
biomolecules

Review

Mediterranean Diet Food Components as Possible Adjuvant
Therapies to Counteract Breast and Prostate Cancer Progression
to Bone Metastasis

Paola Maroni 1 , Paola Bendinelli 2,*, Alessandro Fulgenzi 2 and Anita Ferraretto 1,2

����������
�������

Citation: Maroni, P.; Bendinelli, P.;

Fulgenzi, A.; Ferraretto, A.

Mediterranean Diet Food

Components as Possible Adjuvant

Therapies to Counteract Breast and

Prostate Cancer Progression to Bone

Metastasis. Biomolecules 2021, 11, 1336.

https://doi.org/10.3390/

biom11091336

Academic Editor: Vladimir

N. Uversky

Received: 29 July 2021

Accepted: 7 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R.
Galeazzi 4, 20161 Milano, Italy; paola.maroni@grupposandonato.it (P.M.); anita.ferraretto@unimi.it (A.F.)

2 Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via L. Mangiagalli 31,
20133 Milano, Italy; alessandro.fulgenzi@unimi.it

* Correspondence: paola.bendinelli@unimi.it

Abstract: Bone metastasis is a serious and often lethal complication of particularly frequent car-
cinomas, such as breast and prostate cancers, which not only reduces survival but also worsens
the patients’ quality of life. Therefore, it is important to find new and/or additional therapeutic
possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean
diet (MD) is effective in the prevention of cancer and improves cancer patients’ health, thus, here,
we considered its impact on bone metastasis. We highlighted some molecular events relevant for
the development of a metastatic phenotype in cancer cells and the alterations of physiological bone
remodeling, which occur during skeleton colonization. We then considered those natural compounds
present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo
and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this
bioactivity by the dietary components of the MD, together with its wide access to all people, could
help not only to maintain healthy status but also to improve the quality of life of patients with
bone metastases.

Keywords: Mediterranean diet; nutrients; bone metastasis; epithelial-mesenchymal transition;
osteolytic bone metastasis; osteoblastic bone metastasis; breast cancer; prostate cancer

1. Introduction

Cancer is a potentially fatal disease that afflicts the whole population; the International
Agency for Research on Cancer (IARC) estimates that approximately 18/19 million new
cases are diagnosed each year and more than 50% of these will develop metastasis. The
most dramatic aspect of cancer is represented by the phenomenon of metastatic spread,
which is believed to be responsible for over 90% of deaths related to the neoplastic disease.

Data for breast cancer show that it continues to be the most frequent type of cancer in
women. In fact, in 2020, the IARC estimated 2,261,419 cases worldwide (https://www.iarc.
who.int/, accessed on 20 July 2021), in particular, Western lifestyle and obesity contribute
to increasing the incidence of breast cancer [1]. Even if the improvement of therapies and
the application of screening programs lead to an increase in survival for localized breast
cancer, when patients develop metastasis, the average survival time after the onset of
bone metastasis is 12–53 months [2]. IARC data for prostate carcinoma, the most common
male cancer, estimated 1,414,259 cases in 2020 worldwide. Thanks to therapies, 84% of
patients survive for ten years or more, but the percentage drops to 30% in metastatic
prostate cancers [3]. Breast and prostate cancers display an inclination to metastasize to
bone, with an incidence of 73% and 68%, respectively [4]. Skeleton metastases are also
reported for thyroid cancer (60%), lung cancer (30%), bladder cancer (40%), renal cancer
(20–25%), and melanoma (14–45%) [5]. As a whole, more than 80% of bone metastases
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derive from the breast, prostate, and lung. Furthermore, in advanced cancers, the increased
survival, due to the improvement of therapies, is correlated to an augmented possibility to
develop metastases in the skeleton [6,7], thus the incidence of bone metastases is expected
to increase in the coming years.

Patients who develop bone metastasis often show clinical complications [5], the so-
called skeletal-related events (SREs), such as bone pain, pathological fractures, spinal
cord compression, and hypercalcemia. SREs cause the loss of mobility, compromise the
structural integrity of the bone, reduce the quality of life, and reduce the overall survival.
Sometimes, surgery is necessary to treat pathological fractures or nerve compression.

In recent years, studies have broadened knowledge of the biology of bone metastases
and have offered new therapeutic opportunities such as systemic chemotherapy and
radiotherapy, bisphosphonate, and anti-receptor activator of nuclear factor-κB (NF-κB)
ligand (RANKL) antibody, but these treatments are not without side effects, such as
osteonecrosis in the case of bisphosphonate. For this reason, and despite advances in
the therapeutic approaches, bone metastasis remains largely incurable, and treatment of
metastatic cancer still represents an open challenge for oncologists. In this context, there
is a strong need to discover new and/or additional anti-metastatic therapies to improve
patients’ outcomes.

The positive impact of lifestyle and nutrition on cancer incidence has already been fully
reported [8] and recommendations to both prevent cancer and improve cancer patients’
health have been given by the World Cancer Research Fund in the continuous update
progress (CUP, https://www.wcrf.org/diet-and-cancer, accessed on 15 February 2021).
A healthy lifestyle characterized by the consumption of specific food categories together
with physical activity and smoking and alcohol reduction can decrease the incidence of all
cancer types. These recommendations constitute the basis of the Mediterranean diet (MD),
which is characterized by plenty of cereals, fruits and vegetables, legumes, fish, nuts, and
olive oil and a lower frequency of dairy food, red meat, and wine consumption. It is well
known that a high adherence to the MD is associated with low cancer incidence, and this
positive influence extends to cancer survivors [9,10], indicating that foods and/or specific
nutrients could effectively synergistically act with pharmacological therapies or they could
partly counteract the negative aspects of the disease, ameliorating the patients’ life [11].

