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Essentials of Nonlocal Operators

Abstract: This preliminary chapter aims at providing some basic knowledge on non-
local operators. Notions which are necessary to know about the fractional Laplacian
and about more general nonlocal operators will be addressed. The expert users may
skip this introduction.

The goal of this preliminary chapter is to bring the non-expert reader closer to the
beautifulworld of nonlocal operators. By nomeans exhaustive, this introduction gives
a glance at some basic definitions, notations and well known results related to a few
aspects of some nonlocal operators. With these premises, we take a look at fractional
Sobolev spaces, at the fractional Laplacian and at a more general class of nonlocal
operators (of which the fractional p-Laplacian is the typical representative).

0.1 Fractional Sobolev Spaces

Fractional Sobolev spaces are a classical argument in harmonic and functional anal-
ysis (see for instance [17, 23]). The last decades have seen a revival of interest in frac-
tional Sobolev spaces, both for their mathematical importance and for their use in the
study of nonlocal operators and nonlocal equations. In this section, we give an intro-
duction to the topic and state some preliminary results, following the approach in [10]
(the interested reader should check this very nice paper for the detailed argument).

To begin with, we recall the definition of a Ck,α domain. Let k P IN, α P p0, 1s and
let Ω Ď Rn be an open bounded set. We define

Q :“
␣

x “ px1, xnq P Rn´1
ˆ R s.t. |x1

| ă 1, |xn| ă 1
(

,
Q` :“

␣

x “ px1, xnq P Rn´1
ˆ R s.t. |x1

| ă 1, 0 ă xn ă 1
(

,
Q0 :“

␣

x P Q s.t. xn “ 1
(

.

We say the domain Ω is of class Ck,α if there exists M ą 0 such that for any x P BΩ
there exists a ball B “ Brpxq for r ą 0 and a isomorphism T : Q Ñ B such that

T P Ck,αpQq, T´1
P Ck,αpBq, TpQ`q “ B X Ω, TpQ0q “ B X BΩ and

}T}Ck,αpQq
` }T´1

}Ck,αpBq
ď M.

We fix the fractional exponent s P p0, 1q and the summability coefficient p P

r1,8q. Let Ω Ď Rn be an open, possibly non-smooth domain.We define the fractional
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6 | Claudia Bucur

Sobolev spaceW s,p
pΩq as

W s,p
pΩq :“

#

u P LppΩq s.t. |upxq ´ upyq|

|x ´ y|
n
p `s P LppΩ ˆ Ωq

+

. (0.1.1)

This space is naturally endowed with the norm

}u}W s,ppΩq :“
ˆ
ż

Ω
|u|

p dx
˙

1
p

`

¨

˚

˝

ij

ΩˆΩ

|upxq ´ upyq|
p

|x ´ y|n`sp dx dy

˛

‹

‚

1
p

, (0.1.2)

where the second term on the right hand side

rusW s,ppΩq :“

¨

˚

˝

ij

ΩˆΩ

|upxq ´ upyq|
p

|x ´ y|n`sp dx dy

˛

‹

‚

1
p

(0.1.3)

is the so-called Gagliardo semi-norm.
We defineW s,p

0 pΩq as the closure of C8
0 pΩq in norm } ¨ }W s,ppΩq. Moreover

W s,p
0 pRnq “ W s,p

pRnq,

as stated in Theorem 2.4 in [10]. In other words, the space C8
0 pRnq of smooth functions

with compact support is dense inW s,p
pRnq (actually this happens for any s ą 0).

We point out for p “ 2 the particular Hilbert spaces

HspΩq :“ W s,2
pΩq

and
Hs0pΩq :“ W s,2

0 pΩq,

that are related to the fractional Laplacian, that we introduce in the upcoming Section
0.2.

Fractional Sobolev spaces satisfy some of the classical embeddings properties
(see Chapters 2 and 5 in [10] for the proofs and more details on this argument). Let
u : Ω Ď Rn Ñ R be a measurable function. Then we have the following.

Proposition 0.1. Let 0 ă s ď s1
ă 1 and let Ω Ď Rn be an open set. Then

}u}W s,ppΩq ď C}u}W s1 ,ppΩq

for a suitable positive constant C “ Cpn, s, pq ě 1. In other words we have the continu-
ous embedding

W s1 ,p
pΩq Ď W s,p

pΩq.

One may wonder what happens at the limit case, when s1
“ 1. If the open set Ω is

smooth with bounded boundary, then the embedding is true, as stated in the next
proposition.
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Proposition 0.2. Let Ω Ď Rn be an open set of class C0,1 with bounded boundary.
Then

}u}W s,ppΩq ď C}u}W1,ppΩq

for a suitable positive constant C “ Cpn, s, pq ě 1. In other words we have the continu-
ous embedding

W1,p
pΩq Ď W s,p

pΩq.

Fractional Sobolev spaces enjoy also quite a number of fractional inequalities: the
Sobolev inequality is one of these. Indeed, for p P r1,8q and n ě sp we introduce the
fractional Sobolev critical exponent

p‹
“

$

&

%

np
n ´ sp for sp ă n,

8 for sp “ n.

