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Abstract

Consider a Shimura variety of Hodge type admitting a smooth integral model S at an
odd prime p > 5. Consider its perfectoid cover §24(p>) and the Hodge-Tate period
map introduced by Caraiani and Scholze. We compare the pull-back to $24(p*) of the
Ekedahl-Oort stratification on the mod p special fiber of a toroidal compactification
of S and the pull back to $%4(p>°) of the fine Deligne—Lusztig stratification on the
mod p special fiber of the flag variety which is the target of the Hodge—Tate period
map. An application to the non-emptiness of Ekedhal-Oort strata is provided.
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1 Introduction

Let (G, X) be a Shimura datum; in particular, G is a connected reductive group
over Q and X is a G(R)-conjugacy class of a homomorphism of algebraic groups
h: Resc/r(G;) — Gr. Denote by Shi (G, X) the associated Shimura variety over
C, for some compact open subgroup K C G(A/) of the finite adelic points of G. We
fix an odd prime p and we assume that:

(i) K is hyperspecial at p i.e., K = K,K?” with K? C G (AT (") a compact open
subgroup of the prime-to-p, finite adelic points of G and K, = Gz,(Zp), the
group of Z -points of some reductive group Gz, over Z, with generic fiber Gg,,;

(i1) K is neat;

(iii) (G, X) is of Hodge type, that is, there is an embedding of Shimura data (G, X) C
(GSp,,, H,) with GSp,, the group of symplectic similitudes on a Q-vector space
of dimension 2g, endowed with a non-degenerate symplectic pairing and with H,
the double Siegel space.

Results of Shimura and Deligne guarantee that Shx (G, X) admits a canoncial
model over the reflex field £ which is a number field, defined as the minimal subfield
of C of definition of the conjugacy class Z of the Hodge cocharacter

Idx1 ~ hc
wn: Gpc — Gu.c x Gy c = Rese/r(Gp)ec — Ge.

Fix a prime v of E over the prime p; let  be the residue field of Of at v. Thanks
to our assumptions v is unramified over p so that (7)\5,1) = W(k) and Z admits a
W (k)-valued point that we denote /.

Denote by S the integral canonical model of Shg (G, X) over Of , constructed
by Kisin [11]. Given a finite and admissible rational cone decomposition X for G,
we denote by S the associated toroidal compactification constructed in [16]. We fix
one and we suppose that S* is smooth and projective over Of , (and certain other
technical assumptions for ¥ hold; see (2.12)). We let SOZ be the mod p special fiber.
Write S* for the p-adic formal scheme defined by completing S* along SO2 and ¥4
for its adic generic fiber (in the sense of Huber). We denote by §2¢ ¢ S*:2 the open,
adic subspace defined by the scheme Sg,,.

We also let F¢; -1 be the flag variety over W (k) classifying parabolic subgroups

of Gz, of type w~!. Set Fl; -1 to be the special fiber over k, F{; ,-1 to be the
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On two mod p period...

formal scheme defined by the completion of F¢; -1 along F{g -1 o and F- Za(‘;lﬂ_]
to be the generic adic fiber of F £ -1
Consider the perfectoid tower 77 : S2(p>) — §2d and the Hodge—Tate period map

THT : Sad(poo) — Flg s

defined by [5, Thm. 2.1.3]. We have the following diagram of topological spaces:

§4(p>)
¥,ad / \ d
5 a
S Feg
A A
SE 4
0 G,u=1,0s

where the bottom vertical arrows are the specialization maps sp: STad S5 > and
sp: J”-'Z‘ld w1 = Flg im0, We write g : 54(p>®) — SF and g2: Sad(p‘x’) —
Fls .10 for the two composite maps. These are the two mod p period maps of the
title.

The varieties S()): and Fl; -1 o are endowed with natural stratifications. On S()):
we have the so called Ekedahl-Oort stratification introduced by Ekedhal and Oort in
the Siegel case, by Zhang [26] in the general setting of the special fiber of Shimura
varieties of Hodge type, such as Sy, and then extended to toroidal compactifications,
such as So , by Goldring and Koskivirta [7]. On the other hand F¢; -1  is endowed
with the so called fine Deligne—Lusztig stratification, introduced by Lusztig in [14]
and [15]. One knows that:

o the strata of these two stratifications are classified by subsets W (in the EO case)
and =W (in the DL case) of the Weyl group W of G. Here, I, and I_ are the
types of the parabolic subgroups P+ of G defined by 1 and w~ ! respectively and
=W is the set of Kostant representatives of the quotient sets W /W;+ of W by the
Weyl group of the standard Levi subgroups of Py, ;

e there exist eplicit order relations <go on Lyw and <pr, on =W corresponding
to the closure relations on the associated Ekedahl-Oort stratification on Sg: and
Deligne—Lusztig stratification on F¢; -1 o respectively.

e the stratum associated to w € =W is smooth and equidimensional of dimension
equal to the length £(w) of w in the Weyl group W, if non-empty.

For w € =W we let Cgo(w), resp. CpL(w) be the corresponding stratum on
SOE, resp. on F¢g -1 . The natural question we address in this paper is the relation

between these two stratifications when pulled-back to $24(p°). Our main result is the
following. In Lemma 7.2 we prove that the map

Ji
oo: "W > -w, w = wytw,
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given by left multiplication by a suitable element wé* € W, is an order reversing

bijection and ¢ (oo(w)) =/ (wé*) —{(w) forevery w € '+ W . Here the order relations
are <go and <pr. respectively. Then:

Theorem 1.1 Assume that p > 5 andthatql_1 (CEo(w’))ﬂqz_] (CDL(w)) is non-empty
forsomew’ € '+ W andw € - W. Then w <py, oo(w’) (equivalently w' <go oo(w)).

This should be seen as the discrete analogue of the phenomenon pointed out in
[5], where a stratification (in a loose sense) of féad G- is defined so that its inverse
image via gyt coincides with the inverse image of the Newton polygon stratification
on 5% but the closure relation is opposite to the one of the Newton stratification. In
loc. cit., the classification of vector bundles on the Fargues—Fontaine curve X . plays

a crucial role. Recall that in Fontaine’s theory we have a classical period ring Amf and
amap Aijpr = Oc , With kernel a principal ideal, of which we fix a generator w. The
Fargues—Fontaine curve is the quotient of Spa(Ainf[ p’la)’l], Ainf) with respect to
Frobenius. In our case we need to understand what happens at the non-analytic point
of Spa(Ainf, Ainf) defined by the vanishing of the ideal (p, ®). The assumption that
p > 5 comes from the technical requirement that a certain open of X(C}, is non-empty.

The EO stratification is constructed by Goldring and Koskivirta using a map of
stacks

¢¥: Sy — Hp, — Zip”

to the stack of so called H-Zips, where H is the mod p reduction of a model of
G over Zj and x is the cocharacter of H defined by the mod p reduction of the
Hodge cocharacter w. The notion of H-Zips is due Pink et al. [21] and is recalled in
Sect. 2.2. It fits in the language of Algebraic Zip Data introduced by Pink et al. [20]
and reviewed in Sect. 2. This provides a common framework to prove at the same time
the properties of the EO and the DL stratifications recalled above (see Sects. 2.1 and
2.3 respectively). We stress, though, that historically these properties were already
known in the DL case. Namely, Bédard has proven in [1] that DL strata are indexed
by the elements of '~ W. The partial order <pr. on '~ W has been introduced by He
[8] and it is shown in [9] that it describes the closure relation of the DL stratification.

A second result, conjectured by Wedhorn and Ziegler [23], is Theorem 3.1 stating
that

Theorem 1.2 Assume that p > 3. Then, the map ¢* is a smooth morphism of stacks.

Remark 1.3 The proof of 1.2 uses as an input that the restriction of the maps ¢ |, to
So is smooth for the special fiber of the integral canonical model of Shimura varieties
of Hodge type with hyperspecial level at p. This is proved in [26, Cor. 3.12] under the
assumption that p > 3 as loc. cit. uses the integral canonical models defined in [11]
only for p odd. Notice that also ¢ > is contructed in [7] for p > 3.

Nowadays, integral canonical models for Shimura varieties of abelian type with
hyperspecial level at primes above 2 are available thanks to work of Kim and Madapusi
Pera, see [10]. Their toroidal compactifications have been constructed in [16]. As
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remarked by one of the referees, assuming that the construction of ¢* of [7] goes
through also in this case and admits the local description given in Lemma 2.13 and
assuming that [26, Cor. 3.12] holds true also in this 2-adic setting, the proof of Theorem
1.2 works for p = 2 as well.

Theorems 1.1 and 1.2 allow to transfer questions on one stratification to questions
on the other stratification. For example, we prove the following

Corollary 1.4 Assume that p > 5. Then, for every w' € '+ W and every w € =W, the
sets ql_l(CEO(w’)) and ‘12_1 (CDL(w)) are non-empty. In fact, ql_l(CEO(w’) n So) is
also non-empty.

The result in the EO case has been announced by Yu [25] based on work of Lee
[13] and Kisin [12]. We prove this result differently by showing first in Proposition
4.3 the stronger statement that the map ¢, is surjective, and hence that every DL
stratum is non-empty. This is elementary projective geometry. It implies, in particular,
that g, ! (CDL(L wo)) is non-empty, where the element wé+ = T~wy e =W is the
element of maximal length. Due to Theorem 1.1 this implies that the zero dimensional
stratum Cgo(1), corresponding to the identity element 1, is non-empty. We deduce
from Theorem 1.2 that the EO stratification is closed under generalization for the order
<Ego and, hence, all the EO strata are non-empty as Cgo(1) is non-empty. As the map
q1 is the composite of the surjective maps 7 : $%4(p>) — §% and sp: 524 — SOZ, it
is also surjective and the first part of the Corollary follows.

In fact, we show in Corollary 3.7 that the stratum Cgo(1) is fully contained in Sp
verifying Condition 6.4.2 in [7]. This implies the second claim of the Corollary.

2 Algebraic zip data

We recall the notion of Algebraic Zip Data introduced in [20]. We follow the notation
and conventions of [7, Sect. 1.2]. Let H be a connected reductive group defined over
the prime field I ,. Fix an algebraic closure k of IF, and a cocharacter x : G, x — Hy
over k. The pair (H, x) is called a cocharacter pair in loc. cit. We denote by P = P,
the parabolic subgroup of Hj defined by y: it is characterized by the fact that LieP C
LieH}, is the sum of the non-negative weight spaces for the adjoint action of G, x via
X
As H is defined over a finite field, there exists a Borel subgroup B C H, with
maximal torus 7', defined over IFF,,. We assume that By C P; this is Assumption
(1.2.3) of [7]. Possibly after conjugating x by an element of H (k), this holds. We let
W = W (Hg, Ty) be the Weyl group of Hj, with respect to 7y and we let A C W be the
subset of simple reflections defined by By. Let I C A be the type of P. Itis the subset
of simple reflections generating the Weyl group Wy, of the standard Levi subgroup
L C P, the Levi subgroup containing 7. We then have two cosets representatives / W
and W in W of the quotient set W\ W, resp. W/W;: for every coset Wyw € W;\W
the corresponding element w’ € /W is the unique element w’ € W;w of shortest
length (and similarly for W/ and W/W;).
With the notation and assumptions above, we recall the follwing definition [20,
Def. 3.1].
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Definition 2.1 An algebraic zip datum for the cocharacter pair (H, yx) is a triple Z :=
(P, Q, ¢) where P is the parabolic subgroup of Hj definedby y, Q is another parabolic
subgroup of Hy and ¢: P/R, P — Q/R,Q is an isogeny of the reductive quotients.
The group

Ez :={(p,q) € P x Qlp(wp(p)) = 70(9)}

is called the zip group associated to Z. It acts on Hj on the left as follows

Ez x Hy — Hy, (p.q)-g=pgq™"

Thanks to [20, Prop. 3.7] there exists g € H (k) such that

(a) $Bx C Q,
() @(p(Bi)) = mo (4 B),
(© op(Ti) = mo(Ty).

Let L C P and M C Q be the stantard Levi subgroups defined by 7 C P
and 8T, C Q respectively. The isogeny ¢ defines an isogeny ¢: L — M such that
@By NL) = 8B,y N M and ¢(Ty) = 8T;. If J is the type of Q this induces an
isomorphism

v (W 1) —=> (W, T) )

of the Weyl groups W; — W; such that W (/) = J.