Breast and prostate cancer are examples of neoplastic disease for which diet, and
in particular the MD, before and after diagnosis, can influence the prognosis [1,12–15],
although not all studies agree on real and positive outcomes.

The interpretation of data coming from studies conducted on patients diagnosed with
breast/prostate cancer and with bone metastasis in reference to the MD suffers due to
the methodologies used, that is, (i) the methods to determine the adherence degree to
the MD; (ii) the time interval before and after cancer diagnosis in relation to the followed
diet; (iii) the time interval before and after cancer progression to metastasis in relation
to the followed diet; (iv) the lack of absolute certainty that the questionnaires used to
investigate the diet quality could report true answers; (v) the interaction of the different
nutrients and molecules associated in a meal. To overcome these problematic aspects and
the limitation of the studies concerning the effect of single nutrients [11], the present review
firstly highlights the process and pathways used by breast and prostate cancer cells to
metastasize and, secondly, considers how nutrients within the MD could influence these
specific processes. The match between chemio/radio therapies and specific nutrients could
constitute a non-chemical approach free from side effects for the prevention of the growth
of breast and prostate cancers. Lastly, due to its high-quality nutrient content, the MD can
act as adjuvant therapy to alleviate suffering caused by SREs and improve the quality of
life in bone metastatic patients.

2. Methods

PubMed was used to perform all the bibliographical searches among the publications
in the English language by considering recent ones (from the last ten years) when a large
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amount of data was available, or without time limitations with a few publications. We
used keywords related to different steps of the bone metastatic process, to molecular events
occurring in bone tissue in different types of bone metastases, and we intersected them
with biomolecules in the MD foods. We considered only bone metastasis derived from
breast and prostate carcinomas. In detail, the following keywords and/or combinations
of keywords were used: foods AND breast cancer within the last ten years; nutrients
AND bone metastasis; epithelial-mesenchymal plasticity AND nutrients; invasiveness
AND Mediterranean diet; foods AND osteoblastic bone metastasis; anthocyanins AND
bone metastasis; nutrients AND osteoblastic bone metastasis; skeleton colonization AND
nutrients; vimentin AND nutrients AND breast cancer; EMT AND nutrients; osteolytic
bone metastasis AND nutrients. Chosen papers are reported in the reference list together
with papers needed to explain the background of the topic.

3. Bone Metastasis: A Multi-Step Process

Several interconnected events are required to form a bone metastasis. To reach the new
growth site, cancer cells must carry out a set of steps, known as the “metastatic cascade”,
in which each passage requires the acquisition of specific biological properties by the
tumor cells, such as the capacity to detach from the primary site, to move and infiltrate the
surrounding tissue (epithelial-mesenchymal transition, EMT), to invade the vasculature, to
survive in the circulation, to extravasate, and to colonize the new growth site. All these
abilities belong to the metastatic cell phenotype.

3.1. Epithelial-Mesenchymal Transition: A Process That Regulates Invasiveness

EMT is a process in which cells lose their epithelial features (cell-cell adhesions, cell
polarity, and differentiating characteristics) to acquire mesenchymal-like features, an event
that in cancer is correlated to invasion, metastasis, tumor stemness, and resistance to ther-
apy [16]. For epithelial tissue-derived tumors, EMT is decisive for tumor progression [17].
Morphological changes in the cells occur during EMT: cells acquire a spindle shape by
decreasing the expression of cell adhesion molecules (i.e., E-cadherin) and by increas-
ing the expression of mesenchymal markers (i.e., N-cadherin, fibronectin, and vimentin).
Cancer cells with mesenchymal phenotype are present at the invasion front of different
types of carcinomas, as in breast and prostate cancers [18]. The reverse process, named
mesenchymal-epithelial transition (MET), occurs at metastatic sites. The reversibility of the
phenotype testifies the plasticity of cancer cells, a feature that allows the cells to also assume
intermediate phenotypes in the transition from one state to another, therefore gaining the
most useful functional characteristics for their colonization path: the invasiveness and
the resistance to anoikis for mesenchymal cells, the ability to grow in the new site for
epithelial cells.

The EMT program is coordinated by transcription factors, including Snail1/Snail,
Snail2/Slug, Twist, ZEB1, and ZEB2, whose relevant roles in cancer cells have been well
established [14,19]. In carcinomas, the activation of the EMT program is triggered by Snail,
which acts as a repressor of the transcription of epithelial markers, while the maintenance
of invasive features is due to Twist and ZEB 1/2 activities [20].

The upregulation of mesenchymal markers leads to the remodeling of the cytoskeleton,
an altered expression profile of the adhesion molecules, and the activation of matrix
metalloproteinases (MMPs), such as MMP-2 and MMP-9. Motility and invasiveness of
cancer cells are indeed associated with the destruction of extracellular matrix (ECM), an
event due to the MMPs, which cleave molecules of the matrix, including basal membrane
components. MMPs play a relevant role in invasion and metastasis, as demonstrated by
numerous studies [21].