Then we have the fractional counterpart of the Sobolev inequality:

Theorem 0.3. For any s P p0, 1q, p P p1, n{sq and u P C8
0 pRnq it holds that

}u}Lp‹
pRnq ď CrusW s,ppRnq.

Consequently, we have the continuous embedding

W s,p
pRnq Ď LqpRnq for any q P rp, p‹

s.

Proof. We give here a short proof, that can be found in [21] (or in [5], Theorem 3.2.1).
We have that

|upxq| ď |upxq ´ upyq| ` |upyq|.

For a fixed R (that will be given later on), we integrate over the ball BRpxq and have
that

|BRpxq||upxq| ď

ż

BRpxq

|upxq ´ upyq| dy `

ż

BRpxq

|upyq| dy “ I1 ` I2. (0.1.4)

We apply the Hölder inequality for the exponents p and p{pp ´ 1q in the first integral
and obtain that

I1 “

ż

BRpxq

|upxq ´ upyq|

|x ´ y|
n`sp
p

|x ´ y|
n`sp
p dy

ď R
n`sp
p

˜

ż

BRpxq

|upxq ´ upyq|
p

|x ´ y|n`sp dy
¸

1
p
˜

ż

BRpxq

dy
¸

p´1
p

ď CRn`s
ˆ
ż

Rn

|upxq ´ upyq|
p

|x ´ y|n`sp dy
˙

1
p
.
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The Hölder inequality for np
n´sp and

np
npp´1q`sp gives in the second integral

I2 ď

˜

ż

BRpxq

|upyq|
np

n´sp dy
¸

n´sp
np

˜

ż

BRpxq

dy
¸

npp´1q`sp
np

ď CR
npp´1q`sp

p

ˆ
ż

Rn
|upyq|

np
n´sp dy

˙

n´sp
np

.

Dividing by Rn in (0.1.4) and renaiming the constants, it follows that

|upxq| ď CRs
«

ˆ
ż

Rn

|upxq ´ upyq|
p

|x ´ y|n`sp dy
˙

1
p

` R´ n
p

ˆ
ż

Rn
|upyq|

np
n´sp dy

˙

n´sp
np

ff

.

We take now R such that
ˆ
ż

Rn

|upxq ´ upyq|
p

|x ´ y|n`sp dy
˙

1
p

“ R´ n
p

ˆ
ż

Rn
|upyq|

np
n´sp dy

˙

n´sp
np

and we obtain

|upxq| ď C
ˆ
ż

Rn

|upxq ´ upyq|
p

|x ´ y|n`sp dy
˙

n´sp
np

ˆ
ż

Rn
|upyq|

np
n´sp dy

˙

spn´spq

n2
.

Raising to the power np
n´sp and integrating over R

n, we get that

ż

Rn
|upxq|

np
n´sp dx ď C

ij

RnˆRn

|upxq ´ upyq|
p

|x ´ y|n`sp dx dy
ˆ
ż

Rn
|upyq|

np
n´sp dy

˙

ps
n
.

This leads to the conclusion, namely

ˆ
ż

Rn
|upxq|

np
n´sp dx

˙

n´sp
np

ď C

¨

˚

˝

ij

RnˆRn

|upxq ´ upyq|
p

|x ´ y|n`sp dx dy

˛

‹

‚

1
p

.

Using this fractional Sobolev inequality, one can prove the embedding W s,p
pΩq Ď

LqpΩq for any q P rp, p‹
s, for particular domains Ω for which aW s,p

pΩq function can
be extended to the whole of Rn. These are the extension domains, defined as follows.

Definition 0.4. For any s P p0, 1q and p P r1,8q, we say that Ω Ď Rn is an extension
domain for W s,p if there exists a positive constant C “ Cpn, s, p, Ωq such that for any
u P W s,p

pΩq there exists ũ P W s,p
pRnq such that ũ “ u in Ω and

}ũ}W s,ppRnq ď C}u}W s,ppΩq.

A nice example of an extension domain is any open set of class C0,1 with bounded
boundary.

We state this continuous embedding in the following theorem.
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Theorem 0.5. Let s P p0, 1q and p P r1,8q such that n ě sp. Let Ω Ď Rn be an
extension domain forW s,p. Then there exists a positive constant C “ Cpn, s, p, Ωq such
that for any u P W s,p

pΩq it holds

}u}LqpΩq ď C}u}W s,ppΩq for any q P rp, p‹
s.

In other words, we have the continuous embedding

W s,p
pΩq Ď LqpΩq for any q P rp, p‹

s.

Moreover, if Ω is bounded, the embedding holds for any q P r1, p‹
s.

In the case n ă sp, we have the following embedding (see Theorem 8.2 in [10]) :

Theorem 0.6. Let Ω Ď Rn be an extension domain for W s,p with no external cups.
Then for any p P r1,8q, s P p0, 1q such that sp ą n there exists a positive constant
C “ Cpn, s, p, Ωq such that

}f }C0,αpΩq ď C
´

}f }pLppΩq
` rus

p
W s,ppΩq

¯
1
p

for any u P LppΩq with α :“ sp´n
p .