We also fix representatives W € Np, (Tx) for w € W = Ny, (Tx)/Cq, (Ti) such
that wiwy = W W if £(wiwy) = £(w;)€(w>). This can be done as explained in [20,
Sect. 2.3].

We assume that Z is orbitally finite, that is the number of orbits for the action of
E z on Hy is finite. This holds, for example, if the differential of the isogeny ¢ at 1
vanishes. For every w € W we write H,, := Ez - (Wg~') C Hy for the E z-orbit
defined by wg~!. Then, [20, Thm. 7.5] states that:

Theorem 2.2 The map
'W —s (Ez — orbitsin Hy}, w — Hy

is a bijection. Morever,

1. forany w € ' W the corresponding orbit Hy, is a locally closed, smooth subvariety
of Hy of dimension dim P + £(w).

2. for any w, w' € 'W we have that H,y C H, and we write w' < w, if and only
if there exists y € Wy such that yw'y(y)~' < w for the Bruhat order < on W.

Remark 2.3 The Assumption that B C P is related to the concept of frame in [20, Def.
3.6] for Z. If we set (B’, T', g’) with B’ := g By, T := g Ty and g’ = g, the triple
(B, T, g’) is a frame for Z. We prefer to use the conventions of [7] fixing a Borel
By C P instead of a Borel in Q. This has the effect, for example, that the statement
of [20, Thm. 7.5] is slightly changed.
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There is a dual presentation of the orbit space for the action of E z on Hy, described
in [20, Thm. 11.2], in terms of the subset W/ C W. As explained in [20, Prop. 9.13,
9.14] there exists a length preserving bijection

o:'w— w’

characterized by the propert that for any w € /W there exists a y € W; such that
o(w) = wap(y)—l. Then [20, Thm. 11.2, 11.5] state that:

Theorem 2.4 The map W' — {Ez — orbits in Hy), given by w — H, = Ez -
(wg™Y), is a bijection. Morever,

1. for any w € 'W we have H, = o). In particular, for any u € WY the
corresponding orbit Hy, is a locally closed, smooth subvariety of Hy of dimension
dim P + £(u).

2. for any w, w' € W’ we have that H,y C H,, and we write w' < w, if and only
if there exists y € Wy such that yw'y (y)~' < w for the Bruhat order < on W.

In fact, we have a richer structure of quotient stacks; see for example [21, Sect.
2.2]. Recall that if X is a k-scheme and Q is a linear algebaric k-group scheme acting
on the left on X the quotient stack [Q\X] is the stack fibered over the category of
k-schemes whose S-valued points consist of pairs (/, o) with (1) I a left Q-torsor
over S (2) a: I — X ia morphism commuting with the left Q-actions on / and on X.
There is a notion of topological space asociated to [ Q\ X] that we denote |[ O\ X]|

If the number of orbits Q\ X in X for the action of H is finite, then such space has a
unique topology compatible with the closure relation among orbits; see [21, Prop. 2.1].
Furthermore, [21, Prop. 2.2] guarantees that the natural map X — [Q\X] induces
an homeomorphism (Q(k)\X (k)) = |[Q\X]|. So Theorems 2.2 and 2.4 describe the
topological space underlying the quotient stack [E z\ H].

2.1 Fine Deligne-Lusztig varieties

We use the notation of the previous section. We start with a connected reductive group
H over IF, and a cocharacter x : G, x — Hi, over k = Fp. This defines a parabolic
subgroup P C Hj that we assume to contain a Borel subgroup By, defined over
F,. Write Flp, , := P\Hy for the corresponding flag variety. It is endowed with a
stratification by fine Deligne—Lusztig varieties, introduced by Lusztig [14] and [15].
In this section we review its definition and we recast its properties, known thanks to
results of Bédard [1] and He [8], [9], using the language of Algebraic Zip Data.

Let Q := PP) be the base change of P C Hy via Frobenius on k. It is a parabolic
subgroup of (Hk)(”) = Hj (as H is defined over ). It contains the Borel subgroup
(By)P) = By (as By is also defined over IF,). The Frobenius map ¢: P — PP =0
defines an isogeny ¢: P/R,P — Q/R, 0.

Then Z := Zpp = (P, Q,¢) is a zip datum as in Definition 2.1. Note that
Q/R, 0 = (P/R,P)P and then ¢ is Frobenius. In particular, the differential of ¢ at
1 is zero and Zpy, is orbitally finite.
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The projection map p: Hy — Flp, , is a P-torsor (for the étale topology) so that
Fl g, represents the quotient stack [ P\ Hi]. The inverse of Lang isogeny y : Hy —
Hy, h — ho(h)~! defines a map of quotient stack

Vi [P\Hi] — [Ez\Hl.

Proposition 2.5 The map y is smooth. In particular, the induced map on underlying
topological spaces is surjective, continuous and open.

Proof Recall that to give a morphism S — [E z\H] is equivalent to give an E z-
torsor Y over S and a E z-equivariant morphism ¥ — Hj. In our case, using that
Fl g, represents [ P\ H], the morphism y is defined by

(1) the E z-torsor E z X P H; over F¢ Hy,y defined by pushing-forward P\(Eg Xk Hk)
of the inclusion P C Hj via the group homomorphism P < Ez,h — (h, go(h));

(2) the E z-equivariant map v: Ez x” H; — Hy defined by ((p, q),h)— (p,q) -
y(h) = py(h)g~".

Thus the diagram

Ez x P Hy AN H;
! B ¢
Fly,, — [Ez\H,

where the vertical maps are the natural projection maps, is cartesian and in order to
prove the claim it sufffices to show that v is smooth. The scheme Ez x© Hj is a
smooth over k, being a tosor under the smooth algebraic group E z over the smooth
scheme F€py, ,. As also Hy is smooth, in order to prove that v is smooth it suffices to
show that it is surjective on the tangent space at every k-valued point.

The map y is finite and étale so that inclusion Hy C Ez X P H, — Hy is already
surjective on tangent spaces and the claim follows. O

Recall from Theorems 2.2 and 2.4 that |[Ez\Hi]| is homeomorphic to I'w
(resp. W”), where W is the Weyl group of Hy, I is the type of the parabolic P,
J is the type of Q, we can take g = Id in loc. cit. and the topologial structure on / W
(resp. W) is defined by the order relation w’ < w described as follows.

Let I be the type of P and let J = ¢(I) be the type of Q = PP). Frobenius on
Hj, defines an isomorphism of Weyl groups ¢: W — W and a bijection on simple
reflections, as the Weyl group and the simple reflections are defined with respect to a
Borel subgroup and a torus defined over IFF,,. Then ¢ defines an isomorphism

YpL: Wi — Wy, wi o(w) (2)

and, thanks to Theorems 2.2 and 2.4, for w and w’ € 'W (orin W) we have w’ < w
iff there exists y € W; such that yw'yp.(y) ™' < w.
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Definition 2.6 For every w € W we let Féy, .., be the inverse image of w € /W
via the map of topologial space Fly, , — |[[Ez\H]| = I'w with reduced induced
scheme structure.

Similarly for u € W7/ we let FZ’;Ik, X be the inverse image of u € W via the map

of topologial space Fly, , — |[[Ez\H]| = w.

By Theorem 2.4 there is a bijection o : /W = W and for every w € /W we have

(w)
Flp, yw = Fz‘},k’”x.

Corollary 2.7 Each Flp, y . and each FZ“k X is smooth and equidimensional of
dimension £(w), resp. £(u). Moreover Fly, , v is in the closure of Fly, y w (respec-

tively FE“ Ly s in the closure of FZ“ i and only if w' < w (respectively u’ < u).

Proof We provide a proof for the strata F€p, y .. For the strata FeY, Hiox the argument
is the same. The closure relation and the fact that each Fg, , . is non-empty follows
from the fact that the map of topological spaces induced by ¥ is continuous, open and
surjective. This also implies that such map respects codimensions. Since by Theorem
2.2 the codimension of w € W is dim Hy — (dim P + £(w)) it follows that the
codimension of Fly, , . in Fly, , is also dim H; — (dim P + ¢(w)). Hence its
dimension is £(w) as wanted. The smoothness assertion follows from the smoothness
of y. O

In particular, we get a stratification on Fép, , with strata Fep, ., forw € TW.
Thanks to results of He [9] it coincides with the stratification by fine Deligne—Lusztig
varieties introduced by Lusztig.

2.1.1 Avariant
We consider the flag variety F¢y, -1 := P_\H,. We describe an isomorphism
Fer’X—l = Fer,w()X*l 5

where wo € W the longest element in the Weyl group W, compatible with stratifica-
tions. Later in the paper we will be lead to work with the first space but we will need
the dictionary provided by this isomorphism to get a description of the stratification
in terms of the Weyl group W and the fixed set of simple reflections A.

Recall that 7 is the type of P and I_ is the type of the parabolic P_ defined by
the cocharacter x ~!. As P_ is the parabolic opposite to P we have P;_ = "0P_ so
that 7_ = "0[. Recall also that Frobenius defines an automorphism ¢ of the Weyl
group W and that J := ¢([) is the type of P(”) and K = @(I_) = “0J is the type
of 0 = PP Consider the elements y := /wq = wé‘ and z = ¢(y) = Two = wf
of W defined in Lemma 7.1. Then P_ = YP;_ and conjugation by ! provides
the identification L = “OL of the Levi subgroup L = P N P_ of P_ and the Levi
subgroup of P;_so that BN L = B N™0L. Similarly, conjugation by Z~! provides the

identification L") = %0 L(P) of the Levi subgroup @ = P”’ and the Levi subgroup of

Px = pl(f) sothat BN LP) = BN L) Consider the zip data Zqpp := (P—, Q, ¢)
and Z_ := (P;_, P, ¢).
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Lemma28 Themap Ez,, —> Ez_, (p.q) (y’lpi, 'Z’lq?), defines an isomor-
phism of algebraic groups.

Similarly, the map H. —> He, h — Y 'hZ, defines an isomorphism which
is equivariant for the action of Ez, ~and Ez respectively and an isomorphism
Fly, -1 —> Fly, wo,—1 making the following diagram (see Proposition 2.5)

FEHk»IL_l —> [EZOP

\H]

Fng, 1 — [Ez \H]

wOM—
commute. In particular, the topological space underlying [ E z_\ Hy] admits a descrip-
tion in terms of 1= W with the order < as in Theorem 2.2 and the scheme F¢ Hy !

admits an induced startification labeled by - W.

2.2 H-zips

Recall the notation. We have a connected reductive group H over IF, and a cocharacter
Xx: Guix — Hi,overk = Fp, that defines a parabolic subgroup P = P C Hy. We
assume it contains a Borel subgroup By, defined over IF,.

Denote by P_ be the associated opposite parabolic subgroup of Hj defined by the
cocharater x ~!. It is characterized by the property that LieP_ C LieHj, is the sum
of the non-positive weight spaces for the adjoint action of Gy, x via x. Let U and V
be the unipotent radicals of P and P_ respectively. The quotients P/U and P_/V
are isomorphic reductive groups and we denote such algebraic group by L. Set Q :=
PP Hk(p ) = Hy.. It is a parabolic subgroup of Hy with unipotent radical V7). The
Frobenius map ¢: P — PP) defines an isogeny ¢: P/U = L — L = Qv P,

Also in this case Z = Zgg = (P, Q, ¢) is a zip datum as in Definition 2.1.
It is orbitally finite as ¢ has trivial differential at 1. We consider the quotient stack
[ E 240 \ Hk . Following [21, Def. 1.4] we give the following:

Definition 2.9 We define the category H-Zip* fibred over the category Schy of
schemes over k as follows.

For a scheme S over k the objects are quadruples (1, I+, I, t) where I is a right
Hj-torsor, I, C [ isaright P-torsor, /_ C [ is aright Q-torsor and ¢: Iip)/U(P) —
I_/V P is an isomorphism of L(”)-torsors.

A morphism of two objects (I, I, 1, [) — (I/, I, I, L/) isatriple of equivariant
morphisms I — I', I — IL_L, which are compatible with the inclusions /+ C I and
I, C I’ and and with ¢ and /.

