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1Università degli Studi di Milano, Dipartimento di Matematica, Via Cesare Saldini 50, 20133 Milano, Italy
2LMU Munich, Department of Mathematics, Theresienstraße 39, 80333 München, Germany

3SISSA, Mathematics Area, Via Bonomea 265, 34136 Trieste, Italy
4Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

5IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

September 30, 2021

Abstract

We consider the quantum many–body evolution of a homogeneous Fermi gas in three
dimensions in the coupled semiclassical and mean-field scaling regime. We study a class
of initial data describing collective particle–hole pair excitations on the Fermi ball. Using
a rigorous version of approximate bosonization, we prove that the many–body evolution
can be approximated in Fock space norm by a quasifree bosonic evolution of the collective
particle–hole excitations.
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1 Introduction

The problem of computing quantum correlations in fermionic many–body systems has
a long history in theoretical physics. A widely used nonperturbative method is the ran-
dom phase approximation (RPA), introduced by Bohm and Pines [BP53]. Despite its
popularity, the mathematical validity of this approach remained elusive until recently.
One of the earliest applications of the RPA concerns the correlation energy of interact-
ing fermionic systems at high density, defined as the difference between many–body and

1

http://arxiv.org/abs/2103.08224v2


Hartree–Fock ground state energies. The RPA allows to derive a nonperturbative expres-
sion for the correlation energy, a prediction already contained in the foundational paper
[BP53]. In the mean–field regime, the validity of this expression at second order in the
interaction potential has been proved in [HPR20]. The first nonperturbative justification
of the RPA for the correlation energy in the mean–field regime has been established in
[BNPSS20, BNPSS21]. The result was extended in [CHN21, BPSS21].

The key concept of our approach is to interpret certain delocalized pairs of fermions as
bosons with an effective quadratic Hamiltonian, making it possible to compute the ground
state energy using a Bogoliubov transformation to diagonalize the effective Hamiltonian.
In the present paper, we develop this approach further and derive a norm approxima-
tion for the fermionic many–body quantum dynamics in terms of an effective bosonic
dynamics, generated by a quadratic Hamiltonian. In particular, our result identifies a
class of almost stationary states that are associated with the excited eigenvalues of the
many–body Hamiltonian of the fermionic system.

1.1 Fermi Gas in the Mean–Field Scaling Regime

We consider a system of N spinless fermionic particles on the torus T3 := R3/(2πZ3).
The dynamics is governed by the Schrödinger equation

i~∂tΨN (t) = HNΨN (t) (1.1)

where the Hamiltonian has the form

HN := ~
2
N∑

i=1

(−∆xi
) + λ

∑

1≤i<j≤N

V (xi − xj) , (1.2)

and the wave function ΨN (t) belongs to the space of antisymmetric functions

L2
a(T

3N ) := {ψ ∈ L2((T3)N ) : ψ(xσ(1), . . . , xσ(N)) = sgn(σ)ψ(x1, . . . , xN ) ∀σ ∈ SN} .
(1.3)

Here SN is the group of permutations of N symbols. We assume that the Fourier
transform V̂ : Z3 → R of the interaction potential V is non-negative and compactly
supported. In this case, HN is bounded from below and its self–adjointness follows from
the Kato–Rellich theorem. Consequently, by Stone’s theorem, the solution of (1.1) for
any initial wave function ΨN (0) ∈ L2

a(T
3N ) is given by ΨN(t) = e−itHN/~ΨN (0).

We are interested in the behavior of the system when N → ∞ in the coupled semi-
classical and mean–field scaling regime

~ ≃ N− 1
3 , λ := N−1 . (1.4)

(To be precise, in the next paragraph we will define ~ in terms of the Fermi momentum
kF.) In this case, for typical low–energy wave functions, the kinetic energy and the
interaction energy are both of order N . This scaling regime was considered by [NS81,
Spo81, CLS21, CLL21] for the derivation of the Vlasov equation and by [EESY04, BPS16,
BPS14c, BPS14, PRSS17] for the derivation of the Hartree–Fock equation. Different
scaling limits have been considered in [BGGM03, BGGM04, FK11, PP16, BBPPT16].
Note that the convergences in these works are mostly concerned the one–body density
matrices, which are in principle less precise than the norm approximation.

Hartree–Fock approximation. To leading order, physical properties of weakly
interacting fermionic systems can often be approximated by Hartree–Fock theory; see,
e.g., [Bac92, GS94] for the ground state energy and the papers just cited in the previous
paragraph for the dynamics. In Hartree–Fock theory one restricts the Hilbert space of
antisymmetric wave functions to its submanifold of Slater determinants ΨSl =

∧N
j=1 ϕj

with ϕj ∈ L2(T3), i. e., antisymmetrized elementary tensors. Since Slater determinants
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are quasi–free states, the Wick theorem can then be used to obtain the Hartree–Fock
energy functional

EHF(γ) := 〈ΨSl, HNΨSl〉

= tr(−~
2∆γ) +

1

2N

∫
dxdyV (x− y)

(
γ(x;x)γ(y; y)− |γ(x; y)|2

)

depending only on the one–particle reduced density matrix

γ(x; y) :=

∫
dx2 · · ·dxNΨSl(x, x2, . . . , xN )ΨSl(y, x2, . . . , xN ) .

In general, the analysis of the Hartree–Fock variational problem (the minimization of
EHF over the set of one–particle wave function ϕj) is still not trivial. Therefore we will
assume that the particle number N is such that it fills completely the Fermi ball

BF := {k ∈ Z
3 : |k| ≤ kF} , (1.5)

i. e., we let the number of particles be N := |BF|. This simplifies the Hartree–Fock
problem for the translation invariant Hamiltonian (1.2), in the coupled semiclassical and
mean–field scaling regime: namely, the minimum of the Hartree–Fock functional is given
by plane waves [BNPSS21, Appendix A] as in the non–interacting case:

ψpw :=
∧

k∈BF

ek , ek(x) := (2π)−
3
2 eik·x with k ∈ Z

3, x ∈ T
3 . (1.6)

To realize the limit of large particle number we then take kF → +∞. According to
Gauss’ classic counting argument

kF = κN
1
3 +O(1) where κ :=

(
3

4π

) 1
3

. (1.7)

(The correction term is actually much smaller than O(1) if we employ advanced number–
theoretic results [Hea99] on lattice point counting.) We define

~ :=
κ

kF
= N− 1

3 +O(N−2/3). (1.8)

(In earlier papers [BNPSS20, BNPSS21], we took ~ = N−1/3. The advantage of the

present definition of the scaling is that we have exactly κ = (3/4π)
1
3 instead of κ =

(3/4π)
1
3 +O(N− 1

3 ), avoiding additional trivial error terms in the effective Hamiltonian.)
Note that the Slater determinant ψpw minimizes the kinetic energy, neglecting the

many–body interaction. The only quantum correlations taken into account by this state
are those induced by the antisymmetry requirement. To get corrections to Hartree–Fock
theory, for example to the ground state energy, we have to go beyond the plane waves
ansatz and include non-trivial quantum correlations. A first step in this direction has
been taken in [HPR20], where the correction to the ground state energy has been com-
puted to second order in the interaction. To all orders in the interaction, the dominant
nonperturbative correction has been obtained in [BNPSS20, BNPSS21, BPSS21] via a
rigorous collective bosonization method (and by a non–collective bosonization method in
[CHN21]). Similar methods have also been used recently in the context of dilute Fermi
gases [FGHP21]. In the next subsection we recall the collective bosonization approach,
on which also our new result is based. For this purpose we recall first the formalism of
second quantization.

Second quantization. It is convenient to work with creation and annihilation op-
erators, even though we only consider systems with fixed particle number. On fermionic
Fock space F , constructed over L2(T3), we introduce the usual fermionic operators a∗p
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creating a particle with momentum p ∈ Z3, and correspondingly the annihilation opera-
tors ap. They satisfy the canonical anticommutation relations (CAR)

{ap, a∗q} = δp,q , {ap, aq} = 0 = {a∗p, a∗q} , ∀p, q ∈ Z
3 . (1.9)

We frequently use the operator norm bounds ‖a∗p‖ ≤ 1 and ‖ap‖ ≤ 1, which represent
the fact that a fermionic mode can be occupied by at most one particle. The fermionic
number operator is N =

∑
p∈Z3 a∗pap, and the vacuum vector is denoted by Ω. We extend

the Hamiltonian to Fock space as

HN := ~
2
∑

p∈Z3

|p|2a∗pap +
1

2N

∑

k,p,q∈Z3

V̂ (k)a∗p+ka
∗
q−kaqap . (1.10)

Restricted to L2
a((T

3)N ) ⊂ F , HN agrees with the N–particle Hamiltonian HN . In
particular, the ground state energy can be written as

EN := inf spec(HN ) = inf
ψ∈F :Nψ=Nψ

〈ψ,HNψ〉
〈ψ, ψ〉 . (1.11)

1.2 Correlation Hamiltonian

It is convenient to start the analysis by employing a particle–hole transformation, which
allows us to describe all states in Fock space relative to the non–interacting Fermi ball by
creating particles outside or holes inside the Fermi ball. We then have to keep track only
of these excitations. The particle–hole transformation is defined as the map R : F → F
satisfying (in terms of the plane waves ep introduced in (1.6))

R∗a∗pR :=

{
a∗p for p ∈ BcF
ap for p ∈ BF

, RΩ :=
∧

p∈BF

ep . (1.12)

This map is well–defined since the set of all vectors of the form
∏
j a

∗
kj
Ω forms a basis

of F . Moreover, it is easy to verify that R = R∗ = R−1; in particular R is a unitary
transformation. (In fact, R is a Bogoliubov transformation, i. e., it transforms creation
operators into a linear combination of creation and annihilation operators such that the
CAR are preserved.) Thus, the energy of the Fermi ball of non-interacting particles is

Epw
N = 〈RΩ,HNRΩ〉 . (1.13)

An important role in our analysis is played by the correlation Hamiltonian

Hcorr := R∗HNR− Epw
N = H0 +QB + E1 + E2 + X (1.14)

where the terms relevant for the statement of our main result are the kinetic energy and
the bosonizable interaction terms,

H0 =
∑

p∈Z3

e(p)a∗pap , e(p) = |~2|p|2 − κ2| ,

QB =
1

N

∑

k∈Γnor

V̂ (k)
[
b∗(k)b(k) + b∗(−k)b(−k) + b∗(k)b∗(−k) + b(−k)b(k)

]
. (1.15)

The summand X is the exchange term in the effective Hamiltonian of Hartree–Fock
theory, E1 is a summand containing only non–bosonizable contributions, and E2 couples
non–bosonizable contributions to the bosonizable b– and b∗–operators. We will show
that these three summands are small error terms; since they are not necessary to state
our result, we give the precise formulas only where needed, in Section 4. The operator
b∗(k) is the particle–hole pair creation operator

b∗(k) :=
∑

p∈Bc
F
∩(BF+k)

a∗pa
∗
p−k . (1.16)

We have also introduced the set Γnor of all momenta k = (k1, k2, k3) ∈ Z
3 ∩ supp V̂

satisfying k3 > 0 or (k3 = 0 and k2 > 0) or (k2 = k3 = 0 and k1 > 0). It is chosen such

that Γnor ∩ (−Γnor) = ∅, Γnor ∪ (−Γnor) =
(
Z3 ∩ supp V̂

)
\ {0}.
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Patch decomposition of the Fermi surface. The operators b(k) and b∗(k) an-
nihilate and create, respectively, a pair of fermions delocalized in a shell around the Fermi
surface. Because of the delocalization over many fermionic states, the Pauli principle is
usually negligible for the collective modes generated by these operators. In fact, we can
prove that, on states with few excitations of the Fermi ball, the operators b(k) and b∗(k)
satisfy (up to appropriate normalization constants) approximately bosonic commutation
relations, i. e.,

[b(k), b(l)] = 0 , [b(k), b∗(l)] ≃ δk,l × (normalization). (1.17)

Notice that it is crucial to have a large number of summands in the definition (1.16): we
find (b∗(k))m = 0 only when m ∈ N is larger than the number of summands. (A different
approach has been recently proposed in [CHN21], considering, instead of (1.16), operators
of the form a∗pa