0.2 The Fractional Laplacian

The fractional Laplace operator has a long history in mathematics, in particular it is
well known in probability as an infinitesimal generator of Lévy processes (A detailed
presentation of this aspect can be found in Chapter 7). Furthermore, this operator has
numerous applications in real life models that describe a nonlocal behaviour, such
as in phase transitions, anomalous diffusion, crystal dislocation, minimal surfaces,
materials science,waterwaves andmanymore. As amatter of fact, Chapter 11 presents
some very nice results on a nonlocal model related to crystal dislocation.

Hence, there is a rich literature on the mathematical models involving the frac-
tional Laplacian, and different aspects of this operator can be studied. In this book,
Chapters 3, 5, 6 present in a self-contained manner some very interesting aspects of
the fractional Laplacian. This section gives some basic definitions and makes some
preliminary observations on the fractional Laplacian. For more detailed information,
the reader can see the above mentioned chapters, and i.e. [5, 22] and other references
therein.

We introduce at first some useful notations. Let n P IN, we denote by S the
Schwartz space of rapidly decaying functions

S :“
"

f P C8
pRnq s.t. for all α, β P INn0 , sup

xPRn
|xβDα f pxq| ă 8

*

.
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Endowed with the family of semi-norms

rf sα,NS “ sup
xPRn

p1 ` |x|q
N ÿ

|α|ďN
|Dα f pxq|,

where N “ 1, 2, . . . , the Schwartz space is a locally convex topological space. We
denote the space of tempered distributions, namely the topological dual of S, by S1

and use x¨, ¨y for the dual pairing between S and S1.
Let s P p0, 1q. For any u P S we define the fractional Laplacian as the singular

integral
p´∆q

supxq :“ Cpn, sqP.V.
ż

Rn

upxq ´ upyq

|x ´ y|n`2s dy

“ Cpn, sq lim
εÑ0

ż

RnzBεpxq

upxq ´ upyq

|x ´ y|n`2s dy,
(0.2.1)

where Cpn, sq is a dimensional constant. The P.V. stands for “in the principal value
sense” and is defined as above. The integral needs to be considered in principle values
since, for s P

ˆ

1
2 , 1

˙

the kernel 1
|x ´ y|n`2s is singular in a neighborhood of x and this

singularity is not integrable near x.
With a change of variables, one can also write the fractional Laplacian as

p´∆q
supxq “ Cpn, sq lim

εÑ0

ż

RnzBεp0q

upxq ´ upx ´ yq

|y|n`2s dy. (0.2.2)

By putting ỹ “ ´y we have that

p´∆q
supxq “ Cpn, sq lim

εÑ0

ż

RnzBεp0q

upxq ´ upx ` ỹq

|ỹ|n`2s dy

and summing this with (0.2.2), we obtain the following equivalent representation

p´∆q
supxq “

Cpn, sq
2

ż

Rn

2upxq ´ upx ´ yq ´ upx ` yq

|y|n`2s dy. (0.2.3)

Notice that this latter formula does not require the P.V. formulation, since for u smooth
enough0.1, taking a second order Taylor expansion near the origin, the first order term
vanishes by symmetry, andweare left onlywith the secondorder reminder, thatmakes
the kernel integrable. More precisely, we have that
ż

B1

|2upxq ´ upx ´ yq ´ upx ` yq|

|y|n`2s dy ď C}D2u}L8pRnq

ż

B1
|y|

´n´2s`2 dy ă 8 and
ż

RnzB1

|upxq ´ upx ´ yq ´ upx ` yq|

|y|n`2s dy ď C}u}L8pRnq

ż

RnzB1
|y|

´n´2s dy ă 8.

0.1 For instance, one can take u P L8pRnq and locally C2.
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Essentials of Nonlocal Operators | 11

The fractional Laplacian is well defined for a wider class of functions. Indeed, as
one may find in [22], it is enough to require that u belongs to a weighted L1 space and
is locally Lipschitz. More precisely, we define

L1s pRnq :“
!

u P L1locpR
n
q s.t.

ż

Rn

|upxq|

1 ` |x|n`2s dx ă 8

)

(notice that that LqpRnq Ď L1s pRnq for any q P r1,8q). Let ε ą 0 be sufficiently small.
Then, if u belongs to L1s pRnq and to C0,2s`ε (or C1,2s`ε´1 for s ě 1{2) in a neighbor-
hood of x P Rn, the fractional Laplacian is well defined in x as in (0.2.3). Indeed, while
the fact that u P L1s pRnq assures that

ż

RnzB1

|2upxq ´ upx ` yq ´ upx ´ yq|

|y|n`2s dy ă 8,

if, taking for instance s P p0, 1{2q and u that is C0,2s`ε in a neighborhood of x, one
has that

ż

B1

|2upxq ´ upx ` yq ´ upx ´ yq|

|y|n`2s dy ď 2
ż

B1
|y|

ε´n dy ď cpεq.

