition 3.3 (Relaxed MFG solution). A relaxed solution of the MFG is a pair (Λ, µ), where
Λ is a relaxed stochastic control and µ ∈ ΥT

≤1,1, such that:

(i) Λ is optimal, i.e. V µ = Jµ(Λ).

(ii) Let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,X,Λ,W ) be a weak solution of Eq.(3.4) with flow of sub-probability
measures µ, stochastic control Λ and initial condition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Proposition 3.3 (Existence of relaxed MFG solutions). Grant Assumptions (H1)-(H8) and
(C1). Let Θ be a limit point of (Θn)n∈N in P1(X × V). Set µ ∈ ΥT

≤1,1 as

µt (·)
.
= Θ

(
{Xt ∈ ·} ∩

{
τX > t

})
t ∈ [0, T ].

Then (Θ, µ) is a relaxed MFG solution according to Definition 3.3.

Proof. By construction we immediately have that Λ is a relaxed stochastic control and µ ∈ ΥT
≤1,1.

Moreover, property (ii) is a consequence of the fact that Θ is a solution of RM as in Definition
3.2. To prove property (i), we proceed through the following steps:

(j) Let Θ̃ ∈ P(X × V) be a solution of RM. Then there exists a sequence of solutions
(Θ̃n)n∈N of RM(n) such that limn→∞ Jn,µ

n
(Θ̃n) = Jµ(Θ̃).

(jj) limn→∞ Jn,µ
n
(Θn) = Jµ(Θ).

(jjj) Jµ(Θ) ≤ Jµ(Θ̃) for any Θ̃ ∈ P(X × V) solution of RM.

The proof of (j)-(jjj) largely follows that of Theorem 3.6 in [41]. Therefore, we highlight only
the main differences with respect to our setting, which are due to the sub-linear growth of the
drift and the cost functional and to the path dependency induced by the exit time from O.

Proof of (j). Let Θ̃ ∈ P(X × V) be a solution of RM and let (Ω̃, F̃ , (F̃t)t∈[0,T ], Θ̃,X,Λ,W )
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be a weak solution of Eq.(3.4) on the canonical space Ω̃ = X ×V. The existence of this solution
is guaranteed by Corollary 3.1. Now fix Λ and let Xn be a sequence of strong solutions of:

Xn
t = ξ +

∫

[0,t]×Γ
b̄n (s,Xn

s , µ
n
s , u) Λs(du)ds + σWt, t ∈ [0, T ]

on the filtered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], Θ̃). Set Θ̃n .
= Θ̃ ◦ (Xn,Λ)−1 for each n ∈ N.

Notice that (Θ̃n)n∈N ⊂ P1(X × V). Moreover each Θ̃n solves RM(n) as in Definition 3.1. We
now show that:

EΘ̃ [‖Xn −X‖∞] −→
n→∞

0 and W1(Θ̃
n, Θ̃) −→

n→∞
0. (3.5)

Regarding the first limit, it is sufficient to note that:

EΘ̃ [‖Xn −X‖∞,t] ≤ L

∫ t

0
EΘ̃ [‖Xn −X‖∞,s] ds+ EΘ̃

[∫

[0,t]×Γ
∆bn(s, u)Λs(du)ds

]

where we set

∆bn(t, u)
.
= |b̄n(t,Xt, µt, u)− b̄(t,Xt, µt, u)|.

The first term can be handled with Grönwall’s Lemma, whereas the second one by applying
a similar argument as in the first step of the proof of Proposition 3.2. Regarding the second
limit in Eq.(3.5) we can proceed as follows. First, notice that the first limit in Eq.(3.5) implies
convergence in probability, hence in law, of Xn to X. Thus, by an argument similar to that
of Lemma 3.5, we can prove the convergence in the 1-Wasserstein distance. At this point, the
convergence of the costs is a consequence of the convergence in the 1-Wasserstein distance and
the sub-linear growth of the running cost (combined with Theorem 7.12.iv in [58]), as in the
second step of the proof of Proposition 3.2.

Proof of (jj). This follows from an argument similar to the second part of (j).
Proof of (jjj). Let Θ̃ ∈ P(X × V) be a solution of RM and let (Θ̃n)n∈N ⊂ P(X × V) be an

approximating sequence as in (j). By the optimality of Θn we have

Jn,µ
n

(Θn) ≤ Jn,µ
n
(
Θ̃n
)

for all n ∈ N. The optimality of Θ follows by taking the limit for n → ∞ on both sides of the
inequality above and using the previous properties (j) and (jj).

3.4 Existence of solutions

In this subsection we finally conclude the proof of Theorem 3.1 by proving the existence of a
relaxed feedback MFG solution and, under additional convexity assumptions, the existence of a
strict feedback MFG solution. In addition, we also prove existence of solutions that are Marko-
vian up to the exit time.

Relaxed feedback MFG solutions. The main mathematical tool here is the mimicking result of
[8]. We follow the procedure in [41] but with modifications due to the peculiarities of our model
induced mainly by the presence of absorptions. We give more details in the proof below.

Proposition 3.4 (Existence of relaxed feedback MFG solutions). Grant Assumptions (H1)- (H8)
and (C1). Let (Θ, µ) be a relaxed MFG solution as in Definition 3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable func-
tional λ : [0, T ]×X → P(Γ) such that Θ′((ϕ, q) ∈ X ×V : qt = λ(t, ϕ)) = 1 for LT -a.e. t ∈ [0, T ]
and Jµ(Θ′) = Jµ(Θ) = V µ, i.e. (λ, µ) is a relaxed feedback solution of the MFG as in Definition
2.2.
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Proof. We adapt the proof of Theorem 3.7 in [41] to our setting, by exploiting the mimicking
result in Corollary 3.11 of [8] instead of Corollary 3.7 as in [41]. As a consequence, the mimicking
process that we get is not Markovian as in Lacker. However, it has the same law as the original
process and not only the same marginals. This is important in our setting due to the path
dependency induced by the exit time τ .

We start with the construction of λ by disintegration. Precisely, define η ∈ P([0, T ]×X ×Γ)
as:

η (I ×B ×G)
.
=

1

T
EΘ

[∫

[0,T ]×Γ
1(I×B×G) (t,X, u) Λ (dt, du)

]

and disintegrate it as η(dt, dϕ, du) = η̃(dt, dϕ)λt,ϕ(du). Then:

η (I ×B ×G) =

∫

[0,T ]×X

∫

Γ
1(I×B×G) (t, ϕ, u) λt,ϕ (du) η̃ (dt, dϕ)

for all I ∈ B([0, T ]), B ∈ B(X ) and G ∈ B(Γ). By the disintegration theorem, (t, ϕ) 7→ λt,ϕ(·) ∈
P(Γ) is Borel-measurable. Now set F̃X

t
.
= σ(Xs, s ∈ [0, t]) for each t ∈ [0, T ]. We claim that:

λt,X (·) = EΘ
[
Λt (·)

∣∣F̃X
t

]
Θ-a.s. and for LT -a.e. t ∈ [0, T ] (3.6)

which is measurable and adapted, hence it has a progressively measurable modification λ. We
show that for any bounded measurable functional g : [0, T ] × X × Γ → R such that g(t, ·, u) is
F̃X
t -measurable for all t ∈ [0, T ] and u ∈ Γ

∫

Γ
g (t,X, u) λt,X (du) =

∫

Γ
g (t,X, u)EΘ

[
Λt (du)

∣∣F̃X
t

]

Θ-a.s. and for LT -a.e. t ∈ [0, T ]. Indeed, for any other bounded measurable functional h : [0, T ]×
X → R such that h(t, ·) is F̃X

t -measurable for all t ∈ [0, T ], we have

1

T
EΘ

[∫ T

0
h (t,X)

∫

Γ
g (t,X, u) λt,X (du) dt

]
(3.7)

=

∫

[0,T ]×X
h (t, ϕ)

∫

Γ
g (t, ϕ, u)λt,ϕ (du) η̃ (dt, dϕ)

=

∫

[0,T ]×X×Γ
h (t, ϕ) g (t, ϕ, u) η (dt, dϕ, du)

=
1

T
EΘ

[∫ T

0
h (t,X)

∫

Γ
g (t,X, u) Λt (du) dt

]

where the first equality comes from the definition of η̃, the second one is due to the disintegration
of η and the third one holds by definition of η.
Now, let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,W,X,Λ) be a weak solution of Eq.(3.4) with relaxed control Θ =

Q◦(X,Λ)−1. By Corollary 3.11 in [8] there exists a weak solution (Ω̃′, F̃ ′, (F̃ ′
t)t∈[0,T ],Q

′,W ′,X ′)
of

X ′
t = ξ +

∫ t

0

∫

Γ
b̄
(
s,X ′

s, µs, u
)
λs,X′(du)ds + σW ′

t , t ∈ [0, T ]

such that Q′ ◦ (X ′)−1 = Q ◦X−1. Define Θ′ .= Q′ ◦ (X ′,Λ′)−1 where Λ′(dt, du)
.
= dtλt,X′(du).

Notice that if µ′ is the flow of sub-probability measures associated to Θ′ then µ′ = µ. Finally,
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Θ′ solves the same relaxed martingale problem as Θ, and it has the same cost as Θ as required:

Jµ
(
Θ′
)

= EQ′

[∫ τ ′

0

∫

Γ
f̄
(
t,X ′

t, µt, u
)
λt,X′ (du) dt+ F

(
τ ′,X ′

τ ′

)
]

= EQ

[∫ τ

0

∫

Γ
f̄ (t,Xt, µt, u)λt,X (du) dt+ F (τ,Xτ )

]

= EQ

[∫ τ

0

∫

Γ
f̄ (t,Xt, µt, u)E

Q
[
Λt (du)

∣∣F̃X
t

]
dt+ F (τ,Xτ )

]

= EQ

[∫ τ

0

∫

Γ
EQ
[
f̄ (t,Xt, µt, u) Λt (du)

∣∣F̃X
t

]
dt+ F (τ,Xτ )

]

= EQ

[∫

[0,τ ]×Γ
f̄ (t,Xt, µt, u) Λ (dt, du) + F (τ,Xτ )

]

= Jµ (Θ) .