Several growth factors and cytokines, emanating from tumor stroma, are involved
in the induction of the EMT program and favor the metastatic process. Among them,
transforming growth factor beta (TGF-β) and hepatocyte growth factor (HGF) are par-
ticularly relevant in the progression of carcinomas to bone metastasis. TGF-β, through
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the downstream Smad pathway, appears as the most powerful EMT inducer [22]. Upon
binding of TGF-β to the receptor, phosphorylated Smad2 and Smad3 complex Smad4
and translocate into the nucleus to upregulate EMT transcription factors [23]. Further-
more, TGF-β induces the EMT program through Smad-independent pathways, such as the
Ras/Raf/Erk kinase [24], phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, tumor necrosis
factor receptor-associated factor 6 (TRAF6)/TGF-β-activated kinase 1 (TAK1), and Wnt/β-
catenin signaling pathways [25–27]. The HGF/Met receptor axis plays many roles in tumor
progression, such as proliferation, evasion of apoptosis, invasion, and angiogenesis. Several
signaling pathways are activated downstream of Met, including Ras/Raf/Erk, PI3K/Akt,
and Wnt/β catenin and exert pro-tumorigenic roles. The HGF/Met axis also appears as a
relevant inducer of EMT through the regulation of EMT-related transcription factors [28].

3.2. Skeleton Colonization: Alteration of Physiological Bone Remodeling

Bone is an attractive site for tumor colonization due to the wealth of calcium and the
availability of stored growth factors, such as TGF-β, which is produced by osteoblasts,
deposed in the bone matrix, and released during bone resorption [29]. Moreover, the
so-called “metastatic niche” [30], a microenvironment created by primary tumors for future
metastasis, in the case of bone, includes several cellular types. Bone endothelial cells,
hematopoietic stem cells, and cells that compose the endosteal niche (osteoblasts, osteo-
clasts, and fibroblasts) characterize the bone milieu and condition the tumor growth [31].
Other cell types such as adipocytes, osteocytes, immune cells, and megakaryocytes are
able to regulate the metastatic growth in the bone [32–34]. Furthermore, a plethora of
signals, cytokines, and growth factors allow communication throughout the cells, creating
the tumor-stroma crosstalk.

Upon arrival in the bone, cancer cells alter tissue homeostasis, which is finely tuned
by the coordinate actions of several cell types, and this imbalance favors the development
of secondary growth. It is possible to differentiate the bone metastases into two types,
osteolytic and osteoblastic. Breast, lung, and renal cancers prevalently lead to bone destruc-
tion (osteolytic metastasis), whereas prostate cancer typically leads to bone-forming injury
(osteoblastic metastasis). However, breast cancer can also develop mixed bone metastases,
in which the skeletal lesions are characterized by active bone resorption and new bone for-
mation, and osteolysis can occur in the metastases derived from prostate carcinomas [35].

After the interaction between tumor cells and bone cells, a positive feedback loop,
the so-called vicious cycle, occurs. This process is characterized by the release of a series
of cytokines and growth factors by cancer cells that affect the bone tissue; changes in the
microenvironment result in the release of growth factors, which in turn feed the tumor,
modifying its behavior and growth.

As regards tumor-stroma crosstalk in bone metastasis, the HGF/c-Met receptor axis
and TGF-β appear to play relevant roles. HGF, as a stromal factor, finds its receptor Met
on carcinoma cells and on osteoblasts and osteoclasts. Bone metastatic lesions derived
from prostate cancers express high levels of Met, which are inversely correlated with the
androgen receptor levels, and therefore related to the progression of the disease [36]. In a
xenograft model of bone metastasis from breast cancer, HGF, more available in the bone
microenvironment with respect to control bone, activates β-catenin signaling in cancer
cells [37,38]. Of note, Met is also highly expressed in human bone metastatic tissue from
breast carcinoma [39]. In the xenograft model of bone metastasis from breast cancer, the
blockade of the HGF/Met axis or TGF-β prolongs the survival of animals [40].

3.2.1. Osteolytic Bone Metastasis

High activity of the osteoclasts, accompanied by a reduced functionality of the os-
teoblasts, characterizes the osteolytic metastases. Several factors released by breast, lung,
and renal carcinoma cells, such as parathyroid hormone-related protein (PTHrP), cytokines,
and prostaglandins, are responsible for the osteoclast formation and activation with the
consequent degradation of the bone matrix [41]. PTHrP and IL-11 act through the enhanced
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production of RANKL, which stimulates the differentiation of precursors of osteoclasts,
leading to bone resorption [42]. PTHrP also reduces the expression of the RANKL antago-
nist osteoprotegerin (OPG), sustaining osteoclast formation [43]. TGF-β also participates in
the induction of PTHrP expression in metastatic breast cancer cells [44].

Jagged1, a potent downstream mediator of TGF-β, is released during bone destruction
and it was reported to function as an important mediator of bone metastasis by activating
the Notch pathway in bone cells. Jagged1, by stimulating IL-6 release from osteoblasts and
activating osteoclast differentiation, promotes tumor growth [45].

Tumor cells are also able to inhibit the activity of osteoblasts by the modulation of
the Wnt signaling pathway, which is frequently deregulated in cancer. This pathway
modulates a variety of cellular processes and is essential for osteoblast differentiation. The
canonical β-catenin-dependent Wnt pathway stabilizes β-catenin, allowing the nuclear
translocation of the protein. This event results in the activation of T cell factor/lymphoid
enhancing factor (TCF/LEF) transcription and the expression of the target genes [46]. In
breast cancer, the development of osteolytic metastasis involves the deregulation of Wnt
agonists together with the expression of Wnt antagonists. In particular, the release of
Dickkopf-1 (Dkk-1), a Wnt antagonist, by cancer cells, leads to the inhibition of osteoblasts
and stimulation of osteoclasts [47]. Several other Wnt antagonists as well as bone mor-
phogenetic protein (BMP) antagonists play a relevant role in the modulation of osteoblast
differentiation/proliferation, thus contributing to bone destruction [48].