∗
p−k; in this case bosonic behavior is only recovered after averaging over

p; see also Remark (v) after Theorem 1.1.)
Furthermore, QB is quadratic in terms of these operators, so that we may try to

diagonalize it by a bosonic Bogoliubov transformation. Unfortunately the kinetic energy
H0 does not have an obvious quadratic representation in terms of the b– and b∗–operators,
providing an obstacle for the application of bosonic Bogoliubov theory. To overcome this
problem and express also H0 quadratically in terms of almost–bosonic operators, we
need to linearize the dispersion relation e(p) near the Fermi surface (these steps will
be explained further in (1.23) and (1.25)). First we observe that in (1.15) we always
have k ∈ supp V̂ , and in b∗(k) we have p outside the Fermi ball but p − k inside the
Fermi ball; therefore only fermionic operators not further than a distance diam supp V̂
from the Fermi surface appear. We then take this shell and decompose the b– and b∗–
operators into localized operators bα and b∗α covering the Fermi surface shell; we call the
localization regions patches. The important properties of the patch decomposition are
that the patches should be separated by thin corridors so that there is no interaction
between neighbours, and they should not degenerate into very elongated shapes (the
number of points in their interior should be much larger than the number of points near
the surrounding corridor). The precise form of the patch decomposition is not relevant
as long as these properties are satisfied. As an example, it can be constructed by placing
a disc at the north pole, then cutting along the lines of northern latitude, cutting the
obtained rings, and finally reflecting by the origin to the southern half sphere. Figure 1
illustrates such a patch decomposition of the northern half of the Fermi sphere; patches
are then reflected at the origin to the southern half. We refer to [BNPSS21, Section 4]
for the details and recall only the main aspects in the following:

The number of patches M is a parameter depending on the particle number N , and
will eventually be optimized in the range

N2δ ≪M ≪ N
2
3
−2δ, 0 < δ <

1

6
,

where δ is another parameter independent of N to be optimized at the end of the proof;
its main role is to define the patch cut–off around the equator in (1.18). (We needM ≫ 1
to control the linearization error in Lemma 2.4; the stricter lower bound M ≫ N2δ is
required for validity of the counting argument (1.21), as illustrated in [BPSS21, Fig. 2].

The condition M ≪ N
2
3
−2δ ensure that the patches contain a large enough number of

fermionic modes, required for suppressing the Pauli principle and justifying the neglect
of error terms in the approximate CCR.) The patches {Bα}Mα=1 have thickness RV :=
diamsupp V̂ in the radial direction, and their side lengths are of equal order. They are
non–overlapping and separated by corridors of width strictly larger than 2RV . By ω̂α
we denote the normalized vectors pointing in the direction of the patch centers.

Given a vector k ∈ Γnor we define the sets of indices1 (with the same parameter

1Unlike [BNPSS20], where the condition k̂ · ω̂α ≥ N
−δ was used, here we use k · ω̂α ≥ N

−δ. While in
the present paper the difference is not important since |k| is bounded, the latter choice is the natural one
in [BNPSS21, Lemma 5.3], where it means that c

∗

α(k) can be bounded by the gapped number operator for
α ∈ Ik (for all k).
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Figure 1: Patch decomposition of the northern half of the unit sphere.

0 < δ < 1/6 we already mentioned in the previous paragraph)

Ik := I+
k ∪ I−

k ,

I+
k :=

{
α ∈ {1, 2, . . . ,M} | k · ω̂α ≥ N−δ

}
,

I−
k :=

{
α ∈ {1, 2, . . . ,M} | k · ω̂α ≤ −N−δ

}
.

(1.18)

That is, (for N large enough) the set Ik only takes into account the labels of the patches
which are away from the equator of the Fermi ball, defining as ‘north’ the direction of k.
Given a patch Bα with α ∈ I+

k , we define the pair creation operators

b∗α(k) :=
1

mα(k)

∑

p:p∈Bc
F∩Bα

p−k∈BF∩Bα

a∗pa
∗
p−k , mα(k) :=

∑

p:p∈Bc
F∩Bα

p−k∈BF∩Bα

1 . (1.19)

Also, for α ∈ Ik we set

c∗α(k) :=
{

b∗α(k) for α ∈ I+
k ,

b∗α(−k) for α ∈ I−
k .

(1.20)

Let nα(k) := mα(k) for α ∈ I+
k and nα(k) := mα(−k) for k ∈ I−

k . According to the
counting argument from [BNPSS20, Proposition 3.1], under the assumption M ≫ N2δ

we have

nα(k)
2 =

4πk2F
M

|k · ω̂α|
(
1 +O(

√
MN− 1

3
+δ)
)
≫ 1 . (1.21)

Note that in [BNPSS20] it was assumed that M ≫ N1/3, which was used only for the
linearization of the kinetic energy in expectation value. This condition has been relaxed
in [BNPSS21] and in the present paper by linearizing not the operator H0 in expectation
values but only its commutator with the c∗α(k).

The operators cα(k) are approximately bosonic2 annihilation operators, namely they
satisfy the approximate canonical commutation relations

[cα(k), cβ(ℓ)] = 0 , [cα(k), c
∗
β(ℓ)] ≃ δk,ℓδα,β .

We refer to Lemma 2.2 for precise estimates.

2Unlike the exact bosonization in one–dimensional fermionic systems [ML65] or in spin systems [CG12,
CGS15, Ben17, NS19], the bosonization used here is an approximation, however with rigorous control on the
error. Our definition of the pair operators has some similarity to the particle–number conserving operators
creating an excitation of a Bose–Einstein condensate introduced in [Gir62, KB62] and used in [LS02, LS04,
Sei11, BS19, BBCS18, BBCS19a, BBCS19b, BBCS20].

6



Effective approximately bosonic Hamiltonian. Neglecting the corridors be-
tween patches and the equatorial region where k · ω̂α ∈ [0, N−δ), we obtain the approxi-
mate decomposition

b∗(k) ≃
∑

α∈I+
k

nα(k)b
∗
α(k) . (1.22)

With this decomposition we can write QB as an expression that is quadratic in the c–
and c∗–operators.

We can now construct a quadratic bosonic approximation for H0. In fact, the reason
for decomposing into patches lies in the fact that the c∗α(k) operators create approximate
eigenmodes of the kinetic energy; namely, for α ∈ I+

k (and likewise for α ∈ I−
k ) we find

[H0, c
∗
α(k)] =

[∑

i∈Z3

e(i)a∗i ai,
1

nα(k)

∑

p:p∈Bc
F∩Bα

p−k∈BF∩Bα

a∗pa
∗
p−k

]
(1.23)

=
1

nα(k)

∑

p:p∈Bc
F∩Bα

p−k∈BF∩Bα

(e(p) + e(p− k)) a∗pa
∗
p−k ≃ 2~κ|k · ω̂α|c∗α(k) (1.24)

by linearizing around the point ωα: e(p)+ e(p−k) = ~2(2p−k) ·k ≃ ~2(2kFω̂α) ·k. This
is the same commutator as would be obtained approximately for H0 replaced by

DB := 2~κ
∑

k∈Γnor

∑

α∈Ik

|k · ω̂α|c∗α(k)cα(k) . (1.25)

This approximation will be rigorously justified when the operators act on states ob-
tained from the vacuum by adding bosonic excitations, see Lemma 2.4 and Lemma 5.2.
Hence, at least on this class of states, we expect that the correlation Hamiltonian can be
approximated by

Hcorr = R∗HNR − Epw
N ≃

∑

k∈Γnor

2~κ|k|heff(k) (1.26)

with

heff(k) :=
∑

α,β∈Ik

[(
D(k) +W (k)

)
α,β
c∗α(k)cβ(k) +

1

2
W̃ (k)α,β

(
c∗α(k)c

∗
β(k) + h.c.

)]
(1.27)

whereD(k),W (k), and W̃ (k) are real symmetric matrices of size |Ik|×|Ik| with elements

D(k)α,β := δα,β |k̂ · ω̂α| , k̂ :=
k

|k| , ∀α, β ∈ Ik ,

W (k)α,β :=
V̂ (k)

2~κN |k| ×
{
nα(k)nβ(k) if α, β ∈ I+

k or α, β ∈ I−
k

0 otherwise ,

W̃ (k)α,β :=
V̂ (k)

2~κN |k| ×
{

0 if α, β ∈ I+
k or α, β ∈ I−

k

nα(k)nβ(k) otherwise .

(1.28)

Note that for all k ∈ Z3 and all α, β ∈ Ik we have3

|D(k)α,β | ≤ δα,β , |W (k)α,β | ≤
C

M
V̂ (k) , |W̃ (k)α,β | ≤

C

M
V̂ (k) . (1.29)

These bounds immediately imply that the Hilbert–Schmidt norms satisfy

‖D(k)‖HS ≤
√
M , ‖W̃ (k)‖HS ≤ C , ‖W (k)‖HS ≤ C . (1.30)

3We use the letter C generically for positive constants that may change from line to line.
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1.3 Bogoliubov Transformation

If c∗α(k) were exactly bosonic creation operators, then the quadratic Hamiltonian heff(k)
could be diagonalized by a Bogoliubov transformation [BNPSS20, Appendix A.1]

TB(k) := exp
(1
2

∑

α,β∈Ik

K(k)α,βc
∗
α(k)c

∗
β(k)− h.c.

)
(1.31)

where

K(k) := log|S1(k)
⊺| = 1

2
log
(
S1(k)S1(k)

⊺

)
(1.32)

and

S1(k) := (D(k) +W (k)− W̃ (k))1/2E(k)−1/2 ,

E(k) :=
[(
D(k) +W (k)− W̃ (k)

)1/2
(D(k) +W (k) + W̃ (k))

(
D(k) +W (k)− W̃ (k)

)1/2]1/2
.

Then
T ∗
Bcγ(l)TB =

∑

α∈Il

cosh(K(l))α,γcα(l) +
∑

α∈Il

sinh(K(l))α,γc
∗
α(l) .

With this choice of K(k), the “off–diagonal” terms in the Hamiltonian (of the form c∗c∗

and cc) are cancelled by conjugation with the unitary TB (see the proof of [BNPSS21,
Lemma 10.1]), so that

TB(k)
∗heff(k)TB(k) ≃

1

2
tr(E(k)−D(k)−W (k)) +

∑

α,β∈Ik

K(k)α,βc
∗
α(k)cβ(k) . (1.33)

The |Ik| × |Ik|–matrix K(k) is found to be

K(k) = cosh(K(k))(D(k) +W (k)) cosh(K(k)) + sinh(K(k))(D(k) +W (k)) sinh(K(k))

+ cosh(K(k))W̃ (k) sinh(K(k)) + sinh(K(k))W̃ (k) cosh(K(k)) . (1.34)

With the orthogonal matrixO(k) defined by the polar decomposition S1(k) = O(k)|S1(k)|
and S2(k) := (S1(k)

⊺)−1 one finds cosh(K(k)) = 1
2 (S1(k)+S2(k))O(k)

⊺ and sinh(K(k)) =
1
2 (S1(k)− S2(k))O(k)

⊺. By direct computation this leads to

K(k) = O(k)⊺E(k)O(k) . (1.35)

Thus heff(k) can be understood as the approximately bosonic second quantization of the
operator K(k) on the one–boson space ℓ2(Ik) ≃ C|Ik|. If the effective Hamiltonians at
different momenta k were independent, we could simply sum over k ∈ Γnor and find that
the excitation spectrum consists of sums of eigenvalues of 2~κ|k|E(k); see [Ben19] for a
discussion of the spectrum.