Remark 3.2. We observe that, due to the discontinuity induced by the exit time τ , it is not
possible in general to apply Theorem 3.6 of [8] to Zt = (Xt, I[0,τ)(t)), t ∈ [0, T ], to obtain a control
which is Markovian in Z. Moreover the few mimicking results available in the literature for
discontinuous processes hold under very restrictive or hardly verifiable assumptions. Nonetheless,
Theorem 3.6 of [8] could still be applied in some particular cases when, for instance, O = (0,∞)
and Zt = (Xt, infs∈[0,t]Xs).

Strict feedback MFG solutions. Under additional convexity assumptions (Filippov [24], Hauss-
mann and Lepeltier [35]), we prove existence of feedback MFG solutions in strict form. Let
(Θ, µ) be a relaxed MFG solution according to Definition 3.3 and for each (t, ϕ) ∈ [0, T ] × X
define K(t, ϕ, µ) as:

K (t, ϕ, µ)
.
=
{(
b̄ (t, ϕ(t), µt, u) , z

)
: z ≥ f̄ (t, ϕ(t), µt, u) and u ∈ Γ

}
.

Existence of strict MFG solutions is established under the additional Assumption (C2).

Remark 3.3. Assumption (C2) is equivalent to requiring that the set K(t, ϕ, µ) is convex. This
assumption is crucial to apply the measurable selection arguments in [35, 22].

Proposition 3.5 (Existence of strict feedback MFG solutions). Grant Assumptions (H1)- (H8),
(C1) and Assumption (C2). Let (Θ, µ) be a relaxed MFG solution as in Definition 3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable func-
tional u ∈ Ufb such that Θ′((ϕ, q) ∈ X × V : qt = δu(t,ϕ)) = 1 for LT -a.e. t ∈ [0, T ] and
Jµ(Θ′) = Jµ(Θ) = V µ, i.e. (u, µ) is a strict and feedback solution of the MFG as in Definition
2.1.

Proof. We follow once more the proof of Theorem 3.7 in [41], highlighting the main differences
with respect to our setting. The first part of the proof proceeds as in Proposition 3.4. Since for
all (t, ϕ) ∈ [0, T ]×X the pair (b̄(t, ϕ(t), µt, u), f̄(t, ϕ(t), µt, u)) belongs to K(t, ϕ, µ) for all u ∈ Γ
and K(t, ϕ, µ) is convex, we have

∫

Γ

(
b̄ (t, ϕ(t), µt, u) , f̄ (t, ϕ(t), µt, u)

)
λt,ϕ(du) ∈ K (t, ϕ, µ) .

By applying the measurable selection argument in [35, 22] (with respect to the progressive
σ-algebra, i.e. the σ-algebra generated by progressively measurable processes), we find a pro-
gressively measurable functional u : [0, T ]× X → Γ such that

∫

Γ
b̄ (t, ϕ(t), µt, u)λt,ϕ(du) = b̄ (t, ϕ(t), µt, u(t, ϕ))
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and
∫

Γ
f̄ (t, ϕ(t), µt, u)λt,ϕ(du) ≥ f̄ (t, ϕ(t), µt, u(t, ϕ)) (3.8)

for all (t, ϕ) ∈ [0, T ]×X . Define Θ′ .= Q′ ◦ (X ′,Λ′)−1 where Q′ is as in the proof of Proposition
3.4 and Λ′(ϕ, q)(dt, du)

.
= dtδu(t,ϕ)(du). Θ′ solves the same relaxed martingale problem as Θ.

As for the costs, we have

Jµ
(
Θ′
)

= EQ′

[∫ τ ′

0

∫

Γ
f̄
(
t,X ′

t, µt, u
)
δu(t,X′)(du)dt + F

(
τ,X ′

τ

)
]

= EQ′

[∫ τ ′

0
f̄
(
t,X ′

t, µt, u(t,X
′)
)
dt+ F

(
τ,X ′

τ

)
]

≤ EQ′

[∫ τ ′

0

∫

Γ
f̄
(
t,X ′

t, µt, u
)
λt,X′(du)dt+ F

(
τ,X ′

τ

)
]

= EQ

[∫ τ

0

∫

Γ
f̄ (t,Xt, µt, u)λt,X (du) dt+ F (τ,Xτ )

]

= EQ

[∫

[0,τ ]×Γ
f̄ (t,Xt, µt, u) Λ (dt, du) + F (τ,Xτ )

]

= Jµ (Θ)

where the inequality above is due to Eq.(3.8). Given the optimality of (Θ, µ) we already have
the converse inequality, i.e. Jµ(Θ) ≤ Jµ(Θ′). Hence Jµ(Θ) = Jµ(Θ′).

We can finally give the proof of Theorem 3.1.

Proof of Theorem 3.1. Grant Assumptions (H1)-(H8) and (C1). Proposition 3.3 guarantees ex-
istence of a relaxed MFG solution (Θ, µ) as in Definition 3.3. By Proposition 3.4 there ex-
ists another relaxed MFG solution (Θ′, µ) together with a progressively measurable functional
λ : [0, T ] × X → P(Γ) such that Θ′((ϕ, q) ∈ X × V : qt = λ(t, ϕ)) = 1 for LT -a.e. t and
Jµ(Θ′) = Jµ(Θ) = V µ. Then (λ, µ) is a relaxed and feedback solution of the MFG as in
Definition 2.2.

Additionally grant Assumption (C2). By Proposition 3.5 there exists another relaxed MFG
solution (Θ′, µ) and a progressively measurable functional u ∈ Ufb such that Θ′((ϕ, q) ∈ X ×V :
qt = δu(t,ϕ)) = 1 for LT -a.e. t ∈ [0, T ], and Jµ(Θ′) = Jµ(Θ) = V µ. Then (u, µ) is a strict and
feedback solution of the MFG as in Definition 2.1.

Markovian MFG solutions. We conclude this part with showing that there exist relaxed and
strict feedback solutions that are Markovian up to the exit time.

Proposition 3.6 (Markovian MFG solutions). Grant Assumptions (H1)-(H8) and (C1). Let
(Θ, µ) be a relaxed MFG solution as in Definition 3.3. Then there exists another relaxed MFG
solution (Θ′, µ) and a function λ : [0, T ]× Rd → P(Γ) such that

LT ⊗Θ′({(t, ϕ, q) : qt = λ(t, ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = V µ. Additionally, grant Assumption (C2). Then there exists a function
u : [0, T ]× Rd → Γ such that

LT ⊗Θ′({(t, ϕ, q) : qt = δu(t,ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = V µ.
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Proof. Let us define the following processes

Yt
.
= (t,Xt), XτX

t
.
= Xt∧τX , Y τX

t
.
= Yt∧τX

for t ∈ [0, T ]. If X satisfies Eq.(3.4) with flow of sub-probability measures µ and relaxed control

Λ then the SDE satisfied by XτX is (on the same probability space)

XτX

t = ξ +

∫

[0,t]×Γ
b̄
(
s,XτX

s , µs, u
)
1[0,τX)(s)Λs(du)ds + σ

∫ t

0
1[0,τX)(s)dWs

for t ∈ [0, T ]. Notice that until t ≤ τX the stopped process XτX coincides pathwise with
the original process X. We now apply the mimicking result in Corollary 3.7 of [8], to the

stopped process Y τX . To this end, we follow the proof of Theorem 3.7 in [41] and the proofs of
Propositions 3.4 and 3.5 in the present paper.
First, we claim that there exists a measurable function λ : [0, T ]× Rd+1 → P(Γ) such that

λ
t,Y τX

t

(·) = EΘ
[
Λt(·)

∣∣Y τX

t

]
, Θ-a.s. and for LT -a.e. t ∈ [0, T ].

Such a function can be constructed by disintegration as follows. Let η ∈ P([0, T ] × Rd+1 × Γ)
be given by

η(B)
.
=

1

T
EΘ

[∫

[0,T ]×Γ
1C

(
t, Y τX

t , u
)
Λ(dt, du)

]
.

We define λ through η(dt, dy, du)
.
= η̃(dt, dy)λt,y(du). By Corollary 3.7 in [8] applied to λ

t,Y τX
t

there exists a weak solution (Ω̃′, F̃ ′, (F̃ ′
t)t∈[0,T ],Q

′,W ′,X ′) of

X ′
t = ξ +

∫ t

0

∫

Γ
b̄
(
s,X ′

s, µs, u
)
1[0,τX′)(s)λs,Y τX

′

t

(du)ds + σ

∫ t

0
1[0,τX′)(s)dW

′
s

for t ∈ [0, T ], where Y τX
′

t
.
= (t ∧ τX

′

,X ′
t) and Q′ ◦ (t ∧ τX

′

,X ′
t)
−1 = Q ◦ (t ∧ τX ,XτX

t )−1 for all

t ∈ [0, T ], i.e. Y τX
′

and Y τX have the same time marginals. Now set τ ′
.
= τX

′

∧ T . Recall that
Θ = Q ◦ (X,Λ)−1 and define Θ′ .= Q′ ◦ (X ′,Λ′)−1 where Λ′(dt, du)

.
= dtλ

t,Y τX
′

t

(du). Equality of

the costs can be shown just as in the proof of Proposition 3.4:

Jµ
(
Θ′
)

= EQ′

[∫ τ ′

0

∫

Γ
f̄(t,X ′

t, µt, u)λt,t∧τX′
,X′

t
(du)dt + F

(
τ ′,X ′

τ ′

)
]

= EQ

[∫ τ

0

∫

Γ
f̄(t,XτX

t , µt, u)λt,t∧τX ,XτX
t

(u)dt+ F
(
τ,XτX

τ

)]

= EQ

[∫

[0,τ ]×Γ
f̄(t,XτX

t , µt, u)Λ(dt, du) + F
(
τ,XτX

τ

)]

= Jµ (Θ) .

Therefore, λ : [0, T ] × [0, T ] × Rd → P(Γ) satisfies Θ′(q ∈ V : qt = λ(t, t ∧ τ X̂ , X̂τ X̂

t )) = 1 for
LT -a.e. t ∈ [0, T ] and Jµ(Θ′) = Jµ(Θ) = V µ.