3.2.2. Osteoblastic Bone Metastasis

Osteoblastic bone metastases are defined by their osteosclerotic appearance on X-rays.
The deposition of new bone tissue drives the balance between bone resorption and bone
formation in favor of the latter. Cancer cells release factors that activate osteoblasts to
proliferate and form bone matrix.

ET-1 appears as the most important activator of osteoblasts, and is also able to inhibit
the activity and motility of osteoclasts [49,50].

The binding of ET-1 to its receptor A (endothelin A receptor, ETAR) downregulates
the autocrine production of a Dkk-1. As consequence, the Wnt pathway is activated,
resulting in differentiation and function of osteoblasts [49]. Moreover, Wnt agonists are
released by prostate cancers cells [51]: Wnt 3A, through the β-catenin pathway, leads
to the expression of BMP-4 and BMP-6 in cancer cells, resulting in the promotion of
osteoblastic lesions [52]. Other Wnt agonists, such as Wnt7B, activate osteoblasts through
a non-canonical pathway, playing a relevant role in the osteogenic lesions in advanced
prostate cancer [53]. BMPs released by cancer cells, besides stimulating osteoblasts, drive
osteomimicry, a process by which cancer cells or bone microenvironmental cells assume an
osteoblastic-like phenotype; tumor cells and endothelial cells express bone-specific proteins
and participate in the deposition of new tissue [54]. Osteomimicry favors the interaction
of metastasis with bone [55] and it is orchestrated by Runt-domain transcription factor 2
(Runx2), the key regulator of osteoblast differentiation. Indeed, in prostate carcinoma cells,
Runx2 is expressed and correlates with metastatic potential [56], while in breast carcinoma
cells Runx2 increases with respect to normal mammary tissue and regulates the expression
of osteoblast-related genes [55].

Prostate cancer cells also produce Dkk-1 and inhibitors of BMPs, so the phenotype
of bone metastasis will be dictated by the equilibrium between factors aimed at the bone
formation and antagonists of osteoblast activation [57,58]. These complex interactions
give rise to osteoblasts with a dysfunctional phenotype and the formation of a poorly
compacted bone, characterized by disorganized type I collagen fibrils and osteoblasts not
aligned along the collagen matrix. Mineralization is also aberrant due to the availability
of phosphate and calcium, leading to a hypermineralized matrix. Overall, these events
reduce bone strength and function [59,60].
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4. Nutrients and Bone Metastasis
4.1. Nutrients in the Epithelial-Mesenchymal Plasticity

Many data have been collected regarding the ability of compounds mostly belonging
to vegetables and fruits present in the MD to interfere with the phenotypic plasticity and
invasiveness of different types of malignant cells, as asserted by in vitro studies, even if the
mechanisms of action have not always been defined. Some of these compounds owe their
anti-metastatic effectiveness to their ability to interfere with the EMT, downregulate the
expression of MMPs, and act by modifying the behavior of signaling proteins. Concerning
breast cancer, the most commonly used cellular system employs the triple negative and
highly invasive MDA-MB-231 cells exposed to natural compounds.

It was reported that both polyphenols and non-phenolic nutrients are able to exert
anti-invasive activity in vitro in many cell types, among the ones in breast cancer cells.
Resveratrol has shown the ability to upregulate E-cadherin and downregulate mesenchymal
markers in several cell types, including breast cancer cells, multiple myeloma cell lines,
and colorectal cancer cells [61–63]. Resveratrol in breast cancer cells appears to increase
E-cadherin expression through the inhibition of TGF-β1-induced EMT, by regulating Smad-
dependent and Smad-independent pathways [59].

Resveratrol also prevents prostate cancer invasion and metastasis through several
mechanisms: by reverting the EMT process, downregulating the androgen receptor and
CXCR4 (CXCL12 chemokine receptor 4) pathway [64], by intervening in the bi-directional
interplay between stromal and epithelial cells, and by inhibiting HGF-induced migratory
behavior of prostate cancer cells [65]. Therefore, all these data reveal how resveratrol can
intervene in the regulation of the metastatic phenotype of both breast and prostate cancer
cells through multiple mechanisms.

Li et al. suggested that in prostate cancer cells, resveratrol can inhibit the EMT
process (LPS induced, used to trigger EMT in PC-3 cells) probably through the inhibition
of Hedgehog signaling, one of the pathways that regulates EMT in tumor growth [66].

S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) present in garlic have shown
the ability to restore E-cadherin expression in addition to inhibiting cancer cell proliferation
in androgen-independent prostate cancer cells. The restoration of E-cadherin expression
seems to be due to the contemporary transcriptional activation of the E-cadherin gene
and the decreased expression of the Snail gene, an E-cadherin suppressor [67]. Another
allium derivative, diallyl disulfide (DADS), has been demonstrated to both decrease the
expression and protein synthesis and inhibit the activity of MMP-2 and -9 in human
prostate carcinoma LNCaP cells [68]. In MDA-MB-231 breast cancer cells, DADS, besides
similar effects on MMP-9, showed other abilities: inhibition of cell migration and invasion,
reversion of EMT, and finally induction of apoptosis through the modulation of the β-
catenin signaling pathway [69].