For u P S, the fractional Laplacian can be expressed as a pseudo-differential op-
erator, as stated in the following identity:

p´∆q
supxq “ F´1

´

|ξ |
2s
pupξq

¯

pxq. (0.2.4)

Here, we set the usual notation for the Fourier transform and its inverse, using x, ξ P

Rn as the space, respectively as the frequency variable,

Ff pξq “ pf pξq :“
ż

R
f pxqe´ixξ dx

and
F´1f pxq “ qf pxq :“

ż

R
f pξqeiξx dξ .

Wepoint out that we do not account for the normalization constants in this definition.
We notice here that this expression returns the classical Laplace operator for s “ 1
(and the identity operator, for s “ 0).
The expressions in (0.2.3) and (0.2.4) are equivalent (see [10], Proposition 3.3 for the
proof of this statement). There, the dimensional constant Cpn, sq introduced in (0.2.1),
is defined as

Cpn, sq :“
ˆ
ż

Rn

1 ´ cospη1q

|η|n`2s dη
˙´1

,

where η1 is the first component of η P Rn. The explicit value of Cpn, sq is given by

Cpn, sq “
22ssΓ

` n
2 ` s

˘

π n
2 Γp1 ´ sq

,
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as it is very nicely proved in the Appendix A of Chapter 11. The interested reader can
also see formula (3.1.15) and Appendix B in [5] (and other references therein) for dif-
ferent approaches to the computation of the constant.

At this point, relating to Section 0.1, there is an alternative definition of the frac-
tional Hilbert space HspRnq via Fourier transform. Let

pHspRnq :“
"

u P L2pRnq s.t.
ż

Rn
p1 ` |ξ |

2s
q|pupξq|

2 dξ ă 8

*

.

Then (see Proposition 3.4 in [10]) the two spaces are equivalent, indeed

rus
2
HspRnq “

2
Cpn, sq

ż

Rn
|ξ |

2s
|pupξq|

2 dξ .

Moreover, the connection between the fractional Laplacian and the fractional Hilbert
space is clarified in Proposition 3.6 in [10], as in the next identity

rus
2
HspRnq “

2
Cpn, sq }p´∆q

s
2 u}

2
L2pRnq.

We point out that for u P S, the fractional Laplacian p´∆q
su belongs to C8

pRnq,
but p´∆q

su R S (it is not true that it decays faster than any power of x). In particular,
we define the linear space

Ps :“
"

f P C8
pRnq s. t. for all α P INn0 , sup

xPRn

`

1 ` |x|
n`2s˘

|Dα f pxq| ă `8

*

, (0.2.5)

which endowed with the family of semi-norms

rf sαPs :“ sup
xPRn

`

1 ` |x|
n`2s˘

|Dα f pxq|,

where α P INn0, is a locally convex topological space; we denote by P1
s its topological

dual and by x¨, ¨ys their pairing. Then one has for u P S that p´∆q
su P Ps (see for

instance, the bound (1.10) in [3]). The symmetry of the operator p´∆q
s allows to define

the fractional Laplacian in a distributional sense: for any u P L1s pRnq Ă P1
s one defines

xp´∆q
su, φy :“ xu, p´∆q

sφys for any φ P S.

These spaces are used in the definition of distributional solutions. Indeed, we say
that u P L1s pRnq is a distributional solution of

p´∆q
su “ f , for f P S1

if
xu, p´∆q

svys “ xf , vy for any v P S.

Other type of solutions are defined for more general kernels in Section 0.3.
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0.2.1 The harmonic extension

The fractional Laplacian can be obtained from a local operator acting in a space with
an extra-dimension, via an extension procedure. This extension procedure was first
introduced by Molčanov and Ostrovskĭı in [20], where symmetric stable-processes are
seen as traces of degenerate diffusion processes. We will follow here the approach of
Caffarelli andSilvestre (see [6]), that relies on considering a localNeumann toDirichlet
operator in the half-spaceRn`1

` :“ Rnˆp0,8q. Consider for any s P p0, 1q the number

a :“ 1 ´ 2s,

the function u : Rn Ñ R and the problem in the non-divergence form
$

&

%

∆xU `
a
y ByU ` B

2
yyU “ 0 in Rn`1

`

Upx, 0q “ upxq in Rn .
(0.2.6)

The problem (0.2.6) can equivalently be written in the divergence form as
#

divpya∇Uq “ 0 in Rn`1
`

Upx, 0q “ upxq in Rn .
(0.2.7)

Then one has for any x P Rn, up to constants, that

´ lim
yÑ0`

yaByUpx, yq “ p´∆q
supxq. (0.2.8)

Also, by using the change of variables z “
` y
2s
˘2s the problem (0.2.6) is equivalent to

#

∆zU ` zαBzzU “ 0 in Rn`1
`

Upx, 0q “ upxq in Rn
(0.2.9)

for α “ ´2a{p1 ´ aq “ p2s ´ 1q{s. In this case also, for any x P Rn and with the right
choice of constants, one has that

´BzUpx, 0q “ p´∆q
supxq. (0.2.10)

One way to prove (0.2.8) (see [6] for more details on this and for alternative proofs) is
by means of the Poisson kernel

Ppx, yq “ ks
y1´a

`

|x|2 ` y2
˘

n`1´a
2

,

that by convolution with u gives an explicit solution of the problem (0.2.6) as

Upx, yq “

ż

Rn
Ppx ´ ξ , yqupξq dξ .
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Notice that ks is chosen such that
ż

Rn
Ppx, yq dx “ 1.