Consider now a weak solution (Ω̃′′, F̃ ′′, (F̃ ′′
t )t∈[0,T ],Q

′′,W ′′,X ′′) of

X ′′
t = ξ +

∫ t

0

∫

Γ
b̄
(
s,X ′′

s , µs, u
)
λ
s,Y τX

′′

t

(du)ds + σW ′′
t , t ∈ [0, T ]
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where Y τX
′′

t = (t ∧ τX
′′

,X ′′
t ). Set Θ′′ .= Q′′ ◦ (X ′′,Λ′′)−1 where Λ′′(dt, du)

.
= dtλ

t,Y τX
′′

t

(du). To

avoid confusion between specific solutions, here (X̂, Λ̂) denotes the canonical process on X ×V.
First, Θ′ solves the martingale problem associated to

M̂
g
t (ϕ, q)

.
= g(ϕ(t)) − g(ϕ(0)) −

∫

[0,t]×Γ
b̄(s, ϕ(s), µs, u)

⊤Dg(ϕ(s))1
[0,τ X̂ )

(s)q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ⊤D2g(ϕ(s))

]
1
[0,τ X̂)

(s)ds, t ∈ [0, T ].

as well as the one associated to

M
g
t (ϕ, q)

.
= g(ϕ(t)) − g(ϕ(0)) −

∫

[0,t]×Γ
b̄(s, ϕ(s), µs, u)

⊤Dg(ϕ(s))q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ⊤D2g(ϕ(s))

]
ds

up to time τ X̂ ∧ T , i.e. the martingale property is satisfied by the processes above stopped at

time τ X̂ ∧ T . Second, Θ′′ solves the latter martingale problem up to time T . Then Θ′ and Θ′′

solve the same martingale problem up to time τ X̂ ∧ T . Moreover, we have Θ′′(q ∈ V : qt =

λ(t, t ∧ τ X̂ , X̂t)) = 1 for LT -a.e. t ∈ [0, T ]. If we set Θt
.
= Θ ◦ (X̂, Λ̂)−1

·∧t for all Θ ∈ P(X × V)

and t ∈ [0, T ], then by uniqueness of the solution of the martingale problem up to time τ X̂ ∧ T
we have

Θ′
t(· ∩ {t ≤ τ X̂ ∧ T}) = Θ′′

t (· ∩ {t ≤ τ X̂ ∧ T}).

Hence Jµ(Θ′) = Jµ(Θ′′). Now Θ′′ satisfies item (ii) of Definition 3.3.

To conclude notice that the process Y τX
′′

t = (t ∧ τX
′′

,X ′′
t ) reduces to (t,X ′′

t ) before time
τX

′′

∧ T . Hence, also λ
t,Y τX

′′

t

, with a slight abuse of notation, reduces to λt,X′′

t
. With the

additional Assumption (C2), the second part of this lemma follows from the proof of Proposition

3.5 applied to the stopped process Y τX .

4 Uniqueness of solutions of the mean-field game

In this section we address the problem of uniqueness of MFG solutions. Precisely, under As-
sumptions (H1)-(H8) and with the additional Assumptions (U1)-(U4) given below, where the
second one guarantees monotonicity of the running cost in the same spirit as [47] (see also The-
orem 3.29 in [11]), we show uniqueness of the MFG solution also in the presence of smooth
dependence on past absorptions. The extra assumptions can be formulated as follows.

(U1) The running cost can be split in two terms:

f̄(t, x, µ, u) = f̄0(t, x, u) + f̄1(t, x, µ)

for some measurable functions f̄0 : [0, T ] × Rd × Γ → [0,∞) and f̄1 : [0, T ] × Rd ×
M≤1,1(R

d) → [0,∞).

(U2) Lasry-Lions monotonicity assumption: Let µ, µ̃ ∈ M≤1,1(R
d), µ 6= µ̃. Then

∫

Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) ≥ 0, t ∈ [0, T ].

(U3) The drift b does not depend on the measure variable.
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(U4) Let µ̄ ∈ ΥT
≤1,1 be fixed. Then the following optimization problem

inf
Λ∈Ũ

J µ̄ (Λ)
.
= E

[∫

[0,τ ]×Γ
f̄ (s,Xs, µ̄s, u) Λs(du)ds + F (τ,Xτ )

]
(4.1)

has a unique solution Λµ̄, where (Ω,F , (Ft)t∈[0,T ],P,W,X) is a solution of Eq.(2.7) under
Λµ̄ with initial distribution ν and drift b satisfying (U3).

Theorem 4.1 (Uniqueness). Under Assumptions (H1)-(H8) and (U1)-(U4), if there exists a
feedback solution of the MFG (λ, µ) (as in Definition 2.2) then it is unique.

Proof. By contradiction, let (λ, µ) and (λ̃, µ̃) be two different feedback MFG solutions (as in
Definition 2.2). Then

J µ̃(λ)− J µ̃(λ̃) > 0 and Jµ(λ̃)− Jµ(λ) > 0

where the inequality is strict by uniqueness of the minimizer in Assumption (U4), and in par-
ticular

∆(µ, µ̃, λ, λ̃)
.
= J µ̃(λ)− J µ̃(λ̃) + Jµ(λ̃)− Jµ(λ) > 0.

However, thanks to Assumption (U3) that grants independence of the dynamics of the state
processes from the flows of measures µ and µ̃

∆(µ, µ̃, λ, λ̃) = EP

[∫ T

0
1[0,τ)(t)

(
f̄1(t,Xt, µ̃t)− f̄1(t,Xt, µt)

)
dt

]

+EP̃

[∫ T

0
1[0,τ̃)(t)

(
f̄1(t, X̃t, µt)− f̄1(t, X̃t, µ̃t)

)
dt

]

where (Ω,F , (Ft)t∈[0,T ],P,W,X) and (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃, W̃ , X̃) are weak solutions of Eq.(2.5)

respectively with controls λ and λ̃. Set θ
.
= P ◦X−1 and θ̃

.
= P̃ ◦ X̃−1. Then

∆(µ, µ̃, λ, λ̃) =

∫

X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ̃(dϕ)

−

∫

X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ(dϕ)

=

∫ T

0

∫

X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ̃(dϕ)dt

−

∫ T

0

∫

X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ(dϕ)dt

=

∫ T

0

∫

Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µ̃t(dx)dt

−

∫ T

0

∫

Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µt(dx)dt

= −

∫ T

0

∫

Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
(µt − µ̃t)(dx)dt

which is lower than or equal to zero by Assumption (U2). In the second equality we have used
Fubini-Tonelli theorem, while the third one comes from the definitions of µ and µ̃, i.e.

µt(B)
.
= θ ({Xt ∈ B} ∩ {t < τ})

=

∫

X
1B(ϕ(t))1[0,τ(ϕ))(t)θ(dϕ)

=

∫

Rd

1B(x)µt(dx), t ∈ [0, T ]

for all B ∈ B(Rd) and similarly for µ̃.
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Example 4.1 (Non-local dependence on the measure through a weighted average). We provide
and example of running cost f̄ satisfying the monotonicity condition (U2), which is an assump-
tion on the measure-dependent term f̄1 only. Let w : Rd → [0,∞) be some measurable function
with sub-linear growth so that

mw(µ)
.
=

∫

Rd

w(x)µ(dx) <∞, for all µ ∈ M≤1,1(R
d)

and set

f̄1(t, x, µ)
.
= w(x)

∫

Rd

w(y)µ(dy) = w(x)mw(µ), (t, x, µ) ∈ [0, T ]× Rd ×M≤1,1(R
d).

Since

f̄1(t, x, µ)− f̄1(t, x, µ̃) = w(x)

∫

Rd

w(y)(µ − µ̃)(dy)

we obtain
∫

Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) =

∫

Rd

w(x)

∫

Rd

w(y)(µ − µ̃)(dy)(µ − µ̃)(dx),

=

∫

Rd

w(x)(µ − µ̃)(dx)

∫

Rd

w(y)(µ − µ̃)(dy),

=

(∫

Rd

w(x)(µ − µ̃)(dx)

)2

≥ 0.

5 Approximate Nash equilibria for the N-player game with finite-

dimensional interaction

In this section, we consider an important particular case of our MFG with absorption, where
the mean-field interaction is finite-dimensional. This is inspired by the original model of [9]. We
show that any feedback solution of the MFG can be used to construct a sequence of approximate
Nash equilibria for the corresponding N -player game. To this end, we will need two additional
assumptions (Assumptions (N1) and (N2) below). We focus on a finite-dimensional example first
for technical reasons: this setting is very suitable to the propagation of chaos result that we use
in the proofs without being too technical. Second, we think that this case is also particularly
relevant for the applications as mentioned in the introduction. Overall, we believe that the
finite-dimensional setting enables us to keep a good balance between abstract technicalities and
modelling needs.

The approximation result is the content of Theorem 5.1 and Corollary 5.2. In order to
prove this, we interpret the N -player system as a system of N interacting diffusions (as in, e.g.,
[49, 57, 28]). While the usual mode of convergence of an N -particle system is the convergence in
law of the empirical measures, here we obtain a stronger form of propagation of chaos as in [42]
but with possibly unbounded drift in the state variable. We prove that the empirical measures
converge in the stronger τ -topology, which is widely used in the large deviations literature (see,
for instance, Chapter 6.2 in Dembo and Zeitouni [21]); see Subsection 5.3.

5.1 The setting with finite-dimensional interaction

Here, we describe the MFG and the corresponding N -player game with smooth dependence on
past absorptions, specializing them to the finite-dimensional interaction setting. In particular, we
give the definition of ǫ-Nash equilibrium for the N -player game. Then, we give the assumptions
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that are specific to this model. We conclude by checking that the MFG with finite-dimensional
interactions satisfies the hypotheses of Theorem 3.1, granting the existence of relaxed and strict
solutions of the MFG.

The mean-field dynamics. Given a feedback control u ∈ Ufb and a flow of sub-probability mea-
sures µ ∈ ΥT

≤1,1, the representative player’s state evolves according to the equation

Xt = X0 +

∫ t

0
b̃ (s,Xs, L (µs) ,mw (µs) , u (s,X)) ds+ σWt, t ∈ [0, T ] (5.1)

where X is a d-dimensional stochastic process starting at X0
d
∼ ν ∈ P(Rd), W is a d-dimensional

Wiener process on some filtered probability space (Ω,F , (Ft)t∈[0,T ],P), b̃ and σ are as in the

assumptions below. In addition, mw (µ) and L (µ) are functions mw : M≤1,1(R
d) → Rd0 and

L : M≤1,1(R
d) → [0, 1] defined as

mw (µ)
.
=

∫

Rd

w (x)µ(dx) and L (µ)
.
= 1−

∫

Rd

µ(dx)

where w : Rd → Rd0 , d0 ∈ N, is a fixed weight function with sub-linear growth. Again, solutions
of Eq.(5.1) are understood in the weak sense (see Remark 2.5). The cost associated to a strategy
u ∈ Ufb and a flow of sub-probability measures µ ∈ ΥT

≤1,1 is given by

Jµ (u)
.
= E

[∫ τ

0
f̃ (s,Xs, L (µs) ,mw (µs) , u (s,X)) ds+ F (τ,Xτ )

]
(5.2)

where τ
.
= τX ∧ T is the random time horizon as in the previous sections.

