
[13:30 1/4/2011 Bioinformatics-btr123.tex] Page: 1313 1313–1315

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 9 2011, pages 1313–1315
doi:10.1093/bioinformatics/btr123

Genome analysis Advance Access publication March 12, 2011

GeCo++: a C++ library for genomic features computation and
annotation in the presence of variants
Matteo Cereda1,2, Manuela Sironi1, Matteo Cavalleri3 and Uberto Pozzoli1,∗
1Bioinformatics Lab, Scientific Institute I.R.C.C.S. ‘E. Medea’, Via Don L. Monza, 23852 Bosisio Parini (LC), Italy,
2Department of Theoretical Physics, University of Turin, Via P. Giuria 1 -10125, Torino and 3Bioingineering Lab,
Scientific Institute I.R.C.C.S. ‘E. Medea’, Via Don L. Monza, 23852 Bosisio Parini (LC), Italy
Associate Editor: Martin Bishop

ABSTRACT
Summary: We propose a C++ class library developed to the purpose
of making the implementation of sequence analysis algorithms easier
and faster when genomic annotations and variations need to be
considered. The library provides a class hierarchy to seamlessly
bind together annotations of genomic elements to sequences
and to algorithm results; it allows to evaluate the effect of
mutations/variations in terms of both element position shifts and of
algorithm results, limiting recalculation to the minimum. Particular
care has been posed to keep memory and time overhead into
acceptable limits.
Availability and Implementation: A complete tutorial as well as
a detailed doxygen generated documentation and source code is
freely available at http://bioinformatics.emedea.it/geco, under the
GPL license. The library was written in standard ISO C++, and does
not depend on external libraries.
Contact: uberto.pozzoli@bp.lnf.it

Received on December 15, 2010; revised on February 15, 2011;
accepted on March 1, 2011

1 MOTIVATION
Sequence analysis algorithms play a crucial role in the identification
of genomic functional elements. Several algorithms have been
and are being developed to identify putative binding sites for a
great number of functional elements involved in many cellular
processes. Algorithms are usually implemented through ‘sequence-
driven’ programs: a sequence is provided upon which calculations
are made and results are returned with a reference to sequence
positions. In the great majority of cases the results need to be
interpreted in the light of some functional element annotated
elsewhere (transcripts, genes, intron/exon boundaries, etc.) or their
significance can be improved by comparison with some other
features such as sequence conservation among different species or
chromatin accessibility. These are time-consuming tasks that are
often implemented using specialized packages based on interpreted
languages like, for example BioPerl (Stajich et al., 2002) and
Bioconductor (Gentleman et al., 2004). The same holds true when
sequence variations are involved in the analysis. Sequence-driven
programs need multiple runs to make calculations on multiple input
sequences: this often lead to redundant recalculations and data I/O
operations. Again the comparison of the results between ‘varied’and

∗To whom correspondence should be addressed.

‘unvaried’ sequences is left to the user. Furthermore, variations can
change the positions of genomic elements of interest making the
interpretation of the results even more difficult. Despite a number of
efficient and feature-rich libraries and tools have been developed for
sequence-driven algorithm implementation, the above-mentioned
tasks are usually left to the user. The complexity of these tasks
is a severe limitation to an extensive application of algorithms
implemented in this way. Several useful bioinformatics workflow
tools like Taverna (Oinn et al., 2004), Gaggle (Shannon et al., 2006)
and Galaxy (Blankenberg et al., 2010; Goecks et al., 2010), have
been developed to automatize, standardize and speed up analyses
and visualizations integrating different programs and data sources.
These workflow management tools can be used to partially get
around the above-mentioned limitations, but still they do not resolve
the inefficiency of the sequence-driven software model, particularly
in the frequent case of repeated runs on similar sequences. Moreover,
there is an additional cost in terms of data formats conversion,
I/O operations and script interpretation. On the other hand, most
successful algorithms are employed to analyse entire genomes:
results are collected in databases along with functional annotations
and experimental data like in the UCSC Genome browser (Fujita
et al., 2010) and in Ensembl (Hubbard et al., 2009). Genome
browsers exploit these databases to give a useful, general and
extensive picture of a genomic region features. Nevertheless, for any
quantitative analysis, users have to query the underlying databases to
fetch the data they need: a comparable situation to the one described
above with the additional limitation that pre-computed algorithm
results (often obtained under fixed default parameters) cannot be
used to evaluate the effect of variations.

