Stochastic Logistic Shocks and Economic Growth
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Abstract—We present an alternative to the geometric Brownian
motion in order to model random shocks in economics, by
focusing on the stochastic logistic process, which is a natural
generalization of the geometric Brownian motion. We describe
some potential applications in the context of economic growth,
and show that its degree of tractability is very similar to that of
the geometric Brownian motion, and thus its use can effectively
improve the limits (related to the presence of a constant drift)
of the geometric Brownian motion to model uncertainty.

Index Terms—Stochastic Logistic Process, Economic Growth,
Solow Model, Ramsey model

I. INTRODUCTION

Uncertainty nowadays is everywhere and its implications
for economic decisions are more important than ever. The
large degree of randomness surrounding demographic change
because of international migration, and environmental prob-
lems related to climate change are just two examples of the
growing need to extend macroeconomic analysis to consider
the implications of uncertain events. Indeed, the study of
stochastic problems has received growing attention lately,
especially in the optimal growth literature which traditionally
provides a simple and useful framework for analyzing the
dynamic evolution of capital and other important macroeco-
nomic variables. Standard neoclassical growth theory, founded
on the pioneering works of Ramsey (1928) and Solow (1956),
has been recently extended to consider the extent to which
uncertainty about the evolution of certain production factors
affects the model’s outcome. Specifically, several works focus
on the implications of randomness in the dynamics of the
labor force (Smith, 2007; Marsiglio and La Torre, 2012b;
Marsiglio, 2014a), technology (Smith, 2007; Bucci et al. 2011;
Hiraguchi, 2013) and environmental issues (La Torre et al.,
2017; Marsiglio and La Torre, 2018) discussing how the
presence of uncertainty impacts on economic performance. As
a matter of tractability and in order to maintain the analysis as
simple as possible, the largest share of these studies assumes
that the underlying stochastic process is a geometric Brownian
motion. Such an approach requires the drift component of the
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random process to be constant!, and thus does not allow to take
into account important aspects like those related to the carrying
capacity concept of any (economic) resource; see for example
Beltratti et al. (1995) and Brida and Accinelli (2007) for a
discussion in the context of natural resources and demographic
growth, respectively. In order to allow for the drift component
to be time varying and at the same time to maintain a certain
degree of tractability we modify the stochastic component
by considering the stochastic logistic process, which is a
natural generalization of the geometric Brownian motion. We
thus focus on the stochastic logistic process, which allows
to describe with more depth the drift component of certain
economic problems (like natural resources and demographic
growth) and shares some nice features with the geometric
Brownian motion (analytical solutions). The process is very
well known in the mathematics and natural sciences literature,
but to the best of our knowledge it has not been introduced in
an economic growth setup yet.

This brief paper proceeds as follows. Section II presents the
stochastic logistic process and summarizes its most important
characteristics comparing them to those of the geometric
Brownian motion. Section III describes a direct application
in economic growth, in particular in the Solow (1956) model,
which is suitable to model the dynamics of demography (or
equivalently, under the standard assumption of full employ-
ment, labor force) and natural resources. In section IV we
show that also in a Ramsey-type framework it is possible to
derive an analytical solution, similarly to what happens when
the shock component follows a geometric Brownnian motion.
Section V as usual presents concluding remarks.

Note that also in models with agents optimizing their behavior, even if the
drift is not a priori imposed to be constant, the optimal solution (imposed by
the necessity to solve in closed form an Hamilton-Jacobi-Bellman equation)
generally requires that it actually is constant. See, among others, Marsiglio
(2014).



II. THE STOCHASTIC LOGISTIC PROCESS

Let us denote by L(t) the total population at the time ¢
and suppose its evolution over time is driven by the following
stochastic differential equation:

dL(t) = (n — bL(t))L(t)dt + o L(t)dW (1)

where b,6,0 > 0. and dW is the classical Wiener process. In
the statistical literature this process is known as the geometric
mean reversion or stochastic Verhulst diffusion. It takes its
name from the Belgian demographer Verhulst (1938) who used
the drift component:

dL(t) = (n — bL(t))L(t)dt 2)

as a deterministic model of population growth. Verhulst’s work
extended a previous paper by Malthus (1798) who was among
the first to observe the existence of two different phases in
the growth of world population. Researchers from difference
disciplines have studied extensively generalizations of the Ver-
hulst’s model and used them to forecast the annual population
growth rate which is expected to vary from 1.8% between
1950-2000 to 0.9% between 2000-2050 and then to 0.2%
between 2050 and 2100. The analysis of stochastic models
subject to external shocks can help demographers to describe
the effect of migration waves on developed economies.