In our rigorous application, c∗α(k) are only approximately bosonic creation operators;
moreover, cα(k) and cα(ℓ)

∗ do not commute exactly for k 6= ℓ. Nevertheless, we can still
define the unitary transformation

T := eB , B :=
∑

k∈Γnor

1

2

∑

α,β∈Ik

K(k)α,βc
∗
α(k)c

∗
β(k)− h.c. (1.36)

and show that it is approximately (see Lemma 2.7) a bosonic Bogoliubov transformation,

T ∗cγ(l)T ≃
∑

α∈Il

cosh(K(l))α,γcα(l) +
∑

α∈Il

sinh(K(l))α,γc
∗
α(l) . (1.37)

Consequently, up to error terms that are small on states with few excitations,

T ∗HcorrT ≃ ẼRPA
N +

∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,βc
∗
α(k)cβ(k) (1.38)
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where

ẼRPA
N =

∑

k∈Γnor

~κ|k| tr(E(k)−D(k)−W (k)) . (1.39)

The trace can be written out as a sum over α ∈ Ik. If this sum is seen as a Riemann sum
for a surface integral over the sphere, we get (see [BNPSS20, Eq. (5.15)] for the details)
the bound ∣∣∣ẼRPA

N − ERPA
N

∣∣∣ ≤ C~
(
N− δ

2 +M− 1
4N

δ
2 +M

1
4N− 1

6
+ δ

2

)
, (1.40)

where

ERPA
N := ~κ

∑

k∈Z3

|k|
( 1
π

∫ ∞

0

log
[
1+2πκV̂ (k)(1−λ arctan(λ−1))

]
dλ− π

2
κV̂ (k)

)
. (1.41)

The key approximation (1.38) has been justified in [BNPSS20, BNPSS21, CHN21,
BPSS21] for the expectation value in a low energy state, at least when V̂ is non–negative,
compactly supported with ‖V̂ ‖ℓ1 small enough (but independent of N). Optimizing the
choice of the parameters M and δ, we obtained the rigorous expansion of the ground
state energy EN of the Hamiltonian HN in (1.2):

EN = Epw
N + ERPA

N +O(~1+
1
16 ) . (1.42)

In the present paper, we justify the approximation (1.38) in norm on a class of special
states (see Lemma 4.1 and Lemma 6.1). From that we obtain a norm approximation
for the dynamics (1.1) for initial data describing pair excitations over an approximate
ground state.

1.4 Main Result: Norm Approximation

We shall discuss the evolution of states that describe m particle–hole excitations around
the Fermi ball. Let R be the particle–hole transformation in (1.12) and T the Bogoliubov
transformation in (1.31). We consider the Schrödinger equation (1.1) with the initial state

ψ = RTξ ∈ L2
a(R

3N ) , ξ =
1

Zm
c∗(ϕ1) · · · c∗(ϕm)Ω , (1.43)

where
c∗(ϕi) =

∑

k∈Γnor

∑

α∈Ik

c∗α(k)(ϕi(k))α (1.44)

with c∗α(k) being defined in (1.20), and normalized one–boson wave functions

ϕ1, . . . , ϕm ∈
⊕

k∈Γnor

ℓ2(Ik) , ‖ϕi‖2 :=
∑

k∈Γnor

∑

α∈Ik

|(ϕi(k))α|2 = 1 . (1.45)

Note that we do not require orthogonality of the functions ϕi: since they describe approx-
imately bosonic excitations, they may even all occupy the same one–particle function ϕ1.
The normalization constant Zm (estimated in Lemma 3.2) is chosen such that ‖ξ‖ = 1.
We define the family of time–dependent states

ξt :=
1

Zm
c∗(ϕ1;t) · · · c∗(ϕm;t)Ω , t ∈ R , (1.46)

where, with K(k) the excitation operator defined in (1.38),

ϕm;t := e−iHBt/~ϕm , HB :=
⊕

k∈Γnor

2~κ|k|K(k) . (1.47)

The state ξt can be viewed as an approximate m–particle bosonic state, where every ϕi
evolves according to the one–particle Hamiltonian HB. In general ξt is not normalized,
but its norm is close to 1 uniformly in time; this is proven in Lemma 3.3.

The next theorem is our main result. It provides a norm approximation for the
N–body evolution of ψ = RTξ in terms of the explicit states RTξt when N → ∞.
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Theorem 1.1 (Norm approximation). Assume that V̂ : Z3 → R is compactly supported,
non–negative, and satisfies V̂ (k) = V̂ (−k) for all k ∈ Z

3. Let kF > 0 sufficiently large,

N := |{k ∈ Z3 : |k| ≤ kF}|, and ~ := κk−1
F with κ = (3/4π)

1
3 . Take the number of

patches M := N4δ with δ := 2/45, the cut–off parameter used in (1.18).
Let ξ be as in (1.43) and let ξt be as in (1.46). Then there exists a constant Cm,V > 0

depending only on m and V such that for any t ∈ R we have

‖e−iHN t/~RTξ − e−i(E
pw

N
+ERPA

N )t/~RTξt‖ ≤ Cm,V ~
1
15 |t| . (1.48)

Remarks.

(i) The vector ψ = RTξ is an N–particle state. This is easily verified using R∗NR =
N +

∑
p∈Bc

F
a∗pap − ∑h∈BF

a∗hah, and the fact that
∑
p∈Bc

F
a∗pap − ∑h∈BF

a∗hah
commutes with all particle–hole pair creation operators c∗(ϕi) and with T .

(ii) We can allow initial data in which the number m of pair excitations grows slowly
with N → ∞, as long as we assume m3(2m − 1)!! ≪ N δ (required by (3.13)
to control the normalization constant Zm)4. In fact, we have Cm,V = CV (m +

1)2
√
(2m− 1)!!, where CV depends only on V . For example, we can take m ≪

logN/ log logN ; then by Stirling’s formula Cm,V grows slower than N ǫ for any
ǫ > 0.

(iii) We may also consider initial data constructed with a non–optimal choice of M =

M(N) and of δ. In this case the rate of convergence will differ from the ~
1
15 given

here, being given instead by

C(m+ 1)2
√
(2m− 1)!!×

×
[(
N− δ

2 +M− 1
2 +M

3
2N− 1

3
+δ +M

1
4N− 1

6

)
|t|+M− 1

4N
δ
2 +M

1
4N− 1

6
+ δ

2

]

which is the sum of the error estimates (7.8) and (7.9).

(iv) The construction of initial data through the patch decomposition may seem quite
special; however, the collective pair excitations provide an observable contribution
to the excitation spectrum of the many–body system (see [Ben19]).

This procedure has a further big advantage: it provides us with a highly non–
trivial tool for the construction of approximate eigenstates (in the sense of being
approximately stationary under the many–body evolution) by taking the ϕm(k) as
eigenvectors of the matrix K(k).

(v) Recently, in [CHN21], the stationary properties of the same system have been
investigated using a different method which does not rely on collective operators.
It is unclear to us whether this new technique can be used to study the dynamics.
In particular, the non–collective pair operators in [CHN21] behave bosonic only
in an “averaged” sense (unlike our collective pairs), which makes it significantly
harder to formulate an effective dynamics.

(vi) Let us finally comment on our assumptions on the interaction potential. To apply
techniques that have been introduced in [BNPSS21], we require V̂ to have com-
pact support (but, in contrast to [BNPSS21], we do not assume the potential to be
small). Recently, the results of [BNPSS21] have been extended in [BPSS21, CHN21]
to a larger class of potentials, assuming only V̂ (k) ≥ 0 and

∑ |k|V̂ (k) <∞. Follow-
ing the ideas of [BPSS21] it would certainly be possible to extend Theorem 1.1 to
the same class of interactions. However, to keep the presentation as transparent as
possible, we prefer to restrict our analysis here to potentials with compact support
(moreover, extension to more general potential would lead to a deterioration of the
error estimate (1.48)).

4We use the notation n!! for the semifactorial, i. e., n!! = n(n − 2)(n − 4) · · · 4 · 2 for even n ∈ N and
n!! = n(n− 2)(n− 4) · · · 3 · 1 for odd n ∈ N.
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At first sight, our result looks similar to the norm approximations obtained for bosonic
systems in, e. g., [GM13, LNS15, BCS17, NN17, BNNS19]. However, there is an impor-
tant difference: for bosonic mean–field systems, an effective quadratic Hamiltonian arises
by quasifree reduction (see, e. g., [BSS18]); instead for our fermionic norm approximation,
the formal effective Hamiltonian (1.26) is quartic in fermionic operators. Only through
bosonization can we approximate it as a quasifree, and thus solvable, effective theory.

Organization of the paper. The rest of the paper is devoted to the proof of
Theorem 1.1. In Section 2 we recall estimates from [BPSS21, BNPSS20, BNPSS21]. In
Section 3, we explain how Theorem 1.1 follows if we justify the approximation (1.38)
in Fock space norm. This is then undertaken in the following sections: In Section 4
we reduce the correlation Hamiltonian Hcorr to its bosonizable terms. In Section 5
we prove that the fermionic kinetic operator H0 can be replaced by a bosonized one. In
Section 6, we diagonalize the resulting approximate bosonic Hamiltonian by a Bogoliubov
transformation. In Section 7 we combine all estimates to prove Theorem 1.1.

2 Approximate Bosonization: Key Estimates

In this section we recall important estimates from [BPSS21, BNPSS20, BNPSS21].

Lemma 2.1 ([BPSS21, Eq. (4.10)]). There is a C > 0 (independent of N) such that for
any k ∈ Z3 we have ∑

p∈Bc
F
∩(BF+k)

1

e(p) + e(p− k)
≤ CN . (2.1)

In the following we summarize the properties of the operators cα(k) and cα(k)
∗. The

next lemma shows that, on states with few excitations, they behave as bosonic operators.

Lemma 2.2 (Approximate CCR, [BNPSS20, Lemma 4.1] and [BNPSS21, Eq. (5.3)]).
Let k, l ∈ Γnor, α ∈ Ik, and β ∈ Il. Then

[cα(k), cβ(l)] = [c∗α(k), c
∗
β(l)] = 0 , [cα(k), c

∗
β(l)] =: δα,β(δk,l + Eα(k, l)) . (2.2)

The operator Eα(k, l) commutes with the fermionic number operator N and satisfies

∑

β∈Ik∩Il

Eβ(k, l)∗Eβ(k, l) =
∑

β∈Ik∩Il

|Eβ(k, l)|2 ≤ C(MN− 2
3
+δN )2 (2.3)

and for all ζ ∈ F also

∑

α∈Ik∩Il

‖Eα(k, l)ζ‖ ≤ CM
3
2N− 2

3
+δ‖N ζ‖ . (2.4)

Furthermore Eα(k, l) = Eα(l, k)∗ for all α ∈ Ik and all k, l ∈ Γnor.

In the proof of the lower bound [BNPSS21] an important role was played by the
gapped number operator Nδ :=

∑
i∈Z3 : e(i)≥ 1

4
N−

1
3
−δ a

∗
i ai: since modes of very low energy

are excluded, this operator can be more efficiently bounded by the kinetic energy H0.
In the present paper we consider only explicitly constructed states for which we have
strong control on N , so that the use of Nδ is not necessary. In the following lemmas we
replaced all appearances of Nδ using Nδ ≤ N .

The patch operators cα(k), cα(k)
∗ satisfy similar bounds as true bosonic operators:

Lemma 2.3 (Pair operators bounds, [BNPSS21, Lemma 5.3]). For all k ∈ Γnor we have

∑

α∈Ik

c∗α(k)cα(k) ≤ N . (2.5)
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Consequently, for all ζ ∈ F , we have

∑

α∈Ik

‖cα(k)ζ‖ ≤M
1
2 ‖N 1

2 ζ‖ ,
∑

α∈Ik

‖c∗α(k)ζ‖ ≤M
1
2 ‖(N +M)

1
2 ζ‖ . (2.6)

Moreover, for f ∈ ℓ2(Ik),
∥∥∥
∑

α∈Ik

fαc
∗
α(k)ζ

∥∥∥ ≤ ‖f‖ℓ2‖(N + 1)
1
2 ζ‖ . (2.7)

Since c∗α(k) is (a sum over) a product of two fermionic creation operators we have

[N , c∗α(k)] = 2c∗α(k) and g(N )c∗α(k) = c∗α(k)g(N + 2) (2.8)

for any measurable function g : R → R.

The next lemma allows us to understand the action of the kinetic energy operator
H0 in terms of an approximately bosonized operator DB defined by (1.25). The patch
decomposition is necessary for the linearization of the dispersion relation that justifies
the identity [H0, c

∗
α(k)] ≃ 2~κ|k · ω̂α|c∗α(k).