One can compute then (up to constants)

lim
yÑ0`

ya Upx, yq ´ Upx, 0q

y “ lim
yÑ0`

ya´1
„
ż

Rn
Ppx ´ ξ , yqupξq dξ ´ upxq



“ lim
yÑ0`

ya´1
ż

Rn

y1´a

`

|x ´ ξ |2 ` y2
˘

n`1´a
2

pupξq ´ upxqq dξ

“ lim
yÑ0`

ż

Rn

upξq ´ upxq
`

|x ´ ξ |2 ` y2
˘

n`1´a
2

dξ

“

ż

Rn

upξq ´ upxq

|x ´ ξ |n`1´a dξ

“ ´ p´∆q
1´a
2 upxq,

for u smooth enough. Recalling that s “ 1´a
2 , this proves formula (0.2.8).

This extension procedure is useful when one solves an equation with the frac-
tional Laplacian on the whole Rn: it overcomes the difficulty of dealing with a non-
local operator, by replacing it with a local (possibly degenerate) one. For instance, a
nonlinear problem of the type

p´∆q
supxq “ f puq in Rn

is translated into the system
$

&

%

divpya∇Uq “ 0
´ lim
yÑ0

yaByU “ f puq , (0.2.11)

where one identifies upxq “ Upx, 0q in a trace sense. At this point, one works with
a local operator, which is of variational type. Indeed, the equation in (0.2.11) is the
Euler-Lagrange equation of the functional

IpUq “

ż

Rn`1
`

ya|∇U|
2 dX.

Here we denoted X “ px, yq P Rn`1
` . See, for instance [11, 4], where a nonlinear, non-

local elliptic problem in the whole spaceRn is dealt with using variational techniques
related to the local extended operator.

0.2.2 Maximum Principle and Harnack inequality

In this subsection, we introduce some natural tools for the study of equations involv-
ing the fractional Laplacian: Maximum Principles and the Harnack inequality. We
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point out that these two type of instruments fail if one wants to apply them in the
classical fashion. More precisely, we need to take into account the nonlocal character
of the operator and have to require some global information on the function.

First of all, a function is s-harmonic in x P Rn if p´∆q
supxq “ 0. Of course, the class

of s-harmonic functions is not trivial, one example is the one-dimensional function
upxq “ px`q

s
“ maxt0, xu

s, that satisfies p´∆q
supxq “ 0 on the half line x ą 0 (see

Theorem 3.4.1 in [5]). See also [12] for some other interesting examples of functions for
which one can explicitly compute the fractional Laplacian.

We notice now that, if u has a global maximum at x0, then by definition (0.2.3)
it is easy to check that p´∆q

supx0q ě 0. On the other hand, this is no longer true if u
merely has a local maximum at x0. The Maximum Principle goes as follows:

Theorem 0.7. If p´∆q
su ě 0 in BR and u ě 0 inRnzBR, then u ě 0 in BR. Furthermore,

either u ą 0 in BR, or u ” 0 in Rn.

Proof. Suppose by contradiction that there exists x P BR such that upxq ă 0 is a min-
imum in BR. Since u is positive outside BR, this is a global minimum. Hence for any
y P B2R we have that 2upxq ´ upx ´ yq ´ upx ` yq ď 0, while for y P RnzB2R, the
inequality |x ˘ y| ě |y| ´ |x| ě R assures that upx ˘ yq ě 0. It yields that

0 ď p´∆q
supxq

“

ż

B2R

2upxq ´ upx ´ yq ´ upx ` yq

|y|n`2s dy

`

ż

RnzB2R

2upxq ´ upx ´ yq ´ upx ` yq

|y|n`2s dy

ď

ż

RnzB2R

2upxq

|y|n`2s dy

“ CupxqR´2s
ă 0.

This gives a contradiction, hence upxq ě 0.
Now, suppose that u is not strictly positive in BR and there exists x0 P BR such

that upx0q “ 0. Then

p´∆q
supx0q “

ż

Rn

´upx0 ´ yq ´ upx0 ` yq

|y|n`2s dy ď 0,

hence p´∆q
supx0q “ 0. Since u ě 0 in Rn, this happens only if u ” 0 in Rn, and this

concludes the proof.

As said before, if a function is s-harmonic and positive only on the ball, this does not
assure that the infimum and supremum on the half-ball are comparable (see [15] for
a counter-example of this type). One needs some global information on the function.
One simple assumption is to take the function nonnegative on the whole of Rn. Then
the Harnack inequality holds, as stated in the next Theorem.
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Theorem 0.8. Let u : Rn Ñ R be nonnegative in Rn such that p´∆q
su “ 0 in B1. Then

there exists a constant C “ Cpn, sq ą 0 such that

sup
B1{2

u ď C inf
B1{2

u.

One way to prove this Theorem is to use the harmonic extension defined in the previ-
ous Subsection0.2.1. Namely, this result follows as the trace inequality onRnˆty “ 0u

of the Harnack inequality holding for the extended local (weighted) operator. See [6]
for all the details of this proof.