It is easily verified that H-Zip* is a stack over Schy. There is a morphism Hy —
H —ZipX, given by [21, Construction 3.4]. To a k-scheme S and an element g € Hi(S)
we associate [g = S xg Hy, Iy == S ¥ P, I, =g - (S x; Q) C S x¢ Hy,

Lot S xk PIU =S xx L~ 85, L) = (5 x; Q/VP) 5 [_ /v,

Then I, := (Ig Ig 4. Ig,—, 1g) € H — ZipX(S). By [21, Prop. 3.11]:

@ Springer



On two mod p period...

Proposition 2.10 The map H, — H — ZipX, g +— I,, induces an isomorphism of
stacks [ Ez,,\Hx| = H — ZipX.

Let I be the type of P, let J = ¢(I) be the type of P(”) and let K = *0J be
the type of Q which is the parabolic opposite to P(”). Here we use that Frobenius on
Hj, defines an isomorphism of Weyl groups ¢ : W — W and a bijection on simple
reflections, as the Weyl group and the simple reflections are defined with respect to a
Borel and a torus defined over FF,. In particular, by Theorems 2.2 and 2.4, we have

Corollary 2.11 The map 'W — H — Zip*, w +> [WZ '] with z = wk, defines a
homeomorphism of underlying topological spaces, and equivalently for WX instead
of "W, with the topological structure defined by the partial order <.

We can describe the order relation as follows. In the notation of Theorem 2.2, we
have ¢ =% with z = w and v is the map

YEo: (Wr, 1) = (Wi, K),  w > zp(w)z™ L. 3)

Thanks to Theorems 2.2 and 2.4, for w and w’ € W or w and w’ € WX, we have
w’ < w iff there exists y € W, such that yw'yeo(y) ™! < w.

2.3 The Ekedahl-Oort stratification

Recall from the introduction that we have a scheme S = Sk, the integral canonical
model of the Shimura variety Shx (G, X) over Of ,, and its sepcial fiber So over the
residue field « of O ,.

By [11, Sect. 2.3.1] we may assume that the inclusion G C GSp,, extends to a
morphism of algebraic groups Gz, C GSp,, 7 where Gz, is the given model of G
over Zp and GSp,,. z, is the base change from i( p) — 2 of the group of symplectic
similitudes of free Z,)-module A of rank 2g endowed with a symplectic perfect
pairing . The subgroup Gz, can be realized as the subgroup fixing a finte set of

elements (sy )¢ in the tensor algebra of A.

Furthermore, possibly after refining the prime-to-p level subgroup K? C G(/if (P
we may assume that there exists an hyperspecial level K, = K ,K 5 -
Gszg’Zp(fif) inducing a morphism of Shimura varieties Shg (G, X) — Shg,

(Gszg, Hg). This provides a finite morphism of the integral models
E: SK —> SKg ®Z(p) OE,U?

where Sk, is a Siegel modular variety. In particular, we may assume that it is a fine
moduli space so that it carries a universal abelian scheme.

Weset H := (GZp)]Fp' Asexplained in [7, Sect. 4.1.7] there exists a Borel subgroup
Bz, C Gz, The Hodge cocharacter admits a representative 1 in its conjugacy class
defined over (/’)\E’U (&2 W(k)). Let x: Gy — H, be the reduction of & modulo
p. The composite of i with the inclusion Gyy) C GSpy, wic) defines a splitting
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AQW(k) = Ao ® A_; where G,, acts on A; via the character z > z " on A_; for
i=0,—1.
The main result of [26, Thm. 3.1.2] provides a smooth map

¢: Sy — H — Zip*.

This is refined in [7, Thm. 6.2.1], using the work [16] on toridal compactifications, to
a morphism

¢¥: 8§ — H —Zip”,

where SOE is the special fiber of the smooth and projective toroidal compactification
S* of § associated to a finite and admissible rational cone decomposition . We
make the following Assumption, following [7], in order to define a well behaved

. . . . z
compactification of the universal abelian scheme over S;* and hence over S X
8

Assumption 2.12 X is supposed to refine the pull-back via & of a finite and admissible
rational cone decomposition X, for the Siegel case such that X, is log-smooth (see
[7, Sect. 6.1.2]).

In loc. cit. the weaker condition of X, being log-integral is used. For the purposes

of this paper log-smoothness is sufficient. We denote by £ : §* — S?i the induced
morphism on toroidal compactifications.

For the rest of this section we recall the construction of the map ¢ >. Let S™ be the
p-adic formal scheme defined by completing S along its special fiber SOE . The first
de Rham cohomology of the universal abelian scheme over S, obtained by pull-back
from Sk " extends to a locally free Ogx-module HéR of rank 2g endowed with

(i) the Hodge filtration 2 C Hgr! which is a locally free sheaf of rank g, with
locally free quotient;

(ii) a connection V with log poles along the complement of S in S*, extending
the Gauss-Manin connection. The base change H of HcllR to S*, together with
the connection, is the evaluation along the DP-thickening SOE C S¥ of the
logarithmic crystal over ng defines as the dual of the covariant log Dieudonné
module of the mod p reduction of the degenerating universal abelian scheme
over SO2 (see [16, Prop. 1.3.5] and the discussion in [16, Sect. 4.3.1]);

(iii) if Spf(A) C S¥ is an affine open and we choose a lift ¢: A — A of Frobenius
on Ag = A/pA, then the evaluation H 4 of the crystal  at A is endowed with
a @-linear map, the Frobenius,

F:HP — Ha.
(iv) elements (Sdr.« )« in the tensor algebra of HéR such that
J = Isom (((A, (S0)a) ® Ogz, Hlg, (sar. oc)a)>
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is a right Gz, -torsor over § X TIf we further consider g € J such that g sends

€2 isomorphically onto Ag ® Ogs we have a torsor J under the parabolic Pg
defined by i.

Choose A and ¢ as in (iii). Then the restriction of F to Q is divisible by p and
it is proven in [7, Lemma 6.3.4] (see especially the first paragraph on p. 938) that
%(Q) + ImF = Hy4. Take A small enough so that J4 (A) is non-empty and choose
t € J4(A). We deduce that the A-linear map

_ F
gi=t"o (;|;(1’)(A0®A) ® F|z(ﬁ>(A1®A)> ot A®A—> A®A

defines an element of G(A). Let g; 0 € G(Ap) be its reduction modulo p.

Definition of the H-zip ¢ ¥ (Ao). The element g~'t = (1~!g)~! defines an isomor-
phismH4 = A®A.Denoteby J_ the PP -torsor of all its trivializations. Let / Y
be the reduction modulo p of J, J; and J_. They are right Hy, resp. P, resp. Q-torsors.

The map y :=10g 0 (t(p))_l = (%'[(F)(A()@A) 5> F|[<p)(A71®A)> : ng) — Ha
defines an isomorphism, as explained above. Let y; be its reduction modulo p. Com-
posing with yp we get an isomorphism ¢: I_f_p)/U(p) — I_/VP) of L) -torsors.
Then, (I, I+, I_, t) defines an H-zip in the sense of Definition 2.9 and

t¥(Ag) = (I, Iy, I_,0).
Then, in the notation of Proposition 2.10 (cf. [26, Rmk. 3.2.8] and [24, Prop. 6.7]),

Lemma 2.13 We have ¢ *(Ag) = I .

Furthemore, if z € ﬁ(A), we consider the element t o z € J1(A) and we write
z=Ltuwithf € L(A) andu € R, P(A) then

8toz,0 = Zalgt,oﬁép)~

Proof The first claim is a direct verification. The last formula follows as Frobenius is
divisible by p on t(P(Ag ® A). o

3 Smoothness of (%

As conjectured by Wedhorn and Ziegler in [23, Rmk. 6.4], we have:
Theorem 3.1 The map ¢* is smooth. In particular, it is open.

The rest of this section is devoted to the proof of the Theorem and of some of its
consequences. By construction Sg is a smooth scheme and H — ZipX is a smooth
stack by [21, Cor. 3.12]. Hence, it suffices to prove that £ * is surjective on tangent
spaces at every closed point xo € SOZ. If x¢ lies in Sp this is the content of [26,
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Thm. 4.1.2]. Assume that xy € SOZ\SO. Let A be the complete local ring of S Z at
xo. Denote by H 4 the Frobenius logarithmic crystal relative to the DP-Thickening
Ap = A/pA C A obtained by pull-back to A of the logarithmic crystal H relative to
the DP-thickening S C S* defined in Sect. 2.3.

3.1 The structure at the boundary

As explained in [16, Thm. 4.1.5] there exist

(i) a smooth integral model " over W (k) associated to a Shimura datum (G’, X’) of
Hodge type with hyperspecial level K’;
(ii) a torsor S" — S’ under an abelian scheme A overS’;
(iii) a torsor S — S under a torus E over Wi(k);
(iv) a smooth torus embedding S C S* relative to S

such that the complete local ring A of S* at xq is isomorphic to the completion of §=
at a closed point s.

Over S’ one has a universal principally polarized abelian scheme B. Define the open
U C Spec(A) as the inverse image of Sc 8= By loc. cit. one has a degenerating
1-motive My . Write M L\; = [Y — Dy] for the Cartier dual 1-motive; then D is a

semiabelian scheme over S, extension of the principally polarized abelian scheme B
over S’ by a torus 7 which has constant rank. By the discussion in [16, Sect. 4.3.1] the
Frobenius logarithmic crystal H 4 is identified with the contravariant log Dieudonné
crystal of the mod p reduction of My .

In particular, as an A-module H 4 is endowed with a logarithmic connecton V, with
a two step Hodge filtration

0=F"Ha C F'"Ha C FOHp = Ha
and a three step weight filtration
0C WoHA C WiH4s C WoHA =Ha

consisting of Frobenius subcrystals such that

(a) Wi'H 4 is identified with the covariant de Rham realization [16, Sect. 1.1.3] of D
over A, i.e., the Lie algebra of the universal extension of the pull back of D to A
and the Frobenius is obtained from its identification with the covariant crystalline
realization of the base change of D to Ag = A/pA;

(b) F'H 4 is identified with the non-trivial step of the Hodge filtration of the covariant
de Rham realization of D over A;

(c) WoH 4 is identified with the Lie algebra of the toric part 7 of D and the Frobenius
structure is defined by the identification with the covariant Dieudonné module of
the base change of 7' to Ag.

(d) the A module Gr}}VH 4 is identified with de Rham homology of B and its Frobenius
structure arises from the identification with the covariant Dieudonné module of its
base change By to Ao;
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(e) Grgv ‘H 4 is identified with with the Lie algebra of the universal extension of Y
and the Frobenius structure is defined by the identification with the covariant
Dieudonné module of the étale p-divisible group ¥ ® Q, over Ag.

3.2 The underlying algebraic groups

We summarize the algebraic group counterpart of the description in Sect. 3.1; see
the discussion in [16, Sect. 4.3.4]. The algebraic group G’ = N /U, appearing in
the Shimura datum (G’, X’), is the quotient of a normal subgroup N of a parabolic
subgroup R of G by the unipotent radical U of N and U is also the unipotent radical
of R:

UCNCRCG.
All these groups are defined over Q and they extend to subgroups
UZ,, C sz C RZP C Gzp

with Rz, a parabolic subgroup of the model Gz, of G overZ ), Nz, anormal subgroup
of Rz, and Uz, the unipotent radical of Rz, (equivalently of Nz,). The quotient
Nz,/Uz, is a reductive group G’Zp. It is a normal subgroup of the reductive group
G%p = Rzp/ Uz, and defines a model of G’ over Zp. In fact, the parabolic R is
defined by a cocharacter, called the weight cocharacter, w: G,,,9 — G that factors
via N. By [26, Prop. 3.2.1 and Sect. 3.2.2], after possibly conjugating w by N, we
may assume that its base change to Q, extends to a cocharacter wz, 5" G, z, = N7z, "
Using the embedding Gz, C GSp(A ® Z),) the cocharacter wz, defines a grading on
A ® Z), and, hence, an ascending filtration W, (A R L p), called the weight filtration:

{0}=W_1(A®RZ,) CWo(A®Zp) CWI(ARZp) CWa(ARZy) =AQZp.

Thanks to [19, Prop. 12.1, Lemma 12.2] the Hodge cocharacter i of G can be
chosen to factor through Ng, where E is the reflex field of Shx (G, X), and such that
it acts trivially on Ug (via the adjoint action).

Lemma 3.2 There exists a cocharacter [i of Gw ) in the conjugacy class of w that
factors through Nvyy(y).