The N -player dynamics. Let N ∈ N be the number of players. We assume that the players’ pri-
vate states evolve according to the following system ofN d-dimensional SDEs: for i ∈ {1, . . . , N},

X
N,i
t = X

N,i
0 +

∫ t

0
b̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, uN,i

(
s,XN

))
ds + σW

N,i
t (5.3)

for t ∈ [0, T ], where XN,i
0

d
∼ ν i.i.d., WN,1, . . . ,WN,N is an N -dimensional vector of independent

d-dimensional Wiener processes, XN denotes the vector of all players’ private states, u
N the

vector of feedback strategies, b̃ and σ are as in the assumptions below. We remind that µN ∈
ΥT

≤1,1 is the random empirical sub-probability measures defined as

µNt (·)
.
=

1

N

N∑

i=1

δ
X

N,i
t

(·) 1
[0,τX

N,i
)
(t) , t ∈ [0, T ]. (5.4)

Solutions of the SDEs in Eq.(5.3) are understood to be in the weak sense on some filtered
probability space (ΩN ,FN , (FN

t )t∈[0,T ],P
N ) satisfying the usual conditions (see Remark 2.5).

Let UN1 be the set of all progressively measurable functionals u : [0, T ] × XN → Γ, and let
UNN , the set of all vectors u

N such that uN,i ∈ UN1 , i ∈ {1, . . . , N}. Each element of UNN is called
feedback strategy vector. In this game, player i evaluates a strategy vector u

N ∈ UNN according
to his/her expected costs

JN,i
(
u
N
) .
= E

[∫ τN,i

0
f̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, uN,i(s,XN )

)
ds

+F
(
τN,i,X

N,i

τN,i

)]
(5.5)
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over a random time horizon, where XN is the N -player dynamics under u
N and τN,i

.
= τX

N,i
∧T .

Our aim is the construction of approximate Nash equilibria for theN -player game from a solution
of the limit problem. In the next definition, we use the standard notation [uN,−i, v] to indicate a
strategy vector equal to u

N for all players but the i-th, who deviates by playing v ∈ UN1 instead.

Definition 5.1 (ǫ-Nash equilibrium). Let ǫ ≥ 0. A strategy vector u
N ∈ UNN is called ǫ-Nash

equilibrium for the N -player game if for every i ∈ {1, . . . , N} and for any deviation v ∈ UN1 we
have:

JN,i(uN ) ≤ JN,i
([
uN,−i, v

])
+ ǫ.

Relaxed controls. It will be very convenient to use relaxed controls also in the N -player case.
Let ŨN1 be the set of all single-player relaxed strategies for the N -player game, and let ŨNN be

the set of N -player relaxed strategy vectors, i.e. vectors λN = (λN,1, . . . , λN,N ) with λN,i ∈ ŨN1 ,
i ∈ {1, . . . , N}. At this point, we can rewrite the dynamics and the cost functional of the
N -player game (Eq.(5.3) and Eq.(5.5)) by using relaxed controls as

X
N,i
t = X

N,i
0 +

∫

[0,t]×Γ
b̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, u
)
λN,i

(
s,XN

)
(du)ds +σWN,i

t (5.6)

with associated cost

JN,i
(
λ
N
)
= E

[∫

[0,τN,i]×Γ
f̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, u
)
λN,i

(
s,XN

)
(du)ds

+F
(
τN,i,X

N,i

τN,i

)]
(5.7)

for t ∈ [0, T ], i ∈ {1, . . . , N}, λN ∈ ŨNN and λN,i ∈ ŨN1 for all i ∈ {1, . . . , N}. Moreover, we
extend accordingly the notion of ǫ-Nash equilibrium.

Definition 5.2 (Relaxed ǫ-Nash equilibrium). A strategy vector λ
N ∈ ŨNN is an ǫ-Nash equi-

librium for the N -player game if for every i ∈ {1, . . . , N} and for any single-player strategy
β ∈ ŨN1

JN,i(λN ) ≤ JN,i
([
λ
N,−i, β

])
+ ǫ.

The drift b̃, the function w, the running cost f̃ and the terminal cost F now satisfy the following
assumptions, replacing Assumptions (H1)-(H3):

(H1’) The drift b̃ : [0, T ] × Rd × [0, 1] × Rd0 × Γ → Rd is jointly continuous and satisfies the
following uniform Lipschitz continuity: there exists L > 0 such that

∣∣∣b̃ (t, x, ℓ,m, u) − b̃
(
t, x′, ℓ,m, u

)∣∣∣ ≤ L
∣∣x− x′

∣∣

for all x, x′ ∈ Rd and all (t, ℓ,m, u) ∈ [0, T ] × [0, 1] × Rd0 × Γ. Moreover it has sub-linear
growth in (x,m) uniformly in the other variables, i.e. there exists a constant C > 0 such
that

∣∣∣b̃ (t, x, ℓ,m, u)
∣∣∣ ≤ C (1 + |x|+ |m|)

for all (t, x, ℓ,m, u) ∈ [0, T ]× Rd × [0, 1] × Rd0 × Γ.

(H2’) w : Rd → Rd0 is continuous and has sub-linear growth: |w(x)| ≤ C(1 + |x|) for all x ∈ Rd.
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(H3’) The costs f̃ : [0, T ]×Rd× [0, 1]×Rd0 ×Γ → [0,∞) and F : [0, T ]×Rd → [0,∞) are jointly
continuous. Moreover, they have sub-linear growth:

∣∣∣f̃(t, x, ℓ,m, u)
∣∣∣ ≤ C (1 + |x|+ |m|) ,

|F (t, x)| ≤ C (1 + |x|) ,

for all (t, x, ℓ,m, u) ∈ [0, T ]× Rd × [0, 1] × Rd0 × Γ.

We conclude the presentation of the finite-dimensional model by introducing the coefficients’
reparametrization on P1(X ), by checking their joint continuity (as in Assumption (H3)), where
continuity in the measure variable is in the 1-Wasserstein distance and at points θ ≪ Wν . We set
(b̄, f̄)(t, x, µ, u)

.
= (b̃, f̃)(t, ϕ(t), L(µ),mw(µ), u) for all (t, x, µ, u) ∈ [0, T ]× Rd ×M≤1,1(R

d)× Γ
and define the reparametrization (b, f) as in Section 2. Then

(b, f)(t, ϕ, θ, u) = (b̃, f̃)(t, ϕ(t), L(t; θ),mw(t; θ), u)

where

mw(t; θ)
.
=

∫

X
w (ϕ(t)) 1[0,τ(ϕ))(t)θ(dϕ),

L(t; θ)
.
= 1−

∫

X
1[0,τ(ϕ))(t)θ(dϕ)

are called the average and loss process and they equal mw(µt) and L(µt) in case µt = g(t, θ)
where g is defined as in Eq.(2.2).

Joint continuity of b and f follows from joint continuity of b̃ and f̃ and from the following
lemma.

Lemma 5.1 (Continuity of the average and loss processes). Grant Assumptions (H1’)-(H3’)
and (H4)-(H8). Let (θn)n∈N ⊂ P1(X ) converge to θ ∈ P1(X ), θ ≪ Wν , in the 1-Wasserstein
distance, then

(i) L(t; θn) → L(t; θ) as n→ ∞.

(ii) mw(t; θ
n) → mw(t; θ) as n→ ∞.

Proof. (i). Denote by Dτ (t) the set of discontinuity points of the map ϕ 7→ 1[0,τ(ϕ))(t) for

t ∈ [0, T ]. In particular θn
w
⇀ θ. Then:

L(t; θn)− L(t; θ) = −

∫

X
1[0,τ(ϕ))(t) (θ

n − θ) (dϕ) −→
n→∞

0

for all t ∈ [0, T ]. This follows from the definition of weak convergence of measures, the fact that
θ(Dτ (t)) = 0 for all t ∈ [0, T ] (due to θ ≪ Wν) and by Lemma A.4.(d).

(ii). Now we have:

|mw(t; θ
n)−mw(t; θ)| ≤

∣∣∣∣
∫

X
w(ϕ(t))1[0,τ(ϕ))(t) (θ

n − θ) (dϕ)

∣∣∣∣ −→
n→∞

0

for all t ∈ [0, T ] as a consequence of the convergence in the 1-Wasserstein distance, the fact that
θ(Dτ (t)) = 0 for all t ∈ [0, T ] and by Lemma A.4.(d) together with Lemma A.5.

We conclude by proving that we can use Theorem 3.1 and get existence of a feedback relaxed and
strict solutions of the MFG with smooth dependence on past absorptions and finite-dimensional
dependence on the measure.
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Corollary 5.1 (Existence of relaxed and strict feedback MFG solutions). Under Assumptions
(H1’)-(H3’), (H4)-(H8) and (C1) , there exists a relaxed feedback solution (λ, µ) of the MFG
with finite dimensional interaction. Moreover, under the additional Assumption (C2) , there
exists a strict feedback MFG solution (u, µ).

Proof. Assumptions (H1’)-(H3’) imply Assumptions (H1)-(H3) of Theorem 3.1. Indeed, (H1)-
(H2) follow from the definition of the coefficients b̃ and f̃ . Assumption (H3), i.e. joint continuity
of the reparametrized coefficients, is a consequence of joint continuity of b̃ and f̃ and Lemma
5.1.

5.2 The N-player approximation theorem

In order to state the N -player approximation results, we need the following two additional
assumptions (N1)-(N2), whose formulation requires some more terminology.

We set

dTVt (θ, θ̃)
.
= supB∈Ft

|θ(B)− θ̃(B)|,

for all θ, θ̃ ∈ P(X ) and we note that for t ∈ [0, T ), dt is only a pseudo-metric, whereas for t = T

it is a proper metric; dTVT is called the total variation distance. However, with a slight abuse of
terminology, we will often refer to dTVt as the total variation distance for each t ∈ [0, T ].

(N1) The function w : Rd → Rd0 is bounded.

