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Abstract  

Lipidomics is the large-scale identification and quantification of lipids and their variations in 

various physio-pathological conditions. This recent “-omic” area is rapidly developing as an 

emerging field, and it sustains the advancement of current knowledge in the realm of lipid 

biology. Indeed, if lipids are conventionally considered as structural components of cellular 

membranes, they have emerged recently as key players in a wide range of biological 

processes such as signaling events and trafficking. However, their precise physio-

pathological function is still poorly understood and a comprehensive characterization of 

lipids in each cell type can provide pivotal information to better understand the roles 

exercised by these compounds in several biological phenomena. In this project, the attention 

was focused on the roles of specific bioactive lipids families, as polyunsaturated fatty acids 

(PUFA), PUFA-derived molecules (known as eicosanoids), endocannabinoids (EC) and EC-

related compounds N-acylethanolamines (NAE), and their involvement in the mesenchymal 

stem/stromal cells (MSC)-related inflammatory context. Indeed, MSC have attracted much 

attention for their capacity in regulating inflammation and reparative roles. Since it is known 

that MSC therapeutic action largely depends on paracrine mechanisms, the scientific 

interest has shifted to the study of their secretome, namely conditioned medium (CM). The 

therapeutic potential of the CM, derived from MSC in disparate medical fields (from 

immunology to orthopedics), has been extensively endorsed by in vitro and in vivo evidence. 

However, lipidomics knowledge in the MSC field and their secretome remain rather limited 

and a broadly characterization of lipids is still missing. In recent years, our group have 

investigated and characterized the adipose-derived stem/stromal cells (ASC)-CM content, 

in terms of both soluble factors and vesicular components (extracellular vesicles – EV), 

through different approaches (i.e.Raman spectroscopy and proteomic analysis), highlighting 

substantial differences in the total lipid content and inflammatory factors between CM and 

EV. In this project, two advanced mass spectrometry (MS) analytical methods for the 

absolute quantification of 32 bioactive lipid molecules - belonging to PUFA, eicosanoids and 

EC/NAE families and highly implicated in the inflammatory scenario - were developed and 

validated according to the Food and Drug Administration guidelines. A double liquid-liquid 

extraction step was set up, starting from a single sample, in different mixture of organic 

solvents, to cover the broad polarity range of selected analytes. Linearity was observed in 

the range of 0.1-2.5ng/ml (1-25ng/ml for PUFA) with a r2>0.991. Regarding precision and 

accuracy, the methods showed good performance in terms of both repeatability and 
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reproducibility, showing CV values below 15%, while lowest limits of quantitation (LLOQ) 

were <0.1ng/ml. Extraction recovery, matrix effect and post-extraction stability values were 

within acceptance limits. The analytical methods were applied to the secretome (in terms of 

CM and EV) derived from MSC, isolated either from human bone marrow (BMSC) or adipose 

tissue (ASC), and from dermal fibroblasts (DF), since they share common characteristics 

with MSC, and they have started to be considered a convenient alternative. A total of 9 lipid 

molecules in MSC and DF-derived CM and EV samples were quantified. In detail, the 

presence of 5 EC/NAE (including 2-arachidonoilglycerol -2AG- and N-

palmitoylethanolamide -PEA) and 3 PUFA were reported in both preparations. 

Prostaglandin E2 (PGE2) was found only in CM samples. An enrichment in lipid content 

were displayed in almost all MSC-CM and DF-CM rather than coupled MSC- and DF-derived 

EV. Then, the biological function of 2 lipid compounds quantified in ASC-CM - 2AG and PEA 

– was assessed in a well-established in vitro model of osteoarthritis (OA), based on the 

administration of 10ng/ml tissue necrosis factor alfa (TNFα) to human primary articular 

chondrocytes (CH). The CH were isolated by femoral head of 14 patients and treated with 

TNFα alone or in association with 2AG and PEA at observed ASC-CM concentrations (0.05 

and 0.02 ng/mL per million cells, respectively). The expression of both CB1 and CB2 on 

primary articular CH was confirmed by western blot (WB) analysis. TNFα increases the 

extracellular concentration of the inflammatory lipid prostaglandin E2 (PGE2) analyzed by 

MS and an additional increment was highlighted when CH were treated with the combination 

of TNFα and 2AG. In contrast, PEA showed a protective effect on the PGE2 release, 

providing a downmodulation up to the levels quantified in inactivated CH. Accordingly, TNFα 

increased the expression of cyclooxygenase 2 (COX2) especially when in association with 

2AG, while PEA partly blunts TNFα-induced COX2. In parallel, also the nitric oxide (NO) 

production in CH cell media was significantly enhanced under TNFα as well as TNFα+2AG 

treatments, while PEA was able to blunt NO release. Finally, the targeted MS analysis, using 

previously described analytical methods, showed a significant decrease in PUFA induced 

by TNFα, suggesting a possible implication in PUFA-derived mediators effect. Our results 

allowed a first partial lipids characterization of MSC and DF secretome, demonstrating a 

specific lipid profile for CM and EV and supporting a possible implication of some bioactive 

lipids molecules in the OA scenario and in the future use of this cell-free products therapeutic 

approach. 
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Disclosure for research integrity 

This research was conducted following the European Code of Conduct for Research 

Integrity, which includes the values of reliability, rigor, honesty, respect and transparency.  

Abbreviations 

2AG 2-arachidonoilglycerol  

AA arachidonic acid 

ACN acetonitrile 

AEA anandamide 

ASC adipose-derived stem cells 

BM bone marrow 

BMSC bone marrow-derived stem cells  

CB cannabinoid receptors 

CB1 cannabinoid receptor 1 

CB2 cannabinoid receptor 2 

CBD cannabidiol 

CDMEM complete culture medium 

CH chondrocytes 

CM conditioned medium 

COX cyclooxygenases  

COX1 cyclooxygenases 1 

COX2 cyclooxygenase 2 

CS calibration standards 

CV coefficient of variation 

DAGL diacylglycerol lipase  

DCM dichloromethane 

DF dermal fibroblasts 

DHA docosahexaenoic acid 

DHEA N-docosahexaenoylethanolamine; 
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EC endocannabinoids  