Let f[L(s),s; L(t),t] be the probability density of L(s) at
time s, conditional upon its value L(t) at time ¢. This is driven
by the Fokker-Planck equation, which for (1) takes the form:

0f _ _0lf(n—bL)L] 1 ,(0*[fL?]
%= oL 3% <<9L e

The steady state density f[L(oc0), 00, s; L(t), t] is obtained by
setting % = 0, yielding a second order ordinary differential

equation for f:
0_2 62 I:fLQ:I (4)
OL?
with the regular solution:

0 _O[f(n—0bL)I] 1
fIL(c0), 00,55 L(t), t] = L te=*(c)!/T(d);  (5)
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which we recognise as the scale Gamma distribution. The

. . . . . — 2 .
mean of this distribution is: “Tl = (0 — %) and the variance
2 4 . I
% — 4z~ These are strictly positive under d = i—’} —-1>0.

The following result compares the expected value of the
solution to (1) with the solution to (2).

Theorem. Let L(t) be the solution to (1) and L(t) be the
solution to (2). Then E(L(t)) < L(t) for all ¢ > 0.

Proof. Since L(t) is solution to (1), this implies that

L(t) — L(0) = /0 (n—bL(s))L(s)ds Jr/o oL(s)dW (s).

Taking the expected values of both sides and recalling that
E(fy oL(s)dW (s)) = 0, we obtain

E(L(t)) = L(0) + /0 E[(n — bL(s))L(s)] ds =

/Ot nE(L(s))ds — /t bE(L?(s))ds

0

which is equivalent to

dE(L(t
BO) _ (1) - vE(220), BLO) = LO)
Using Jensen’s inequality it is straightforward to prove that
dE(L(1))

S = nB(L(1) — BE(T(1) <

nE(L(t)) — bE(L(t))”

and, using a classical comparison theorem, the thesis follows.

Several empirical estimates of the two parameters n and b
have been provided by several authors showing that the values
the two parameters take vary dramatically from country to
country and from region to region. In particular, the largest
variability across these estimates can be found between in-
dustrialized and developing areas. For example, Marsiglio and
La Torre (2012) use a fractal-based method to estimate these
parameters across different continents, showing that n tends
to be higher and b lower in industrialized (Europe, North
America, Australia) than in developing areas (Africa, Asia,
South America). Clearly such an aggregate variability is more
strongly reflected in the variability at single county level. In
the case of UK, for instance, La Torre and Marsiglio (2010)
obtained the values n = 0.15565694 and b = 0.00000869.
Figure 1 shows the evolution of the British population using
the above estimated parameters and the stochastic logistic
equation.
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Fig. 1. Evolution of population L.

III. STOCHASTIC LOGISTIC SHOCKS IN THE SOLOW
MODEL

Since modeling demography or natural resources in a Solow
framework does not make any substantial difference we focus
on population as a matter of expositional simplicity. However,
by interpreting population as natural resources (and per capita
capital as the input ratio) exactly the same comments apply.



Consider an economy in which the production function
takes a Cobb-Douglas form, that is Y (t) = AK (t)*L(t) =
where A measures the total factor productivity, K (t) is the
capital stock and L(t) is the labor force, meaning the capital
and labor are the only inputs in the production of the final
consumable good Y'(t). Consider the following stochastic
version of the canonical Solow (1956) model:

K(t) =
dL(t)

SAK(H)*L(t)' = — 6K (t) (6)
L(t)(n — bL(t))dt + o L(t)dW (t),  (7)

where s and § are the saving and depreciation rates re-
spectively, while L(t) is thus a random variable driven by
a stochastic logistic process. Applying Ito’s lemma yields
the stochastic differential equation for per capita capital,
k(t) =

L(?)
dk(t) _ a—1
W) [sAK(t) ®)
§ +bL(t) —n + o*]dt — odW (t)
dk = {b+sAk® — (5 +n —o?)k}dt — okdz (9)

The following figures show the result of a numerical sim-
ulation of the previous equations, by relying on the demo-
graphic parameter values discussed in the previous section and
standard macroeconomic parameter values (Barro and Sala—i—
Martin, 2004). Specifically, we set: s = 0.2, A =1, a = 0.33,
0 = 0.05, n = 0.15565694, b = 0.00000869, ¢ = 0.5,
K(0) =1 and L(0) = 1. More precisely, Figure 2 shows the
evolution of capital K and Figure 3 the evolution of capital
and population in the capital and population plane.
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Fig. 2. The evolution of physical capital K