Proof First consider the cocharacter " of the reductive group G'; induced by p. Due
to [26, Prop. 3.2.1, S 3.2.2] there exists a conjugate cocharacter /i’ that is defined for
GQN(K). As Nyyge) — G%W(/L has unipotent kernel the cocharacter 1’ lifts uniquely to
the sought for cocharacter /. O

The cocharacter [t defines an increasing filtration, called the Hodge filtration,
F° (A ® W(K)):

{0} =F*(A®@W()) C F'(A@W()) C F(A@ W) = A ® W(x)
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such that Wo(A ® Zy) ®z, W(k) C F'(A @ W(k)) C Wi(A ®Z)) ®z, W(k).

We let P C Gw(), TeSP. P C GW(K)’ resp. P’ C GW( ) be the parabolic
subgroups defined by the cocharacter i of Gy and the induced coocharacters i’
and i’ of G%W () and G{SQV(K) respectively. The intersection P := PN Ry is a
paraboplic subgroup of Gwy(); it is the parabolic subgroup containing Uwyy(c) and
with image P"in G/%/W(K) = Rwuo)/Uw()-

Here is the relation between the two descriptions of the boundary, one via degener-
ating 1-motives and the other via algebraic groups. Recall that the subgroup Gz, can
be realized as the subgroup fixing a finte set of elements (sy ) in the tensor algebra
of A. By [16, Prop. 4.3.7] one has canonically defined tensors (sy dr)o in the tensor
algebra Hy4.

Proposition 3.3 The set of isomorphisms Ha = A ® A, sending the tensors (Sq.dR)a
to the tensors (sq ® 1), the weight filtration We'H 4 to the weight filtration We A @ A
and the Hodge filtration F*'H 4 to the Hodge filtration F*(A QW (k)) @w(y) A, defines
a P-torsor for the étale topology on Spec(A).

Proof If we forget the compatibility with the weight filtrations, this is the content
of [16, Prop. 4.3.9]. The isomorphisms preserving tensors and Hodge filtrations are
proven in loc. cit. to be a ﬁA—torsor I over Spec(A). Let J C I be the subscheme of
isomorphisms preserving also the weight filtration. Take the base change of S* via
W) — W(k) with k an algebraic closure of « and replace A with the complete
local ring A of this base change at a point over sg. Since A — A is faithfully flat,
it suffices to show that J is a P-torsor over an fpqc cover of Spec(A). In order to
simplify the notation we simply write A in place of A. As now A is complete local
with algebraically closed residue field, /(A) is non empty and [ is the trivial P-torsor.
It suffices to show that J(A) is non-empty as, then, J is the trivial ‘P-torsor over
Spec(A).

The tensors (sq.dr)o are horizontal for the logarithmic connection V on H 4. The
residue of the connection defines the monodromy operator N4 on H 4. This is an A-
linear operator such that Ni = 0, the kernel is W1 H 4 and the image is WoH 4. Given
an isomorphism j: H4 = A ® A in I(A) the operator N := j o N4 o j~! annihilates
the tensors s, ® 1 and, hence, lies in Lie G(A). The weight filtration j(WeH 4 ), defined
by the image of W,H 4 via j, coincides with 0 C Im(N) C Ker(N) C A ® A and, in
particular, it is split by a cocharacter w4 : G, 4 — G 4; c.f. the proof of [16, Lemma
3.5.3].

Lift 59 to a W(k)[1/p]-point s of § iR _lying in the same boundary component as
so. Let A be the complete local ring of S S* at s. We claim that J |4, is a torsor over
§pec(A ). Take an embedding W(k)[1/p] C C. Let B be the complete local ring of
S% ®y(c) C at the C-valued pomt associated to s. By construction we have a variation
of mixed Hodge structures over ST ®w () C whose de Rham realization over B is the
base change of H 4 and whose underlying (Q-vector space is A ®Q so that J (B ) isnon-
empty; see the discussion in [16, Sect. 2.1]. The extension A, — By is faithfully flat
asitis local and By is obtained from Ay by a flat base change W (k) — C, localization
and completion. This proves that the cocharacters w4 and w of G are conjugate over
Ag. It follows from [26, Prop. 3.2.1] that the conjugacy classes of cocharacters of G 4
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are the disjoint union of copies of Spec(A). We deduce that w4 and w are conjugate
over an fpqc cover of A, i.e., the filtrations j(W,H Al and W, A are conjugate under
G 4 over an fpqc cover of A. Over this J becomes a P-torsor as wanted. O

3.3 The proof

Consider the parabolic subgroups P.CPCH = G which are the reduction
of P C P C Gwy). Fix a Borel subgroup B C P, and a maximal torus 7. Let
H" := G%p ,resp. H' = GJ/FP be the reductive quotient of the mod p-reduction Ry, of

R, resp. of the mod p-reduction Ny, of N.Recall that H' C H" is anormal subgroup.
Let x’ be the mod p reduction of . It is a cocharacter of H' := G]/Fp and, hence,

also of H” defined over k. By functoriality we get a map
v: H —Zip" — H" —Zip¥'.

The cocharacter x’ defines a pair of opposite parabolic subgroups P} and P} of H, and
H! respectively. Let Z’ = (P, (P")P), ¢) and 2" = (P, (PP p) be the two
associated zip data. Recall that H/—ZipX/ = [Ez\H[land H" —ZipX” = [Ez/\H]'].
The inclusion H* C H” identifies P, = P} N H, and induces a map of zip data
Z’ — Z’ and a map of quotient stacks

y: [Ez\H{] — [Ez/\H}]

which provides a different realization of y.
We define other zip data for H that will be relevant for our discussion. The first is

Z = (P, pP. ¢). The second is Z := (P, ?,(fji, ¢). Note that Ez C Ez so that
we get a map

€: [Ez\Hi]| — [Ez\Hi].

Identifying H;" with the standard Levi factor of R , (for our choices of the Borel B
and the torus 7'), we have an inclusion H C R, C H, and P/ = P. N H and
P” = P_, N H/.Then we get a map of stacks

v: [Ez\H]] — [Ez\Hi].

Lemma 3.4 The morphisms y, €, v and, hence, the composite T := € o v o y are
smooth.

Proof We start with y. Consider the push forward F := Ez/\(Ez» xx H]) of the
inclusion Ez — Ez» via the group homomorphism Ez — Hj. Here Ez acts on
EzvxiH] via(y, (o, B)) — (ay~!, yB). The projection E z» x H — H] compsed
with H] — [Ez/\H]]definesamap F — [E z/\ H}]. Theinclusion H; C H} induces
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a E zr-equivariant map §: F — H,' where E z» act on F through left multiplication
on the first factor of Ez» x; H;. We then have a commutative diagram

F — H,i/
J J
[Ez\H]] 5> [Ez\H]].

For any scheme S, any S-valued point of the fibre product is, locally for the fppf
topology, defined by the trivial E z/-torsor together with the map Ez' — H] given
by right multiplication by 8 € H](S), the trivial E z»-torsor together with the map
Ez» — H) given by right multiplication by € € H,’(S) and an element o € Ez/(T)
such that e = o € H;(S). Hence, F is the fiber-product.

In order to prove that y is smooth, it suffices to show that the map § is smooth.
Recall that H' is normal in H” with reductive quotient H”. Hence P, = P{ N H,
is normal in P with quotient H,” as x’ defines the trivial character of H"’. Similarly
(P”)P is normal in (P”)P) with quotient (H,”")(P). We deduce that F, via the right
multiplication by HJ, is an H}-torsor over Ez/\Ez» which is identified with H,”
(embedded in H]” xy (H]" )(P) via the graph of Frobenius). Both F and H]! are right
H; -torosrs over H;”. In particular, also F is a smooth k-scheme and the smoothness
of § is equivalent to the surjectivity of § is on tangent spaces at closed points. The
map H]” = F/H] — H]'/H| = H}", induced by §, is Lang isogeny h +> h(h?)~!
which is sujective and separable. Hence § induces an isomorphism on tangent spaces
as wanted.

As the morphism € is a quotient morphism of smooth stacks, it is smooth.

We are left to prove the smoothness of v. Let M := E Z//\(Ez X HY ) be the push
forward of the inclusion Ez» — E= via the group homomorphism Ez» — H,’. The
inclusion H” C H defines a Ez-equivariant map : M — H; and arguing as before
we get that M is the fiber product

M — Hy,
¥ ¥
[Ez\H]] = [Ez\Hi].

The smoothness of v is then equivalent to the smoothness of . As 7 is a morphism
of schemes smooth over k, it suffices to show that it is surjective on tangent spaces
at k-valued points and, by right translatiion by E— x; H,, it suffices to show this at
the 0-sections. Recall that the parabolic subgroup R of Gz, is defined over Z), and it
has unipotent radical Uz, » also defined over Z,. Let Uy ) be its reduction modulo p.
Then Rp, N Ry, - = H’” and it follows that LieH = LieH” & LieUr, ® LieUy,, .
Notice that Uy, is contained in the unipotent radical of P,. Similarly Ur, - is the

unipotent radical of (RF ,)(p ) and is contained in the unipotent radical of P(p )
Hence, LleU]F ® LICUF _ is contained in the image of LleE . Thus t 1nduces a
surjective map on tangent spaces at the O-sections as wanted. O
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Remark 3.5 In the proof of Lemma 3.4 the fact that the weight cocharacter is defined
over Q, so that Rz, and its unipotent radical are defined over Z,, is the key point of
the proof.

Over S’ one has an abelian scheme B. The covariant Dieudonné module of its mod
p reduction By defines an associated map

¢': Sy — H —Zip"

which is smooth by [26, Cor. 3.12]. As §OE — 8, is smooth, the composite map
¢ ¥ — S} — H' —ZipX is smooth as well.

Proposition 3.6 The map ¢* : Spec(Ag) — H —Zip* of Lemma 2.13 is the restriction
to Spec(Ag) of the morphism T o ¢’ with T := y o € o v. In particular; it is surjective
on tangent spaces at the closed point.

Proof The last statement follows from the fact that y o € o v 0 ¢’ is smooth as it is the
composite of smooth morphisms by Lemma 3.4.

As remarked in Sect. 3.1 the weight filtration on H 4 arises from a filtration by
Frobenius crystals, that is, Frobenius preserves the weight filtration. We conclude
from Proposition 3.3 that the element g; o of Lemma 2.13 lies in Rp » (Ap). Let g;/ 0
be the image of g, o in the quotient H” of Ry ,. The image of the class of g;/ o Via v
coincides with the class of g; ¢ as the kernel UFP of the quotient map RFp — H"is
contained in the unipotent radical of P, and hence in E+ (as explained in the proof
of of Lemma 3.4). Let

¢": Spec(Ag) —> [Ez/\H}]

be the map defined by g/, € H"”(Ao). Then, the map ¢¥: Spec(Ag) — H — Zip”
factors as

g‘zzeovo;”.

Possibly extending the residue field of A we may assume that the torus 7 and the
lattice ¥ of the degenerating 1-motive M, over A are trivial (see Sect. 3.1 for the
notation). Taking generators of Lie (7") coming from a basis of cocharacters of T
and a Z-basis of Y, that defines a basis of the universal extension of Y, Frobenius on
Wo'H 4 becomes multiplication by p and Frobenius on Gro’H 4 is the identity matrix.
We conclude that, after a finite étale extension of A, we can assume that the projection
of g;/ o onto Aut(WoH 4,) x Aut(GraH ) is the identity so that it lies in Aut(GraH,),
the automorphism group of the Dieudonné module of By base changed to Spec(Ay).
Hence, the morphism ¢” factors via ¢’ restricted to Spec(Ag) composed with y as
wanted. O
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3.4 Ekedahl-Oort strata at the boundary

It follows from [16, Thm. 5.3.1] that there exists a minimal compactification S; and a
map g : SOE — S such that the structure at the boundary is induced by the fibration
described in Sect. 3.1 (here the index 0 in SOE denotes as usual the mod p special fiber).
More precisely, the boundary components of S are a disjoint union of the special fiber
of integral models of lower dimensional smooth Shimura varieties of the type S, as
considered in Sect. 3.1, 1ndexed by so called cusp label representatlves For any such
component the map 7, (§%) — S, is isomorphic to the map BSO — So defined by
restricting the morphism S5 — Sp of Sect. 3.1 to a closed subscheme BSO C S0
Then, we have the following description of the Ekedahl-Oort stratification on the
boundary of S())::

Corollary 3.7 For every boundary component S|, of S§ as above, the map ¢ restricted
1oy ! (S}) is the composite of

(i) the projection no_l(S(’)) — Sy
(i) the map ¢': Sy — H' — ZipX/ defined in [26];
(iii) the map v: H' — ZipX — H — Zip* of Lemma 3.4.