ECM extracellular matrix 

EET epoxyeicosatrienoic acids 

EPA eicosapentaenoic acid 

EPEA N-eicosapentaenoylethanolamine 

ESI electrospray ionization  

ETE epoxyeicosatrienoids 

EtOAc ethyl acetate 

EV extracellular vesicles 

FA fatty acyls 

FAAH fatty acid amide hydrolase 

GC gas chromatography 

GL glycerolipids  

GP glycerophospholipids 

GPCR G protein-coupled receptor 

HCL hydrochloride acid 

HETE hydroxyeicosatetraenoic acids 

HPLC high-performance liquid chromatography  

HPLC-MS high-performance liquid chromatography coupled to mass spectrometry 

IFNγ interferon gamma 

IL1a interleukin-1a 

IL1β interleukin-1beta 

iNOS inducible nitric oxide synthase  

IPA isopropanol 

IS internal standards  

ISEV International Society for Extracellular Vesicles  

LC liquid chromatography  

LGP lysoglycerophospholipids 

LLE liquid-liquid extraction  
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LMSD LIPID MAPS Structure Database 

LOD limits of detection  

LOQ lowest limits of quantitation 

LOX lipoxygenases 

LP lysophospholipids  

LPC lysophosphatidylcholines 

LT leukotrienes 

LX lipoxins  

LXA4 lipoxin A4  

MaR maresins 

MeOH methanol  

MMP matrix metalloproteinases  

MRM multiple reaction monitoring  

MS mass spectrometry 

MS/MS tandem mass spectrometry  

MSC mesenchymal stem cells 

MUFA monounsaturated fatty acids 

NADA N-arachidonoyldopine 

NAE N-acylethanolamines 

NAGly N-arachidonoylglycine 

NLS neutral loss scan  

NO nitric oxide  

NP normal-phase  

NSAID non-steroidal anti-inflammatory drugs 

OA osteoarthritis 

p38-MAPK P38 mitogen activated protein kinases 

PBS phosphate buffer 

PC phosphatidyl choline 

PD protectin 

PEA N-palmitoylethanolamide 
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PG prostaglandins 

PGE2 prostaglandin E2  

PGJ2 prostaglandin J2 

PI phosphatidylinositols  

PIS precursor ion scan  

PK polyketides 

PPARα receptor peroxisome proliferator-activated receptor alpha 

PR prenol lipids 

PUFA polyunsaturated fatty acids  

ROS reactive oxygen species 

RP reversed-phase  

RT retention times 

Rv resolvins 

S1P sphingosine 1-phosphate 

S1PR1 sphingosine 1-phosphate receptor 1 

SEA N-stearoylethanolamide 

SFA saturated fatty acids 

SK sphingosine kinases 

SL saccharolipids 

SP sphingolipids 

SM starving medium 

SP sphingolipids  

SPE solid phase extraction 

SPM specialized pro-resolving mediators 

SRM selective reaction monitoring  

ST sterols 

THC delta9-tetrahydrocannabinol 

TIMP tissue inhibitors of metalloproteinases  

TLC thin-layer chromatography  

TNFα tumor necrosis factor alpha 
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TRPV1 transient receptor potential vanilloid type 1 

TX thromboxanes 

UHPLC ultra-high-performance liquid chromatography  

UHPLC−ESI-MS/MS ultra-high-performance liquid chromatography-ESI-tandem-MS  

WB western blot   
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1. Introduction 

1.1 Lipidomics  

In the last decades, lipidomics has evolved rapidly due to its capability to offer new 

opportunities for studying the roles of lipids in cellular biology as well as in health and 

disease (1). The lipidome is the complete set of lipid molecules within a cell, a tissue or an 

organism that regulates cell membranes dynamics, energy storage for cellular maintenance 

and/or serves as precursors of intra- and intercellular bioactive signaling molecules (2,3). 

Research focused in this field highlighted how the lipidome, as well as the transcriptome 

and the proteome, is in a dynamic balance and changes in diet, physio-pathological 

conditions and external stimuli can affect its stability (4,5). The diverse functions of lipids are 

highly dependent on their structures, their concentration levels, and their inter- and 

intracellular temporal e spatial distributions. Since 2005, lipids have been classified in eight 

main categories: (a) fatty acyls (FA), (b) glycerolipids (GL), (c) glycerophospholipids (GP), 

(d) sphingolipids (SP), (e) sterols (ST), (f) prenol lipids (PR), (g) saccharolipids (SL), and (h) 

polyketides (PK) (Fig. 1) (6). Further subclassifications, based on structural moieties and 

physio-chemical features (e.g., charge, polarity, size, shape etc.) characterizing each of 

these eight lipid categories, has lead to a total of 46,090 lipids in the LIPID MAPS Structure 

Database (LMSD), among which 24,145 molecules are curated and 21,945 are 

computationally generated lipids (August 2021).  
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Fig 1. Lipid classification according to the International Lipids Classification and Nomenclature 

Committee: one representative structure is shown for each category (7) 

1.1.1 Advances in mass spectrometry (MS) based lipidomics 

Over the last three decades, technical advances in analytical method development have 

enabled large-scale investigations on cellular lipids. With analytical approaches, such as 

thin-layer chromatography (TLC) and gas chromatography (GC), lipidomics provides new 

diagnostic tools and therapeutic strategies (8); but more considerable enhancements have 

been driven by the advent of the next-generation mass spectrometry (MS) (9–14). 

Nowadays, there are two MS strategies to analyze lipids: (i) targeted and (i) non-targeted 

lipid analysis. The targeted approach is addressed on known lipids and develops a specific 

method with a high sensitivity for the quantitative analysis. On the other hand, non-targeted 

approach aims to identify every lipid species concurrently (qualitative or semi-quantitative 

analysis). Additionally, the development of “soft” ionization techniques (for example the 

electrospray ionization (ESI) and the exact mass resolution (high resolution mass 

spectrometers)) have lead to significant advances in the field of lipidomics (15). Indeed, 

mass analyzers are characterized by different mass accuracy, resolution, detection range 

and capability to perform tandem-MS (MS/MS) experiments. While higher mass accuracy 

and resolution enhance the identification of analytes and improve the number of lipids that 

can be separated by mass to charge ratio (m/z), the triple quadrupole MS-based approach, 

coupled to ultra-high-performance liquid chromatography-ESI-tandem-MS (UHPLC−ESI-

MS/MS) with Multiple Reaction Monitoring (MRM) data acquisition strategies, continue to be 

the most used for targeted identification and quantitation of lipids studies, where the 

retention times (RT) and the product ions formed during tandem-MS experiments are used 

for an exact assignment of the specific lipid identities and concentrations (16). 