IV. STOCHASTIC LOGISTIC SHOCKS IN THE RAMSEY
MODEL

Now consider a Ramsey setting, in which the representative
agent determines how much to consume given the dynamics
of capital and the productive factor in order to maximize its
(expected) intertemporal wellbeing. The welfare function is the
discounted sum (p is the discount factor) of total utilities, given
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Fig. 3. Capital and labour phase portrait

by the product between instantaneous utilities and the altruism-
weighted population size, where ¢ € [0,1] is a measure of
altruism; the instantaneous utility function depends only on per
capita consumption, c(t), and takes the following iso-elastic
form: ule(t)] = C(f)_l;ﬁ, with ¢ > 0,%# 1 being the inverse
of the intertemporal elasticity of substitution. The dynamic
resource constraint implies that output is entirely allocated
between investment (inclusive of replacement investment) and
consumption as follows: Y (t) = K (t) — 0K (t) — ¢(t)L(t).
Therefore, given the initial conditions K (0) > 0 and L(0) >
0, the representative agent’s intertemporal optimization prob-
lem is as follows:

_ > C(t)liq5 l—e —pt
H;(%)XE[W] =E [/0 - L(t) ~e™"'dt (10)
such that
K(t) = AK(@)*L(t)'= — 0K (t) — c(t)L(t)
dL(t) = L(t)(n—0bL(t))dt + o L(t)dW (t)

In the welfare function given by expression (10) the term 1 —¢
represents the degree of altruism, which ultimately determines
the type of welfare function employed. In fact, if € = 1
(e = 0), the welfare is defined according to the average (total)
utilitarianism (see Marsiglio and La Torre, 2012; Marsiglio,
2014).

The following proposition states that it is possible to explic-
itly determine the optimal paths of per capita consumption and
capital under a specific parameters configuration.

Theorem. Assume ¢ = a = ¢; then the Hamilton-Jacobi-
Bellmann (HJB) equation associated with the problem (10)
exhibits the following closed form solution:

HEO.L0) = 2 || Ko
1 (11)

p(l—a)



The optimal path of per capita consumption and (aggregate)
capital are given, respectively, by:

o) pr(1—g)
Ry o (12
K@) = K@) %"t (13)

Proof. Let J be the value function associated with this
stochastic optimization problem. The HJB equation can be
written as:

Clid} Llfe
0 = max { 1o —pJ
. Jppo®L?
+JxK + J,L(n —bL) + “g} (14)
The first order necessary optimality condition requires:
c=[JxL" 7, (15)
which substituted into (14) yields:
JKL] ™"
0 = [K1]¢>L1_6 — pJ + Jg(AK®L'= — 6K
1 Jrro?L?
UL L)+ JuL(n - bL) + T
(16)

Under the hypothesis € = ¢, this equation can be simplified
as:

6y 1
_ _ _ 1
0 TSI g e a7
Jppo2L2
+ J(AKCOL'™® — 6K) + JyL(n — bL) + %

We now look for a solution to (17) of this form:
1
p(1 =)
where @ i and fx are parameters which have to be determined
and g is an unknown function. If x = 1—q, it is then possible
to split equation (17) into two differential equations which
involve, respectively, K and L. Since only the first equation is
relevant to determine the optimal paths of ¢ and K, we do not
consider the other involving L in the following calculations.

By substitution we get:
¢
0=—"—[1—a)®
g [0 =)

J(K,L) = ®x K% — +9(L)

-1 —a(e—1)
2 2

K (18)

—pPr K" —5(1 — )P K™
If a = ¢, then the equation is satisfied whenever:
1 «@ ¢
S l-alp+(1-a)
Exactly the same parametric configuration, ¢ = «a = ¢,
stating that the capital share is equal to both the inverse of

the intertemporal elasticity of substitution and the altruism
parameter is obtained by Marsiglio and La Torre (2012a,

0) 7

2012b) in a two-sector model where demographic shocks are
driven by a geometric Brownian motion.