(N2) The drift b̃ satisfies the following Lipschitz continuity:
∣∣∣b̃ (t, x, ℓ,m, u)− b̃

(
t, x′, ℓ′,m′, u

)∣∣∣ ≤ L
(∣∣x− x′

∣∣+
∣∣ℓ− ℓ′

∣∣+
∣∣m−m′

∣∣)

for all (x, ℓ,m), (x′, ℓ′,m′) ∈ Rd × [0, 1] × Rd0 and all (t, u) ∈ [0, T ] × Γ, with Lipschitz
constant L > 0. The running cost f̃ can be decomposed as

f̃(t, x, ℓ,m, u) = f̃0(t, x, u) + f̃1(t, x, ℓ,m),

where

|f̃0(t, x, u)| ≤ K and |f̃1(t, x, ℓ,m)| ≤ C(1 + |x|),

for all (t, x, ℓ,m, u) ∈ [0, T ]× Rd × [0, 1] × Rd0 × Γ and some constants C,K > 0.

From Assumptions (N1)-(N2), the reparametrizations b and f inherit a series of properties that
are fundamental in the proof of the approximation result. First, being w : Rd → Rd0 bounded,
the drift b is Lipschitz continuous with respect to the total variation distance, which is a key
assumption in Lemma 5.2. Indeed

∣∣b(t, ϕ, θ, u) − b(t, ϕ, θ′, u)
∣∣ ≤ L

(∣∣L(t; θ)− L(t; θ′)
∣∣+
∣∣mw(t; θ)−mw(t; θ

′)
∣∣)

≤ L(1 + ‖w‖∞)dTVT (θ, θ′)
.
= LTVb dTVT (θ, θ′)

because

∣∣L(t; θ)− L(t; θ′)
∣∣ =

∣∣∣∣
∫

X
1[0,τ(ϕ))(t)(θ

′ − θ)(dϕ)

∣∣∣∣ ≤ dTVT (θ, θ′) and

∣∣mw(t; θ)−mw(t; θ
′)
∣∣ =

∣∣∣∣
∫

X
w(ϕ(t))1[0,τ(ϕ))(t)(θ − θ′)(dϕ)

∣∣∣∣ ≤ ‖w‖∞d
TV
T (θ, θ′).

Second, the sub-linear growth property

|b(t, ϕ, θ, u)| ≤ C(1 + ‖w‖∞ + ‖ϕ‖∞,t), (t, ϕ) ∈ [0, T ]× X
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is uniform in θ ∈ P(X ) and in u ∈ Γ, implying that b is bounded in the measure and control
variables (and analogously f). This means that b and f are well defined on all P(X ) not only
on P1(X ), which is fundamental to apply the fixed point theorem in Lemma 5.2. Finally, the
running cost f can be decomposed as

f(t, ϕ, θ, u) = f0(t, ϕ, u) + f1(t, ϕ, θ)

where its components are

f0(t, ϕ, u)
.
= f̃0(t, ϕ(t), u) and f1(t, ϕ, θ)

.
= f̃1(t, ϕ(t), L(t; θ),mw(t; θ))

which inherit from f̃0 and f̃1 the properties

|f0(t, ϕ, u)| ≤ K and |f1(t, ϕ, θ)| ≤ C(1 + ‖ϕ‖∞,t)

for all (t, ϕ, θ, u) ∈ [0, T ] × X × P(X ) × Γ. This is a key assumption to perform the passage
to the many-player limit in Theorem 5.1. Indeed, boundedness in the control of f0 enables us
to exploit convergence in the τ -topology while sub-linearity in the state variable ϕ uniformly in
the measure variable θ makes f1 a good test function for the convergence in the 1-Wasserstein
distance.

Theorem 5.1 (Approximate Nash equilibria - relaxed). Let (λ, µ) be a relaxed feedback MFG
solution. For all N ≥ 2, define λ

N = (λN,1, . . . , λN,N ) ∈ ŨNN where λN,i(t, ϕN )
.
= λ(t, ϕN,i) for

all i ∈ {1, . . . , N}, t ∈ [0, T ] and ϕN ∈ XN .
Then under Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2), for every ǫ > 0 there exists
N ǫ ∈ N such that λ

N is an ǫ-Nash equilibrium for the N -player game whenever N ≥ N ǫ, i.e.
for every i ∈ {1, . . . , N} and for any deviation β ∈ ŨN1

JN,i
(
λ
N
)
≤ JN,i

([
λN,−i, β

])
+ ǫ

for all N ≥ N ǫ.

Corollary 5.2 (Approximate Nash equilibria - strict). Let (u, µ) be a strict feedback MFG
solution. For all N ≥ 2, define u

N = (uN,1, . . . , uN,N ) ∈ UNN where uN,i(t, ϕN )
.
= u(t, ϕN,i) for

all i ∈ {1, . . . , N}, t ∈ [0, T ] and ϕN ∈ XN .
Then under Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2), for every ǫ > 0 there exists a
N ǫ ∈ N such that u

N is an ǫ-Nash equilibrium for the N -player game whenever N ≥ N ǫ, i.e.
for every i ∈ {1, . . . , N} and for any deviation v ∈ UN1

JN,i
(
u
N
)
≤ JN,i

([
uN,−i, v

])
+ ǫ

for all N ≥ N ǫ.

Before proceeding, we define the empirical measure ζN of the N -player system (Eq.(5.6)) as

ζN (·)
.
=

1

N

N∑

i=1

δXN,i (·) (5.8)

which is a P(X )-valued random variable. Moreover, we fix a relaxed feedback MFG solution
(λ, µ) and define (cfr. Theorem 5.1 and Corollary 5.2) λ

N ∈ ŨNN as λ
N .

= (λN,i)i=1,...,N where
λN,i(t, ϕN )

.
= λ(t, ϕN,i) for all i = 1, . . . , N , t ∈ [0, T ] and ϕN ∈ XN . In the next two subsections

we consider the following N -particle system:

X
N,1
t = X

N,1
0 +

∫

[0,t]×Γ
b
(
s,XN,1, ζN , u

)
β
(
s,XN

)
(du)ds + σW

N,1
t , (5.9)

X
N,i
t = X

N,i
0 +

∫

[0,t]×Γ
b
(
s,XN,i, ζN , u

)
λ
(
s,XN,i

)
(du)ds + σW

N,i
t (5.10)
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for i = 2, . . . , N , t ∈ [0, T ] and where β ∈ ŨN1 is a generic single-player control. Precisely, in
Subsection 5.3 we set β(t, ϕN )

.
= λ(t, ϕN,1) for t ∈ [0, T ] and ϕN ∈ XN (we say that β = λ for

short); whereas, in Subsection 5.4 we let β be generic (unless differently specified), which means
that we allow the first player to deviate from the MFG solution λ.

5.3 Propagation of chaos

In this subsection we consider the system of N interacting symmetric diffusions given by Eq.s
(5.9) and (5.10) with β = λ. We associate to this system a suitable McKean-Vlasov equation
(Eq.(5.11) below) and show a propagation of chaos result, that we will need in the proofs of
Theorem 5.1 and Corollary 5.2.

Definition 5.3 (McKean-Vlasov solution). A law θ∗ ∈ P(X ) is a McKean-Vlasov solution of
equation

Xt = X0 +

∫

[0,t]×Γ
b (s,X, θ∗, u)λ (s,X) (du)ds + σWt, t ∈ [0, T ], X0

d
∼ ν (5.11)

if there exists a weak solution (Ω,F , (Ft)t∈[0,t],P,X,W ) with P ◦X−1 = θ∗ and P ◦X−1
0 = ν.

The following lemma ensures the well-posedness of Eq.(5.11).

Lemma 5.2 (Existence and uniqueness of McKean-Vlasov solutions). Grant Assumptions (H1’)-
(H3’), (H4)-(H8) and (N1)-(N2). Then, there exists a unique McKean-Vlasov solution for
Eq.(5.11).

Proof. We follow [42], proof of Theorem 2.4. Precisely, we apply Banach fixed point theorem on
the complete metric space (P(X ), dT ) together with Picard iterations. To this end, we start by
defining, for any α > 0, the following distance:

dα(θ, θ′)2
.
=

∫ T

0
e−αtdt(θ, θ

′)2 dt, θ, θ′ ∈ P(X ).

We note that dα(·, ·) is a complete metric on P(X ). We now define Ψ : P (X ) → P(X ) ⊂ P (X )
as the map θ 7→ Ψ(θ)

.
= Pθ ◦ (Xθ)−1 where (Ωθ,Fθ,Pθ,Xθ,W θ) is a weak solution of Eq.(5.11)

with θ in the drift, which is well defined (see Remark 2.5).
We show that Ψ is a contraction on P (X ) with respect to the distance dα for a sufficiently

large α > 0. Let H(θ|θ′) denote the relative entropy of θ with respect to θ′ for θ, θ′ ∈ P(X ),
and let Ht(θ|θ

′) = H(θt|θ
′
t), θt

.
= Pθ ◦ (Xθ

·∧t)
−1. By Pinsker’s inequality, there exists a constant

CH > 0 such that

dt(Ψ(θ),Ψ(θ′))2 ≤ CHHt(Ψ(θ),Ψ(θ′))

≤
1

2
CH |σ

−1|2L̃2

∫ t

0
ds(θ, θ

′)2ds

where we set L̃
.
= LTVb . Therefore, we have

dα(Ψ(θ),Ψ(θ′))2 =

∫ T

0
e−αtdt(Ψ(θ),Ψ(θ′))2dt

≤
1

2
CH |σ

−1|2L̃2

∫ T

0
e−αt

∫ t

0
ds(θ, θ

′)2ds dt

=
1

2
CH |σ

−1|2L̃2

∫ T

0
dt(θ, θ

′)2
∫ T

t

e−αsds dt

≤
1

2

CH

α
|σ−1|2L̃2

∫ T

0
e−αtdt(θ, θ

′)2dt =
1

2

CH

α
|σ−1|2L̃2dα(θ, θ′)2
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which shows that Ψ is a contraction whenever 1
2
CH

α
|σ−1|2L̃2 < 1. Thanks to the arbitrariness of

α > 0, we conclude that Ψ has a unique fixed-point in P(X ).