Another formulation that loses the strong assumption that u should be nonnega-
tive in Rn is given in the following theorem (see Theorem 2.3 in [16]):

Theorem 0.9. There exists a positive constant c such that for any function u : Rn Ñ R
which is s-harmonic function in B1, the following bound holds for any x, y P B1{2

upxq ď C
˜

upyq `

ż

RnzB1

u´pzq
p|z|2 ´ 1qs|z|n dz

¸

.

Moreover, if the function u is nonnegative in B1, then one has

upxq ď C
˜

upyq `

ż

RnzB1

u´pzq
|z|n`2s dz

¸

.

Here, u´ is the negative part of u, i.e. u´pxq “ maxt´upxq, 0u.

A Harnack inequality for more generals kernels is also stated further on in Subsec-
tion 0.3.1.

0.3 More General Nonlocal Operators

It is natural to continue the study of nonlocal phenomenaby introducingmore general
type of operators. In particular, one can introduce the fractional p-Laplacian

p´∆q
s
pupxq :“ P.V.

ż

Rn

|upxq ´ upyq|
p´2

pupxq ´ upyqq

|x ´ y|n`sp dy

(notice that for p “ 2, one gets the fractional Laplacian defined in (0.2.1)). As a further
topic, on can generalise this formula by taking instead of |x´ y|

´n´sp a different ker-
nel. So, in this section we introduce briefly nonlocal operators obtained by means of
more general kernels andmake some remarks on thewell-posedness of the definition.
Moreover, we shortly defineweak solutions and viscosity solutions, and provide a few
known results on these type of solutions.
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In this book, Chapter 9 present in detail some arguments related to these nonlocal
operators (references therein are of guidance for the interested reader).

We define a general nonlocal operator of fractional parameter s P p0, 1q and
summability coefficient p P p1,8q. Let K : Rn ˆ Rn Ñ r0,8q be a kernel that satisfies

(i) K is a measurable function
(ii) K is symmetric, i.e.

Kpx, yq “ Kpy, xq for almost any px, yq P Rn ˆ Rn;
(iii) there exists λ, Λ ě 1 such that

λ ď Kpx, yq|x ´ y|
n`sp

ď Λ for almost any px, yq P Rn ˆ Rn

for some p ą 1.
(0.3.1)

Then formally one defines for any x P Rn

LKupxq :“ P.V.
ż

Rn
|upxq ´ upyq|

p´2
pupxq ´ upyqq Kpx, yq dy

“ lim
εÑ0

ż

RnzBεpxq

|upxq ´ upyq|
p´2

pupxq ´ upyqq Kpx, yq dy
(0.3.2)

where by P.V. we intend “in the principal value sense”, as defined in the last line of
(0.3.2).

Let us take as an example the case p “ 2 and a general kernel K satisfying (0.3.1)
and see whenLKupxq is pointwise defined. If the kernel K satisfies an additional con-
dition of weak translation invariance, i.e.

Kpx, x ` zq “ Kpx, x ´ zq for a.e. px, zq P Rn ˆ Rn (0.3.3)

and the function u for 𝛾 ą 0 is locally C0,2s`𝛾 (or C1,2s`𝛾´1 if s ą 1{2) and integrable
at infinity respect to the kernel K, then LKupxq is well defined for any x P Rn. Indeed,
for r ą 0 and ε P p0, rq we have that
ż

BrpxqzBεpxq

pupxq ´ upyqqKpx, yq dy “

ż

Brp0qzBεp0q

pupxq ´ upx ` zqqKpx, x ` zq dz.

By the symmetry of the domain of integration and the additional property (0.3.3), we
obtain

ż

BrpxqzBεpxq

pupxq ´ upyqqKpx, yq dy

“
1
2

ż

Brp0qzBεp0q

pupxq ´ upx ` zqq Kpx, x ` zq dz

`
1
2

ż

Brp0qzBεp0q

pupxq´upx ´ zqq Kpx, x ´ zq dz

“
1
2

ż

Brp0qzBεp0q

p2upxq ´ upx ` zq ´ upx ´ zqq Kpx, x ´ zq dz.

Unauthenticated
Download Date | 6/6/18 8:33 PM



18 | Claudia Bucur

Now, if u is in C1,2s`𝛾´1
pBrpxqq, we have that

|2upxq ´ upx ` zq ´ upx ´ zq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
p∇upx ` tzq ´ ∇upx ´ tzqq ¨ z dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď rusC1,2s`𝛾´1pBrpxqq |z|2s`𝛾
ż 1

0
p2tq2s`𝛾´1 dt

ď
22s`𝛾´1

2s ` 𝛾
rusC1,2s`𝛾´1pBrpxqq |z|2s`𝛾 .

Therefore we obtain
ż

BrpxqzBεpxq

pupxq ´ upyqqKpx, yq dy

ď
22s`𝛾´1

2s ` 𝛾
rusC1,2s`𝛾´1pBrpxqq Λ

ż

Brp0qzBεp0q

|z|´n`𝛾 dz ď
cpnq

𝛾
rusC1,2s`𝛾´1pBrpxqq r

𝛾 .