Lemma 2.4 (Bosonization of the kinetic energy). For all k ∈ Γnor and α ∈ Ik we have

[H0, c
∗
α(k)] = 2~κ|k · ω̂α|c∗α(k) + ~E

lin
α (k)∗ ,

[DB, c
∗
α(k)] = 2~κ|k · ω̂α|c∗α(k) + ~EB

α(k)
∗ ,

(2.9)

where for all ζ ∈ F the error terms are bounded by

∑

α∈Ik

‖Elin
α (k)ζ‖ ≤ C‖N 1

2 ζ‖ ,
∑

α∈Ik

‖EB
α(k)ζ‖ ≤ CM

3
2N− 2

3
+δ‖(N + 1)

3
2 ζ‖ .

(2.10)

The operator Elin
α (k) commutes with cβ(k) for all α, β = 1, . . . ,M . Instead EB

α(k) com-
mutes with cβ(k) assuming that α 6= β. Finally, for f ∈ ℓ2(Ik), we have

∥∥∥
∑

α∈Ik

fαE
lin
α (k)∗ζ

∥∥∥ ≤ C‖f‖ℓ2M− 1
2 ‖(N + 1)

1
2 ζ‖ ,

∥∥∥
∑

α∈Ik

fαE
B
α(k)

∗ζ
∥∥∥ ≤ C‖f‖ℓ2M

3
2N− 2

3
+δ‖(N + 1)

3
2 ζ‖ .

(2.11)

The operators Elin
α (k) and EB

α(k) annihilate two fermions, i. e.,

[N ,Elin
α (k)] = −2Elin

α (k) , [N ,EB
α(k)] = −2EB

α(k) .

Proof. The lemma collects the results of [BNPSS21, Lemma 8.2] and of [BNPSS21,
Eq. (8.4)–Eq. (8.6)]. The second bound in (2.11) easily follows from the explicit expres-
sion [BNPSS21, Eq. (8.5)] (χ(α ∈ Il) denotes an indicator function)

EB
α(k) := 2κ

∑

l∈Γnor

|k · ω̂α|E∗
α(l, k)cα(l)χ(α ∈ Il) , (2.12)

and from the bounds for Eα(l, k) and c∗α(l) that were given in [BNPSS21, Lemma 5.2]
and [BNPSS21, Lemma 5.3], respectively.

We turn to the approximate Bogoliubov transformation T . The Bogoliubov kernel
K(k), defined in (1.32), is controlled by the following bound. The bound is stronger than
the one given in [BNPSS20, Lemma 4.5] and weaker than the bound given in [BNPSS21,
Lemma 6.1]. Compared to the latter, it has the advantage of not requiring a small–
potential assumption.

12



Lemma 2.5 (Bogoliubov kernel). For all k ∈ Γnor we have

|K(k)α,β | ≤ C
V̂ (k)

M
∀α, β ∈ Ik . (2.13)

Furthermore
‖K(k)‖HS ≤ C . (2.14)

Proof. We drop the k–dependence from the notation for all matrices. We write

g :=
1

2
κV̂ (k) , uα :=

√
|k̂ · ω̂α| , vα :=

~

κ
√
|k|
nα(k) , ∀α ∈ Ik . (2.15)

Note that the coefficient vα from the interaction part can be controlled by the coefficient
uα from the kinetic energy: according to (1.21) we have

vα =

√
4π

M
uα

(
1 +O(

√
MN− 1

3
+δ)
)
≤ C√

M
uα .

Due to the reflection symmetry of the construction of patches we have

Bα+M/2 = −Bα , ωα+M/2 = −ωα ∀α ∈ {1, 2, . . . ,M/2}
so that the matrices in (1.28) can be written in block form as

D =

(
d 0
0 d

)
, W =

(
b 0
0 b

)
, W̃ =

(
0 b
b 0

)
,

where
d = diag(u2α, α = 1, . . . , I) and b = g|v〉〈v| ,

the latter indicating the rank–one operator with v = (v1, · · · , vI). (The indices are
delimited by I := |I+

k | = |I−
k |.)

According to (1.32) we have, with L := S1S
⊺

1 − I,

K =
1

2
log(I+ L) ⇔ e2K = I+ L . (2.16)

Using the orthogonal matrix (as in [GS13] and [BNPSS21, Eq. (6.8)])

U :=
1√
2

(
I I

I −I

)

we can block–diagonalize

ULU⊺ =

(
L1 0
0 L2

)
, (2.17)

where

L1 = d1/2
[
d1/2(d+ 2b)d1/2

]−1/2

d1/2 − I ,

L2 = (d+ 2b)1/2
[
(d+ 2b)1/2d(d+ 2b)1/2

]−1/2

(d+ 2b)1/2 − I .

(2.18)

We can also write

UKU⊺ =

(
K1 0
0 K2

)
, where e2Ki = Li + 1 ∀i ∈ {1, 2} .

Note that
L2 ≥ 0 ≥ L1 ⇔ K2 ≥ 0 ≥ K1 .

In [BNPSS21, Eq. (6.21) and (6.30) et seqq.] we showed that

|(Li)α,β | ≤ C
V̂ (k)

M
min

{
uα
uβ
,
uβ
uα

}
≤ C

V̂ (k)

M
. (2.19)

This was proven in [BNPSS21] without using the smallness assumption on the potential.
(The smallness assumption was only used to transfer this bound for Li to a bound for
Ki via a series expansion of the logarithm.) Here we avoid the use of a series expansion.

This way, we can still obtain the important factor M−1 (but not min
{
uα

uβ
,
uβ

uα

}
).
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Bound for K2. Using the operator inequality

L2 = e2K2 − 1 ≥ 2K2

and the Cauchy–Schwarz inequality we can bound

|(K2)α,β | ≤
√
(K2)α,α

√
(K2)β,β ≤ 1

2

√
(L2)α,α

√
(L2)β,β ≤ C

V̂ (k)

M
. (2.20)

Bound for K1. This is slightly more difficult because K1 ≤ 0. We write

L̃1 := (L1 + 1)−1 − 1 = e−2K1 − 1 ≥ −2K1 .

We claim that

|(L̃1)α,α| ≤ C
V̂ (k)

M
∀α ∈ {1, 2, . . . , I} . (2.21)

Given this claim, we can conclude by the same Cauchy–Schwarz estimate as above that

|(−K1)α,β | ≤
√
(−K1)α,α

√
(−K1)β,β ≤ 1

2

√
(L̃1)α,α

√
(L̃1)β,β ≤ C

V̂ (k)

M
. (2.22)

To show (2.21), we write

L̃1 = (L1 + 1)−1 − 1 = d−1/2
[
d1/2(d+ 2b)d1/2

]1/2
d−1/2 − 1

= d−1/2

([
d1/2(d+ 2b)d1/2

]1/2
− d

)
d−1/2 =: d−1/2Ad−1/2 . (2.23)

Recall the integral identity for the matrix square root X1/2 = − 2
π

∫∞

0
λ2(X + λ2)−1dλ

and the formula for the inverse of a matrix with rank–one perturbation (X+ |x〉〈y|)−1 =
X−1 −X−1|x〉〈y|X−1(1 + 〈y,X−1x〉)−1. Writing

d1/2(d+ 2b)d1/2 = d2 + 2g|ṽ〉〈ṽ| with ṽ := d1/2v

we find

|Aα,α| =
∣∣∣∣∣
2

π

∫ ∞

0

λ2
(

1

d2 + λ2
− 1

d2 + λ2 + 2g|ṽ〉〈ṽ|

)

α,α

dλ

∣∣∣∣∣

≤ 4g

π

∫ ∞

0

λ2

1 + 2g〈ṽ, (d2 + λ2)−1ṽ〉

∣∣∣∣∣

(
1

d2 + λ2
|ṽ〉〈ṽ| 1

d2 + λ2

)

α,α

∣∣∣∣∣dλ

Note that 〈ṽ, (d2 + λ2)−1ṽ〉 ≥ 0 can be dropped from the denominator for an upper
bound, so that using the explicit form of the matrix elements according to (2.15) we get

|Aα,α| ≤
Cg

M

∫ ∞

0

λ2
u4α

(u4α + λ2)2
dλ =

Cg

M
u2α . (2.24)

According to (2.23), since
(
d−1/2

)
α,β

= δα,βu
−1
α is diagonal, this implies the claimed

bound (2.21).

Conclusion. In summary, we proved that for both i ∈ {1, 2} we have

|(Ki)α,β| ≤ C
V̂ (k)

M
∀α, β ∈ {1, 2, . . . , I} .

Recalling

K = U⊺

(
K1 0
0 K2

)
U =

1

2

(
K1 +K2 K1 −K2

K1 −K2 K1 +K2

)

we arrive at (2.13).

The bound for the Hilbert–Schmidt norm follows trivially from the first bound.
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The next lemma shows that the number operator does not increase significantly under
conjugation with the operator Tλ := exp(λB), where the operator B is defined in (1.36).

Lemma 2.6 (Stability of the number operator, [BNPSS20, Proposition 4.6]). There
exists a C > 0 such that for all n ∈ N and all λ ∈ [0, 1] we have

T ∗
λ(N + 1)nTλ ≤ eCn(N + 1)n . (2.25)

The following lemma shows that Tλ acts as an approximate Bogoliubov transforma-
tion on the pair operators.

Lemma 2.7 (Approximate Bogoliubov transformation). Let l ∈ Γnor and γ ∈ Il. Then
there exists C > 0 such that for all λ ∈ [0, 1] and all m ∈ 1

2N we have

T ∗
λcγ(l)Tλ =

∑

α∈Il

cosh(λK(l))α,γcα(l) +
∑

α∈Il

sinh(λK(l))α,γc
∗
α(l) + Eγ(λ, l) , (2.26)

with the bound
∑

γ∈Il

‖NmE∗
γ(λ, l)ζ‖ ≤ CM

3
2N− 2

3
+δ‖(N + 1)m+ 3

2 ζ‖ ∀ζ ∈ F . (2.27)

The same estimate holds with E∗
γ(λ, l) replaced by Eγ(λ, l).

Proof. The error bound here is a generalization of [BNPSS21, Lemma 7.1], which only
considered m = 0. See also [BNPSS20, Proposition 4.4] for an earlier related result. Re-
call from [BNPSS21, Eq. (7.9)] that by an iterated Duhamel expansion of the conjugation
T ∗
λ(·)Tλ up to arbitrary order n0 ∈ N, the error term is

E
∗
γ(λ, l) =

n0−1∑

n=0

∫ λ

0

dτ
(λ− τ)n

n!

∑

k∈Γnor

∑

α∈Il∩Ik

∑

β∈Ik

(K(l)n)γ,αK(k)α,β

× T ∗
τ

1

2

(
Eα(k, l)c∗β(k) + c∗β(k)Eα(k, l)

)♮
Tτ

+

∫ λ

0

dt
(λ− τ)n0−1

(n0 − 1)!

∑

α∈Il

(K(l)n0)γ,αT
∗
τ c
♮
α(l)Tτ

−
∑

α∈Il

∞∑

n=n0

λn(K(l)n)γ,α
n!

c♮α(l) .

The symbol ♮ as superscript is used as an abbreviation to indicate either the operator
itself or its adjoint (namely A♮ may be either A∗ or A), where the choice between the
two options does not play a role for the further estimates. Lemma 2.5 together with the
bound ‖K(k)‖op ≤ C implies the estimate |(K(l)n)γ,α| ≤ CnM−1, valid without any
smallness condition on the potential and for all n ∈ N \ {0}. Then, proceeding as in
[BNPSS21, Eq. (7.8)–(7.9)] we get:
∑

γ∈Il

‖Nm
E
∗
γ(λ, l)ζ‖

≤
n0−1∑

n=0

Cn

n!M

∫ λ

0

dτ
∑

k∈Γnor

∑

α∈Il∩Ik

β∈Ik

(
‖NmT ∗

τ Eα(k, l)c∗βTτζ‖+ ‖NmT ∗
τ c

∗
β(k)Eα(k, l)Tτζ‖

+ ‖NmT ∗
τ cβ(k)E∗

α(k, l)Tτζ‖ + ‖NmT ∗
τ E∗

α(k, l)cβ(k)Tτ ζ‖
)

+
Cn0

(n0 − 1)!