We consider the sequence of empirical measures (ζN )N∈N in Eq.(5.8) associated to the N -particle
systems in Eq.s (5.9) and (5.10) (with β = λ). We follow [42] and we prove the convergence,
both in law and in probability in the τ -topology, of (ζN )N∈N to the McKean-Vlasov solution
θ∗ ∈ P(X ) of Eq.(5.11). We remind that the τ -topology on P(X ), denoted with τ(P(X )), is the
topology generated by the sets

Bf,x,δ
.
=

{
π ∈ P(X ) :

∣∣∣∣
∫

X
f(y)π(dy)− x

∣∣∣∣ < δ

}

where f : X → R is any measurable bounded function, x ∈ R and δ is any strictly positive
constant. In particular, the τ -topology is the coarsest topology that makes the maps π 7→∫
X f(y)π(dy) continuous for all measurable bounded functions f : X → R (see, for instance,

Chapter 6.2 in Dembo and Zeitouni [21]).
Moreover, we denote by w(P(X )) the weak topology on P(X ) and with B(P(X )) the Borel

σ-algebra on X generated by the open sets of the weak topology. The following lemma adapts
Theorem 2.6.1-2 in [42] to our framework, in particular to the case of diffusions with possibly
unbounded drift.

Lemma 5.3 (Propagation of chaos). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-
(N2). Let θ∗ ∈ P(X ) be the unique McKean-Vlasov solution of Eq.(5.11). Then the sequence

(ζN )N∈N converges in law to θ∗, i.e. ζN
L

−→ θ∗, as N → ∞. Moreover

lim
N→∞

PN
(
ζN 6∈ B

)
= 0

for all open neighbourhoods B of θ∗ in the τ -topology that are in B(P(X )).

Proof. Let (Ω,F ,P) be a probability space that supports an i.i.d. sequence of X -valued ran-
dom variables with law θ∗. For each N ∈ N, set (FN

t )t∈[0,T ] to be the filtration generated by

X1, . . . ,XN . Define

W i
t
.
= σ−1

(
Xi
t − ξ −

∫

[0,t]×Γ
b(s,Xi, θ∗, u)λ(s,Xi)(du)ds

)
, t ∈ [0, T ], i ∈ {1, . . . , N}.

In particular, W 1, . . . ,WN are independent Wiener processes on (Ω,F , (FN
t )t∈[0,T ],P). Fix

N ∈ N, and consider the tuple (Ω,F , (FN
t )t∈[0,T ],P, (X

N,1, . . . ,XN,N ), (W 1, . . . ,WN )), with

XN,i .= Xi, for all i ∈ {1, . . . , N}. This is a weak solution of

XN,i = ξ +

∫

[0,t]×Γ
b(s,XN,i, θ∗, u)λ(s,XN,i)(du)ds + σW i

t , t ∈ [0, T ], i ∈ {1, . . . , N}.

Now, define the probability PN via its density with respect to P, dPN

dP

.
= ZNT , where, for all

t ∈ [0, T ]

ZNt
.
= Et

(∫ ·

0

N∑

i=1

∫

Γ
σ−1

(
b(s,XN,i, ζN , u)− b(s,XN,i, θ∗, u)

)
λ(s,XN,i)(du)dW i

s

)
.

A standard application of Girsanov’s theorem gives

X
N,i
t = ξ +

∫

[0,t]×Γ
b(s,XN,i, ζN , u)λ(s,XN,i)(du)ds + σW

N,i
t , t ∈ [0, T ], i ∈ {1, . . . , N}
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for some PN -Wiener process WN . Notice that (Ω,F , (FN
t )t∈[0,T ],P

N ,XN ,WN ) is a weak solu-

tion of the N -particle system in Eq.s (5.9) and (5.10), with β(t, ϕN )
.
= λ(t, ϕN,1) for t ∈ [0, T ]

and ϕN ∈ XN .
At this point, the rest of the proof can be performed as in [42], Theorem 2.6.1-2, along the

following steps:

(i) Show that Ft1,t2 : P(X ) → R defined as

Ft1,t2(θ)
.
=

∫

X

∫ t2

t1

∣∣∣∣
∫

Γ
σ−1 (b(s, ϕ, θ, u) − b(s, ϕ, θ∗, u)) λ(s, ϕ)(du)

∣∣∣∣
2

dsθ(dϕ) (5.12)

is τ -continuous for all t1, t2 ∈ [0, T ], t1 < t2 and B(P(X ))-measurable, which is done aside
at the end of this proof. Moreover Ft1,t2(θ) ≤ L̃(t2−t1)H(θ|θ∗) for all t1, t2 ∈ [0, T ], t1 < t2
and for all θ ∈ P(X ), which is a straightforward consequence of the Lipschitz continuity
in the total variation distance.

(ii) Since XN,1,XN,2, . . . XN,N are i.i.d. under P, Sanov’s Theorem (e.g. Theorem 6.2.10 in
Dembo and Zeitouni [21]) can be applied to P ◦ (ζN )−1.

(iii) Derive a large deviation principle for PN ◦ (ζN )−1, precisely

lim sup
N→∞

1

N
log PN

(
ζN 6∈ B

)
≤ −e−L̃T inf

θ 6∈B
H (θ|θ∗)

for all open neighbourhoods B of θ in the τ -topology that are in B(P(X )), for some
constant L̃ > 0.
To this aim, we stress that we can proceed just as in [42]1. Indeed, regardless of the
sub-linear growth of the drift, we can adapt Lacker’s estimates thanks to

∣∣b (t, ϕ, θ, u) − b
(
t, ϕ, θ′, u

)∣∣ ≤ 2L̃.

Moreover we can apply Varadhan’s integral lemma [21, Theorem 4.3.1] thanks to the
continuity of Ft1,t2 .

(iv) Conclude by showing that infθ 6∈BH(θ|θ∗) > 0 so that

lim
N→∞

PN
(
ζN 6∈ B

)
= 0

which can be performed as in [42].

Proof of the continuity of Ft1,t2 in the τ -topology. We actually prove the stronger claim that the
functional Ft1,t2 in Eq.(5.12) is continuous in the weak topology (w-topology for short). First,
we can write Ft1,t2(θ) =

∫
X ft1,t2(ϕ, θ)θ(dϕ) for θ ∈ P(X ), where

ft1,t2(ϕ, θ)
.
=

∫ t2

t1

∣∣∣∣
∫

Γ
σ−1 (b(s, ϕ, θ, u)− b(s, ϕ, θ∗, u)) λ(s, ϕ)(du)

∣∣∣∣
2

ds

which is a real-valued bounded measurable function defined on X×P(X ). Let (θn)n∈N, θ ∈ P(X )
be such that θn

w
⇀ θ. We want to show that Ft1,t2(θ

n) → Ft1,t2(θ) as n→ ∞.
Set fn(ϕ)

.
= ft1,t2(ϕ, θ

n) and f(ϕ)
.
= ft1,t2(ϕ, θ). They are all in Cb(X ) with uniform bound

in n ∈ N. Moreover, fn → f in the sup-norm. Indeed

sup
ϕ∈X

|fn(ϕ)− f(ϕ)| ≤ 4LTVb L

∫ t2

t1

|L(s; θn)− L(s; θ)|+ |mw(s; θ
n)−mw(s; θ)| ds

which vanishes in the limit for n→ ∞ due to Lemma 5.1. As a consequence, we obtain

Ft1,t2(θ
n) =

∫

X
fn(ϕ)θ

n(dϕ) −→
n→∞

∫

X
f(ϕ)θ(dϕ) = Ft1,t2(θ).

1Precisely we can show by induction that Eq.(4.1) in [42] holds also in this case, then conclude observing that
PN and P agree on F0.

36



5.4 Proof of the The N-player approximation theorem

This section is devoted to the construction of approximate Nash equilibria for the N -player game
from a solution of the limit problem, in the particular case of finite-dimensional interaction as
described before. The results of previous Subsection 5.3 allow us to pass to the many-player limit
even if feedback MFG strategies are discontinuous in the state variable. We have observed in the
introduction that the construction of approximated Nash equilibria for the N -player games in [9]
was crucially based on the continuity of the limit optimal control for almost every paths of the
state variable with respect to the Wiener measure. In our setting, such a regularity property is
no longer feasible due to the possible unboundedness of the coefficients, which makes it difficult
to apply PDE-based estimates as in [9] to get the needed continuity. Therefore, in order to
overcome this obstacle, we will use the strong form of propagation of chaos in Lemma 5.3, which
allows to pass to the limit even through possibly discontinuous MFG optimal controls.

In this part, we consider the dynamics in Eq.(5.9) and Eq.(5.10) without necessarily taking
β = λ, unless differently specified. We start with some preliminary estimates ensuring that the
costs remain bounded in the mean-field limit despite the sub-linear growth.

Lemma 5.4 (A-priori estimates). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2).
Consider the dynamics in Eq.s (5.9) and (5.10). Then for any α ≥ 1

sup
N∈N

EPN [
‖XN,i‖α∞

]
≤ K(α)

for i ∈ {1, . . . , N} and where K(α) <∞ is a positive constant independent of N .

Proof. This is a consequence of Grönwall’s lemma together with uniform boundedness of the
drift in the measure and control variables.

Now, we prove the tightness of the sequence of laws (PN ◦ (ζN )−1)N∈N when β = λ in Eq.(5.9),
i.e. when the dynamics are symmetric. Then, thanks to Lemma 5.3, we characterize the limit
points of (PN ◦ (ζN )−1)N∈N as McKean-Vlasov solutions of Eq.(5.11); see Lemma 5.6.

Lemma 5.5 (Tightness). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2). Let ζN

be the empirical measure of the system given by Eq.s (5.9) and (5.10) with β = λ. Then the
sequence (PN ◦ (ζN )−1)N∈N is tight in P(P(X )).

Proof. The tightness of such a sequence follows from [57], Proposition 2.2, combined with
Kolmogorov-Chentsov criterion (see, for instance, Corollary 14.9 in Kallenberg [38]).

Lemma 5.6 (Characterization of limit points). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and
(N1)-(N2). Let ζN be the empirical measure of the system given by Eq.s (5.9) and (5.10) with
β = λ. Let (PNk ◦ (ζNk)−1)k∈N be a convergent subsequence of (PN ◦ (ζN )−1)N∈N. Let ζ be
a random variable defined on some probability space (Ω,F ,P) with values in P(X ) such that

ζNk
L

−→ ζ. Then

(i) ζ coincides P-a.s. with the unique McKean-Vlasov solution θ∗ of Eq.(5.11).

(ii) The sequence (ζN )N∈N converges in probability (hence also in law) to θ∗ when P(X ) is
equipped with the τ -topology.