1.1.2 Lipidomics from sample preparation to data analysis: overview of lipidomic 

workflow and techniques 

A typical lipidomic workflow analysis of biological samples includes (i) sample preparation, 

(ii) MS-based analysis and (iii) data processing (Fig. 2).  
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Fig 2. Analytical techniques and workflows for mass spectrometry-based lipidomic analysis. These 

workflows comprised 3 main components, namely, (i) Sample Preparation, (ii) Mass Spectrometry, 

and (iii) Data Analysis. The analytical options and commonly used techniques within each 

component are listed below. Legend: gas chromatography (GC), high-performance liquid 

chromatography (HPLC), (ultra-high-performance liquid chromatography (UHPLC), mass 

spectrometry (MS), tandem mass spectrometry (MS/MS), selective reaction monitoring (SRM), 

multiple reaction monitoring (MRM) 

1.1.2.1 Sample preparation 

At first, an appropriate sampling and sample storage at fixed temperature is required for any 

lipidomic analysis (17). Once collected, sample should be immediately processed or frozen 

at -20 or -80 °C to prevent the enzymatic and chemical processes that might metabolize the 

lipids (18,19). Moreover, since lipids are prone to hydrolysis and oxidation it is highly 

advisable to restrict the period of storage. Another crucial issue is the sample 

homogenization, since it ensures that lipids are equally accessible to the organic extraction 

solvents. In details, the cell membrane wall needs to be destroyed to reach the intracellular 

compartments. The most common cells homogenization methods are the shear-force based 

or frozen based approaches. The lipid extraction is preceded by the addition of appropriate 

internal standards (IS), which are usually added during the earliest sample preparation step 

to normalize and correct the matrix effect. The structures and the physicochemical 

properties of IS must be representative of the endogenous lipid species of interest. Any 

extraction procedure in lipidomics serve for two main purposes: (i) it reduces the complexity 

of the sample by removing unwanted compounds of different nature (mainly proteins) (ii) it 

enhances the lipids of interest in the sample, leading to a better signal-to-noise ratio. Indeed, 

another critical issue could be the achievement of sufficient efficiency and unbiased recovery 
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of lipid molecules from the biological matrices. Multiple lipid extraction techniques based on 

different chemical or physical properties, have been set up for either targeted or non-

targeted analysis. Some criteria must be considered in order to develop an efficient 

extraction method: the lipid category and its physical-chemical properties, sample recovery, 

repeatability, capability to remove interfering components. Other factors that should be 

considered are the possibility of automation and cost- and time-saving. Lipids are mainly 

extracted by liquid-liquid extraction (LLE) or solid phase extraction (SPE) procedures. The 

LLE is the most implemented technique, particularly the Bligh−Dyer and Folch method (20) 

continue to be used with some adjustment or modification (i.e. organic and aqueous solvent 

ratios or acidification/basification in order to enhance the recovery of specific classes of 

lipids) for peculiar applications (21,22). Some extraction methods replacing ether or 

chloroform with other less toxic organic solvents. Moreover, the polarity of solvents has been 

demonstrated to influence the efficiency of the recovery within specific category or class 

(23), given the range of lipid polarity very wide. SPE is based on reversed-phase (RP), 

normal-phase (NP) or ion exchange interactions. Available in single column or 96-well plate-

based format, SPE is mainly performed in class-specific or targeted lipid class extraction 

due to their ability to purify the sample and enrich the low abundant analytes. 

1.1.2.2 MS-based analysis 

Lipid extracts are analyzed by direct infusion into a mass spectrometer (technique known 

as “shotgun” lipidomics), or separated by liquid (LC) or gas chromatography (GC) prior to 

detection by MS. These two approaches are complementary : the “shotgun” method allows 

a larger lipid profiling by simultaneously identifying several classes of lipids, meanwhile LC 

and GC/MS enable a more targeted analysis through the detection of lipids with similar 

structures belonging to a single class (1,24,25). Although GC/MS continues to be used for 

the analysis of fatty acids, LC/MS is the primary chromatographic separation-based 

technique of choice in the current lipid scenario. Significant improvement in this field 

continues to be made, mainly providing faster and more efficient separations as well as 

lower sample consumption (i.e., UHPLC). The HPLC and UHPLC are the most used 

separation strategies. They allow to separate the molecules of interests depending on the 

strength of their interaction between the solid stationary phase and the liquid mobile phase. 

In lipidomics, RP is the most used analysis techniques, and, for this reason, mainly nonpolar 

and medium-polar lipids have been investigated. A linear or second-degree dependence on 
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the number of double bonds in the lipid and the total number of carbon elements were found 

to influence the retention times of lipids (26). Several RP-HPLC separation approaches have 

been performed for targeted lipidomic analysis using retention time-dependent SRM, MRM, 

precursor ion scan (PIS) and neutral loss scan (NLS)-mode MS/MS data acquisition 

methods. Fekete et al. demonstrated that UHPLC permits a good separation efficiency of 

lipid at slow flow through 2 µm sized particle (27). This discovery determined an exponential 

growth of UHPLC and UHPLC-MS publications in the field of lipids after its publication. 

1.1.2.3 Data processing  

Data analysis strategies depend on the availability of libraries for the identification of lipid 

structures or appropriate processing methods and software tools for “relative” or “absolute” 

quantitation of their abundances (1,28,29). Finally, statistical and bioinformatic analysis 

approaches are required to investigate biologically relevant findings from the data to answer 

the initial research question (29–31) Recently, also integrative analysis of lipidomics data 

sets with those from their interacting biomolecules (e.g., genomics, transcriptomics, 

proteomics, and metabolomics) are performed in order to characterize the overall phenotype 

of the system of interest and to elucidate the functional roles of lipids in complex 

biomolecular network interactions (32,33). 