In particular, ¢ restricted to Ty ! (Sp) is constant on the geometric fibers of mo
and the induced map on underlying topological spaces

1252 1y N(Sp) — |H — ZipX|

has open image and does not contain the closed point of |H — Zip”*|.

Proof Statements (i)—(iii) follow from Proposition 3.6. The map t is smooth and,
hence, its image on the underlying topological spaces is open, i.e., it is closed under
generalization. If it contained the closed point, it would be surjective and any maximal
chain of points of |H — ZipX| would be the image of a maximal chain of points of
|H — ZipX/|. This can not be as any maximal chain of points in |H’ — ZipX/| has
length equal to the dimension of S, which is strictly smaller than the dimension of Sy
which is equal to the length of a maximal chain of points of | H — Zip* |. This implies
the last statement. O

3.5 Aresult on zips in mixed chracteristics

The cocharacter &t of Gwy (), whose reduction is x, defines two parabolic subgroups
P = I‘:r and P_ of Gw()- The reduction of ﬁi is Py. Let TcBc GZP be a
Borel subgroup and a maximal torus, defined over Z,,. By replacing /i by a conjugate
cocharacter, that might be defined over an extension W(K) Cc W(k"), we e may and will
assume that P+ and P_ contain B. There is a common Levi subgroup L= P+ npP_.
Finally we let 0cC Gwy(«) be the parabolic subgroup PP defined by base change of
P_C Gwy(c) via Frobenius using that Gé;\{;z,() = Gw() as Gy is defined ove Z,,.
Suppose we are given a W(k)-algebra D endowed with a lift of Frobenius ¢. Let
®: Gw)(D) — Gw) (D) be the Frobenius map g > g(f"); using the embedding
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Gz, C GSp, = GSp,, we view g € Gy (D) as a (2g) x (2g)-matrix with
coefficients in D and we let ®(g) = g be the matrix where we apply ¢ to the
coefficients. It is still an element of Gwy () (D) since the equations defining the closed
subgroupscheme Gz, C GSpy,. Z, have coefficients in Z . Define E Zgo (D) to be the
subgroup of pairs (g, h) € Gy (D) X Gyy)(D) with g € P(D), h € Q(D) and
such that the map

@: (P(D)/R,P(D)) = L(D) — (L) (D) = (O(D)/(R, O(D)))

sends the class of g to the class of h. It acts on the left on Gy (D) via (a,b) - g =
agh™!.

Recall the notation of Sect. 3.1; A is the compelte local ring of S* at a closed point
xo. Frobenius on H 4 defines an element g; € Gyy(c)(A). Assume that £* (xo) is the
class of Wz~ for w € 'W. See Lemma 2.11. For every W(k)-point x of A we let
‘H, be the pull-back of H 4. It is a W(k)-module, endowed with a weight filtration,
Hodge filtration and a Frobenius linear map F'. Proceeding as in the discussion before
Lemma 2.13 Frobenius and a splitting of the Hodge filtration produce an element
8x € Gy (W(k)). Here and in what follows, abusing notation, we identify the Weyl
group of Gyy(c)(W(k)) and of G, (k) = H (k) with respect to the torus ?(W(k)),
resp. T'(k). Then,

Proposition 3.8 There exists a W(k)-point x of A, that reduces to xo modulo p and
generically lies in S C S*, such that the class of g, in Ez,,(WED\ Gy (W(k))
is wz .

Proof First of all we claim that it suffices to construct x without assuming that it
generically lies in S. For any W (k)-valued point y of A, Proposition 3.3 and the fact
that Frobenius on H, preserves the weight filtration imply that g, € Rz, N(W(k)).
The unipotent radical Uz, of Rz, is contained in the unipotent radical of P so that

the class of g, dpends only on the class g, in the reductive quotient G%p (W(k)) =

Rz, (W(k))/Uz, (W(k)). Since Frobenius on WoH,, with respect to a basis coming
form a basis of cocharacters of the torus y*(7') can be taken to be multiplication by
p and Frobenius on GroH, with respect to a basis coming form a basis of y*(Y)
is the identity matrix, in fact g, can be taken in G’ZP (W(k)) and this dpends only
on Frobenius defined on the factor GryH, which is the Frobenius crystal over W (k)
defined by pulling back the abelian scheme B via y. In particular, if we let y' €
S’'(W(k)) be the image of y in the fibration of Sect. 3.1 and if we take any W (k)-valued
point v of A in the fiber of y’ then the class of g, and of g, in EZEO (W(k))\G(W(k))
are the same. As we have v’s in the fiber over y’ that generically lie in S, the claim is
proven.

We are left to prove the Proposition dropping the requirement that x lies gener-
ically in S. We construct inductively W (k)-points (v,),eny such that yo = xg
modulo p and y,4+1 = y, modulo p"t for every n and gy, = wzZ~! in
EZEO(Wn—H(k))\GW(K)(Wn+1(k))- As the maps oy Ezy, (Wpi1(k) — Ezg
(W, (k)) and B, : Gwo)(W,11(k)) = Gw)(W,(k)) are surjective, the limit point
x = lim,— 00y, satsfies the requirements.
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Take yp to be any lift of xo. Assume that y, is constructed. Then, possibly after
multiplying g, := gy, by an element of E z,, (W, (k)) we can asssume that g,Zw !
lies in the kernel of B, which is isomorphic to Lie Hy (recall that H is the reduction
of G7, » modulo p). Thus such class defines an obstruction element Obs(y,) € Lie H

Let Lie(E z, ) be the subset of pairs (a, b) € Lie(P) ®k @ Lie(Q) ®k such that the

map | @ ¢: LieL®k — Lie(L)(p) ® k sends the class of @ modulo LieR, P ® k to
the class of b modulo LieR, QO ® k. The kernel of o, is isomorphic to Lie(E z,). Write
Lie(P) = Lie(L) ® Lie(R, P) and Lie(Q) = Lie(L?) @ Lie(R, Q). Fora € Lie(P)
write a = ag + a; for the corresponding decomposition. Similarly for b € Lie(Q)
write b = bo + b;. Then (a, b) € Lie(E z,,(W(k)) if and only if ¢(ap) = bo. As
Frobenius on Lie algebars is the zero map, this amounts to require that by = 0, that is
Lie(E z;, (k) consist of pairs (a, b) such that by = 0. Consider the map of Lie algebars
over k:

v: Lie(E z,,) = Lie(L) ® (R, P) ® Lie(R, Q) — LieGy, (m,n,z) > m+n—z.

The element Obs(y,) lies in the image of v if and only if after multlply-
ing g = g, by an element of EZEo (Wy41(k)) we have g, = Wz ~1in
EZEo (W1 )\Gw(c) (W1 (k)). In this case we can take Y1 = y.

Recall that by construction we have a lift Spec(Ag) — Hj of the map ;E : SOE —
H —ZipX . Itinduces a map from the tangent space 7, of S(}): at x to the tangent space
TH ¢, of Hy at the image co of the closed point of Ap, that we identify with Lie Hy
by translating by ¢, ! The smoothness of ¢ in Theorem 3.1 implies that the induced

map
0: Lie(Ez.,) x Ty, — LieH

is surjective. The possible lifts of y, to a W, (k)-valued point of A is a principal
homogeneous space under 7y, as we assume that our toroidal compactification S z
is smooth. Let y, be a lift corresponding to an element s € Ty,. Then Obs(y,) =
Obs(y,) + 6((0, s)). By the surjectivity of & we can then find an s, and hence a
corresponding lift y, 1 = y;,, and an element b € Lie(E z,) such that Obs(y,) =
0((b, 0). This implies that after multlplymg gn+1 = &y,,, by an element in the
kernel of @, we have that g, ., = W2~ in E z,, (W, N\ Gwe)(Wnt1(k)). This
concludes the proof of the inductive step and of the Proposition. O

4 On the mod p Hodge-Tate period map

We describe the map g : S(p™°) — FLg -1 ¢ using certain formal models introduced
in [18].
Thanks to [6, Thm. IV.6.7] there exists a smooth toroidal compactifiction
Egy@p (p") of the full level p" Siegel modular scheme Sk, g, (p") — Sk,.qQ,, asso-
ciated to the finite admissible cone decomposition ¥, fixed in (2.12). It defines a
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Spag(Z/ p" Z)-cover

b b
SKE,Q,,(pn) — SKE,Q,,‘

Let T be the p-adic Tate module of the universal abelian scheme over Sg,.
One has Tate tensors (Set«)o in the tensor algebra of 7. Over the fiber product

e S’if Q, (p™) the étale sheaf T /p"T = A/p™ A is trivialized and it extends

Kg.Qp

SQP XS

to a constant sheaf 7, = A/p" A over S(gl X (g S,if' Q, (p™). Let Sél (p™) be the
D Kg@p ) P u

closed subscheme
)
Sa,(P") € 5G, X S, (P")
¢ Qp

such that the isomorphism 1, : T, = A/p™ A sends the mod p"-reduction of the tensors
(Set,a ) in the tensor algebra of 7}, to the tensors (sq ) of A/p"A.

Let S 1§§ (p") be the normalization of the toroidal compactification S Ifj of the Siegel

modular scheme in SZ Q (p™). Similarly let S(p™), resp. S* (p") be the normalization
of S, resp. ¥ in Sép (p™). It is finite over S, resp. S* by construction. By [18, Prop.
1.5] we have a map

dlogn: Tnv(l) - Q® (Os):(pn)/pn(gs)l(l,n))

given as follows. First of all the Cartier dual of the p"-torsion of the universal semi-
abelian scheme G over Séi (p™) is a quotient of 7, (1) through which d log,, factors.
Any such element extends uniquely to an element y : G[p"] — G, g5(,n), defined

over the fppf topology of S*(p™). The pull-back of the standard invariant differential
on Gy, defines an element of the invariant differentials of G[p”"] that coincide with
the mod p"-reduction of the invariant differentials of G. Finally we use [6, Thm. 1.1]
to identify the sheaf of invariant differentials Q¢ of the universal semiabelian scheme
G over S=, used in [18], with the first piece of the Hodge filtration Q2 C H(ljR of the
canonical extension HéR described in Sect. 2.3 and used in [7]. We can now state [18,
Prop. 1.13] and [18, Sect. 2.3.1].

Denote by ng (p™) and Sis o(p™) the mod p-reductions of S*(p™) and S?j 020)
respectively. Set S* (p") and S;: (p™) to be the formal schemes defined by completing
S%(p™)along ST (p™), resp. ofSIif (p™) along S;;O(p”). Sett: S*(p") — S;?: ("
be the morphism induced by the map S*(p") — S,?gg (p"). Let ¢, a primitive p-th
root of unity.

Proposition 4.1 [18]. Given integers n > % +1and 1 <m < n — 1 there exist:
(i) admissible normal formal schemes 32 (p™) and giz (p™), projective morphisms

s> (p") = S¥(p™) and 3125; (" — SE: (p™) inducing an isomorphism on the
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adic generic fiber and a morphismT : gz " — 3?; (p™) making the following
diagram commute:

=z T =z
¥ (" — S
Lol
Xqn 8 (Y-
(ii) aO=s  -submodule Q"¢ C Q, locally free of rank g, such (&p—1D2 C Qmod,

S (pM
. .. =z =X
There is a similar statement over S KZ (p™) and the sheaves over S~ (p") are

obtained from those on 3,2(1; (p™) by pull-back via the morphism 32 phH —
2 ..
Sxl(p") in (i);
(iii) a surjective map
. Voom AV mod ; . m ymod
HT,: (AY/p"AY) ® ng(p”)a) — Q" p"Q
induced by the map d log, and the identification t,: T, = A/p"A. There is a
similar statement over glz(i (p™) and the map HT,, over 32 (p™) is obtained from
the one on 312(2 (p™) by base change via the morphism 32 " — EIE(Z (p™) in
(i).

The sheaf 2"°¢ is independent of n and m and for 1 <m’ <m < n — 1 the map
HT,, is the reduction of HT,, modulo p™ .