By easy considerations it is possible to determine the
expected value of k, which reads as

E [[L(((f))m)}
= K(OE[X(t)|X(0)]
= K()[X(0)exp[—ot]

+ O(explat] — 1))

- s {2070 ] )
+ 0K (0)(explat] — 1)

ol [

E[k()[L(0), K(0)]

where X (t) = —&=

dX dL\* _dL
L L
{b—(n+o*)X}dt — o XdW (t)
= a(@—X)dt + o XdW(¢) (19)
and:
dW(t) = —dW (t);a = (n 4+ 02);0 = b/(n + 0?).  (20)
It is easy to prove that:

X(t) = Cexp[—(a — a?/2)t + oW (t)]+

af / expl(a — 02 /2)(t — s) + o (W (t) — W(s))]ds
0

which can be readily translated back into the parameters of
the original problem. Using the fact that the expectation of
an integral is (under certain regularity conditions which hold
here) the integral of the expectations and Ey[exp[cW (t)]] =
explo?t/2]:

E[X ()] E[C e:ip[—(a —a?/2)t + oW (t)]

af /O expl(a— 02/2)(t — 5)

a(W(t) — W(s))lds]

Cexpl— (o~ 0% 2)EfexplaW (1]

+ af /0 expl(a — 02/2)(t — 5)]
Efexplo (W (1) — W (s))]ds

= Cexp|—at] + af /Ot expla(t — s)]ds

+ o+

= Cexp[—at] +a9/0 explau]du
= Cexp[—at] + O(explat] — 1).



where u = t—s. This gives a basic result for the capital labour
ratio which drives output per capita:
E[k()|L(0), K(0)] = K(OE[X(0)X(0)]

= K(t)[X(0) exp[-ai]

+ O(explat] — 1)]

= K(0)X(0)exp[—at + (sA —J)]

+ O0K(0)exp{(sA — d)t}(explat] — 1)

Can we make a plot of per capita capital and the
expected per capita capital just to use the above expression
and add more comments? Also, we could add in the figures
another line to show the geometric Brownian motion case
(setting b = 0). This allows us to add some more comments
and respond to the referee.

V. CONCLUSION

We have presented and analyzed a stochastic logistic pro-
cess, which is a natural generalization of the geometric
Brownian motion. We have also described some applications
in economic growth, namely to the Solow and the Ramsey
models. In both contexts, we have modeled the behavior of
population through a stochastic logistic process which better
describes the evolution of population dynamics subject to
uncertainty.

REFERENCES

[1] Barro, R.J., Sala-i-Martin, X. (2004). Economic Growth (Cambridge,
Massachusetts: MIT Press)
[2] Brida, J.G., Accinelli, E. (2007). The Ramsey model with logistic
population growth, Economics Bulletin 15, 1-8
[3] Bucci, A., Colapinto, C., Forster, M., La Torre, D. (2011). Stochastic
technology shocks in an extended Uzawalucas model: closed-form
solution and long-run dynamics, Journal of Economics 103, 83-99
[4] Chinchilnisky, G., Heal, G., Beltratti, A. (1995). The green golden rule,
Economics Letters 49, 174-179
[5] Hiraguchi, R. (2013). On a closed-form solution to the stochastic Lucas-
Uzawa model, Journal of Economics 108, 131-144
[6] La Torre, D., Liuzzi, D., Marsiglio, S. (2017). Pollution control under
uncertainty and sustainability concern, Environmental and Resource
Economics 67, 885-903
[7]1 La Torre, D., Marsiglio, S. (2010). Endogenous technological progress
in a multi-sector growth model, Economic Modelling 27, 10171028.
[8] Malthus, T.R. (1798). An Essay on the Principle of Population. J.
Johnson, in Library of Economics and Liberty, London.
[9] Marsiglio, S., La Torre, D. (2012a). Population dynamics and utilitarian
criteria in the Lucas-Uzawa model, Economic Modelling 29, 1197-1204
[10] Marsiglio, S., La Torre, D. (2012b). A note on demographic shocks in
a multi-sector growth model, Economics Bulletin 32, 2293-2299
[11] Marsiglio, S. (2014). Reassessing Edgeworth’s conjecture when popu-
lation dynamics is stochastic, Mimeo
[12] Marsiglio, S., La Torre, D. (2018). Economic growth and abatement
activities in a stochastic environment: a multi-objective approach, Annals
of Operations Research 267, 321-334
[13] Ramsey, F. (1928). A mathematical theory of saving, Economic Journal
38, 543-559
[14] Smith, W.T. (2007). Inspecting the mechanism exactly: a closed-form
solution to a stochastic growth model, B.E. Journal of Macroeconomics
(Contributions) 7, article 30
[15] Solow, R. (1974). Intergenerational equity and exhaustible resources,
Review of Economic Studies 41, 29-45
[16] Verhulst, P.F. (1838). Notice sur la Loi que la Population Suit dans son
Accroissement, Correspondance Mathmatique et Physique 10, 113-121