∫ λ

0

dτ
∑

α∈Il

(
‖NmT ∗

τ cα(l)Tτζ‖+ ‖NmT ∗
τ c

∗
α(l)Tτζ‖

)

+

∞∑

n=n0

Cn

n!

∑

α∈Il

(
‖Nmcα(l)ζ‖+ ‖Nmc∗α(l)ζ‖

)
.
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By the stability of Nm under conjugation with Tτ (see Lemma 2.6), we get

‖NmT ∗
τ ζ‖ ≤ Cm‖(N + 1)mζ‖ , ∀ζ ∈ F .

For the next step, recall that Eα(k, l) commutes with the number operator, and since
cα(k) and c

∗
α(k) annihilate and create a pair of fermions, respectively, we have cα(k)N =

(N − 2)cα(k). If we use Nm ≤ (N + 1)m before, we thus get
∑

γ∈Il

‖Nm
E
∗
γ(λ, l)ζ‖

≤
n0−1∑

n=0

Cn

n!M

∫ λ

0

dτ
∑

k∈Γnor

∑

α∈Il∩Ik

β∈Ik

(
‖Eα(k, l)c∗β(N + 3)mTτζ‖+ ‖c∗β(k)Eα(k, l)(N + 3)mTτζ‖

+ ‖cβ(k)E∗
α(k, l)NmTτζ‖+ ‖E∗

α(k, l)cβ(k)NmTτζ‖
)

+
Cn0

(n0 − 1)!

∫ λ

0

dτ
∑

α∈Il

(
‖cα(l)NmTτζ‖+ ‖c∗α(l)(N + 3)mTτζ‖

)

+

∞∑

n=n0

Cn

n!

∑

α∈Il

(
‖cα(l)Nmζ‖ + ‖c∗α(l)(N + 3)mζ‖

)
.

From this point, we proceed exactly as in the proof of [BNPSS21, Lemma 7.1]. Let us
sketch the proof for completeness. Using Lemma 2.3 we can bound the operators in the
last two lines; then taking n0 → ∞ we obtain
∑

γ∈Il

‖NmE∗
γ(λ, l)ζ‖

≤ CM−1

∫ λ

0

dτ
∑

k∈Γnor

∑

α∈Il∩Ik

β∈Ik

(
‖Eα(k, l)c∗β(N + 3)mTτζ‖ + ‖c∗β(k)Eα(k, l)(N + 3)mTτζ‖

+ ‖cβ(k)E∗
α(k, l)NmTτζ‖ + ‖E∗

α(k, l)cβ(k)NmTτζ‖
)

=: I1 + I2 + I3 + I4

which is similar to [BNPSS21, Eq. (7.10)]. By proceeding similarly to [BNPSS21, Eq.
(7.11)] (replacing TτΨ by (N + 3)mTτΨ and using Nδ ≤ N , accordingly), we have

I1 ≤ sup
τ∈[−1,1]

CM−1
∑

k∈Γnor

∑

α∈Il∩Ik

β∈Ik

‖Eα(k, l)c∗β(N + 3)mTτζ‖

≤ sup
τ∈[−1,1]

CMN− 2
3
+δ‖(N +M)1/2(N + 1)(N + 3)mTτζ‖

≤ sup
τ∈[−1,1]

CM
3
2N− 2

3
+δ‖(N + 1)m+ 3

2 Tτζ‖

≤ CM
3
2N− 2

3
+δ‖(N + 1)m+ 3

2 ζ‖.
In the last estimate we have used the stability of Nm under conjugation with Tτ (re-
call Lemma 2.6). Next, by proceeding similarly to the argument leading to [BNPSS21,
Eq. (7.14)] (replacing TτΨ by (N + 3)mTτΨ and using Nδ ≤ N again), we find that

I2 ≤ sup
τ∈[−1,1]

CMN− 2
3
+δ‖(N +M)1/2(N + 1)(N + 3)mTτζ‖

≤ sup
τ∈[−1,1]

CM
3
2N− 2

3
+δ‖(N + 1)m+ 3

2 Tτζ‖

≤ CM
3
2N− 2

3
+δ‖(N + 1)m+ 3

2 ζ‖.
The error terms I3 and I4 can be treated by the same way. The proof of Lemma 2.7 is
complete.
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3 Reformulation of Norm Approximation

In this section, we reduce Theorem 1.1 to an appropriate version of the key approximation
(1.38). We define

Hexc :=
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,βc
∗
α(k)cβ(k) .

Lemma 3.1 (Reduction to norm approximation of the Hamiltonian). Let ξt be defined
as in (1.46). Then for all t ≥ 0

‖e−iHNt/~RTξ − e−i(E
pw

N +ẼRPA
N )t/~RTξt‖

≤ 1

~

∫ t

0

∥∥(T ∗HcorrT − ẼRPA
N − Hexc)ξs

∥∥ds+ C
m2
√
(2m− 1)!!

Zm
M

3
2N− 2

3
+δt . (3.1)

Proof. We start by writing, using the unitarity of e−iHN t/~, R, and T ,

‖e−iHN t/~RTξ − e−i(E
pw

N
+ẼRPA

N )t/~RTξt‖

=
∥∥∥
∫ t

0

ds
d

ds

(
ei(HN−Epw

N
−ẼRPA

N )s/~RTξs

)∥∥∥

≤ 1

~

∫ t

0

ds
∥∥(HN − Epw

N − ẼRPA
N )RTξs −RT (i~∂sξs)

∥∥

=
1

~

∫ t

0

ds
∥∥T ∗R∗(HN − Epw

N − ẼRPA
N )RTξs − i~∂sξs

∥∥

=
1

~

∫ t

0

ds
∥∥
(
T ∗HcorrT − ẼRPA

N

)
ξs − i~∂sξs

∥∥ . (3.2)

From (1.46) we have

i~∂sξs =
1

Zm

m∑

i=1

c∗(ϕ1;s) · · · c∗(ϕi−1;s)c
∗(HBϕi;s)c

∗(ϕi+1;s) · · · c∗(ϕm;s)Ω , (3.3)

where HB =
⊕

k∈Γnor 2~κ|k|K(k). Using that HexcΩ = 0, we get

Hexcξs =
1

Zm
Hexcc

∗(ϕ1;s) · · · c∗(ϕm;s)Ω =
1

Zm
[Hexc, c

∗(ϕ1;s) · · · c∗(ϕm;s)]Ω

=
1

Zm

m∑

i=1

c∗(ϕ1;s) · · · c∗(ϕi−1;s)[Hexc, c
∗(ϕi;s)]c

∗(ϕi+1;s) · · · c∗(ϕm;s)Ω .

The commutator equals

[Hexc, c
∗(ϕi;s)] =

∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,βc
∗
α(k)[cβ(k), c

∗(ϕi;s)] , (3.4)

where according to (2.2) we have

[cβ(k), c
∗(ϕi;s)] =

∑

l∈Γnor

∑

γ∈Il

(ϕi;s(l))γ [cβ(k), c
∗
γ(l)]

= (ϕi;s(k))β +
∑

l∈Γnor

(ϕi;s(l))βEβ(k, l)χ(β ∈ Ik ∩ Il) . (3.5)

Therefore

[Hexc, c
∗(ϕi;s)] = c∗(HBϕi;s) (3.6)

+
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,βc
∗
α(k)

∑

l∈Γnor

(ϕi;s(l))βEβ(k, l)χ(β ∈ Ik ∩ Il) .
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The first term in (3.6) is precisely what we need to reconstruct i~∂sξs. Hence

‖Hexcξs − i~∂sξs‖ ≤ 1

Zm

m∑

i=1

∑

k∈Γnor

2~κ|k|
∑

β∈Ik

∑

l∈Γnor

|(ϕi;s(l))β |χ(β ∈ Ik ∩ Il) (3.7)

× ‖c∗(ϕ1;s) · · · c∗(ϕi−1;s)c
∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖ ,

with K(k)β for fixed β being the C
|Ik|–vector with elements K(k)α,β . We then estimate

‖c∗(ϕ1;s) · · · c∗(ϕi−1;s)c
∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ ‖
i−1∏

j=1

(N + 1 + 2(i− 1− j))1/2c∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤
i−1∏

j=1

(2(m− j) + 1)
1
2 ‖c∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖ . (3.8)

Using the crude bound ‖K(k)β‖ℓ2 ≤ ‖K(k)‖HS ≤ C
√
M (which follows from (1.34) with

(1.30) and (2.14)), and recalling that Eβ(k, l) commutes with N , we estimate

∑

β∈Ik∩Il

|(ϕi;s(l))β |‖c∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ CM
1
2

∑

β∈Ik∩Il

|(ϕi;s(l))β |‖(N + 1)
1
2 Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ CM
1
2

( ∑

β∈Ik∩Il

‖Eβ(k, l)(N + 1)
1
2 c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖2

) 1
2

, (3.9)

where in the last step we used the Cauchy–Schwarz inequality. With (2.3) we get

∑

β∈Ik∩Il

|(ϕi;s(l))β |‖c∗(K(k)β)Eβ(k, l)c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ CM
3
2N− 2

3
+δ‖N (N + 1)1/2c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ CM
3
2N− 2

3
+δ(2(m− i) + 1)

3
2 ‖c∗(ϕi+1;s) · · · c∗(ϕm;s)Ω‖

≤ CM
3
2N− 2

3
+δ(2(m− i) + 1)

3
2

m−i−1∏

j=0

(2j + 1)
1
2 . (3.10)

Combining (3.7), (3.8), and (3.10), we obtain

‖i~∂sξs − Hexcξs‖ ≤ C
m2
√
(2m− 1)!!

Zm
~M

3
2N− 2

3
+δ . (3.11)

From (3.2) and (3.11), we obtain (3.1) by the triangle inequality.

Next, we estimate the constant Zm, defined such that ξ in (1.43) is normalized, by
comparing it to ZB;m, which would be its value if the c∗–operators were exactly bosonic.

Lemma 3.2 (Estimate for Zm). Let the functions ϕi be normalized, as in (1.45). Let

ZB;m :=

√√√√ ∑

π∈Sm

m∏

i=1

〈ϕi, ϕπ(i)〉 , (3.12)

where Sm is the set of permutations of {1, 2, 3, . . . ,m}. Then 1 ≤ Z2
B;m ≤ m! and

∣∣∣Z2
m − Z2

B;m

∣∣∣ ≤ CMN− 2
3
+δm3(2m− 1)!! . (3.13)
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Remark. The bounds 1 ≤ Z2
B;m ≤ m! are optimal. The case Z2

B;m = 1 holds for an

orthonormal set (ϕi)
m
i=1, while Z

2
B;m = m! holds for ϕ1 = ϕ2 = . . . = ϕm.

Proof of Lemma 3.2. By definition of Zm, and using that c(ϕ1)Ω = 0, we get

Z2
m = 〈c∗(ϕ1) · · · c∗(ϕm)Ω, c∗(ϕ1) · · · c∗(ϕm)Ω〉

= 〈c(ϕ1)c
∗(ϕ1) · · · c∗(ϕm)Ω, c∗(ϕ2) · · · c∗(ϕm)Ω〉

= 〈[c(ϕ1), c
∗(ϕ1) · · · c∗(ϕm)]Ω, c∗(ϕ2) · · · c∗(ϕm)Ω〉 . (3.14)

Next we expand

[c(ϕ1), c
∗(ϕ1) · · · c∗(ϕm)] =

m∑

i=1

c∗(ϕ1) · · · c∗(ϕi−1)[c(ϕ1), c
∗(ϕi)]c

∗(ϕi+1) · · · c∗(ϕm) ,

(3.15)
where

[c(ϕ1), c
∗(ϕi)] = 〈ϕ1, ϕi〉+

∑

k,l∈Γnor

∑

α∈Ik∩Il

(ϕ1(k))α(ϕi(l))αEα(k, l) . (3.16)

(The inner product here is defined in correspondence to the norm (1.45) as 〈ϕ1, ϕi〉 :=∑
k∈Γnor

∑
α∈Ik

(ϕ1(k))α(ϕi(k))α.) The first term reproduces the commutation relation
of exactly bosonic operators, while the second term is an error term. To estimate it, we
use that, for any ψ, ζ ∈ F ,
∑

α∈Ik∩Il

|(ϕ1(k))α||(ϕi(l))α|‖Eα(k, l)ψ‖‖ζ‖ ≤ ‖ϕ1(k)‖ℓ2‖ϕi(l)‖ℓ2 max
α∈Ik∩Il

‖Eα(k, l)ψ‖‖ζ‖ .