Let §§ (p") be the scheme over « given by the mod p special fiber of 32( .
Denote by (§§ ( p”))red the reduced scheme associated to §OZ (»"

Recall that, using the Hodge cocharacter, we have defined a cocharacter x of
(GZP),( = H, and hence a decomposition A ® k = Ag @ k & A_1 ® k. Taking
the sequence A_j @k C A @k we getabase pointin F{; -1 o, i.e., an identification
as schemes over «:

Flg 10 =Fly 1 = P_\H,.

Corollary 4.2 The subsheaf Ker(HT1) provided by Proposition 4.1 defines a map of
schemes over k:

) red

—¥
muro: (S (p™)“" — P_\H.

Proof Let Pgt be the parabolic of GSp,, , induced by the cocharacter xT via the

inclusion G« C GSp,, .. Then Ker(HT;) provides a map E()): (p") = P \GSpyg -
The Hodge—Tate period map myr is functorial with respect to morphims of Shimura
data (G, X) — (GSp2g, Hg) by [5, Thm. 2.1.2, Thm. 2.1.3]. By [18] the integral
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Hodge-Tate period map for the Siegel variety 3?; (P>) — FeGsng -1 is compatible

with the one constructed by Scholze in [22]. Hence the image of 32 (p®) is contained
inF{s; ,-1. By the compatibilities of HT; over S (p™) and giz (p") respectively (see
Proposition 4.1 (iii)) the composite morphism on special fibers

=X )
S() (Pn) - SKZ’()(P") - FZGszg,pfl,O’

provided by Ker(HT}), factors through the image of the composite F¢¢ ;-1 o —
FZGsng, u-1,0 = Py \GSpy, .. Such image coincides with P_\H, as P— = H, N P,

and the map P_\H, — P, \GSp,, . is a closed immersion. The claim follows. O

We need to restate the Corollary using Sect. 2.1.1 in order to express the fine
Deligne—Lusztig stratification on F€y , -1 ¢ in terms of the Weyl group W. Let I be
the type opposite to the type I of P. Thanks to Lemma 2.8 we have an isomorphism
as schemes over k

P_\H; = P| \H,, h— 5 'hZ.
Via the projection map
Pi \Hy — [Ez \H]

we get a stratification on P_\ H indexed by the elements of /- W with closure relation
described by the order relation <; given two elements w and w’ € '~W we write
w < w’ if and only if there exists x € W;_ such that xwe(x)~! < w’ (for the Bruhat
order on W). We let

y:Fly, ,-10= P_\Hy = P|_\Hy — [Ez_\H] 4)

be the composite map.
For later purposes we prove the following result about the modulo p Hodge-Tate
period map.

Proposition 4.3 The map myt is surjective.

Proof LetS™( p") — S¥(p") be the projective scheme over W (k) and the morphism
to S (p") algebraizing the morphism of formal scheme s> (p") — S¥(p™) of Propo-
sition 4.1(i). Such morphism is projective and it an isomorphism over Q. Consider
the invertible sheaf L on 5~ (p™) algebraizing the sheaf det Q™ on S (p") and let

Lo be the induced invertible sheaf on E(;Z (p™"). The sheaf L is base point free and
after inverting p it coincides with the Hodge bundle by Proposition 4.1(ii). In partic-

ular, its restriction to the S( p")@p, identified with an open subscheme of EZ (p™M), is
ample. Take a large enough power L” which is very ample on §( P")q, - Choosing a
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W (k)-basis of global sections we get a map
<z n N
v: ST (p") — HDW(;«)'

<z . L. . . .. .
As S7(p") is projective over W(k), the morphism W is projective and its image
D*(p™) is closed. After inverting p, it is an immersion on S( P")q, so that the image
of W, after inverting p, has dimension equal to the dimension  of Sg,. In particular,

DZ(p") := DE(p") NPV is equidimensional of dimension d. Denote by Wy the
morphism induced by W on the mod p special fibers. Consider the Stein factorization

THTo: Sg (P4 > ¥ — P_\H,

with E(? (p™)d — ¥ surjective with connected fibers and ¥ — P_\ H, finite. Over
E(? (p™)™d the sheaf Lg is the pull-back of the tautological invertible sheaf L@ on

P_\H, via myr. Hence the restriction of ¥ to 35 (p™)'ed factors via Y. Let Y/ C Y
be an irreducible component dominating an irreducible component of DOE (p™); it must
have dimension > d.

The scheme P_\ H, is irreducible and has dimension equal to the dimension of the
unipotent radical of P, which is also d. As the map Y’ — P_\H, is finite, it must

be surjective. Hence the map myt: EOE (pMed — P_\ H, is surjective and the claim
follows. O

5 Proof of Theorem 1.1

Thanks to Corollary 4.2 the two maps of topological spaces g1: S (p>®°) — S()):
and ¢>: SM(p>) — Flg 1,0 factor through a morphism s (p®) — E(?(p"),
the projective morphism u : E()): " — ng and the map myHT: (E? (p”))red —

FlG u-1,0 = P-\H,. Hence it suffices to prove the result for Fp—points of E? »".
Consider the two maps

) d I o~
&: (S, ()™ = SF > H = Zip" = [Ez \Hyl

and

red THT,0

& (S )™ = PAH D [E_ - \He,

where ¥ is defined in (4) and the index k in §k2 (p™) denotes the base change to k.
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5.1 The setup

Take a closed point xg of SOZ (p™). Suppose it is defined over a finite extension I of k.
First lift the image x, of x¢ in SOZ to a W(F)-valued point x” of $* such that the induced
W) [ p‘l]-point lies in S: this can be done as ST is log-smooth over W(x). Then

lift x’, viewed as a W(IF)-point of S*, to a Og-valued point x of 32 (p™) for some
finite field extension W(x)[1/p] C K. Let W(k)[1/p] C Ky C K be the maximal
unramified extension. We will assume that [F is the residue field of K. This gives, in
particular,

(1) an abelian variety A over K, with semistable model A over W(F) and special
fiber A such that the Galois group of K acts trivially on T,A/p" T, A;

(i1) elements (Ser,o)o in the tensor algebra of étale cohomology of A, identified with
the dual of the p-adic Tate module T, (A) of A, fixed by the Galois group of Ko;

(iii) atrivilizationd: T, (A v = A, sending the tensors (et )o to the elements (sq)q;

(iv) a finite and free W(FF)-module Hy := (x")*(H), pull back of the log crystal H
defined in Sect. 3.1 and identified with the contravariant log Dieudonné module
HO(Z]F) of ZF via [16, Prop. 1.3.5], endowed with a Frobenius linear operator ¢
and elements (Scris, ) 10 the tensor algebra of Hy, fixed by ¢;

(v) a saturated W (IF)-submodule wg C Hy such that ¢(wg) C pHp and a lattice
o™ = (y/ )*(QmOd) C wo ®w(r) Ok, pull-back of the sheaf Qmod of Proposi-
tion 4.1, such that the Hodge—Tate map 7}, (A") ® Oc , — 0o ®war) Oc, factors
via a surjective map

HT: T,(AY) ® O¢, — 0™ ®0, Oc,;

(vi) atrivilization g: Hyp = A ® W(IF) such that wp is mapped isomorphically onto
Ao @w() W(F) and it sends the tensors (Scris,« ) to the elements (sq)q s

Thanks to [16, Prop. A.2.2] we have a comparison morphism

—~ ~ 1
Olgt - TP(AV) ®Zp ASI —_—> H() ®W(F) Ast . ?

The ring Ay is a variant of Fontaine period rings introduced in [3]: it is the p-adic
completion of the DP-Ais-algebra Aqris (X), it is endowed with an action of the Galois
group of Ko, with an Ais-linear derivation N and with a Frobenius ¢, it admits a Galois
equivariant map 9 : Zsl — O(Cp restricting to the classical map of Fontaine on As
and sending X +— 0. The element r € Ay is the classical period of Fontaine. The
map o is a map of Zst—modules, compatible with all these extra structures. By [16,
Prop 1.4.10, Cor. 3.3.9] it is an isomorphism after inverting ¢ and it sends (Set, &)y tO
(Scris,a)(x~ . .

Write By = Ag[t~!]. There is a Galois equivariant map Ag — BCTR (see [3,
Sect. 7]). Consider the base change a('fR(A) of ag(A) to B&"R. By loc. cit., it coincides
with the classical de Rham comparison isomorphism of Fontaine after inverting 7. In
particular,

@ Springer



F. Andreatta

Corollary 5.1 The reduction of ag, via Xs, — O(cp isthe map dlog: TpAV®Zp O(Cp —
Q7 Ow) O(C,, of Proposition 4.1. Moreover, Hy ®wy () A\s, is contained in the image
of as.

Proof Consider the map a(AY) for the dual abelian variety,
ag(AY): TyA ®Z,, s« — Ho(AY) ®we) Ay -

Then HO(ZE) = Ho(Ap)" = Hy by [16, Prop. 1.3.5] and (T,A)" - 1 = T,(AY).
Taking the Ag-dual of ag (AY) and using these identifications we get a map

Bst: Ho Qw(r) Ay — Ty(AY) ®z, Ay (5)

We claim that By o oy is multiplication by 7. This can be proved after inverting ¢.
Notice that by [16, Prop. A.2.7] the base change of the maps ag and By to §St are
already defined over the subring By C §5t~ Then the fact that B o gt is multiplication
by t can be checked after base change to Bgr, as the induced map Bs; — Bgr i
injective. The base change of ag and B to Bgr are Fontaine’s classical de Rham
comparsion isomorphisms. The claim follows then from the fact that the de Rham
comparison isomorphsims are compatible with the Poincaré duality in étale and de
Rham cohomology respectively. O

5.2 A description of 7, (xo) and {’, (xo)

Fix a basis C of A as Z,-module. Define g € Gz, (W(IF)) to be
% _
8= Loy ® ¢ly-1n @ W ©4 LA @wie WE) — A @wie) WE)).

Here g is the trivialization in Sect. 5.1(vi). Let gg € H (IF) be the reduction of g modulo
p;recall that H = (Gz,)r,. As explained in Sect. 2.3

¢1(x0) = [g0] € Ezp ()\H (k).

Assume ¢{(xg) € H,z1 for some w € /W and with z := wg, see Lemma 7.1 for
the notation. Thanks to Proposition 3.8 there exists a lift x"in S¥ such that, _possibly
after multiplying g by an element ¥ = (a,bP) of Ez, (W(k)) witha € P(W(k))
and b € P_(W(k)), we have wZ~! = ag(bP)~!.

We denote by F the basis g l(C) of Hy. Write a = u4 ¢ and P = u_¢P for
their decomposition using P=R,P -Land Q0 =R,0-LP. Welet A be the basis
of Hy such that the matrix of change of basis is 4M(Id) = a~'. Thanks to Lemma
2.13 we have

AM ) (@) = ag <g (1)> (u("’))_1 = ug(Z(p))_l <‘(U) ?) (uff))_l =wi lu_ (5 (1)> (uff))_l
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as <p O) commutes with L, and wz~! = ag(E(I’))_lujl. We remark that r_ :=

u_ (g ?) e B(Wk)[p~'1) and thatu; € R, P(W(k)) as (8 (1)) e T(Wk)[p~)

andu_ € R, Fﬁp ) (W(k)) - ERME (W(k)). In particular, we have the following for-
mula:

aM (@) =w ol o € FB(AupT]). us eRPAD. (6
On the other hand we have a surjective map
HTod™': A® Oc, (1) — T,AY ® Oc, — 0™ ®0, Oc,

defining the point 7yt (x), where d is the trivialization in 5.1(iii). Take h € Gz » (Oc¢c p)

to be an element such that Ker(HT o d~ 1) is the filtration 7 (A_; QW (F) (’)Cp). Then
ho, which is & modulo p, represents mwyT,0(Xx0) and

&5 (x0) = [ho(h™) "1 € Ez, ()\H (k).

We let v € =W be such that ;“2’ (x0) lies in the v-stratum as defined in Corollary 4.2
and the discussion that follows the Corollary, that is,

v=F"hoh{") ' € Ez_(\HK) = - W.

Recall that y := Twy = wé‘ and, denoting by ¢ the automorphism of W defined by
Frobenius on G, we have ¢(y) = z.