The tyrosol derivatives (-)-oleocanthal in extra virgin olive oil are recognized to act in
more than one way in the modulation of the phenotype plasticity of mammary cancer cells: (i)
suppressing the expression of the mesenchymal marker vimentin; (ii) restoring the expression
of E-cadherin and Zo-1 in MDA-MB-231 cancer cells; (iii) stabilizing the expression of E-
cadherin and Zo-1 in MCF-7 and BT-474 breast cancer cells; (iv) blocking the HGF/c-Met
activation in MDA-MB-231, MCF-7, and BT474 cancer cell lines in culture [70,71].

Kaempferol, a phytoestrogen present in fruits and vegetables, is considered as a promis-
ing therapeutic agent for cancer metastasis for its action against adhesion, migration, and
invasion of MDA-MB-231 human breast carcinoma cells [72]. In addition, kaempferol
can reduce both the activity and expression of MMP-2, MMP-9, and cathepsin in MCF-7
breast cancer cell lines [72,73]. Moreover, in triple-negative breast cancer cells (TNBCs), low
doses of kaempferol can downregulate RhoA and Rac1 signaling pathways. In ER-positive
breast cancer cells (MCF-7), kaempferol, through the regulation of protein expression
involved in EMT as well as the metastasis-related genes, suppresses E2 (17-β-estradiol) or
triclosan-induced EMT, migration, and invasion [73,74]. Therefore, kaempferol could be
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considered as a potent chemopreventive compound against breast cancer metastasis, to be
used alternatively to hormone replacement therapy.

Indole-3-carbinol (I3C) and indole[3,2-b] carbazole (ICZ) from cruciferous vegetables have
shown the ability to inhibit breast cancer cell migration by multiple activities. First, in
MCF-7 breast cancer cells treated with I3C and ICZ, E-cadherin mRNA expression was
increased while vimentin mRNA expression was attenuated. Second, the MMP-2 and
-9 activity as well as the focal adhesion kinase (FAK) mRNA expression were decreased,
thus demonstrating an inhibition of the EMT process [75].

Crocin and crocetin, two saffron carotenoids, have displayed the ability to inhibit
murine metastatic breast cancer cell (4T1) migration and invasion in addition to attenuating
the adhesion to extracellular matrix in vitro. The mechanism affected seems to be related
to the Wnt/β-catenin pathway [76].

Soy isoflavones are highly involved in the progression to bone metastasis of prostate
cancer at different levels. The first level is the reversion of the EMT process. Low doses of
genistein (4′,5,7-trihydroxyisoflavone) for 48 h are able to reverse the EMT process in prostate
cancer cell lines LNCaP, LNCaP/HIF-1a, and IA8-ARCaP, as demonstrated by the cell
morphological features and the upregulation of the E-cadherin together with the loss of
expression of vimentin [77]. Genistein can also inhibit MMP-2 expression in both PC3 and
LNCaP cells in a dose- and time-dependent manner [78]. In addition, genistein is able to
diminish the expression of several MMP genes, especially of MMP-9, both in vitro (PC3
cells) and in vivo (PC3 bone metastasis xenograft model), presumably by inhibiting the
NF-κB DNA-binding activity [79] involved in MMP gene expression [80].

Anthocyanin 3,5-diglucoside, the major phytochemical constituent of muscadine grape
skin extract, due to its antioxidant potential, facilitated the MET process in prostate cancer
cells characterized by re-expression of E-cadherin and reduced vimentin levels. This effect
is due to the antagonization of the action of Snail, a key player of EMT, caused by the
inhibition of the JAK/STAT pathway [81]. Since Snail overexpression increased cathepsin
L activity via STAT3 signaling, useful for migration, invasion, and osteoclastogenesis,
the muscadine grape skin extract, due to its content of anthocyanin, ellagic acid, and
ellagic acid precursor, could be of interest as a therapeutic agent in breast and prostate
bone metastasis [82].

Silibinin, a flavanone isolated from milk thistle, decreased vimentin protein expres-
sion in a dose- and time-dependent manner and suppressed MMP-2 expression, while
it regulated cytokeratin-18 gene in ARCaPM cells, an in vitro model of prostate cancer
progression to bone metastasis [83]. The possible mechanism seems to be related to the
downregulation of Slug and ZEB1, EMT regulators [84].

Curcumin, one of three major curcuminoids derived from turmeric, is well known for
a plethora of activities against tumor cells. As it regards the present issue, curcumin has
shown the ability to (i) inhibit proliferation and colony formation of breast cancer cell lines,
MCF-7 and MDA-MB-231; (ii) suppress the migration and invasion of MDA-MB-231 cells;
(iii) downregulate the mRNA expression of vimentin, fibronectin, and β-catenin; (iv)
upregulate the mRNA expression of E-cadherin. Together, these activities indicate the
possibility to counteract the EMT process in breast tumors [85].

Ferulic acid, a polyphenol contained in numerous plants, can inhibit migration and
revert EMT in vitro in MDA-MB-231 cells. This effect was also confirmed in vivo in the
xenograft model of breast cancer [86].

Figure 1 summarizes all these data, indicating the intervention of different components
of the MD in the phenotypic plasticity of metastatic cells.
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Figure 1. Epithelial-to-mesenchymal transition (EMT) program in breast and prostate cancers and
roles exerted by different compounds belonging to Mediterranean diet. (a) Molecular processes
leading to EMT development. MMPs, metalloproteinases; TGF-β, transforming growth factor
beta; HGF, hepatocyte growth factor (figure created using Servier Medical Art available at https:
//smart.servier.com, accessed on 10 June 2021). (b) Bioactive molecules in EMT process grouped for
chemical nature and their site of action, which is indicated by “X”.