We developed GeCo++ (Genomic computation C++ library),
a C++ class library to the purpose of making easier and faster
the efficient implementation of algorithms for sequence analysis
when functional annotations and genomic variations need to be
considered. The library is not intended as a substitute for more
specialized libraries; instead it frees the programmers from the
burden of keeping track of genomic annotations and variations,
giving them the opportunity to use the libraries they prefer for
specific fields like, for example Bio++ (Dutheil et al., 2006) and
seqAn (Döring et al., 2008) for general sequence analysis or
libSequence (Thornton, 2003) for population genetics.

2 IMPLEMENTATION
The library has been developed starting from the idea to represent
and manage the numeric results of computational algorithms

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1313

 at K
ing's College London - Journals D

ept on July 5, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[13:30 1/4/2011 Bioinformatics-btr123.tex] Page: 1314 1313–1315

M.Cereda et al.

keeping them tied to annotations of genomic elements (transcripts,
binding sites, conserved regions, transposable elements, etc.),
to their sequences and to genomic variations. It provides the
definition of a genomic element model that tightly integrates
information about genomic ranges, positions, genomic variations
and computed/retrieved numerical features. The core idea of the
model is to refer genomic ranges and positions to a reference
sequence (e.g. a chromosome assembly) and to add a set of variations
(substitutions, insertions and deletions) to represent actual elements
(e.g. mutated ones, individual haplotypes, and so on). Based on this
model the library provides the following capabilities:

• memory efficient representation of alignments in terms of
reference/variations: this can save a lot of memory especially
when relatively few variations are involved;

• automatic tracking of position changes introduced by
insertions/deletions;

• easy mapping of corresponding positions between different
sequences; and

• automatic recalculation of numerical features only where
variations make it necessary thus avoiding unnecessary
recalculations in unvaried regions.

A genomic element is defined as an interval of a given reference
sequence in a given strand. Positions can be referred to the reference
sequence (reference positions, unsigned values) or to the Element
(element positions, signed values relative to the element start along
its strand). Element sites are defined as particular element positions
(e.g. transcription start sites, splice sites or protein binding sites)
while a connection represents a directed relation between two sites
(e.g. introns, exons). Positional features are defined as properties
that vary along an element. While no assumption is made on the
biological meaning of sites, connections and features, the model
is general enough to represent the majority of real-world genomic
elements as well as their features. The GeCo++ library defines
the class gElement as an implementation of this model: it allows
users to instantiate objects representing genomic element which
can contain sequence as well as sites, connections and features
information. Element positions can be converted to reference ones
and back, positions can be mapped between elements. The most
important characteristic of gElement objects is that they can be
instantiated as sub-intervals of another one considering the strand
and the presence of genomic variations (relative to the reference).
Sequence, sites, connections and features are inherited by the new
object consistently with its interval, strand and variations avoiding
redundant recalculation and retrieval at unaffected positions. Users
can easily write algorithms to retrieve sequences or calculate features
by deriving new classes from a hierarchy of retriever objects
(gRetriever). This requires one single virtual member function
implementation. Retrievers are then used by gElement objects
that, in this way, are independent from specific algorithms for
retrieval and calculation. To hold sequences, positions, connections,
variations and features we defined another class, called gArray:
a general purpose template array class. It provides tracking of
undefined/invalid elements [not available (NA)] and memory
efficient array subsetting. NA tracking is obtained through an
optimized bits array class (gBitsArray). The gMatrix, gString and
gSequence classes have been derived from gArray to manage
matrices, character strings and DNA sequences, respectively. Given

the level of abstraction and the inherent complexity, we considered
an object oriented software model to be the most appropriate.
The choice of ISO C++ guaranteed speed, portability and, most
importantly for users, the access to a great number of other efficient
and specialized computational biology libraries.