1.2 Functional lipids in inflammation 

Endogenous bioactive lipids and their alteration play a crucial role in different clinical course 

and pathogenesis, such as inflammation (34,35). Inflammation is an immune response that 

involves an extensive network of cellular and molecular processes based on multiple 

preformed or newly synthesized mediators. Based on their structure and biochemical 

functions, bioactive lipids can be grouped into three different families (Table 1): 

polyunsaturated fatty acids (PUFA)-derived mediators (known as eicosanoids), 

endocannabinoids (EC) and lysophospholipids (LP) (36). Additional two subclasses can be 

identified for bioactive lipids derived from PUFA: one is represented by ω6 arachidonic acid 

(AA)-derived lipid mediators, including prostaglandins (PG), leukotrienes (LT), 

thromboxanes (TX), and lipoxins (LX); the other comprises ω3-PUFA-derived lipid mediators 

(i.e., eicosapentaenoic acid -EPA- and docosahexaenoic acid -DHA-) such as E-series and 

D-series resolvins (Rv), protectins (PD), and maresins (MaR), collectively termed 

“specialized pro-resolving mediators” (SPM). EC and EC-like compounds originate from ω6- 
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and ω3-PUFA metabolism, but also from saturated and monounsaturated fatty acids (SFA 

and MUFA). Finally, membrane-derived bioactive lipids from LP are grouped into 

lysoglycerophospholipids (LGP) and lysosphingophospholipids (LSP), based on the glycerol 

or sphingosine backbone.  

Categories Eicosanoids Endocannabinoids 
and related 
compounds 

Lysophospholipids 

Structures 
  

Carboxylic acid + 
hydrocarbon chain; 
synthesized by 
chain elongation of 
an acetyl-CoA with 
malonyl-CoA 

Ethanolamide or 
other head groups 
+ fatty acids 

Polar head group 
+ glycerol or 
sphingosine 
backbone 

Roles 
 

Cell signaling Cell signaling Cell membrane 
and lipoprotein 
composition, cell 
signaling 

Sub-classes or examples 
 

PG, TX, LT, LX 
 

AEA, 2AG, PEA, 
OEA, SEA, DHEA 

LGP, LSP 

Table 1. Structures, roles and sub-classes or examples of the different categories of bioactive lipids. 

Adapted by (37) 

1.2.1 Eicosanoids 

Eicosanoids represent the widest family of bioactive lipids and contain several derivatives 

of fatty acids with 20-carbon chain, such ω6 AA, or 22-carbon chain, such as ω3 EPA and 

DHA. AA is released from membrane phospholipids both via phospholipase A2 and  

phospholipase C and is the substrate for three different enzymes, leading to the generation 

of pleiotropic compounds: (i) cyclooxygenases 1 and 2 (COX1 and COX2) drive the 

synthesis of PG, prostacyclins, and TX (38,39); (ii) 5-, 12- and 15-lypooxygenases (5/12/15-

LOX) produce LT (40,41), LXs (42) and hydroxyeicosatetraenoids (HETE) (43); (iii) P450 

epoxygenase generates also HETE and epoxyeicosatrienoids (ETE) (43). ω3 PUFA-derived 

bioactive products are Rv, PD and MaR. EPA or DHA generate Rv that and can be divided 

into E-series or D-series, respectively. DHA acts also as a precursor for the biosynthesis of 

PD and MaR (Fig 3). Generally, the ω6 eicosanoids play is responsible for different 

inflammatory responses (35). PG seem to promote inflammation by increasing the release 

of the pro-inflammatory cytokines (44–46), enhancing the innate immunity response (47), 

recruiting the leukocytes and activating T helper cells (48,49). Vasoconstriction and 
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vasodilatation are promoted by TX and prostacyclins, respectively (50). On the other hand, 

the ω3 mediators exert a beneficial action on inflammation, for example by working as 

substrate competitors that inhibit the conversion of AA into pro-inflammatory eicosanoids or 

by serving as an alternative substrate in the production of less potent LT, PG and TX. 

Moreover, ω3 PUFA-derived lipids found in the inflammatory exudate (RvE1 and PD1) show 

anti-inflammatory and pro-resolving actions both in vitro and in vivo (44,51). 

1.2.2 Endocannabinoids (EC) and related compounds 

EC are a group of endogenous lipids that can activate cannabinoid receptors 1 (CB1) and 2 

(CB2) in the same way as tetrahydrocannabinol (THC), the major psychoactive component 

of Cannabis sativa. For many years, Cannabis sativa-based preparations are being used for 

recreational and medical purposes (52).  THC and the non-psychoactive cannabidiol (CBD) 

possess anti-inflammatory and analgesic properties, along with anti-emetic (THC) and 

anxiolytic (CBD) actions (53). Studies performed on cannabis plants and their chemicals 

lead to the discovery of the endocannabinoid system. The EC system is composed by CB 

receptors, their endogenous ligands (i.e., EC) and the enzymes involved in the synthesis 

and degradation of these lipids (54). CB1 and CB2 are G-protein-coupled receptors with 

seven transmembrane domains associated with the inhibitory Gi/o protein (55). However, 

several evidences support the existence of other receptors that bind EC, such as GPR55 

(56). CB1 and CB2 are differently distributed in the CNS and peripheral tissues (57). CB1 is 

mainly expressed in the brain, in particular in glutamatergic and c-aminobutyric acid neurons 

(58), and its distribution has been well characterized in rodents (59) and humans (60). CB1 

is also expressed in peripheral organs, including adipocytes, pancreatic cells, lungs, smooth 

muscle, gastrointestinal tract, liver, reproductive organs, immune system, peripheral 

sensory nerves, sympathetic nerves, chondrocytes and bone cells (61). CB2 is mainly 

expressed in the immune system cells such as macrophages, neutrophils, monocytes, B-

lymphocytes, T-lymphocytes and microglial cells, but also in skin nerve fibres and 

keratinocytes, liver, bone cells and chondrocytes (61,62). The main endogenous ligands for 

CB1 and CB2 are N- arachidonoyl-ethanolamide (AEA) (63) and 2-arachidonoyl-glycerol 

(2AG) (64,65): AEA is the first isolated EC, represents a partial agonist of CB receptors, 

while 2AG is a full agonist (Fig 3). Different biosynthetic pathways are responsible for the on 

demand biosynthesis of both AEA and 2AG from cell membrane lipids: 2AG from 

diacylglycerol by diacylglycerol lipase (DAGL), while AEA from the 
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phosphatidylethanolamine by N-acyltransferase and phospholipase D (66). The EC system 

is involved in an extensive variety of physio-pathophysiological processes: it presents a low 

tonic activity under physiological conditions, and it is mainly activated in order to maintain 

the homeostatic equilibrium in the CNS and peripheral tissues (67). Findings suggest the 

involvement of ECS also in the peripheral regulation of nociception in different inflammatory 

pain models (68). In detail, AEA exhibits anti-inflammatory properties (69), while 2AG shows 

both pro- and anti-inflammatory characteristics (70,71). Alterations in homeostasis and  

progression of the chronic inflammatory status might be responsible for dysfunctions that 

lead to changes in  concentration levels, metabolism, and receptors of EC (72). Moreover, 