4.2. Nutrients in the Osteolytic Bone Metastasis

The combined effect of dietary grape polyphenols (5 mg/kg each of resveratrol,
quercetin, and catechin) was tested on the progression of mammary tumors in the highly
metastatic ER (-) MDA-MB-435 cell line. Molecular analysis of excised tumors demon-
strated that the treatment reduces tumor growth due to upregulation of forkhead box O1
(FOXO1) and NFKBIA (IκBα), thus activating apoptosis and potentially inhibiting NF-κB
activity. The image analysis of distant metastases demonstrated that grape polyphenols

https://smart.servier.com
https://smart.servier.com
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reduce metastasis, especially to liver and bone [87]. Some turmeric extracts with a precise
content of phenolic compounds have been demonstrated to inhibit MDA-MB-231 cell
growth and the secretion of PTHrP that drives breast cancer bone metastases in advanced
disease as an osteolytic factor [88,89]. In in vitro experiments using MDA-MB-231 cells,
curcumin also revealed the ability to block Smad-dependent TGF-β signaling, which is
supposed to induce PTHrP release [90] and the progression to bone metastasis in vivo [88].
Interestingly, successive experiments have demonstrated that curcumin-glucuronide is
the prevalent circulating form and that bone marrow cells can carry out curcumin deglu-
curonidation. This ability at the bone level is of fundamental importance since the released
curcumin is able to reduce the receptor-mediated phosphorylation of Smad2 [89]. Curcumin
can also suppress RANKL-induced osteoclastogenesis induced by prostate cancer cells [91].

Green tea (Camellia sinensis) extract containing the polyphenols epicatechin (EC),
EC gallate (ECG), epigallocatechin (EGC), and EGC gallate (EGCG) has demonstrated anti-
metastatic and anti-osteolytic effects in in vitro and in vivo experiments using 4T1 cells,
a mouse mammary tumor cell, and in a mouse mammary tumor model obtained by
inoculating 4T1 cells at the subcutaneous level. The activities exerted by the extract are
(i) the dose- and time-dependent inhibition of in vitro cell viability; (ii) the increase in
the expression of the pro-apoptotic protein Bax; (iii) the decrease in the expression of the
anti-apoptotic protein Bcl-2; (iv) the inhibition of the migration and invasion of 4T1 cells;
(v) the decrease in the number of in vitro osteoclasts together with a decrease in osteolysis
in vivo; (vi) an increase in the bone volume [92].

Sulforaphane is a phytochemical from cruciferous vegetables with known anti-cancer
properties. As concerns the present issue, the main positive effect of sulforaphane treatment
is the enrolment of a new gene network, i.e., RUNX2, NF-κB1, and SOX9, which becomes
downregulated, and in turn negatively affects the transcription and secretion of collagen
type 1 α1 (COL1A1), a metastasis-promoting factor, MMP-9, and cathepsin K (CTSK),
matrix-degrading factors involved in breast cancer metastasis. In addition, sulforaphane
inhibits osteoclast differentiation [93].

In a xenograft model of bone metastasis, Pore et al. demonstrated that the oral
administration of sulforaphane reduced breast cancer-induced osteolytic bone metastasis
via a significant decrease in circulating IL-8 [93].

N-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA) contained in fish oil have been shown to prevent the formation of osteolytic le-
sions by targeting the pro-metastatic protein CD44, implying the suppression of metastases
to the bone. In a model of bone metastasis of breast cancer, it was argued that fish oil is an
important dietary supplement to consider in adjuvant therapy for bone metastases [94].

Other authors have reported that DHA attenuates breast cancer bone metastasis and
associated osteolysis more potently than EPA, possibly by inhibiting migration of breast
cancer cells to the bone as well as by inhibiting osteoclastic bone resorption [95].

It is worth remembering that bone loss due to the combined mechanisms of osteoclast
activation and estrogen depletion can also occur during aromatase inhibitor therapy for
breast cancer with a consequent increase in fracture rate and osteoporosis. Although not
directly related to bone metastasis, the positive effects of vitamin D [96], EPA, and DHA
supplementation [97] in reducing bone loss in these patients deserve to be considered.

Trolox, a vitamin E analog, has been shown to inhibit breast cancer-induced bone
destruction when administered to mice before the injection of 4T1 breast cancer cells in
an experimental model of osteolytic metastasis. The authors claim that trolox exerts anti-
metastatic and anti-osteolytic activities in breast cancer cells through Prostaglandin E2
(PGE2)-dependent and PGE2-independent mechanisms [98].

Glycitein, a phytoestrogen belonging to the group of isoflavones, increased osteoclast
apoptosis and decreased the mRNA expression of RANKL, without affecting OPG, in a
murine in vitro model. Moreover, glycitein decreased IL-6 mRNA expression in osteoblasts.
IL-6, a well-known pro-inflammatory cytokine, is involved in bone resorption and in
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osteoclast formation and thus the interesting role exerted by glycitein on IL-6 should be
analyzed in more detail [99].

Dietary genistein was able to upregulate the expression of OPG in PC3 bone tumors,
leading to a possible inhibitory effect on osteoclast formation [80]. Subsequent studies have
reported that daidzein and genistein increased PTHrP and PTH type 1 receptor (PTH1R)
expression in human PCa cell lines in addition to the OPG/RANKL protein ratio [100].