Hence, for such 𝛾 ą 0, the principal value exists and, moreover,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Brpxq

pupxq´upyqqKpx, yq dy
ˇ

ˇ

ˇ

ˇ

ˇ

ď c rusC1,2s`𝛾´1pBrpxqq r
𝛾 .

0.3.1 Some remarks on weak and viscosity solutions

We give now an idea of different concepts of solutions and give some introductory
properties on solutions of linear equations of the type

#

LKupxq “ 0 in Ω Ď Rn

u satisfies some “boundary condition” in RnzΩ,
(0.3.4)

where Ω Ă Rn is an open bounded set. Notice at first that the boundary condition is
given in the whole of the complement of Ω. This depends on the nonlocal character of
the operator.

We have seen that, in the case p “ 2, adding the weak translation invariance on
K and proving sufficient regularity on u, then LKu is pointwise defined. In this case,
pointwise solutions of problem (0.3.4) can be considered.

The concept of pointwise solution is however reductive; in general, the boundary
data is given in a trace sense or one can guarantee less regularity on the solution. We
introduce two other concepts of solution, the weak and the viscosity notions.

We fix s P p0, 1q and p P p1,8q.We consider the followingDirichlet problem,with
given boundary data g P W s,p

pRnq

#

LKupxq “ 0 in Ω Ď Rn

upxq “ gpxq in RnzΩ.
(0.3.5)
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We recall the definition ofW s,p
pRnq as in (0.1.1)

W s,p
pRnq :“

!

v P LppRnq s.t. |vpxq ´ vpyq|

|x ´ y|n{p`s P LppRn ˆ Rnq

)

and we say that v P W s,p
0 pΩq if v P W s,p

pRnq and v “ 0 almost everywhere in RnzΩ.
In principle, this is a different way of defining the space W s,p

0 pΩq when Ω is not a
bounded Lipschitz open set (see for example the observations in Appendix B in [2]).
We define the convex spaces

K˘
g :“ tv P W s,p

pRnq s.t. pg ´ vq˘ P W s,p
0 pΩqu

and
Kg :“ K`

g X K´
g “ tv P W s,p

pRnq s.t. v ´ g P W s,p
0 pΩqu.

The problem has a variational structure, and we introduce a functional whose mini-
mization leads to the solution of the problem (0.3.5). For u P Kg we define the func-
tional

EKpuq :“
ż

Rn

ż

Rn
|upxq ´ upyq|

pKpx, yq dx dy . (0.3.6)

We have the following definition:

Definition 0.10. Let Ω be an open set of Rn. We say that u is a weak subsolution (su-
persolution) of the problem (0.3.5) if u P K´

g pK`
g q and it satisfies

ż

Rn

ż

Rn
|upxq ´ upyq|

p´2
pupxq ´ upyqqpφpxq ´ φpyqqKpx, yq dx dy ď pěq0

for every nonnegative φ P W s,p
0 pΩq. Moreover, a function u is a weak solution if u P Kg

is both a super and a subsolution of the problem (0.3.5), i.e. if
ż

Rn

ż

Rn
|upxq ´ upyq|

p´2
pupxq ´ upyqqpφpxq ´ φpyqqKpx, yq dx dy “ 0

for every nonnegative φ P W s,p
0 pΩq.

Using the notion of weak solution introduced in definition (0.10), we have the follow-
ing existence theorem.

Theorem 0.11 (Existence). Let s P p0, 1q, p P p1,8q and g P W s,p
pRnq. Then there

exists a unique minimizer u of EK over Kg. Moreover, a function u P Kg is a minimizer
of EK overKg if and only if it is a weak solution to the problem (0.3.5).

One can prove the existence of a uniqueminimizer by standard variational techniques
(see Theorem 2.3 in [9] for details). We give here a sketch of the proof that a minimizer
of the energy is a solution of the problem (0.3.5) and vice-versa.
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Sketch of the proof. Let u be a minimizer of the functional Ek. Consider u ` tφ to be a
perturbation of u with φ P W s,p

0 pΩq. We compute formally

0 “
d
dtEkpu ` tφq

ˇ

ˇ

ˇ

t“0

“
d
dt

ż

Rn

ż

Rn
|upxq ` tφpxq ´ upyq ´ tφpyq|

pKpx, yq dx dy
ˇ

ˇ

ˇ

t“0

“ p
ż

Rn

ż

Rn
|upxq ´ upyq|

p´2
pupxq ´ upyqq pφpxq ´ φpyqq dx dy.

This proves that u is a weak solution of (0.3.5), as introduced in Definition (0.10).
On the other hand, if u is a weak solution of (0.3.5), let v P Kg ant let φ “ u ´ v P

W s,p
0 pΩq. Then we have that

0 “

ż

Rn

ż

Rn
|upxq ´ upyq|

p´2
ppupxq ´ upyqq pφpxq ´ φpyqq Kpx, yq dx dy

“

ż

Rn

ż

Rn
|upxq ´ upyq|

pKpx, yq dx dy

´

ż

Rn

ż

Rn
|upxq ´ upyq|

p´2
pupxq ´ upyqqpvpxq ´ vpyqqKpx, yq dx dy.