ω3-FA ethanolamides, N-eicosapentaenoylethanolamine (EPEA) and N-

docosahexaenoylethanolamine (DHEA) (73,74) could be additional CB receptor agonists 

(75), and they have been shown to possess anti-inflammatory properties in macrophages 

(76) and adipocytes (77). In addition to CB1 and CB2 receptors, EC can be actioned also 

by different receptors. Indeed, besides AEA, other ethanolamides coming from various long-

chain fatty acids were discovered, and collectively known as N-acylethanolamines (NAE). 

Ethanolamides of SFA and MUFA such as palmitic, stearic, and oleic acids, which are more 

abundant than AEA in mammals, show less activity on CB receptors, but act also on other 

receptors, like the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα), 

leading to the trigger of biological events including anti-inflammation and appetite 

suppression (78,79). In detail, the PPARα-mediated actions of N-palmitoylethanolamide 

(PEA) include anti-inflammatory, analgesic, anti-epileptic, and neuroprotective properties  

(80,81). Moreover, PEA could also activate the orphan G protein-coupled receptor GPCR55 

(82). Another saturated NAE, N-stearoylethanolamide (SEA), was reported to act as an anti-

inflammatory/immunomodulatory agent and cell growth controller, through still unknown 

targets (83–85). Finally, a variety of EC-related compounds, containing FA chains 

conjugated with different polar heads, have been discovered as a result of advancements 

of the analytical techniques (86,87). Within the novel group of lipids generally known as 

lipoamino acids, N-arachidonoylglycine (NAGly) possesses anti-inflammatory effects by 

targeting the G-protein coupled receptor GPCR18 (88,89), vasorelaxant properties (90) and 

seems to be involved  in cell migration (91), and inhibition of the fatty acid amide hydrolase 

(FAAH) (92), the AEA inactivating enzyme. Moreover, NAgly might have either a 

physiological role in the resolution of acute inflammatory response and become a potential 

therapeutic candidate for the resolution of chronic inflammation, by increasing the production 
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of prostaglandin J2 (PGJ2) and lipoxin A4 (LXA4), reducing the migration of inflammatory cells 

into areas of acute inflammation and inducing the death of inflammatory cells (88).  

 

 

Fig 3. Eicosanoids and endocannabinoids involved in inflammation. The green squares and the red 

dots indicate lipids with anti- and pro-inflammatory properties, respectively. Legend: PUFA: 

polyunsaturated fatty acids; MUFA: monounsaturated fatty acids; SFA: saturated fatty acids; EPA: 

eicosapentaenoic acid; DHA: docosahexaenoic acid; AA: arachidonic acid; Rv: resolvins; MaR: 

maresines; PD: protectins; PG: prostaglandins; TX: thromboxanes; LT: leukotrienes; LX: Lipoxins; 

HETE: hydroxyeicosatetraenoids; ETE: epoxyeicosatetraenoids AEA: anandamide; 2AG: 2-

arachidonoilglycerol; DHEA: N-docosahexaenoylethanolamine; EPEA: N-

eicosapentaenoylethanolamine; SEA: N-stearoylethanolamide; PEA: N-palmitoylethanolamide, N-

arachidonoylglycine (NAGly). Adapted by (37) 

 

1.3 Functional lipids in the mesenchymal stem cells (MSC)-related inflammatory 

scenario 

1.3.1 MSC and MSC-secretome: dialogue with inflammation  

MSC are adult multipotent progenitor cells with self-renewal potential and the ability to 

differentiate into different mesodermal lineages including osteoblasts, chondrocytes, and 

adipocytes (93,94). Since no single biomarker is available for human MSC identification,  the 

International Society for Cellular Therapy defines a set of minimal criteria: (i) MSC show 

plastic-adherent growth under standard culture conditions; (ii) expression of CD105, CD73 

and CD90 and lacking expression of the hematopoietic cell surface markers CD45, CD34, 

CD14 and human leukocyte antigen-DR; (iii) differentiation into osteoblasts, adipocytes and 

chondrocytes up on a proper stimulation (95,96). Firstly expanded from human bone marrow 

(BM), MSC can also be collected and cultured from several sources including adipose tissue 

(108,109). Compared to BMSC, adipose-derived stem cells (ASC) grow faster and easier in 
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culture, age slower, maintain the mesenchymal pluripotency and stem cell phenotype even 

after a high number of passages and show a great proliferative rate with a consequent 

relatively high yield (about 2500-fold higher than BMSC) (94,95,110,111). ASC differentiate 

into several cellular lineages and have a good stability throughout long-term cultures (109). 

Several studies have largely demonstrated the immunomodulatory potential of MSC and 

their ability to resolve inflammation and promote tissue repair in various diseases (97–99). 

MSC do not always have immunosuppressive, indeed, they can move to a pro-inflammatory 

state under certain conditions. For example, the presence of low levels of interferon gamma 

(IFNγ) and tumor necrosis factor alpha (TNFα) can enhance the MSC immunostimulatory 

potential, suggesting that variations in levels of pro-inflammatory cytokines affect the 

immunoregulatory mode of MSC. The MSC immunomodulatory  phenotype can be affected 

not only by inflammatory stimuli but also by other environmental factors, including hypoxia 

and the extracellular matrix (ECM) composition (100).   