More recently, a supposed synergistic action by daidzein and genistein in a soybean
extract was able to stimulate the secretion of OPG and inhibit that of RANKL, a critical
transcription factor for osteoclast differentiation, in osteoblasts, thus producing an indirect
but useful inhibition of osteoclast differentiation [101].

Although the exact mechanisms are not fully elucidated, it was reported that in a
murine model of bone metastasis, the vitamin D deficiency can affect the vicious cycle,
resulting in increased growth of breast cancer cells in the bone environment, accompanied
by osteolytic lesions [102].

Resveratrol upregulates protein and mRNA expression of major histocompatibility
complex class I chain-related proteins A and B (MICA and MICB) in breast cancer cells,
which in turn promote breast cancer cell lysis by natural killer (NK) cells in vitro and
in vivo. In this way, resveratrol could both counteract the immune escape and improve the
immunogenicity of cancer cells [103].

In Figure 2, bioactive molecules in the MD are reported for their role in the develop-
ment of osteolytic and osteoblastic bone metastasis.
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Figure 2. Dietary compounds involved in the inhibition of osteolytic and osteoblastic metastasis de-
velopment (figure created using Servier Medical Art available at https://smart.servier.com, accessed
on 10 June 2021). “X” indicates the involvement in the processes.

4.3. Nutrients in Osteoblastic Bone Metastasis

Genistein and soy isolate have demonstrated the ability to induce a possible decrease
in Wnt/β-catenin expression and protein levels, respectively, by modulating GSK-3 ac-
tivity through the frizzled 3 receptor, resulting in increased degradation of β-catenin and
cell growth [13].

The flavonoid p-hydroxycinnamic acid (HCA) has demonstrated prevention activity to-
ward suppressed osteoblastogenesis and enhanced osteoclastogenesis in MDA-MB-231 cells
co-cultured with bone marrow cells. The supposed mechanism is the antagonization of the
activation of NF-κB signaling induced by RANKL [104].

As concerns bone colonization by prostate cancer, curcumin has demonstrated mul-
tiple activities: it downregulates the expression of CXCR4, the receptor of the stromal
chemokine CXCL12 expressed by osteoblasts and involved in the metastatic process [105];

https://smart.servier.com
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it inhibits the serine/threonine kinase Akt activation and suppresses cell proliferation [106].
Moreover, curcumin can block the chemotactic effects of CC motif ligand 2 (CCL2) on
invasion, adhesion, and motility of PCa cells; the effect is partially due to a differential
regulation of PKC and MMP-9 signaling [107]. Dorai et al. analyzed the possibility of
using curcumin as a therapeutic agent in advanced prostate cancer, particularly concerning
skeletal complications. Curcumin seems to modulate TGF-β (that plays a central role in the
vicious cycle of bone metastasis) through the antagonistic action exerted by BMP-7 in both
osteolytic and osteoblastic metastasis from prostate cancer. Thus, curcumin is able (either
directly in cancer cells or indirectly in bone marrow-derived stem cells) to reprogram the
check and balance of TGF-β signaling pathways by the upregulation of the expression of
BMP-7. Using an animal model of bone metastasis, the authors argued the importance of
using curcumin as a dietary ingredient to prevent bone metastasis [108].

It has been reported that dietary intake of ω-3 PUFAs decreases the risk of developing
aggressive/metastatic prostate carcinoma [109]. Brown and colleagues reported that high
ω-3: ω-6 PUFA ratios together with a large amount of eicosapentaenoic acid (EPA) in the
diet can counteract the metastatic process to bone through the blocking of PGE2 production,
leading to a reduced risk of aggressive disease [110].

In Figure 2, bioactive molecules in the MD are reported according to their role in the
development of osteoblastic metastasis.

4.4. Nutrients with an Assessed Anti-Bone Metastatic Role although Not Specifically Related to
Breast/Prostate Cancer or to the Mechanisms Described Above

There are a plenty of studies highlighting the ability of different natural compounds,
mainly present in vegetables, to inhibit or counteract the formation and progression of bone
metastasis. Although these studies are not directly related to breast/prostate cancer, it is of
interest to consider them in the perspective that some of these compounds and activities
could in the future also be associated with prostate/breast cancer and bone metastasis.

Dietary N-(4-hydroxyphenyl) retinamide (4-HPR), a synthetic amide of retinoic acid,
has demonstrated anti-metastatic effects in the highly aggressive in vivo mouse prostate
reconstitution (MPR) model in which either heterozygote or homozygote p53-deficient
fetal prostate is initiated with ras and myc oncogenes. Multiple pathways associated with
cell apoptosis and/or G1 arrest seem to be involved in the 4-HPR activity [111].

The activation of silent information regulator 7 (SIRT7) deacetylase by resveratrol
inhibits breast cancer lung metastasis by antagonizing TGF-β1 signaling [12].

The flavonoid apigenin (API),4′,5,7-trihydroxyflavone can suppress the oncogene Sparc/
osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) expression normally
upregulated in prostate cancer and responsible for the invasion and metastasis of cancer
cells in a human prostate cancer xenograft model. The exact mechanism used by API
consists in targeting the Snail/Slug-mediated EMT process [112]. In addition, API can
suppress the signaling pathway due to IL-6 which is responsible for chronic inflammation
associated with breast cancer, for instance, and responsible for the EMT process, the
invasion and migration of tumor cells [113].

Table 1 summarizes the nutrients and related foods with a defined role as fighters
against the formation of bone metastasis.