Proof. By Lemma 5.5 there exists a subsequence (PNk ◦ (ζNk)−1)k∈N ⊂ P(P(X )) converging
to P ◦ ζ−1 ∈ P(P(X )). Lemma 5.3 guarantees the convergence in law of the whole sequence
(ζN )N∈N to the deterministic limit θ∗, which is the unique McKean-Vlasov solution of Eq.(5.11).
By uniqueness in law of the weak limit we have P ◦ ζ−1 = δθ∗ , yielding ζ = θ∗ P-a.s.. Lemma
5.3 also gives convergence in probability in the τ -topology of (ζN )N∈N to θ∗.
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Corollary 5.3 (Characterization of the convergence). Under the assumptions of Lemma 5.6,
the following properties hold:

(i) For all Borel-measurable bounded function f : X → R such that θ 7→
∫
X f(ϕ)θ(dϕ) is

τ(P(X ))-continuous

EPN

[∫

X
f(ϕ)ζN (dϕ)

]
−→
N→∞

EP

[∫

X
f(ϕ)ζ(dϕ)

]
≡ EP

[∫

X
f(ϕ)θ∗(dϕ)

]
.

(ii) PN ◦ (XN,1, ζN )−1 w
⇀ θ∗ ⊗ δθ∗. Moreover, PN ◦ (XN,1)−1 w

⇀ θ∗ and PN ◦ (ζN )−1 w
⇀ δθ∗ .

(iii) For all f ∈ C(X ) with sub-linear growth, i.e. |f(ϕ)| ≤ Cf (1 + ‖ϕ‖∞) for some Cf > 0
and all ϕ ∈ X , we have

EPN

[∫

X
f(ϕ)ζN (dϕ)

]
−→
N→∞

EP

[∫

X
f(ϕ)ζ(dϕ)

]
≡ EP

[∫

X
f(ϕ)θ∗(dϕ)

]
.

Proof. (i) This is a consequence of Lemma 5.3, Lemma 5.6 and of the almost sure equality
ζ = θ∗.

(ii) We already know that PN ◦ (ζN )−1 w
⇀ δθ∗ from Lemma 5.6. Therefore, the convergence

of PN ◦ (XN,1)−1 to θ∗ follows from [57], Proposition 2.2, and the symmetry of the system.
(iii) Let f ∈ C(X ) with sub-linear growth. It is enough to show that

EPN

[∫

X
‖ϕ‖∞ζ

N(dϕ)

]
−→
N→∞

∫

X
‖ϕ‖∞θ

∗(dϕ).

To this aim, for fixed R > 0, we consider the decomposition

EPN

[∫

X
‖ϕ‖∞(ζN − θ∗)(dϕ)

]
≤ EPN

[∫

X
(‖ϕ‖∞ ∧R)(ζN − θ∗)(dϕ)

]

+EPN

[∫

X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

By property (i), for any fixed R > 0, we have

lim
N→∞

EPN

[∫

X
(‖ϕ‖∞ ∧R)(ζN − θ∗)(dϕ)

]
= 0

so that

lim sup
N→∞

EPN

[∫

X
‖ϕ‖∞(ζN − θ∗)(dϕ)

]
≤ lim sup

N→∞
EPN

[∫

X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

Now, we let R→ ∞ and we show that the RHS vanishes in the limit. To do so, recall that, due
to Lemma 5.4, there exist constants K(α),K > 0 such that

sup
N∈N

EPN [
‖XN,i‖α∞

]
≤ K(α) and sup

N∈N
EPN [

‖XN,i‖∞
]
≤ K

independently of i ∈ {1, . . . , N}. Then, set α, β > 1 such that 1
α
+ 1

β
= 1 and let ǫ > 0. By

definition of ζN and by Young’s and Markov’s inequalities, we have

lim sup
N→∞

EPN

[∫

X
‖ϕ‖∞1{‖ϕ‖∞≥R}ζ

N (dϕ)

]
= lim sup

N→∞

1

N

N∑

i=1

EPN
[
‖XN,i‖∞1{‖XN,i‖∞≥R}

]

≤

(
ǫα
K(α)

α
+

K

ǫββR

)
(5.13)

which converges to zero by letting R → ∞ and then ǫ → 0. A similar reasoning applies to the
same expectation with θ∗ instead of ζN .
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Remark 5.1. Let D
.
= {ϕ ∈ X : τ(ϕ) is discontinuous at ϕ}. Since ζ

a.s.
= θ∗ ∈ Q, Lemma A.4

implies θ∗(D) = 0 and the statement of Corollary 5.3 holds for f = 1D as well.

Finally, we conclude this section with the proof of Theorem 5.1, which leads immediately to
Corollary 5.2.

Proof of Theorem 5.1. The proof is structured in three steps.

(j) limN→∞ JN,1(λN ) = Jµ(λ).

(jj) Let βN,1 ∈ UN1 be such that

JN,1([λN,−1, βN,1]) ≤ inf
β∈UN

1

JN,1([λN,−1, β]) +
ǫ

2
.

Then

lim inf
N→∞

JN,1
([
λ
N,−1, βN,1

])
≥ Jµ(λ).

(jjj) JN,1(λN ) ≤ infβ∈UN
1

JN,1([λN,−1, β]) + ǫ.

We consider the dynamics in Eq.(5.6). In (j) we set λN,1(t, ϕN ) = λ(t, ϕN,i) for all (t, ϕN ) ∈
[0, T ]×XN and prove convergence of the first-player cost functional to the cost functional of the
MFG. In (jj) instead we allow the first player to deviate and choose λN,1(t, ϕN ) = βN,1(t, ϕN )
for all (t, ϕN ) ∈ [0, T ] × XN where βN,1 ∈ ŨN1 is a generic single-player relaxed control. We
conclude the proof in (jjj) by combining the results in (j) and (jj).

Proof of (j). To prove that JN,1(λN ) → Jµ(λ), as N → ∞, we split each cost functional in
the sum of two terms:

JN,1(λN ) = EPN

[∫

[0,T ]×Γ

∫

X
1[0,τ(ϕ))(t)f0(t, ϕ, u)λ(t, ϕ)(du)ζ

N (dϕ)dt

]

+EPN

[∫ T

0
1[0,τN,1)(t)f1(t,X

N,1, ζN )dt+ F (τN,1,XN,1
τN,1)

]

and

Jµ(λ) = EP

[∫

[0,T ]×Γ

∫

X
1[0,τ(ϕ))(t)f0(t, ϕ, u)λ(t, ϕ)(du)ζ(dϕ)dt

]

+EP

[∫ T

0
1[0,τ)(t)f1(t,X, ζ)dt + F (τ,Xτ )

]
.

Since f0 is bounded, the convergence of the first summand in the decomposition of JN,1(λN ) to
the corresponding term in Jµ(λ) is a consequence of Corollary 5.3(i) and of Lemma 5.6. On the
other hand, since both f1 and F have sub-linear growth, the convergence of the second summand
in JN,1(λN ) follows from Corollary 5.3(iii), Lemma 5.6 and the fact that θ∗ ∈ Q together with
Lemma A.5.

Proof of (jj). We follow the proof of Theorem 3.10 in [43] with suitable modifications due
to the possibly unbounded drift and the dependence on the first exit time from the set O.
Let (ΩN ,FN , (FN

t )t∈[0,T ],Q
N , Y N ,WN )N∈N be a weak solutions of the N -player system. Let

(ζN )N∈N be the associated empirical measures. Under QN the first player’s dynamics is

Y
N,1
t = Y

N,1
0 +

∫

[0,t]×Γ
b(s, Y N,1, ζNY , u)β

N,1(s,YN )(du)ds + σW
N,1
t , t ∈ [0, T ].
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Now, let PN be the probability measure under which the first player’s dynamics becomes

Y
N,1
t = Y

N,1
0 +

∫

[0,t]×Γ
b(s, Y N,1, ζNY , u)λ(s, Y

N,1)(du)ds + σW̃
N,1
t , t ∈ [0, T ]

where W̃N,1 is a PN -Wiener process. In other terms, PN satisfies dQN

dPN = ZNT where

ZNt = Et

(∫ ·

0

∫

Γ
b(s, Y N,1, ζNY , u)(β

N,1(s,YN )− λ(s, Y N,1))(du)dW̃s

)
, t ∈ [0, T ].

By inspection of the proofs of Lemma A.1 and Corollary A.1, all bounds are uniform in N ∈ N,
hence Corollary A.1 gives the uniform integrability of the sequence of exponential martingales
(ZN )N∈N. More in detail, we apply Corollary A.1 to the drift

b(t, ϕN )
.
=

∫

Γ
b(t, ϕN,1, ζϕN , u)(βN,1(t, ϕN )− λ(t, ϕN,1))(du)

for (t, ϕN ) ∈ [0, T ] × XN . Notice that this drift is sublinear in ϕN . Therefore convergence of
the empirical measures to θ∗ in probability in the τ -topology under PN implies convergence of
the empirical measures to the same limit in probability in the τ -topology under QN . Hence

ζNY
L

−→ θ∗ under QN and

lim
N→∞

QN
(
ζNY 6∈ B

)
= 0

for all neighbourhoods B of θ in the τ -topology which belong to B(P(X )). The tightness of
(Y N,1)N∈N under QN still follows from their tightness under PN . Consider (βN,1(t,YN ))t∈[0,T ]

as a single-player relaxed stochastic open-loop control and denote it simply by (βN,1t )t∈[0,T ].

Interpret (Y N,1, βN,1, ζNY )N∈N as a sequence of random variables with values in X × V × P(X ).
Compactness of V and tightness of (Y N,1, ζNY )N∈N imply the tightness of (Y N,1, βN,1, ζNY )N∈N

under QN .
Let (Y, β, θ∗) be a limit point of the sequence (Y N,1, βN,1, ζNY )N∈N, defined on some prob-

ability space with probability measure Q. Then by a standard martingale argument it can be
shown to satisfy

Yt = ξ +

∫

[0,t]×Γ
b(s, Y, θ∗, u)βt(du)ds + σWt, t ∈ [0, T ] (5.14)

where W is a Q-Wiener process. As in (j) we split JN,1([λN,−1, βN,1]) in two terms as

JN,1([λN,−1, βN,1]) = EQN

[∫

[0,T ]×Γ
1[0,τN,1)(t)f0(t, Y

N,1, u)βN,1t (du)dt

]

+EQN

[∫ T

0
1[0,τN,1)(t)f1(t, Y

N,1, ζNY )dt+ F (τN,1, Y N,1
τN,1)

]
.