Furthermore, originally considered as whole-cell therapy, it is now well known that 

transplanted MSC do not survive in situ for long time and thus the effects of MSC-based 

therapies are largely mediated by the paracrine action of a broad array of secreted bioactive 

factors, collectively referred to as the secretome (known also as conditioned medium -  CM) 

(101). The recognition that MSC-CM is responsible for the therapeutic effect of MSC on 

tissue repair or regeneration allowed to minimize the risk linked to cell therapies such 

immune reactions or tumor growth (102). In general, the secretome is a mixture of soluble 

factors as well as molecules shuttled with extracellular vesicles (EV). EV are lipid bilayer 

delimited particles of various dimensions and complexities containing proteins, nucleic acids 

and metabolites released into the extracellular space from cells and having both endosomal 

and plasma membrane origin (103). Recently, EV have been divided into small (< 200 nm) 

and large (> 200 nm) particles by the International Society for Extracellular Vesicles (ISEV); 

previously, they were known as exosomes and microvesicles based on their endosomal or 

plasma membrane origin (104). Soluble components, such as nucleic acids, proteins and 

lipids, can all be detected in the cell secretome, at different concentrations and activity levels 

depending on the cell type and environment (105). In detail, the human MSC secretome 

contains both EV and a multitude of proteins including growth factors, cytokines, peptides 

and hormones with a promising potential in regenerative applications (106) (Fig. 4). Up to 

now, lipid mediators are less well documented but have been described as bioactive factors 

released by human MSC (107). Our recently ASC-CM and ASC-EV characterizations 
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performed by Raman spectroscopy have demonstrated not only specific bands for nucleic 

acids and proteins, but also a considerable lipid content, suggesting substantial differences 

between the two MSC byproducts (108). Moreover, the analysis of ASC-CM and ASC-EV 

by a differential proteomic data analysis showed a clear distinction between the two 

derivatives, also considering inflammatory factors (109). For this reason, a solid 

understanding of the individual bioactive factors secreted by MSC, including lipids, and the 

mechanisms underlying their effect are indispensable to refine MSC secretome-based 

therapies in several disorders such as inflammation (99,105,110).  

 

 

 

Fig 4. Bioactive components of the complete MSC-secretome and MSC-EV. Adapted from (111,112) 

 

1.3.2 MSC-related functional lipids 

Since MSC are physiologically recruited at the damaged site, they are often submitted to a 

strong pro-inflammatory microenvironment. Immunomodulation, together with trophic fac- 

tor release, has been attributed as pivotal components of MSC-mediated repair. Further, 

inflammation and injury derived signals are essential to trigger MSC based immune-

modulation (113,114). Campos et al. (115) have performed a comprehensive lipidomic 

analysis of MSC under pro-inflammatory conditions by 10ng/ml TNFα and 500U/ml IFNγ to 

better understand the involvement of lipid compounds in the MSC pro- or anti-inflammatory 

properties and underlying their mechanisms of action; they demonstrated significant 

changes in MSC phospholipid profile. Higher levels of molecular phosphatidylcholine (PC) 

species with longer FA chains and lower levels of molecular PC species with shorter FA 

chains were assessed. Moreover, a peculiar expressions of specific phospholipids and 

sphingomyelins were found, including the lysophosphatidylcholines 18:0 (LPC 18:0) that has 

already been correlated with anti-inflammatory properties (116,117). The lipidome of 
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untreated MSC described by Campos et al. was consistent with previous results (118), with 

the exception of the presence of sphingomyelins (115) which have not been previously 

identified, and some derivatives (i.e., sphingosine 1-phosphate - S1P) that are bioactive and 

mediate essential cell functions (119). However, PG are the widely investigated lipids due 

to their key role in the immunosuppressive activity of MSC (120). The release of PG 

(including PGE1, PGE2, PGE3, 6-keto PGF1α, PGF2α and PGJ2) by human heart-derived 

MSC (121) were documented in the CM by HPLC-MS/MS. Although PGE2 has been linked 

to the immunosuppressive effects of MSC since the production of their inhibitors attenuate 

MSC-mediated immunomodulation (120), PG mediate vasodilatation that allows immune 

cells to invade inflamed tissue. Indeed, recent evidence suggests that Th1 differentiation 

might be facilitated by PGE2, which may have an immunostimulatory role also by expanding 

the Th17 T-cells population (48). Prostaglandins act through paracrine and autocrine 

mechanisms in the local environment because of their short half-life and the MSC 

themselves express receptors for prostaglandins. However, the effects triggered by the 

stimulation of these receptors on MSC are still unknown. The dual and controversial 

immunomodulatory properties of MSC seem to depend on the local environment, where 

IFNγ and TNFα play a crucial role in promoting immunosuppressive function of MSC 

(122,123). 

In the presence of PGE2, also a higher expression of the PG receptor EP3, which is involved 

in the stimulation of angiogenesis, was observed in MSC suggesting a possible correlation 

with the early phases of inflammation (124). Finally, recent studies have evidenced also the 

roles of LX, and in particular of LXA4, as regulators of the resolution phase of inflammation 

(125) and of Rv as key players in the MSC immunoregulation (126,127). 

1.4 MSC as an alternative treatment of inflammatory diseases: focus on osteoarthritis 

Osteoarthritis (OA) is an age-related condition affecting millions of people in the world. It is 

a complex and heterogeneous disease characterized by the degradation of articular 

cartilage, subchondral bone erosion and inflammation (128). In OA, the catabolic and 

anabolic activities result unbalanced, and the joint cartilage damage seems to be one of the 

earliest disease promoting events (129). Indeed, articular chondrocytes (CH) modify their 

phenotype from quiescent to hypertrophic. This shift is characterized by an enhanced cell 

proliferation and an altered activity of specific enzymes that are able to degrade the matrix 

(130). The aberrant regulation of hypertrophy-inducing factors leads to the over-expression 
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of collagen X and matrix metalloproteinases (MMP) such as MMP1, MMP3 and MMP13. 

These proteinases are secreted from the cells in a latent form, requiring activation 

extracellularly, and are inhibited by tissue inhibitors of metalloproteinases (TIMP) (131). In 

OA, there is an imbalance between the proteinases and TIMP that, at least in part, accounts 

for the cartilage degradation. In vivo studies have suggested the arrest of CH hypertrophy 

as a valid therapeutic approach since the down-modulation of factors involved in the 

hypertrophic shift postpones the OA progression (132). Additionally, our and other studies 

reported as CH treatments with interleukin-1 β (IL-1β) or tissue necrosis factor α (TNFα), 

principal players in OA physiopathology, leaded to the develop of in vitro models of 

osteoarthritic CH (133,134). Also the nitric oxide (NO) production, from L-arginine oxidation 

by inducible nitric oxide synthase (iNOS), resulted abnormally high in OA (i.e., when 

stimulated by IL-1 or lipopolysaccharide) (135,136). The destructive action of NO is 

mediated by inhibiting the formation of ECM components such as type II collagen. 