Table 1. Biomolecules selected in the present discussion, foods that contain them, and references that report their role in
countering processes involved in bone metastasis.

Biomolecules Foods References

resveratrol grapes, red wine, peanuts, berries [59,61–66,103]

s-allylcysteine (SAC)
s-allylmercaptocysteine (SAMC) broccoli, Brussels sprouts, cauliflowers [67]

diallyl disulfide (DADS) garlic [68,69]

(-)-oleocanthal extra virgin olive oil [70,71]
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Table 1. Cont.

Biomolecules Foods References

kaempferol
leafy vegetables, apples, onions, broccoli,
berries, tea, cabbage, endive, kale, beans,

tomato, strawberries, leeks, grapes
[72–74]

indole-3-carbinol (I3C)
indole[3,2-b] carbazole (ICZ)

cauliflower, cabbage, kale, garden cress, bok
choy, broccoli, Brussels sprouts, mustard

plants, leafy vegetables
[75]

crocin
crocetin saffron [76]

genistein (4′,5,7-trihydroxyisoflavone) soy [77–80]

anthocyanin 3,5-diglucosides berries, currants, grapes, tropical fruits, leafy
vegetables, grains, roots, tubers [81,82]

silibinin milk thistle [84]

curcumin curry powder [85,88–91,105–108,114,115]

ferulic acid
rice, wheat, oats, pineapple, grapefruit, orange,

banana, berries, vegetables, flowers, leaves,
beans, coffee beans, artichoke, peanut, nuts

[86]

quercetin kale, tomatoes, broccoli, blueberries, apples [87]

catechin
epicatechin (EC)
ec gallate (ECG)

epigallocatechin (EGC)
egc gallate (EGCG)

red wine, chocolate, tea, almonds, apples,
blackberries, fava beans, hazelnuts, pistachios,

plums, raspberries, strawberries
[92]

sulforaphane cabbage, cauliflower, Brussels sprouts, bok
choy, kale, collards, mustard greens, watercress [93]

docosahexaenoic acid (DHA)
eicosapentaenoic acid (EPA)

salmon, foraging fish, shellfish, tuna, walnuts,
sardines, herring, mackerel, halibut [94,95,97,109,110]

vitamin D tuna, mackerel, salmon, cheese, egg yolks [96,102]

trolox (vitamin E derivative)

wheat germ oil, sunflower seeds, almonds,
sunflower oil, hazelnuts, peanut butter, corn
oil, spinach, broccoli, soybean oil, kiwi fruit,

mango, tomato, spinach

[98]

glycitein soy and soy products, [99]

daidzein and genistein soy and soy products [100,101]

p-hydroxycinnamic acid (HCA)

wasabi leafstalk, coffee, tea, wine, apples,
berries, plums, cherries, peaches, citrus fruits,
carrots, salad, cabbage, eggplant, artichoke,

cereals, grapes

[104]

n-(4-hydroxyphenyl) retinamide (4-HPR) synthetic retinoid [111]

apigenin (API) parsley, celery, celeriac, chamomile tea [112,113]

5. Conclusions

The importance of a balanced and safe diet is well known in reference to the onset
of diseases, including chronic diseases, such as cardiovascular diseases, diabetes, and
overweight/obesity, but much work has to be done to fully realize the possibility to
efficiently couple medicine and foods in order not only to prevent disease but also to
ameliorate patients’ lives. From this point of view, cancer and metastasis represent a large
field of interest due to the high mortality and costs of care. The Mediterranean diet is
recognized as a dietary pattern with many positive results and, above all, it is accessible to
all people of all ages, thus efforts are to be made to explore its components and relative
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bioactivity. In the present review, the biomolecules contained in MD foods are reviewed
for their ability to inhibit, reverse, or block metastasis to bone, a condition that deeply and
negatively affects life and survival. Many of these biomolecules derive from plants and
are characterized by poor solubility and bioavailability and, sometimes, after metabolic
transformation, they do not retain the anti-metastatic properties. All these problems make
it difficult to employ these biomolecules and successive studies are needed to understand
how to overcome these complications. Some examples are present in the literature, for
instance curcumin-loaded nanoparticles, which through multiple pathways inhibit the
growth of prostate cancer cells both in vitro and in vivo [114], or structurally modified
curcumin, which overcomes the above limitations [115]. Moreover, for plant-derived
biomolecules the seasonal and regional variation should be considered. The MD not only
consists of plant-derived foods but, in fact, EPA and DHA, as well as vitamin D, also possess
anti-metastatic bone bioactivity and, for this reason, the MD can offer the possibility to
combine different biomolecules and thus different therapeutic approaches. The presence
of the biomolecules, here considered, in foods largely consumed in the MD like cereals,
vegetables, olive oil, fish, and fruits (Table 1), indicates the need to choose and combine
different everyday meals to reach and maintain a healthy status.

To date, clinical trials that consider the MD as an adjuvant therapy in patients with
bone metastases have not been reported in the literature. Notwithstanding, a few interesting
papers could indicate the positive effects of the MD on the progression of breast carcinoma.
For example, it has been reported that the MD may contribute to reducing breast cancer
recurrence in patients with invasive breast cancer [116], and that adherence to the MD
in breast cancer survivors is associated with a better quality of life [117]. Lastly, a pilot
study has reported that the supplementation of vitamin D in women with metastatic breast
cancer and insufficient 25-hydroxyvitamin D (25[OH]D) serum levels improves bone pain
and fatigue [118]. Together, the studies reported here highlight the necessity to follow this
line of research.
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