Thanks to Lemma 2.2, we have

‖Eα(k, l)ψ‖ ≤ CMN− 2
3
+δ‖Nψ‖ . (3.17)

Hence

Z2
m =

m∑

i=1

〈ϕ1, ϕi〉〈c∗(ϕ1) · · · c∗(ϕi−1)c
∗(ϕi+1) · · · c∗(ϕm)Ω, c∗(ϕ2) · · · c∗(ϕm)Ω〉+ r1

(3.18)
with r1 the contribution produced by the second term in (3.16), i. e.,

r1 =

m∑

i=1

∑

k,l∈Γnor

∑

α∈Ik∩Il

(ϕ1(k))α(ϕi(l))α (3.19)

×
〈
c∗(ϕ1) · · · c∗(ϕi−1)Eα(k, l)c∗(ϕi+1) · · · c∗(ϕm)Ω, c∗(ϕ2) · · · c∗(ϕm)Ω

〉
.

Using the estimate ‖c∗(ϕi)ψ‖ ≤ ‖ϕi‖2‖(N +1)
1
2ψ‖ following from Lemma 2.3, commut-

ing (N + 1)1/2 with Eα(k, l), and using (3.17), we get

|r1| ≤ m2CMN− 2
3
+δ‖(N + 1)

1
2 · · · (N + 2m− 1)

1
2Ω‖2

≤ CMN− 2
3
+δm2(2m− 1)!! . (3.20)

We iterate the process m times, starting from (3.18), until we are left with Z2
m = Z2

B;m+
rm, with rm an error term. The error term rm is estimated by m times the bound for r1
in (3.20), thus giving the bound (3.13).

The time–dependent state ξs is not necessarily normalized, but in the next lemma
we show that its norm is close to 1.

Lemma 3.3 (Norm of ξs). For all s ∈ R we have

∣∣‖ξs‖2 − 1
∣∣ ≤ 1

Z2
m

CMN− 2
3
+δm3(2m− 1)!! . (3.21)
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Proof. We have

‖ξs‖2 =
1

Z2
m

〈c∗(ϕ1;s) · · · c∗(ϕm;s)Ω, c
∗(ϕ1;s) · · · c∗(ϕm;s)Ω〉 . (3.22)

Proceeding as in the proof of Lemma 3.2, with rm;s defined in analogy to (3.19) using
the evolved ϕj;s, we have

〈c∗(ϕ1;s) · · · c∗(ϕm;s)Ω, c
∗(ϕ1;s) · · · c∗(ϕm;s)Ω〉 =

∑

π∈Sm

m∏

i=1

〈ϕi;s, ϕπ(i);s〉+ rm;s . (3.23)

By unitarity of the dynamics generated by HB, the first term is precisely Z2
B;m. The

error term rm;s is estimated exactly as rm in the proof of Lemma 3.2.

4 Reduction to Bosonizable Correlation Hamiltonian

In the introduction we already mentioned the non–bosonizable terms in the correlation
Hamiltonian Hcorr; as computed in [BNPSS21, Eq. (1.17)–(1.21)], their precise form is

X = − 1

2N

∑

k∈Z3

V̂ (k)

[ ∑

p∈Bc
F
∩(BF+k)

a∗pap +
∑

h∈BF∩(Bc
F
−k)

a∗hah

]
,

E1 =
1

2N

∑

k∈Γnor

V̂ (k)
[
D(k)∗D(k) +D(−k)∗D(−k)

]
,

E2 =
1

2N

∑

k∈Γnor

V̂ (k)
[
D(−k)∗b(k) +D(k)∗b(−k) + h.c.

]
. (4.1)

The operator D(k)∗ = D(−k) creates and annihilates particles that are either both
outside or both inside the Fermi ball,

D(k)∗ :=
∑

p∈Bc
F
∩(Bc

F
+k)

a∗pap−k −
∑

h∈BF∩(BF−k)

a∗hah+k . (4.2)

As a first step to establish the approximation (1.38), let us reduce the correlation
Hamiltonian Hcorr to only its terms H0 +QR

B , where

QR
B =

1

N

∑

k∈Γnor

V̂ (k)
[ ∑

α,β∈I+

k

nα(k)nβ(k)c
∗
α(k)cβ(k) +

∑

α,β∈I−

k

nα(k)nβ(k)c
∗
α(k)cβ(k)

+
∑

α∈I+
k

β∈I−

k

nα(k)nβ(k)c
∗
α(k)c

∗
β(k) +

∑

α∈I+
k

β∈I−

k

nα(k)nβ(k)cβ(k)cα(k)
]
. (4.3)

The error due to the dropped terms is controlled by the following lemma.

Lemma 4.1 (Non–bosonizable terms). There exists C > 0 such that for all ζ ∈ F
∥∥(Hcorr −H0 −QR

B )ζ
∥∥

≤ C‖V̂ ‖1~
(
N− 2

3 ‖N 2ζ‖ +N− 1
3 ‖N 3

2 ζ‖+ (N− δ
2 +N− 1

6M
1
4 )‖(N + 1)ζ‖

)
. (4.4)

Proof. Recall the correlation Hamiltonian (1.14). By the triangle inequality
∥∥(Hcorr −H0 −QR

B )ζ
∥∥ ≤ ‖Xζ‖+ ‖E1ζ‖ + ‖E2ζ‖ + ‖(QB −QR

B )ζ‖ . (4.5)

Consider the first term in (4.5). We have

‖Xζ‖ ≤ 1

N

∑

k∈Z3

|V̂ (k)|
∥∥∥

∑

h∈BF∩(BF+k)

a∗hahζ
∥∥∥+ 1

N

∑

k∈Z3

|V̂ (k)|
∥∥∥

∑

p∈Bc
F
∩(BF+k)

a∗papζ
∥∥∥

+
1

2N

∑

k∈Z3

|V̂ (k)|
∥∥∥

∑

h∈BF∩(BF+k)

a∗hahζ
∥∥∥+ 1

2N

∑

k∈Z3

|V̂ (k)|
∥∥∥

∑

p∈Bc
F
∩(Bc

F
+k)

a∗papζ
∥∥∥ .
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These four terms are estimated in exactly the same way. For the first, we have

∥∥∥
∑

h∈BF∩(BF+k)

a∗hahζ
∥∥∥
2

=
〈
ζ,

∑

h,h′∈BF∩(BF+k)

a∗h′ah′a∗hahζ
〉

=
〈
ζ,

∑

h,h′∈BF∩(BF+k)

a∗ha
∗
h′ah′ahζ

〉
+

∑

h∈BF∩(BF+k)

〈ζ, a∗hahζ〉

≤ 〈ζ, (N +N 2)ζ〉 ≤ 2〈ζ,N 2ζ〉 . (4.6)

The same estimates hold for the other three contributions to X. Hence

‖Xζ‖ ≤ C‖V̂ ‖1
N

‖N ζ‖ . (4.7)

Consider the second term in (4.5),

‖E1ζ‖ ≤ 1

N

∑

k∈Z3

|V̂ (k)|‖D(−k)D(k)ζ‖ . (4.8)

Recalling the definition of D(k) in (4.2) and proceeding as in (4.6), we easily get

‖D(k)ζ‖ ≤ C‖N ζ‖ , (4.9)

which implies

‖E1ζ‖ ≤ C‖V̂ ‖1
N

‖N 2ζ‖ . (4.10)

Consider the third term in (4.5). We have

‖E2ζ‖ ≤ 1

N

∑

k∈Γnor

|V̂ (k)|‖D(k)b(k)ζ‖ + 1

N

∑

k∈Γnor

|V̂ (k)|‖b∗(k)D(−k)ζ‖ . (4.11)

Using ‖a♮p‖ ≤ 1 we get

‖b(k)ζ‖ ≤
∑

p∈Bc
F
∩(BF+k)

‖ap−kapζ‖ ≤
∑

p∈Bc
F
∩(BF+k)

‖apζ‖

≤
√ ∑

p∈Bc
F
∩(BF+k)

1

√ ∑

p∈Bc
F
∩(BF+k)

‖apζ‖2 ≤ CN
1
3 ‖N 1

2 ζ‖ , ∀ζ ∈ F . (4.12)

Here we used that
∑

p∈Bc
F
∩(BF+k)

1 ≤ CN
2
3 by [BNPSS21, Eq. (2.1)]. Using also (4.9),

this implies that the first summand of (4.11) is bounded by

1

N

∑

k∈Γnor

|V̂ (k)|‖D(k)b(k)ζ‖ ≤ 1

N

∑

k∈Γnor

|V̂ (k)|C‖N b(k)ξ‖

=
1

N

∑

k∈Γnor

|V̂ (k)|C‖b(k)(N − 2)ξ‖

≤ C‖V̂ ‖1N− 2
3 ‖N 3

2 ζ‖ .

To bound the second term in (4.11), we compute

[b(k), b∗(k)] =
∑

p∈Bc
F
∩(BF+k)

(1 − a∗pap − a∗p−kap−k) ≤
∑

p∈Bc
F
∩(BF+k)

1 ≤ CN
2
3 . (4.13)

Therefore

‖b∗(k)D(−k)ζ‖2 ≤ CN
2
3 ‖D(−k)ζ‖2 + ‖b(k)D(−k)ζ‖2

≤ CN
2
3 ‖N ζ‖2 + CN

2
3 ‖N 3

2 ζ‖2 , (4.14)
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which implies
‖E2ζ‖ ≤ C‖V̂ ‖1N− 2

3 ‖N 3
2 ζ‖ . (4.15)

Consider the last term of (4.5). To control the difference QB − QR
B we use that, as

discussed in the proof of [BNPSS21, Lemma 4.1],

b(k) = bR(k) + rR(k)

where
bR(k) =

∑

α∈Ik

nα(k)cα(k) , rR(k) =
∑

p∈U

ap−kap , (4.16)

with
U = (BcF ∩ (BF + k))\

⋃

α∈Ik

(Bα ∩ (Bα + k)) .

The contributions from bR(k) will form QR
B , the contributions from rR(k) are to be

estimated as a small error. Proceeding similarly to (4.12) and (4.13), we find that

‖bR(k)ζ‖ + ‖bR(k)∗ζ‖ ≤ CN
1
3 ‖(N + 1)

1
2 ζ‖ . (4.17)

We turn to the operators rR(k). We rewrite U = Y ∪ (U \ Y ), with Y the set of lattice
points such that

Y =
{
p ∈ Bc

F ∩ (BF + k) | e(p) + e(p− k) ≤ 4N− 1
3
−δ
}
. (4.18)

The condition e(p)+e(p−k) ≤ 4N− 1
3
−δ, thanks to |p| = O(N

1
3 ) and |k| = O(1), implies

p̂ · k̂ ≤ CN−δ. This is a ribbon of width N−δ+ 1
3 around the equator of the Fermi sphere,

containing at most O(N−δ+ 1
3 ×N 1

3 ) lattice points. The set U \Y consists of the corridors
between the remaining patches. Accordingly, the number of lattice points in U \ Y is

|U \ Y | ≤ CN
1
3M

1
2 . (4.19)

Correspondingly, we split
rR(k) = rRY (k) + rRU\Y (k) , (4.20)

where the two operators are defined as in (4.16), replacing the index set U with Y or
with U \ Y , respectively. By the Cauchy–Schwarz inequality

‖rRU\Y (k)ζ‖ ≤
∑

p∈U\Y

‖apξ‖ ≤ CN
1
6M

1
4 ‖N 1

2 ζ‖ . (4.21)

To estimate rRU\Y (k)
∗ we write

‖rRU\Y (k)
∗ζ‖2 = |〈ζ, [rRU\Y (k), r

R
U\Y (k)

∗]ζ〉|+ ‖rRU\Y (k)ζ‖2 . (4.22)

The second term is estimated as in (4.21). The first term can be estimated by computing
the commutator and recalling the estimate (4.19) on the number of lattice points in U \Y .
We get

‖rRU\Y (k)
∗ζ‖ ≤ CN

1
6M

1
4 ‖(N + 1)

1
2 ζ‖ . (4.23)

For rRY (k), by the definition of Y we get

‖rRY (k)ζ‖ ≤
∑

p∈Bc
F
∩(BF+k)

2N− 1
6
− δ

2

√
e(p) + e(p− k)

‖apζ‖ .