Denote by £ = d~!(C) the basis of T,(A)Y given by pull back via d of the given
basis C of A. Lift h € G(Oc,) to an element i € G(Ast) via the surjective map
91 Ay — Oc,. Then h(hP)~! € G(Ay) lifts ho(hy’) ™" Here (P is defined using
the Frobenius ¢ on Kst. Let D be the basis of T), AV ® Zst defined by . Th(ir}
the matrix of change of basis expressing £ as a combination of D is pMg(Id) = h.
Let Frobenius ¢ on 7T,,(A) ® Zst be 1 ® ¢. Its matrix with respect to the basis £ is the
identity so that

DMpi) (9) = DMe(Id)e Mg (9) g Mpip (Id) = (R P) ™" (7
5.3 Reduction steps
Welett € G(I/S’\st) be the element T = g Mp(as). It is the matrix of

(ag) @ Doago (R 'd) @)™ A® Ay — T,(AY) @z, Ag
— Ho ®wm Aq — A ® ®Zp;4\st

with respect to the given basis C of A. Then,
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Proposition 5.2 Assume that p > 3. There exists a ;fs,-algebm R™ with the following
properties:

(i) RY is t-torsion free and local with maximal ideal m and residue field k and
the quotient map j: Rt — k is compatible with the map :4\” — k given by
composing Vg ZS, — Oc, and the residue field map Oc, — k. We write
R:=R[t7';

(i) 7 and t'P), viewed in G(R), admit decompositions t = - £ and t'P) = B/ - ¢’
such that B € VE(R) and B’ € ?§(R) and ¢ and E’ are in G(RT) and their
reduction € and € modulo w lie in L(k) and satisfy 7 = ﬁ(p )

(iii)) we have a decomposition as in (ii) with the same Z of (ii), if we replace t and
P with s - T, resp. (s - ©)P, for some s € R, P(AS,)

Proof We write T as
ab ~
T = (c d) € End(A) ® Ag

with a € End(Ao) ®we) Asi, b € Hom(A1, Ag) @wic) As etc.
Due to Corollary 5.1 we have that b, ¢, d are 0 modulo Ker(d) and if we write

5= (IZ n) € End(A ® Ag) for the matrix pM 4 (Bs) of the morphism By of (5) we

have
S-t=1-8 =tl,.

Then also m, n and u lie in Ker(J).
Consider the ring A(S)t Lo defined in Sect. 6. Itisa Zs[ -algebra, the map v extends
to amap Do p—1,0: A0,p-1,0 = O(C and Ker(dg) C a)AO Lo . The element ¢ €
Acris 18 equal to [¢] — 1 times a unit of Acris (see for example [4 Lemme 6.2.13]). As
[e]—1= ([8%] — 1)w times a unit of Ajyr we conclude that 1 = ([81’] — 1)wg with
g aunit of As. Hence

- _ b - _ -1 -1

are both elements of End(A) ® A3

0,p—1l,0 and

1
8/ . 'L'/ = [£[)—1 ]12g

modulo Ker(z?o o1, )

As 99, p—1,0(b) = 0, the reduction T’ r of 7/ modulo Ker(z?o p—1,0) liesin P_(C)).
Thanks to Lemma 6.3 we can find 7g € L(Amf) andt; € B( mf[[p] ]) NEnd(A)®

Ajnfs such that t/ = 17179 in End(A) ® O¢ » (via the map L?O -1 w) We define §g and
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81 simillarly. Then

L
(8180) - (t170) = [pP~ T2

modulo Ker(%). We now pass to Ar L forl>r > ——.Itisa Af)t o -algebra
and ¥, —1,, extends to the morphlsm V. p—1,0 DY Lemma 6 1. Corollary 6.2 implies
that

(8180) - (t170) = [p7~"1D ®)

with D € G(Ar e L)

Let us now work with ASt withs = p — 1 — r. Using Lemma 6.1 again, we

r.s,[pl'e

know that it is a Aﬁt‘pflyw-algebra and 9, p—1, extends to the morphism 9, s [py o
Moreover, Ker(d, p—1,0) C [p]’Aj‘A » by Lemma 6.1. Hence, v/ = 779 modulo

[ E]’Ai"s’[ pro Consider the matrix

AN

_ b _ _
= (nim) 't = (‘;, d/> eGZp(Ait,S’[E]rw[E] ") NEnd(A) ® A}, [[p)7']:

—1
Due to (8) we have that (‘1711'0)_1 is in End(A) ® ([Bﬁ] Aitv [PV

) so that

1
—1

1 X
[pr—T] (i, Z/) is in End(A) ® AS‘ Il and is congruent to [B ]12, modulo

[pl"A st slplro . Hence t” is a matrix congruent to 15, modulo [ E]r_l’f1 and, hence, it

st
is invertible as Ar siple

ist’ GG( rs.plo )
In conclusion, we have T = B£ with 8 := i(w)t; € YB_ (Afts pl [[p] ! -w_l])

is [p]-adically complete and separated by Lemma 6.1, that

and £ := 19 - " € Gz, (Aifs’[ﬁ],w) such that £ = To € L(k); here €, resp. Ty, is the

image of £, resp. 1o in GZP (k) = H (k) via the map j 4: A — k defined by

r.s,[pl'w
Ur.s,[pI @ composed with the quotient Oc, — k.

Frobenius ¢ on Ast extends to a map ¢: A% — A

rs.plo prosdplrow) (€€
Lemma 6.1). The latter is well defined, together with the map jp, s : ;A% prs. P17 o 0
k, if and only if pr < s = (p — 1) — r, i.e., if there exists r > %1 such that
(p + Dr < p — 1 which is equivalent to require that p > 3 and explains the assump-

tion. Then

TP =B B =) € TB(AY o (2] 0@ ') € =00 € Gz, (A pr0).
By construction ¢ = ¢ € L") (k). Here ¢(B) and ¢ () are defined by applying ¢ to
the entries of the matrices g and £. They lie in “ B as ¢(y) = z and in Gz, respectively

as they are both subgroups of GSp(A) defined over Z,.
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Finally o = [B]([B]P”1 [p’]’,,, 1) is equal to [p] times a unit in A%

Analogously ¢(w) = p(l — ﬂ[ 17~ S) is p times a unit in A%

AitA Iplo and A%

pr.s,[pIP o(w)*
ros.lpl Hence both

map to A . We let R be the locahzatlon of

pr.s,[plPro(w) pr.s,[plP"p

At prosplPp with respect to the maximal ideal defined by the kernel of the map
- 1 . .

Jprs: A;tr’x,[ﬁ],,,p — k. Ast = ([sﬁ] — 1)a)u with # a unit in RT and w = [2]

times a unit in R™, inverting ¢ or inverting [p] in R™ gives the same ring R. As

p—1
= p]l’_1 =p- % then p is invertible in R as well. As R™ is p-torsion free and

pE [P]p Apr s.[plPrp
For (iii) the same argument for s - 7 in place of 7 holds. We only need to prove that
one obtains a decomposition with the same €. Define

,then RT is also [ B]-torsion free.

"= @) s T = () s (@) (E@) ).

Then s’ = Ji(w) 'sfi(w) is congruent to 15, modulo w as s € R, P(Ay). Hence,

" = 11179 in End(A) ® O¢ . Then the argument continues as before and we get a
decomposition s - T = B”¢" with 8 € YB(R) and ¢’ € G(RT) and ¢ = T = £g
modulo m as wanted. m]

Remark 5.3 If one is interested in a decomposition of 7 as in Proposition 5.2, one can
work with Bgr and the proof is much easier. It is the need to decompose 7(”) as well
that forced us to look into the finer structure of Xst. As we need the existence of a
positive rational number r such that r > ﬁ and (p + 1)r < p — 1 the hypothesis
p > 5 is forced on us.

5.4 Conclusion

Recall that T = g Mp(ayg). It follows from (6) and (7) that we have the following
equality in G(R):

AP (g - 1) P) " =z

Decompose 7 = ¢ and u4 - T = pq as in Proposition 5.2 with £ and g € Gz, (RY)
such that £ = g =:4£p € L(k) modulomand g and p € yﬁ(R). Consider the class

y = h(EP) " (¢P) ™" e TBRN\G(RY) FB(RY).

Its image yo via j: Rt — kis yo = Loho(h{) "1 (¢”) ™" € TB(k)\G (k) /B (k).
We also have

y =By (0P = FEP)Y N (g - ) P) T =z = wiE!
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in YB(R)\G(R)/*B(R) as r_ € B(R) by (6). In conclusion,
Yo = Koho(hf)p))’](Zé”))’1 < wz !

for the Bruhat order <_ on G /?E (with respect to the left action of ;E).

Recall that we have chosen Ag so that ?’]ho(h(()p))’l'zv = v € I-W. It is the same
class as 5~ 1yoZ for the order relation < on /= W. Consider the isomorphism

8:G/°B — G/B, (gl [ '¢2);

it is equivariant with respect to the left action of YB on the left hand side, resp. B
on the right hand side. In particular, it is order preserving considering on G/B the
standard Bruhat order. Hence,

8(Loho(hg™) ™ (e ™") = 5w

for the standard Bruhat order. Recall that the class of ¥ in the Weyl group W is fwq
so that the class of 57_1 is wé. Thanks to Lemma 7.2, the map

GO:IW—>LW, w+—>y_lw

is an order reversing bijection and we have
v = 8(Loho(hg”) ™ (€™ ™) < oo (w)

in I- W as wanted.

6 Appendix I: Fontaine’s rings

Given the tilt (C?, of C,, and the tilt O(bcp of O¢ ,» we have Fontaine’s classical ring Acris.
It is the p-adic completion of the DP envelope of Ajyr = W((’)(bcp) with respect to the
kernel of the surjectivemap ¥ : Ainf — Oc,. The ideal Ker(?) is principal. Generators
are, for example, ([e]—l)/([el/l’]—l)orp—[g] wheree = (1, ¢p, §p2,...) € O%p isa
compatible sequence of primitive p”-th roots of unity and p = (p, pl/r, pl/ 1’2, ...) €
O(bcp is a compatible sequence of p”-th roots of p. Let w be a generator of Ker(¢}).

We also have the ring Xst ‘= Acis(X), introduced by Breuil [3], given by the p-
adic completion of the DP polynomial ring Acsis[X]. The map & extends to a map
Vgt Zst — OCp sending X > 0. It is also endowed with a Frobenius, extending the
classical one on A, requiring that ¢ (X) = (1 + X)? — 1.
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Given elements r and s € Q with0 < r < s let

p_[pP
Ar s = Alnf PR
[ I p
be the p-adic completion of the ring Ajn[W, Z]/([p]’W - p,pZ — [p]s, WZ —
[p]s ). It coincides with the p-adic completion of the subring Amf[ r %] of

Frac(Ainr) by [2, Cor. 2.2]. For y € A, s a non-zero element we define

[p]s X
Aits y = Amf p
[p] P py

to be the p-adic completion of the ring
AW, Z, X Y1/([pI'W — p. pZ — [p). WZ — [p)’ ™", pyY — X).
For r < 1 < s the map ¥ estends to a map

Oros,yt A — O¢ W|—>p1_r,Z|—>pS_1,Y|—>O.

r,s,y P’

For r < s we also have the map

t
gAY , — k,

that on Ajyr is the composite of © with the quotient map O¢ , k on the residue field

and that sends W, Z, X and Y to 0. It coincides with the composite of the quotient

map O¢ , k with ¥, 5, whenever the latter exists.

Lemma 6.1 Assume that p > 3. Then

(1) For every s < p — 1 the map Ayy — Aj'; , extends to a map Ay — AY

We have Ker(¥y) C [p]m’”(r UAﬁ’A . and Ker(¥s) C WA y ify € oA

Moroever, the ring A, s,y 18 p-torsion free and p-adically, and hence [ pl-adically,
complete and separated

(2) Forr <1 < s the kernel of ¥, 5 ,, is generated by (w, W—[B]l_’, Z—[B]s_l, Y).

(3) Forr <r' <1 <s' <sanda € A, ¢ anon- zero element, there are unique mor-

phisms of Amf—algebras Ars — A,rsr, resp. of As,-algebras Ar sy = A;", S ay
sending W +— [B]’ W, Z — [B]S s’ Z,Y— aY.

(4) For pr < s Frobenius ¢ on Xst extends uniquely to a ring homomorphism

@ Ars y - Abprstp(y) such that @(W) =W, (P(Z) = [B](p_l)sZ, ¢(Y) =

(1+X)P -1
Y. —/——.