3 EXAMPLES
The tutorial available at http://bioinformatics.emedea.it/geco
contains a detailed description of the library usage and features.
Many specific code examples are reported to illustrate the
capabilities of the library as well as their usage. A fully commented
example is also reported for an application that takes as input a
refSeq ID and the name of a file containing haplotype information
and calculates haplotype specific sequence features. Furthermore,
we provide comparison between this application and an equivalent
R/bioconductor script.

4 DISCUSSION
New cost-effective high-throughput sequencing and array
techniques are now able to generate huge amounts of information on
DNA, RNA as well as protein–DNA and protein–RNA interactions.
Systems biology approaches can integrate these information at
a genomic level describing and studying complex regulatory
networks. Prediction and interpretation of the functional meaning
of individual genomic variations could be inferred by studying the
modifications and rewiring events they produce in these networks.
Despite this being considered as one of the most promising
challenges (Gonzalez-Angulo et al., 2010; Peng et al., 2009), a
gap remains to be filled between sequence analysis algorithms,
genomic annotations and variations; the lack of tools integrating
these three levels of analysis is going to become more evident as
high-throughput techniques on one side and system biology on
the other start to converge to translational research applications.
Beside providing C++ programmers with features usually present
in interpreted languages, our library introduces a genomic element
model that tightly and time/space efficiently integrates computed
features, position annotations and variations, allowing for feature
rich ‘in memory’ representations of what usually is provided by
genome browsers. The most important difference is that in our case
this representation is able to dynamically keep track of genomic
variations. To our knowledge this is an approach that has not
been implemented in any other package yet, irrespectively by the
language used.

As a first attempt to fill this gap, the GeCo++ library makes the
development of complex and efficient applications straightforward,
not bounded to specific data sources or computational algorithms
and that can easily evaluate the effect of sequence variations on
genomic functional elements.

Conflict of Interest: none declared.

REFERENCES
Blankenberg,D. et al. (2010) Galaxy: a web-based genome analysis tool for

experimentalists. Curr. Protoc. Mol. Biol., Chapter 19, Unit 19.10.1-21.
Döring,A. et al. (2008) SeqAn an efficient, generic C++ library for sequence analysis.

BMC Bioinformatics, 9, 11.

1314

 at K
ing's College London - Journals D

ept on July 5, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[13:30 1/4/2011 Bioinformatics-btr123.tex] Page: 1315 1313–1315

GeCo++

Dutheil,J. et al. (2006) Bio++: a set of C++ libraries for sequence analysis,
phylogenetics, molecular evolution and population genetics. BMC Bioinformatics,
7, 188.

Fujita,P.A. et al. (2010) The UCSC Genome Browser database: update 2011. Nucleic
Acids Res., 39, D876–882.

Gentleman,R.C. et al. (2004) Bioconductor: open software development for
computational biology and Bioinformatics. Genome Biol., 5, R80.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome
Biol., 11, R86.

Gonzalez-Angulo,A.M. et al. (2010) Future of personalized medicine in oncology: a
systems biology approach. J. Clin. Oncol., 28, 2777–2783.

Hubbard,T.J.P. et al. (2009) Ensembl 2009. Nucleic Acids Res., 37, D690–D697.
Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics

workflows. Bioinformatics, 20, 3045–3054.
Peng,X. et al. (2009) Virus-host interactions: from systems biology to translational

research. Curr. Opin. Microbiol., 12, 432–438.
Shannon,P.T. et al. (2006) The Gaggle: an open-source software system for integrating

bioinformatics software and data sources. BMC Bioinformatics, 7, 176.
Stajich et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome

Res., 12, 1611–1168.
Thornton,K. (2003) Libsequence: a C++ class library for evolutionary genetic analysis.

Bioinformatics, 19, 2325–2327.

1315

 at K
ing's College London - Journals D

ept on July 5, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