Using the Young inequality, we continue

0 ě
1
p

ż

Rn

ż

Rn
|upxq ´ upyq|

pKpx, yq dx dy ´
1
p

ż

Rn

ż

Rn
|vpxq ´ vpyq|

pKpx, yq dx dy

“ Ekpuq ´ Ekpvq.

HenceEkpuq ď Ekpvq for any v P Kg and therefore theweak solution u P Kgminimizes
the functional Ek.

In order to obtain some boundedness and regularity results, we introduce the impor-
tant concept of nonlocal tail (given in [9]). The nonlocal tail takes into account the
contribution of a function “coming from far”, namely it allows to have a quantitative
control of the “nonlocality” of the operator. The definition goes as follows:

Tailpv; x0, Rq :“
«

Rsp
ż

RnzBRpx0q

|vpxq|
p´1

|x ´ x0|n`sp

ff
1

p´1

. (0.3.7)

Notice that this quantity is finite when v P LqpRnq, with q ě p ´ 1 and R ą 0.
With this in hand, we have the following local boundedness result (see Theorem

1.1 in [9] for the proof and details).

Lemma 0.12 (Local boundedness). Let s P p0, 1q, p P p1,8q and let u P W s,p
pRnq be

a weak solution of the problem (0.3.5). Let r ą 0 such that Brpx0q Ď Ω. Then

sup
Br{2px0q

u ď δTail
´

u`; x0,
r
2
¯

` cδ´
pp´1qn
sp2

˜

´

ż

Brpx0q

up` dx
¸

1
p

,

where u` “ maxtu, 0u is the positive part of u and c “ cpn, p, s, λ, Λq.
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Here, δ P p0, 1s behaves as an interpolation parameter between local and nonlocal
terms.

Using the nonlocal tail, one can state also the Harnack inequality in this general
case (see Theorem 1.1 in [8] for the proof of the statement).

Theorem 0.13. Let u P W s,p
pRnq be a weak solution of (0.3.5) and u ě 0 in BRpx0q Ă

Ω. Then for any Br :“ Brpx0q Ă B R
2

px0q we have that

sup
Br
u ď C inf

Br
u ` C

´ r
R
¯

sp
p´1 Tailpu´; x0, Rq,

where u´ “ maxt´u, 0u is the negative part of u and C “ Cpn, s, p, λ, Λq.

We point out that a Harnack inequality for nonlocal general operators in the case p “

2 is obtained in [1].
Viscosity solutions take into account solutions which are only continuous. The

idea is to “trap” the solution, which needs to be only continuous, between two func-
tions which are C2 (or at least C1,𝛾). We introduce here the notion of viscosity solution
for the problem (0.3.5), as given in [7].

Definition 0.14. Let u : Rn Ñ R be an upper (lower) semi-continuous function on Ω.
The function u is said to be a subsolution (supersolution) of LKu “ 0 and we write
LKu ď 0 (LKu ě 0) if the following happens. If:
– x is any point in Ω

– N :“ Npxq Ă Ω is a neighborhood of x

– φ is some C2pNq function

– φpxq “ upxq

– φpyq ą upyq for any y P Nztxu

then, setting

v :“
#

φ, in N
u, in RnzN

we have that LKv ď 0 (LKv ě 0). Moreover, u is a viscosity solution if it is both a
subsolution and a supersolution.

Existence and uniqueness of viscosity solutions of problems such as (0.3.5) are estab-
lished in [14]. We introduce here a Hölder regularity result for viscosity solutions of
the problem (0.3.5) (see [18] for more details and Theorem 1 therein for the proof).
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Theorem 0.15. Let s P p0, 1q and p P p1,8q (in the case p ă 2we require additionally
that p ą 1{p1 ´ sq). Assume that K satisfies Kpx, yq “ Kpx,´yq and there exist Λ ě

λ ą 0, M ą 0 and 𝛾 ą 0 such that

λ
|y|n`sp ď Kpx, yq ď

Λ
|y|n`sp for y P B2, x P B2

and
0 ď Kpx, yq ď

M
|y|n`𝛾

for y P RnzB1{4, x P B2,

Let u P L8
pRnq be a viscosity solution of LKu “ 0 in B2. Then u is Hölder continuous

in B1 and in particular there exist α “ αpλ, Λ,M, 𝛾, p, sq and C “ Cpλ, Λ,M, 𝛾, p, sq
such that

}u}CαpB1q ď C}u}L8pRnq.

Of course, much remains to be said about the arguments we presented in this intro-
duction, and about the nonlocal setting in general. The fractional Laplace operator
and operators of a more general type introduced here will be studied and beautifully
presented in the following Chapters 3, 5, 6, 7, 8, 9, 11. Other very interesting topics are
dealt with in upcoming chapters. In Chapter 1 some bounds on heat kernels for non-
symmetric nonlocal equations are obtained. Chapter 2 deals with fractional harmonic
maps. In Chapter 4, nonlocalminimal surfaces are discussed. Furthermore, Chapter 10
dealswith the existence of aweak solution of some fractional nonlinear problemswith
periodic boundary conditions.
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