Proof (1) The ring A, ; is proven to be p-torsion free and p-adically complete and
separated in [2]. As Ar 5.y is the p-adic completion of A, [X,Y]/(pyY — X) =
A, 5[Y], also A;t 5,y 18 p-torsion free and p-adically complete and separated.

@ Springer



On two mod p period...

By definition of Ag to prove the first claim it suffices to show that in A the

r.s,y

ideal generated by w and X admits divided powers for o = p — [p]. As A;’ sy 1

p-torsion free, it suffices to prove that " € pHlwA, s and xXr e p”!yAﬁt’S. The

p-adic valuation of p"! is 1;—71 As p" — ’;—:1 > p"~! for p > 3 the second claim
pt—1

is clear. Next we show that w”" € p =y WAy 5. First oP~ I e (p, [p])p Ains C

p—1

— [p]
(p. [pIP"HAint C pArs as £

n_q n+1_

€ A, by assumption. Hence w? € pwA, ;.

P =1 P
Assuming that o € p PV wA, s one deduces that P e p U wPA, s C
]7n+1 p pn+1 +1 pn+1 1 pn+l ],n+171
p U pwA,s.Asp »~T 7 = p »-T we conclude that w ep 1 wA;.

This then holds for every n by induction and implies the claim.

For the second statement notice that the ideal Ker(d) is generated by the DP powers
of @ and X. We have shown that the divided powers of X lie in pAy';  and that the
divided powers of w lie in wArs C(p,[PDA;s. As (p, [p])Ar,s c (pl, [p])Ar,s
the claim follows. N -

The last statement follows remarking that [p]* = -pin A} , and the latter is
p-adically complete and separated.

(2),(3) and (4) are direct computations left to the reader using the explicit description
of the rings involved. O

Corollary 6.2 Take s > p — 1. Let M be an n x n matrix with coefficients in ZX,.

(1) Let M be the reduction of M modulo Ker(9y). Assume that there existr and g € Q
withO) < g <min(r,1)andr < sandann xn matrix N with coefficients in O(C,,
such that NM = p91,,. Then there exists an n x n matrix N with coefficients in
Aﬁ’Y .y such that MN = NM = [p]i1,,.

(2) Let M be the reduction of M modulo p. Assume that there exist qandr € N[1/p]
withQ < g < r < s and an n x n matrix N with coefficients in AS,/pAM such that
NM = [p191,. Then there exists an n x n matrix N with coefficients in Ar 5.y
such that MN = NM = [pli1,,.

Proof (1) Lift N to a matrix N’ with coefficients in Ag. Then N'M = (P11, + A
with A a matrix with coefficients in Ker(s). Then A is a matrix with coefficients
in [p]mm("l)ASt by Lemma 6.1. Hence, [p]?1, + A = [p]? B with B a matrix

with coefficients in A} | congruent to the identity modulo [ p]m‘“(r D=4 Thus B
is invertible as its determinant is a unit by Lemma 6.1. Take N := B~ IN.

(2) As before lift N to a matrix N’ with coefficients in Ag. Then N'M = [ p]q 1,4+ A
with A with coefficients in pXS[ and, hence, with coefficients in [ p]’A“t Hence,

r,s,y"
[ g]‘f 1,+A=] p]‘fB with B a matrix with coefficients in A, 5,y congruent to the
identity modulo [p]"™7. Thus B is invertible and N := B~ N’ is the sought for
matrix.

O
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6.1 An approximation result

The map & : Ajpf — Oc, extends to amap ¥ : Ainf[[g]*l] — Cp, sending [p] — p,
which is surjective. Following the conventions in the paper we fix Gz, C GSPzg,Z,, a
reductive subgroup and a parabolic subgroup PcC G@Cp containing a Borel subgroup

B C P defined over Z p- We let L C P be the induced standard Levi subgrpoup. We
write B, L, P for the induced subgroups of G¢ )

Lemma 6.3 Leth € Gzp (Ainp) and let Ae hlg(C[,) be an element such that, viewed
as a matrix in Gszg ((Cp), it has coefficients in Magx2g (Ocp). Then, there exist
matrices a € "L(Ajp) and A’ € hE(A,-nf[[E]fl]) such that A', viewed as matrix
in Gszg (Amf[[ﬁ]_l]), has coefficients in Magx2 (Ainf) and (A’ - a) = A modulo
Ker ().

Proof We prove the statement for 4 = 1 and AepP (Cp). The other statement is
proven from this by conjugating by 5.

Decompose A=u- L withu € Ry P(C,) (the > unipotent radical of P) and £ €
L(C,). Let BL =BNLbe the Borel subgroup of L defined by B. By the properness
of the Grassmanian variety BL\L we have that

BL(C)\L(C,) = (BL\L)(Cp) = (BL\L)(Oc, ) = BL(Oc,\L(Oc,).

Hence we can write £ € L(C)) = Z((Cp) asu’-awithu' e EL(CP) anda € Z((’)CP).
As the map L (Ainf) — L (Oc,) is surjective by the smoothness of L we can lift @ to
an elementa € L (Amf)

Define A’ := uu' € B (Cp). Weare left to show that we can lift A'toanelement A’ €
B( mt[[p] 1]) which has coefficeints in Aj,f when viewed in Mzgng( mf[[p] 1])

As B over Oc,, is the semidirect product of a split torus Tanda unipotent group U,and
the latter is a Spht extension of G,’s, we are left to prove the statement for G := G,
and G := G,. Given a non-zero element s € G(C,) C C,, let @ be its p-adic
valuation. Then s = p®s, with so € G(Oc,). As G(Ainf) = G(Oc,) is surjective,
we can lift s to an element 5o € G(Ajy) and then 5 := [p®]5o € G(Aunc[[p]™"])
lifts s as wanted. We need to show that the lift can be taken in Mag 2, (Aimc). Notice
that this can be proven after conjugating by an element of GL2¢(Oc,,).

We claim that, after possibly conjugating by an element of GL2g(Oc,) , we may
assume that B C B4, with B ¢ GLyg 7, the standard Borel subgroup of upper
tringular matrices, and that T is contained in the standard torus of B9, Indeed, extend
B to a Borel subgroup B’ of Gng Oc," first extend it over Q » by extending the

connected solvable subgroup BQ , to a maximal connected solvable subgroup B@ of
P

GL, 6T, Since the scheme of Borel subgroups E%‘S\Gng, z,, 1s proper, the @p—valued
point defined by Bé extends to a Zp-valued point so that, after possibly conjugation

p —_— ~ ~ ~ ~
by an element of GLy,4(Z ), we may assume that By , C B(at)‘pi and, hence, B C Bstd.
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As maximal tori in B are conjugate over Oc, we may also assume that T is contained
in the standard torus of B% of diagonal matrices.

By our assumption we now have that A’ lies in the upper triangular matrices in
Mg x2g (OCp ) Consider the components Z/l on T(Cp) and Z/z inU (Cp). By construc-
tion they lie in the diagonal matrices and the upper triangular matrices in Mo, y2 2.0¢,
respectively. In particular, the various projections of Z; via the decomposition (as
schemes) U= G/, all lie in (Gra((’)cp) and hence le can be lifted to a matrix A) in
ﬁ(Ainf) C M2g><2g (Ainf)-

Fix an isomorphism T =~ Gi and lift Z/l = (s},...,s)) to an element A’ of
T [Ainf[ E]_l]) as explained above. Its image in GLo, is a diagonal matrix of the form
([gal]:;] ey [E‘)Qg]?zg) with 57, ... ,?2(? € G, (Ajpr) and «y, . . ., g € Q. As the

image of A’ in the diagonal matrices of GLoyg lies in Mg 2, (Oc, ) then each o; must
be non-negative. Then A’ := A - A} is alift of A'inB (Aine[[ B]’l]) with the required
property. o

7 Appendix Il: some facts about Weyl groups

We recall some facts from [7, Sect. 1.4] and [21, Sect. 3.5]. Let H be a connected
reductive group over an algebariclly closed field k. Fix a maximal torus T and a Borel
B. Let P be a parabolic subgroup of H of type I. Every element w in W can be written
uniquely as w = w’wy forwy; € Wyandw’ € W’ and then £(w) = £(wy)+£(w?’).
Similarly we have a unique decomposition w = w;’w for w; € W; and 'w € 'W
and then £(w) = £(w;) +£('w). The groups W, W; and Wy contain unique elements
of maximal length, denoted by wq, w0, wr o respectively. By maximality they are
elements of order 2 and wq has the property that it sends positive roots to negative
roots and that for every w € W

L(wwg) = L(wow) = £(wgy) — L(w).

Inparticular, J := 0] is the type opposite to /. We also deduce from the uniqueness of
the decomposition above that in W and in / W we have unique elements of maximal
length w] € W/ and "wo € W, characterized by the property that w; o/ wo = wy =
w({ wy 0. Conjugation by wq defines an involution tg: W — W preserving the length
of elements. In particular, it preserves the set of simple reflections A. Then,

Lemma 7.1 The map to: W — W, w — wowwy, has the following properties

(a) 1o identifies Wy = 1o(Wy) and J = 1o(I). In particular, it induces mutually inverse
and length preserving isomorphisms Wy — Wy and Wy — Wy;

(b) 1 identifies W’ = 1o(W!) (resp. "W = 1o(! W)) and induces mutually inverse
and length preserving bijections W' — W' and W! — W/ (resp. "W = 1W);

(c) to identifies wy o = to(wy,0) = wowy,oWo and, in particular, we have w({ =Twy
and w(l) =Twy.
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Proof All assertions are trivial except for the identity w({ = Twy that follows from

1 J
Wo = Wy,0Wo = WoWy,0WowWo = Wowy,0 = Wy -
O

Lemma7.2 (1)Themap W — W, sendingw — w™", isan order and legth preserving

bijection. If w = w!w; with w! € W! and w; € Wy then w™! = w;l(wl)_1 and
wl_l e Wyand (whH ' =Twlelw.

(2)Themap W — W, sending w — wowwj o, induces an order reversing bijection
Wl — W' such that L(wowwy,0) = Z(wé) — L(w).

Similarly the map W — W, sending w +— wj owwy, induces an order reversing
bijection 'W — 'W such that £(w; owwo) = £(w}) — £(w).

(3) The map og: W — W, sending w — w(I) w, satisfies the following properties:

() it is a bijection and it sends bijectively ' W — W ;
(ii) it satisfies E(wéw) = E(w({) — U(w) forevery w € TW;
(iii) it reverses the orders < on'W and ' W, defined as follows. Let < be the Bruhat
order on W and let 7 = w(wé). For w and w' € 'W (resp. in ' W) we say that
w' < w iff there exists u € Wy (resp. u € Wy) such that uw'zew) " 'z7! < w
(resp. uw'o )™ < w).

Proof (1) is clear.

(2) We prove the first statement. The second is obtained from the first using the order
and length preserving bijection W/ — W given by w +— w~! obtained from
(1). First we compute lengths. For every w € W/ and every y € W; we have
L(wy) = £(w) + £(y). Then £(wowy) = €(wp) — £(y) — £(w). Sofory = wy o
we get that £(wowwy 0) = £(wg) — L(wy,0) — €(w) = £(w)) — £(w) as wanted.
On the other hand the function y +— £(wowy) is minimized for ¢(y) maximal,
i.e., fory = wy o. Hence, wowwy o is the element in the coset wow W; of minimal
length, i.e., wowwy o € wi.

3) As wé = wowy o, the given map is the composite of the map W — W, w —
wr.owwp, and of the map tp: W — W, w — wowwy. These are both involutions
and hence oy is a bijection on W. It sends bijectively /W to / W, reversing the
Bruhat orders <, thanks to Claim (2) and Lemma 7.1.

Write y := w(I) for simplicity. Take w and w’ € /W such that w’ < w and let

u € Wy be such that uw’ze(u) "'z~ < w. This implies that uw'zew)~'z7! € TW.

We deduce that yuw'zew) 'z7! = (uy HOw)e(uy™H™' > yw. Write
t = yu~'y~l. Then r(yw)p()~! < yw’. Note that yuy~! = wéu’wo =
wo(w1,ouw1,0)wo as y_1 = Iwo by Claim (1). Since w; ouwy o € W;, we conclude
that € W, thanks to Lemma 7.1 so that yw < yw’. O
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