In combination with the Cauchy–Schwarz inequality and (2.1)

‖rRY (k)ζ‖ ≤ 2N− 1
6
− δ

2

(
∑

p∈Bc
F
∩(BF+k)

1

e(p) + e(p− k)

)1/2( ∑

p∈Bc
F
∩(BF+k)

‖apζ‖2
)1/2

≤ CN− 1
6
− δ

2N
1
2 ‖N 1

2 ζ‖ = CN
1
3
− δ

2 ‖N 1
2 ζ‖ . (4.24)
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(The bound (2.1) yields a constant that depends on k, but since only k in the compact
set supp V̂ is relevant here, we can take the maximum with respect to k.) Concerning
rRY (k)

∗, we use

‖rRY (k)∗ζ‖2 ≤ |〈ζ, [rRY (k), rRY (k)∗]ζ〉|+ ‖rRY (k)ζ‖2 .

The second term is estimated as in (4.24). The first term can be bounded by computing

the commutator and using the estimate |Y | ≤ CN
2
3
−δ for the number of lattice points

in Y . Therefore
‖rRY (k)∗ζ‖ ≤ CN

1
3
− δ

2 ‖(N + 1)
1
2 ζ‖ . (4.25)

In summary, from (4.21), (4.23), (4.24) and (4.25) we find that

‖rR(k)ζ‖ + ‖rR(k)∗ζ‖ ≤ C(N
1
3
− δ

2 +N
1
6M

1
4 )‖(N + 1)

1
2 ζ‖ . (4.26)

With this, we are ready to estimate ‖(QB−QR
B )ζ‖. Note that the difference QB−QR

B

is given by a sum of terms containing at least one operator rR(k)♮. Moreover, similar to
b(k), both bR(k) and rR(k) annihilate two fermions (i. e., bR(k)N = (N + 2)bR(k) and
rR(k)N = (N +2)rR(k)). The bounds (4.17) and (4.26) imply (to simplify the estimate

recall that M
1
4 ≪ N

1
6 and use (N + 3) ≤ C(N + 1))

‖(QB −QR
B )ζ‖ ≤ C‖V̂ ‖1

N
N

1
3

(
N

1
3
− δ

2 +N
1
6M

1
4

)
‖(N + 1)ζ‖

≤ C‖V̂ ‖1~
(
N− δ

2 +N− 1
6M

1
4

)
‖(N + 1)ζ‖ . (4.27)

Inserting (4.7), (4.10), (4.15) and (4.27) in (4.5) we obtain the desired estimate.

5 Linearization of Kinetic Term

Our next task will be to approximate the fermionic kinetic energy H0 with the bosonized
kinetic energy DB defined in (1.25). This is the step where the division into patches is
needed.

First, we show that for any state ζ ∈ F with few excitations the norm ‖(H0 −DB)ζ‖
is essentially invariant under the Bogoliubov transformation ζ 7→ Tζ.

Lemma 5.1 (Approximation of kinetic energy, part I). There exists C > 0 such that for
all ζ ∈ F we have

∣∣∣
∥∥(H0 − DB)Tζ

∥∥−
∥∥(H0 − DB)ζ

∥∥
∣∣∣

≤ C~
(
M− 1

2 ‖(N + 1)ζ‖+MN− 2
3
+δ‖(N + 1)2ζ‖

)
. (5.1)

Proof. Recall that Tλ = exp(λB), with B the operator defined in (1.36). Then we get

d

dλ
〈Tλζ, (H0 − DB)

2Tλζ〉 = 〈Tλζ, [(H0 − DB)
2, B]Tλζ〉

= 2Re〈Tλζ, (H0 − DB)[(H0 − DB), B]Tλζ〉 . (5.2)

Here the self–adjointness of H0 − DB and anti–self–adjointness of B have been used in
the second equality. The commutator [(H0 − DB), B] can be evaluated with the aid of
Lemma 2.4. Using

[(H0 − DB), c
∗
α(k)] = ~Elin

α (k)∗ − ~EB
α(k)

∗ , (5.3)

we get

[(H0 − DB), B]

=
~

2

∑

k∈Γnor

∑

α,β∈Ik

K(k)α,β

(
c∗α(k)(E

lin
β (k)∗ − E

B
β (k)

∗) + (Elin
α (k)∗ − E

B
α(k)

∗)c∗β(k)
)
+ h.c.

23



In combination with |K(k)α,β | ≤ CM−1 from Lemma 2.5, we deduce from (5.2) that

∣∣∣ d
dλ

(
‖(H0 − DB)Tλζ‖2

)∣∣∣ ≤ C~M−1
∑

k∈Γnor

(I1(k) + I2(k) + I3(k) + I4(k)) (5.4)

where

I1(k) :=
∑

α,β∈Ik

∣∣∣〈Tλζ, (H0 − DB)c
∗
α(k)(E

lin
β (k)∗ − E

B
β (k)

∗)Tλζ〉
∣∣∣ ,

I2(k) :=
∑

α,β∈Ik

∣∣∣〈Tλζ, (H0 − DB)(E
lin
α (k)∗ − E

B
α(k)

∗)c∗β(k)Tλζ〉
∣∣∣ ,

I3(k) :=
∑

α,β∈Ik

∣∣∣〈Tλζ, (H0 − DB)(E
lin
β (k)− EB

β (k))cα(k)Tλζ〉
∣∣∣ ,

I4(k) :=
∑

α,β∈Ik

∣∣∣〈Tλζ, (H0 − DB)cβ(k)(E
lin
α (k)− EB

α(k))Tλζ〉
∣∣∣ .

We estimate the right–hand side of (5.4). Since the operators Elin
α (k), EB

α(k), cα(k) all
annihilate two fermions, we get

I1(k) =
∑

α,β∈Ik

∣∣∣〈Elin
β (k)(N + 3)−1/2cα(k)(N + 1)−1/2(H0 − DB)Tλζ, (N + 5)Tλζ〉

− 〈EB
β (k)(N + 3)−3/2cα(k)(N + 1)−1/2(H0 − DB)Tλζ, (N + 5)2Tλζ〉

∣∣∣ .

Then by the Cauchy–Schwarz inequality and the bounds (2.6) and (2.10) we get

I1(k) ≤
∑

α,β∈Ik

‖Elin
β (k)(N + 3)−1/2cα(k)(N + 1)−1/2(H0 − DB)Tλζ‖ ‖(N + 5)Tλζ‖

+
∑

α,β∈Ik

‖EB
β (k)(N + 3)−3/2cα(k)(N + 1)−1/2(H0 − DB)Tλζ‖ ‖(N + 5)2Tλζ‖

≤ C
∑

α∈Ik

‖cα(k)(N + 1)−1/2(H0 − DB)Tλζ‖ ‖(N + 5)Tλζ‖

+ CM
3
2N− 2

3
+δ
∑

α∈Ik

‖cα(k)(N + 1)−1/2(H0 − DB)Tλζ‖ ‖(N + 5)2Tλζ‖

≤ C‖(H0 − DB)Tλζ‖
(
M

1
2 ‖(N + 1)Tλζ‖ +M2N− 2

3
+δ‖(N + 1)2Tλζ‖

)
. (5.5)

The terms I2(k) to I4(k) can be estimated in a similar way.
Employing (5.5) in (5.4) and using Lemma 2.6 we get

∣∣∣ d
dλ

(
‖(H0 − DB)Tλζ‖2

)∣∣∣

≤ ‖(H0 − DB)Tλζ‖C~
(
M− 1

2 ‖(N + 1)Tλζ‖+MN− 2
3
+δ‖(N + 1)2Tλζ‖

)

≤ ‖(H0 − DB)Tλζ‖C~
(
M− 1

2 ‖(N + 1)ζ‖+MN− 2
3
+δ‖(N + 1)2ζ‖

)

for all λ ∈ [0, 1]. This implies

∣∣∣ d
dλ

‖(H0 − DB)Tλζ‖
∣∣∣ ≤ C~

(
M− 1

2 ‖(N + 1)ζ‖+MN− 2
3
+δ‖(N + 1)2ζ‖

)
.

Integrating over λ ∈ [0, 1] leads to the desired inequality (5.1).

Next, we show that ‖(H0 − DB)ζ‖ is small for our choice of ζ.

Lemma 5.2 (Approximation of kinetic energy, part II). For i = 1, . . . ,m, let ϕi ∈⊕
k∈Γnor ℓ2(Ik) be normalized as in (1.45). Then

‖(H0 − DB)c
∗(ϕ1) · · · c∗(ϕm)Ω‖ ≤ C~m2

√
(2m− 1)!!

(
M− 1

2 +M
3
2N− 2

3
+δ
)
. (5.6)
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Proof. Since (H0 − DB)Ω = 0 we can write

(H0 − DB)c
∗(ϕ1) · · · c∗(ϕm)Ω = [(H0 − DB), c

∗(ϕ1) · · · c∗(ϕm)]Ω

=

m∑

i=1

c∗(ϕ1) · · · c∗(ϕi−1)[(H0 − DB), c
∗(ϕi)]c

∗(ϕi+1) · · · c∗(ϕm)Ω . (5.7)

Recalling (2.9), the commutator on the right–hand side of (5.7) is

[(H0 − DB), c
∗(ϕi)] =

∑

k∈Γnor

∑

α∈Ik

(ϕi(k))α[(H0 − DB), c
∗
α(k)]

= ~

∑

k∈Γnor

∑

α∈Ik

(ϕi(k))α(E
lin
α (k)∗ − E

B
α(k)

∗) . (5.8)

Recall the bounds (2.11); thus for all ξ ∈ F we have
∥∥∥[(H0 − DB), c

∗(ϕi)]ξ
∥∥∥ ≤ C~

(
M− 1

2 ‖(N + 1)
1
2 ξ‖+M

3
2N− 2

3
+δ‖(N + 1)

3
2 ξ‖
)
.

Recall (2.8); just as c∗(ϕj) creates two fermions, so does the operator [(H0−DB), c
∗(ϕi)]

which therefore also has the commutator [N , [(H0 −DB), c
∗(ϕi)]] = 2[(H0 −DB), c

∗(ϕi)].

Recalling also the simple bound ‖c∗(ϕj)ξ‖ ≤ ‖(N + 1)
1
2 ξ‖ we obtain

‖c∗(ϕ1) · · · c∗(ϕi−1)[(H0 − DB), c
∗(ϕi)]c

∗(ϕi+1) · · · c∗(ϕm)Ω‖

≤ ‖
i−1∏

j=1

(N + 1 + 2(i− 1− j))1/2[(H0 − DB), c
∗(ϕi)]c

∗(ϕi+1) · · · c∗(ϕm)Ω‖

≤ C
( i−1∏

j=1

(2(m− j) + 1)
1
2

)
‖[(H0 − DB), c

∗(ϕi)]c
∗(ϕi+1) · · · c∗(ϕm)Ω‖

≤ C~
( i−1∏

j=1

(2(m− j) + 1)
1
2

)(
M− 1

2 ‖(N + 1)
1
2 c∗(ϕi+1) · · · c∗(ϕm)Ω‖ (5.9)

+M
3
2N− 2

3
+δ‖(N + 1)

3
2 c∗(ϕi+1) · · · c∗(ϕm)Ω‖

)
(5.10)

≤ C~m
√
(2m− 1)!!(M− 1

2 +M
3
2N− 2

3
+δ) .