Furthermore, NO is implicated in the inhibition of synthesis of proteoglycan and acts as a 

proinflammatory and destructive mediator increasing the production of PGE2 and other 

inflammatory cytokines (137). It has been reported that IL‐1β and TNF‐α induce the 

production of NO as well as reactive oxygen species (ROS) (138).  

Recent findings on the involvement of lipids in OA development and progression indicate a 

possible role for ω3 PUFA and their anti-inflammatory SPM derivatives (139). Since ω3 

PUFA/SPM seem to target all the processes that OA course and the chronic wound both 

show (such as  cell death, inflammation and pain (140)), it is reasonable to believe that these 

lipids could be effective therapeutic agents for OA. In the context of this disease, few studies 

have investigated the FA presence in OA affecting patients and their relationship to clinical 

symptoms. These studies indicated that increases of ω3 FAs levels could be associated 

with a reduced cartilage loss while the increase of the increase of ω6 FA levels with 

enhanced synovitis (141). Additionally, ω3 PUFA seem to counteract the proinflammatory 

and catabolic actions of interleukin-1a (IL1a) on cartilage in vitro models (142). Accordingly, 

both in vitro and in vivo in a rat model of OA, DHA seems to downregulate MMP13 through 

a P38 mitogen activated protein kinases (p38-MAPK)-mediated mechanism (143). Apart 

from direct effects of ω3 PUFAs on OA, ω3-derived oxylipins could be generated in vitro for 

example by CH, mediating the observed effects. Other lipid molecules as PG and LT have 

been detected in plasma and synovial fluid of OA patients showing proinflammatory and 

catabolic effects (144). Hardy et al. (145) and Shimpo et al. (146) have studied the role of 
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PGE2 in osteoarthritic CH showing higher levels of PGE2 , related to the increased 

expression of the COX2 gene and the microsomal prostaglandin E synthase-1 at molecular 

level, under interleukin-1 beta (IL1β) stimulation. By contrast, Rv D1, belongs to the family 

of D-series Rv, was found to inhibit the IL1β-mediated upregulation of COX-2, PGE2, 

MMP13 and nitric oxide in human osteoarthritis CH (147). 

Also EC are showing to be effective mediators for controlling joint inflammation and pain 

associated with OA (61). A functional role of CB1 and CB2 was demonstrated in joint tissues 

of rodents (148,149) and humans (150). After tissue damage, EC levels rise, but they are 

then rapidly degraded by the catabolic enzymes FAAH and monoacylglycerol lipase (MAGL) 

(151). Both AEA and 2AG were detected in the synovial fluid of OA patients, but not in 

healthy volunteers, providing further evidence for a functional role of EC system in 

osteoarthritic joints (150). In addition, COX2 pathway can metabolize 2AG, leading to the 

formation of pro-inflammatory and pain-producing prostaglandins that could counteract the 

analgesic effects of 2AG (66). Synthetic cannabinoids showed protective effects toward 

cytokine-induced ECM degradation in cartilage through the inhibition of the synthesizing 

enzymes of inflammatory mediators, such as PGE2 and NO (62). Therefore, cannabinoids 

could have a modulatory effect on the early stages and progression of OA disease. 

The most common surgical approaches, e.g., microfracture, subchondral drilling or 

autologous cartilage implantation, often lead to the development of low-quality fibrocartilage, 

since cartilage does not regenerate spontaneously. Concerning pharmacological 

treatments, they cannot reverse OA, but only help relieve its symptoms. The most common 

medications are corticosteroids, non-steroidal anti-inflammatory drugs (NSAID), duloxetine, 

and acetaminophen, often accompanied by physiotherapy and life style modification (152) 

Although the quality of life in OA patients is improved by the available treatments reducing 

pain and promoting joint mobility, the achievement of adequate tissue regeneration and the 

development of drugs able to modify the course of the disease is still needed. In this context, 

orthobiologics (including intra-articular injection of platelet-rich plasma and biografts, such 

as autologous chondrocyte implantation, bone marrow concentrate, and ASC therapy) are 

emerging as alternative therapeutic tools, thanks to their regenerative potential and cost-

effectiveness (153,154). In the last years, the use of MSC has emerged to be effective in 

the treatments of cartilage repair (155,156). Its efficacy has been demonstrated both in vitro 



24 

 

(157,158) and in vivo studies (159,160). Since the widely recognized MSC paracrine effect, 

the researcher’s interest has shifted to the study of their secretome, the CM. MSC-CM has 

been successfully tested in several preclinical models, e.g., (161–163), suggesting its 

promising therapeutic action on cartilage, subchondral bone and synovium. As previously 

described (paragraph 1.3.1), among other MSC sources, adipose tissue presents several 

advantages in terms of harvesting procedure, cell isolation, and expansion. Efficacy and 

safety of ASC in vitro and in vivo have been studied and they have been confirmed also by 

clinical trials (164,165). We recently demonstrated the therapeutic potential of ASC 

secretome and EV both in vitro on TNFα-stimulated articular chondrocytes (134,166), and 

in vivo in a mouse model of OA (167), providing evidences of MSC mediated anti-

inflammatory and immunomodulatory action. Moreover, MSC-derived EV stimulate tissue 

regeneration (168), homing to the inflammatory site and transfer proteins/peptides, mRNA, 

microRNA, lipids, or organelles with reparative and anti-inflammatory activities (169,170). 

Lipids are essential components of the EV membranes, and it is well-known that some EV 

are enriched in specific lipids compared to their parent cells. (171,172). Human CH co-

cultured with MSC-EV showed enhanced proliferation and decreased apoptosis induced by 

IL1β, also known as one of the main inflammatory mediators for arthritis through the 

S1P/S1P receptor 1 (S1PR1) signaling pathway activation suggesting the implication of 

specific lipids into the clinical application of MSC-secretome to the treatment of articular 

cartilage defect (173).  
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2. Aim of the thesis 

The aim of the present thesis included the development and optimization of advanced 

analytical MS techniques in lipidomic field, in order to better elucidate the bioactive lipids 

composition of MSC secretome (CM and EV) and also the study of their functional role in 

an in vitro model of OA. 