We move along a weakly converging subsequence of (Y N,1, βN,1,WN,1)N∈N under QN to the
limit point (Y, β,W ) in Eq.(5.14). Convergence of the first and second summands above now
works as in the proof of (j). Considering again the whole sequence, we obtain

lim inf
N→∞

JN,1([λN,−1, βN,1]) ≥ inf
β

EQN

[∫

[0,T ]×Γ
1[0,τ)(t)f(t, Y, θ

∗, u)βt(du)dt+ F (τ, Yτ )

]

= V µ

where the infimum on the RHS above is taken over all relaxed stochastic open-loop controls and
the last equality follows from embedding the set of strict controls into the set of relaxed controls
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combined with the chattering lemma [23, 25, 3].
Proof of (jjj). This is a consequence of steps (j) and (jj). Indeed

JN,1(λN )− inf
β∈UN

1

JN,1([λN,−1, β]) ≤ JN,1(λN )− Jµ(λ) + Jµ(λ)− JN,1([λN,−1, βN,1]) +
ǫ

2
.

Now by steps (j) and (jj) there exists N ǫ ∈ N such that for all N ≥ N ǫ

JN,1(λN )− Jµ(λ) ≤
ǫ

4
and Jµ(λ)− JN,1([λN,−1, βN,1]) ≤

ǫ

4
.

Therefore, we can conclude that JN,1(λN ) ≤ infβ∈UN
1

JN,1([λN,−1, β])+ ǫ for all N ≥ N ǫ, which
establishes the statement of Theorem 5.1.

A Appendix

This appendix provides some of the technical results used in the paper. More in detail, we
state existence and uniqueness of weak solutions of SDEs with sub-linear drift. We characterize
the space of laws of processes with sub-linear drift and initial condition ν (Q defined below).
We prove some regularity results on the exit time τX with respect to measures in Q. Finally,
we discuss the convergence of measures in the 1-Wasserstein distance along test functions with
sub-linear growth and possibly discontinuous over a set of limit measure zero.

A.1 Existence and uniqueness of solution of SDEs with sub-linear drift

In this subsection we prove a slight variation of the well-known Beneš’ condition (Beneš [4]),
leading to an existence and uniqueness result for weak solutions of SDEs with a sub-linear drift.
More precisely, we allow the drift to depend on a rescaled Wiener process with a independent
random initial condition. We recall that Et(·) denotes the Doléans-Dade stochastic exponential.
Moreover, given a function f : E → R where E is a Polish space, we denote by Df the set of its
discontinuity points.

As a preliminary, we introduce the set Q of laws of stochastic processes with sub-linear drift
in the sense of Beneš to which these results apply.

Laws of processes with sub-linear drift. Let β : [0, T ]× X → Rd be a progressively measurable
functional such that

|β (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ]× X

for some constant C > 0. Let (Ω,F , (Ft)t∈[0,T ],P,X) be a weak solution of the following SDE

Xt = ξ +

∫ t

0
β(s,X)ds + σWt, ξ

d
∼ ν, t ∈ [0, T ]

where W is a Wiener process independent of ξ. Existence and uniqueness of a weak solution
follows from an application of Girsanov’s theorem and Beneš’ condition (see Lemma A.1 and
Lemma A.2). Moreover such laws turn out to be absolutely continuous with respect to the
Wiener measure Wν (Lemma A.3). Then, we denote by Q the set of laws θ ∈ P(X ) of all
continuous processes X solving the SDE above.

Lemma A.1 (Beneš’ condition). Let b : [0, T ]×X → Rd be a progressively measurable functional
such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ] ×X .
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Let σ ∈ Rd×d be a full rank matrix. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space satisfy-

ing usual conditions, supporting a random variable ξ
d
∼ ν and a Wiener process W independent

of ξ. Set

Xt
.
= ξ + σWt, t ∈ [0, T ].

Then

Zt
.
= Et

(∫ ·

0
σ−1b(s,X)dWs

)
, t ∈ [0, T ]

is a martingale.

Proof. We follow the proof of Corollary 3.5.16 in [39]. Precisely let t0 = 0 < t1 < . . . < tn−1 <

tn = T be a partition of the interval [0, T ]. Then thanks to the sub-linearity of the drift

∫ tn

tn−1

|b(s,X)|2 ds ≤ (tn − tn−1)C
2 (1 + ‖X‖∞)2 .

Let Y n .
= (Y n

t )t∈[0,T ] be defined by

Y n
t
.
= e

1

4
(tn−tn−1)C2(1+|Xt|)2 .

Notice that Y n is a sub-martingale and that by Doob’s maximal inequality [39, Theorem 1.3.8.iv]
we have E[‖Y n‖2∞] ≤ 4E[(Y n

T )
2]. Moreover

E
[
(Y n
T )

2
]

≤ E

[
e

1

2
(tn−tn−1)C2(1+2|ξ|2+2|σ|2|WT |2)

]

= E

[
e(tn−tn−1)C2|σ|2|WT |

2
]
E

[
e

1

2
(tn−tn−1)C2(1+2|ξ|2)

]

where in the equality we have used the independence between ξ and W . To conclude, it is
sufficient to choose (tk − tk−1), k = 1, . . . , n, sufficiently small, for instance (tk − tk−1) <
min{ 1

2C2|σ|2
, λ
C2}, and to apply Corollary 3.5.14 in [39].

Corollary A.1 (Moments of the stochastic exponential). Under the assumptions of Lemma A.1,
the process Z = (Zt)t∈[0,T ] has finite moments of any order p ∈ [1,∞), i.e. E

[
Z
p
T

]
< ∞ for all

p ∈ [1,∞).

Proof. The proof follows directly from Lemma A.1 combined with Corollary 2 in [31].

Lemma A.2 (Existence and uniqueness of weak solutions). Let b : [0, T ] × X → Rd be a
progressively measurable functional such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ] ×X .

Let σ ∈ Rd×d a full rank matrix. Then there exists a weak solution (Ω,F , (Ft)t∈[0,T ],P,X,W ) of

Xt = ξ +

∫ t

0
b(s,X)ds + σdWt, ξ

d
∼ ν, t ∈ [0, T ].

Additionally, this solution is unique in law.

Proof. The proof follows directly from Lemma A.1 and Girsanov’s theorem [see 39, Propositions
5.3.6 and 5.3.10].
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A.2 Characterization of the set Q

Lemma A.3 (Laws of processes with sub-linear drift). Let θ ∈ Q. Then θ ∼ Wν , i.e. θ is
equivalent to the Wiener measure Wν .

Proof. The proof follows directly from Lemma A.1, Girsanov’s theorem and Bayes’ rule to ensure
that Z−1 given by Lemma A.1 is still a martingale.

Before proceeding further, we recall that τX is the first exit time from O in the path space, i.e.

τX(ϕ) = inf {t ≥ 0 : ϕ(t) 6∈ O} , ϕ ∈ X ,

where O ⊂ Rd satisfies Assumption (H4).

Lemma A.4 (Regularity results). Let θ ∈ Q. Let O ⊂ Rd satisfy Assumption (H4) and let X
be the identity process on X . Then

(a) τX <∞, θ-almost surely.

(b) The mapping ϕ 7→ τX(ϕ), from X to [0,∞], is θ-a.s. continuous.

(c) θ(τX = t) = 0 for all t ∈ [0, T ].

(d) The mapping ϕ 7→ 1[0,τX(ϕ))(t), from X to R, is θ-a.s. continuous for all t ∈ [0, T ].

(e) Properties (a)-(d) hold for O = (0,∞)×d as well.

Proof. The proof is similar to the one of Lemma D.3 in [9]. Notice that by Lemma A.3 each
θ ∈ Q is equivalent to Wν . So, it is sufficient to check properties (a)-(d) for Wν .

(a) This is a consequence of the law of iterated logarithms (as time tends to infinity) and
the fact that O is strictly included in Rd.

(b) This, again, is a consequence of the law of iterated logarithms (as time tends to zero),
the smoothness of O’s boundary, the non-degeneracy of σ and the fact that O is strictly included
in Rd (Kushner and Dupuis [40], pp. 260-261).

(c) This is a consequence of the following relations

Wν(τX = t) ≤ Wν(Xt ∈ ∂O) = 0 for all t ∈ [0, T ]

where in the last equality we use the fact that the Lebesgue measure of the boundary of a convex
subset of Rd is identically zero (Lang [44]), and that Wν ◦ X−1

t is absolutely continuous with
respect to the Lebesgue measure for all t ∈ [0, T ].

(d) This is a consequence of properties (b) and (c) above.
(e) When O = (0,∞)×d it turns out that

τX(ϕ) = min
i=1,...,d

τ i(ϕ), ϕ ∈ X

where τ i(ϕ)
.
= inf{t ∈ [0, T ] : ϕi(t) ≤ 0}, for i ∈ {1, . . . , d} and ϕ ∈ X . Then the conclusion

follows from the continuity result in dimension d = 1 (Kushner and Dupuis [40], pp. 260-261)
applied to each τ i.

A.3 Additional convergence results

Lemma A.5 (Convergence in the 1-Wasserstein distance). Let E be a Polish space with a
complete metric dE . Let θ, (θn)n∈N ⊂ P1(E) such that W1(θ

n, θ) → 0 as n→ ∞. Let f : E → R

be a measurable function such that |f(x)| ≤ C(1+dE(x, x0)) for all x ∈ E, for some x0 ∈ E and
for some constant C > 0. Let Df be the set of its discontinuity points and assume θ(Df ) = 0.
Then ∫

E

f(x)θn(dx) −→
n→∞

∫

E

f(x)θ(dx).
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Proof. The proof works as in [58], proof of Theorem 7.12.iv, the only difference being that here
f can have discontinuities with θ(Df ) = 0. In particular, we perform the same decomposition
as in [58], i.e. f(x) = f1R(x) + f2R(x) with f1R(x)

.
= f(x)∧ (C(1 +R)) and f2R(x)

.
= f(x)− f1R(x)

for all x ∈ E and for some R > 0. We have that |f1R| is bounded by C(1 + R) and θ(Df1
R
) = 0

since Df1
R
⊂ Df . Then all limits can be performed just as in [58], proof of Theorem 7.12.iv.
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