Note that in (5.10) there is an additional factor (N + 1) compared to (5.9), which was
bounded by an additional m on the last line. A further factor of m in (5.6) is due to the
sum over i in (5.7).

6 Diagonalization of Effective Hamiltonian

Recall the definition of heff(k) in (1.27), and consider the effective Hamiltonian

DB +QR
B =

∑

k∈Γnor

2~κ|k|heff(k) . (6.1)

Lemma 6.1 (Bogoliubov diagonalization). Let ẼRPA
N be given in (1.39), and T the

unitary transformation defined in (1.36). For all s ≥ 0 we have

‖
(
T ∗(DB +QR

B )T − Hexc − ẼRPA
N

)
ξs‖ ≤ C

(
M

3
2N− 2

3
+δ(m+ 1)2 + ~N− 2

3
+δm

)
‖ξs‖ .

Proof. As already shown in [BNPSS21, Eq. (10.5)], by Lemma 2.7 we get

T ∗heff(k)T =
∑

α,β∈Ik

(
D(k) +W (k)

)
α,β

(c̃∗α(k) + E∗
α(1, k))(c̃β(k) + Eβ(1, k)) (6.2)

+
1

2

∑

α,β∈Ik

[
W̃ (k)α,β(c̃

∗
α(k) + E

∗
α(1, k))(c̃

∗
β(k) + E

∗
β(1, k)) + h.c.

]
,
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where
c̃α(k) =

∑

β∈Ik

cosh(K(k))α,βcβ(k) +
∑

β∈Ik

sinh(K(k))α,βc
∗
β(k) . (6.3)

The transformed operators satisfy, for f ∈ ℓ2(Ik),

‖c̃(f)ζ‖ ≤ C‖f‖ℓ2‖(N + 1)
1
2 ζ‖ , ‖c̃(f)∗ζ‖ ≤ C‖f‖ℓ2‖(N + 1)

1
2 ζ‖ . (6.4)

This is easily seen using the formula

c̃(f) =
∑

α∈Ik

fαc̃α(k) = c
(
cosh(K(k))f

)
+ c∗

(
sinh(K(k))f

)
(6.5)

so that

‖c̃(f)ψ‖ ≤ ‖ cosh(K(k))f‖2‖N
1
2ψ‖+ ‖ sinh(K(k))f‖2‖(N + 1)

1
2ψ‖

≤ C‖f‖2‖(N + 1)
1
2ψ‖ . (6.6)

Here we used that according to Lemma 2.5 we have

‖ cosh(K(k))‖op ≤ ‖I‖op + ‖cosh(K(k))− I‖HS ≤ C ,

‖ sinh(K(k))‖op ≤ ‖ sinh(K(k))‖HS ≤ C .
(6.7)

The same bound as (6.6) holds for c̃∗(f).

Controlling the error terms of the diagonalization. We proceed to estimate

‖(T ∗heff(k)T − hdiageff (k))ξs‖

where

hdiageff (k) =
∑

α,β∈Ik

(
D(k) +W (k)

)
α,β
c̃∗α(k)c̃β(k) +

1

2
W̃ (k)α,β

(
c̃∗α(k)c̃

∗
β(k) + h.c.

)]
. (6.8)

Every summand of the difference T ∗heff(k)T − hdiageff (k) contains at least one factor of
the error term E♮(1, k). To estimate it, recall the bounds (1.29). Then, using (6.6) and
Lemma 2.7, we get, for instance,

∥∥∥
∑

α,β∈Ik

W̃ (k)α,β c̃
∗
α(k)E

∗
β(1, k)ξs

∥∥∥ ≤ CM− 1
2

∑

β∈Ik

‖(N + 1)1/2E∗
β(1, k)ξs‖

≤ CM
1
2N− 2

3
+δ‖(N +M)

1
2 (N + 1)

3
2 ξs‖

≤ CMN− 2
3
+δ(2m+ 1)2‖ξs‖ . (6.9)

The other terms contributing to T ∗heff(k)T − hdiageff (k) involving only W̃ (k) are bounded

in the same way. Next, consider the terms involving D̃(k) := D(k)+W (k). For instance

∥∥∥
∑

α,β∈Ik

D̃(k)α,β c̃
∗
α(k)Eβ(1, k)ξs

∥∥∥ ≤
∑

β∈Ik

C‖(N + 1)
1
2Eβ(1, k)ξs‖

≤ CMN− 2
3
+δ‖(N +M)

1
2 (N + 1)

3
2 ξs‖

≤ CM
3
2N− 2

3
+δ(m+ 1)2‖ξs‖ . (6.10)

In the first step we used that
∑

α∈Ik
|D̃(k)α,β |2 ≤ C uniform in β. In the second step

we used Lemma 2.7. All the other terms contributing to T ∗heff(k)T − hdiageff (k) involving

D̃(k) are estimated in the same way. In conclusion

‖
(
T ∗heff(k)T − hdiageff (k)

)
ξs‖ ≤ CM

3
2N− 2

3
+δ(m+ 1)2‖ξs‖ . (6.11)
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Error term due to normal-ordering. As computed in [BNPSS21, Section 10]
∑

k∈Γnor

2~κ|k|hdiageff (k) = ẼRPA
N + Hexc + Eexc , (6.12)

where ẼRPA
N is the bosonic ground state energy given in (1.39) and

Hexc =
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,βc
∗
α(k)cβ(k)

Eexc =
∑

k∈Γnor

~κ|k|
∑

α∈Ik

[
2 sinh(K)(D +W ) sinh(K)

+ cosh(K)W̃ sinh(K) + sinh(K)W̃ cosh(K)
]
α,α

Eα(k, k) .

Here the excitation matrix K(k) is recovered in the form (1.34).
The error operator Eα(k, k) is given in [BNPSS21, Eq. (5.5)]; it commutes with N .

From [BNPSS21, Eq. (10.10)] we get ±Eexc ≤ C~N− 2
3
+δN . Since Eexc commutes with

N , we get

‖Eexcξs‖ ≤ C~N− 2
3
+δ‖N ξs‖ ≤ C~N− 2

3
+δm‖ξs‖ . (6.13)

In summary, from (6.11) and (6.13) we obtain the desired estimate.

7 Proof of Theorem 1.1

Proof of Theorem 1.1. It suffices to consider the case t ≥ 0. Under the assumptions
M ≪ N

2
3
−2δ and m3(2m − 1)!! ≪ N δ (see Remark (ii) after Theorem 1.1) we find

MN− 2
3
+δm3(2m− 1)!! ≪ 1. Therefore, by Lemma 3.2

Zm ≥ 1

2
and |‖ξs‖ − 1| ≪ 1 .

Moreover, by Lemma 2.6 we have

‖(N + 1)rTξs‖ ≤ Cr‖(N + 1)rξs‖ ≤ Cr(2m+ 1)r, ∀r ∈ N . (7.1)

We proceed to collect all error estimates. By Lemma 3.1, for all t ≥ 0

‖e−iHNt/~RTξ − e−i(E
pw

N
+ẼRPA

N )t/~RTξt‖

≤ 1

~

∫ t

0

ds
∥∥(T ∗HcorrT − ẼRPA

N − Hexc)ξs
∥∥+ Cm2

√
(2m− 1)!!M

3
2N− 2

3
+δt . (7.2)

To estimate the right–hand side of (7.2), we use the triangle inequality
∥∥(T ∗HcorrT − ẼRPA

N − Hexc)ξs
∥∥ ≤

∥∥T ∗(Hcorr −H0 −QR
B )Tξs

∥∥+
∥∥T ∗(H0 − DB)Tξs

∥∥

+
∥∥(T ∗(DB +QR

B )T − ẼRPA
N − Hexc)ξs

∥∥ . (7.3)

By Lemma 4.1 and (7.1),
∥∥T ∗(Hcorr −H0 −QR

B )Tξs
∥∥ =

∥∥(Hcorr −H0 −QR
B )Tξs

∥∥

≤ C‖V̂ ‖ℓ1~
(
N− 2

3 ‖N 2Tξs‖+N− 1
3 ‖N 3

2Tξs‖+ (N− δ
2 +N− 1

6M
1
4 )‖(N + 1)Tξs‖

)

≤ C~(N− δ
2 +N− 1

6M
1
4 )(m+ 1)2 . (7.4)

By Lemma 5.1 we have
∣∣∣
∥∥T ∗(H0 − DB)Tξs

∥∥−
∥∥(H0 − DB)ξs

∥∥
∣∣∣

≤ C~
(
M− 1

2 ‖(N + 1)ξs‖+MN− 2
3
+δ‖(N + 1)2ξs‖

)

≤ C~(m+ 1)2
(
M− 1

2 +MN− 2
3
+δ
)
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and by Lemma 5.2
∥∥(H0 − DB)ξs

∥∥ ≤ C~m2
√
(2m− 1)!!(M− 1

2 +M
3
2N− 2

3
+δ) .

Thus
∥∥T ∗(H0 − DB)Tξs

∥∥ ≤ C~(m+ 1)2
√

(2m− 1)!!(M− 1
2 +M

3
2N− 2

3
+δ) . (7.5)

Finally, by Lemma 6.1

‖(T ∗(DB +QR
B )T − Hexc − ẼRPA

N )ξs‖ ≤ CM
3
2N− 2

3
+δ(m+ 1)2 + C~N− 2

3
+δm . (7.6)

Inserting (7.4), (7.5) and (7.6) in (7.3) we conclude that

∥∥(T ∗HcorrT − ẼRPA
N − Hexc)ξs

∥∥

≤ C~(m+ 1)2
√
(2m− 1)!!(N− δ

2 +M− 1
2 +M

3
2N− 1

3
+δ +N− 1

6M
1
4 ) . (7.7)

From (7.7) and (7.2) we obtain

‖e−iHN t/~RTξ − e−i(E
pw

N
+ẼRPA

N )t/~RTξt‖
≤ C(m+ 1)2

√
(2m− 1)!!

(
N− δ

2 +M− 1
2 +M

3
2N− 1

3
+δ +M

1
4N− 1

6

)
|t| . (7.8)

To replace ẼRPA
N by ERPA

N , we have to take into account the additional error term (1.40).
Consequently, in addition to (7.8) there will also be an error term of order

(m+ 1)2
√
(2m− 1)!!

(
M− 1

4N
δ
2 +M

1
4N− 1

6
+ δ

2

)
. (7.9)

Choosing M = N4δ and δ = 2/45 completes the proof of Theorem 1.1.
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[FK11] Jürg Fröhlich and Antti Knowles. A Microscopic Derivation of the Time–
Dependent Hartree–Fock Equation with Coulomb Two–Body Interaction.
Journal of Statistical Physics 145:23, 2011.

[Gir62] Marvin Girardeau. Variational Method for the Quantum Statistics of In-
teracting Particles. Journal of Mathematical Physics 3:131–139, January
1962.

[GM13] Manoussos Grillakis and Matei Machedon. Beyond mean field: On the role
of pair excitations in the evolution of condensates. Journal of Fixed Point
Theory and Applications volume 14, 91–111, September 2013.

[GS94] Gian Michele Graf and Jan Philip Solovej. A Correlation Estimate with
Applications to Quantum Systems with Coulomb Interactions. Reviews in
Mathematical Physics, 06(05a):977–997, January 1994.

[GS13] P. Grech and R. Seiringer. The Excitation Spectrum for Weakly Interacting
Bosons in a Trap. Communications in Mathematical Physics, 322(2):559–
591, September 2013.

[Hea99] David R. Heath–Brown. Lattice points in the sphere. In: Number Theory
in Progress, pages 883–892. Berlin, Boston: De Gruyter (1999). eISBN:
9783110285581. https://doi.org/10.1515/9783110285581.883

30

https://doi.org/10.1515/9783110285581.883


[HPR20] Christian Hainzl, Marcello Porta, and Felix Rexze. On the Correlation
Energy of Interacting Fermionic Systems in the Mean-Field Regime. Com-
munications in Mathematical Physics, 374:485–524(2020).

[KB62] Albion J. Kromminga, Mark Bolsterli. Perturbation Theory of Many–Boson
Systems. Physical Review 128(6):2887, December 1962.
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