At first, fast and sensitive quantitative UHPLC-MS/MS analytical methods, using a double 

LLE procedure, for a simultaneous investigation of the four major signaling lipid families 

(polyunsaturated fatty acids, eicosanoids, endocannabinoids and N-acyl-ethanolamines) 

from small amounts of different bio-matrices (including cellular byproducts such as CM and 

EV, but also urine and serum) were set-up and validated, providing a powerful tool for the 

lipidomic translational research.  

Secondly, due to the extreme complexity of secretome composition and the necessity of an 

extensively characterization in the perspective of a future clinical translation, the lipid fraction 

of the CM and EV from BMSC, ASC and DF were investigated, by previously developed 

analytical methods, in order to highlight analogies and differences in their lipid content.  

At last, since previous evidence obtained by our laboratory, in an in vitro OA model support 

the thesis of the effectiveness of ASC-CM in contrasting the TNFα-induced hypertrophy, 

catabolic processes and inflammatory markers, the functional activity of two lipid 

compounds, quantified in ASC-CM - 2AG and PEA, was studied in a well-established in vitro 

model of OA based on the administration of 10ng/ml TNFα to human primary articular CH.  
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3. Material and Methods 

3.1 Targeted MS analytical methods development and validation  

3.1.1 Chemicals 

Ultrapure water, acetonitrile (ACN), dichloromethane (DCM), isopropanol (IPA), methanol 

(MeOH), ethyl acetate (EtOAc), n-hexane and hydrochloride acid were of analytical grade 

and purchased from Carlo Erba (Milan, Italy). Formic acid (98%–100%) was purchased from 

Sigma–Aldrich (Milan, Italy). The reference materials N-arachidonoylethanolamide (AEA), 

N-linolenoylethanolamide (LNEA), N-linoleoylethanolamide (LEA), N-oleoylethanolamide 

(OEA), N-palmitoylethanolammide (PEA), N-stearoylethanolamide (SEA), and N-

stearoylethanolamide-d4 (SEA-d4) were synthesized and completely characterized as 

previously described (174,175). The reference materials N-docosahexaenoylethanolamide 

(DHEA), N-eicosapentaenoylethanolamide (EPEA), N-arachidonoyldopamine (ADA), N-

oleoyldopamine (ODA), N-arachidonoylglycine (AGly), N-oleoylglycine (OGly), N-

palmitoylglicine (PalGly), N-arachidonoylserine (ASer), N-arachidonoylserotonine (A5HT), 

N-oleoylserotonine (O5HT), N-palmitoylserotonine (Pal5HT), 2-arachidonoylglycerylether 

(2AGE), 2-arachidonoyglycerol (2AG), N-arachidonoyl-3-hydroxy-γ-aminobutyric acid 

(AGABA), arachidonoyl acid (AA), eicosapentaenoyl acid (EPA), docosahexaenoyl acid 

(DHA), thromboxane-B2 (TXB2), prostaglandin-F2α (PGF2α), 6α-keto-prostaglandin-F1α (6α-

keto-PGF1α), prostaglandin-E2 (PGE2), prostaglandin-D2 (PGD2), leukotriene-B4 (LTB4), 5-

hydroxyeicosatetraenoic acid (5(S)-HETE), 15-hydroxyeicosatetraenoic acid (15(S)-HETE), 

(±)14(15)-epoxyeicosatrienoic acid (14,15-EET) and internal standards N-

arachidonoylethanolamide-d8 (AEA-d8), N-oleoylethanolamide-d2 (OEA-d2), N-

palmitoylethanolammide-d5 (PEA-d5), N-eicosapentaenoylethanolamide-d4 (EPEA-d4), N-

arachidonoyldopamine-d8 (ADA-d8), N-arachidonoylglycine-d8 (AGly-d8), N-

arachidonoylserine-d8 (AS-d8), N-oleoylserotonine-d17 (O5HT-d17), eicosapentaenoyl 

acid-d5 (EPA-d5), thromboxane-B2-d4 (TXB2-d4), prostaglandin-F2α-d4 (PGF2α-d4), 

leukotriene-B4-d4 (LTB4-d4) were purchased from Cayman Chemical (Ann Arbor, USA). 

3.1.2 Cell cultures 

Saos-2 and MG-63 cell lines (ATCC, Rockville, MD) were plated in tissue culture vessels 

(Corning, New York, USA) at a density of 5x103 cells/cm2 in complete culture medium 

(CDMEM) (176): DMEM (Euroclone, Milan, Italy) supplemented with 10% fetal bovine serum 
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(Euroclone), penicillin 50 U/ mL, 50 μg/ mL streptomycin (Sigma Aldrich, Milan, Italy) and 2 

mM L-glutamine (L-Glu, Euroclone). Cultures were maintained at 37 °C in a humidified 

atmosphere, containing 5% CO2. After 48 h culture, non-adherent cells were removed, and 

the medium replaced. At 70–80% confluence, the cells were detached with 0.5% 

trypsin/0.2% EDTA (Sigma Aldrich) and expanded. 

3.1.3 Sample collection 

3.1.3.1 Cell samples 

Once at 80–90% confluence, cells were washed twice with PBS and kept for one h in 

starving medium (SM) (phenol red-free DMEM supplemented with 2 mM L-glutamine, 50 U/ 

mL penicillin, 50 μg/ mL streptomycin without fetal bovine serum) for additional washing. 

Medium was replaced by fresh SM and cells were starved for 72 h following optimized 

procedures (177).  

Concentrated conditioned media (CM)  

CM were collected from approximately 6 × 106 cells in starving conditions, centrifuged for 

15 min at 2,500 g, 4°C to remove debris and large apoptotic bodies, and concentrated 

through Amicon Ultra-15 Centrifugal Filter Devices with 3 kDa cut-off (Merck Millipore) for 

90 min at 4,000 g, 4°C (134). The final product was concentrated about 40–50 folds. This 

procedure allows the retention of the vesicular component of cell secretome, as previously 

demonstrated in (108,109,166). 

Extracellular vesicles (EV)  

EV were isolated from cell conditioned medium using differential centrifugation, as 

previously described (178,179). In brief, after 72 h of starvation, the conditioned medium 

from approximately 15 × 106 cells was centrifuged for 15 min at 2,500 g, 4°C, and then 

ultracentrifuged for 70 min at 100,000 g (L7–65; Rotor 55.2 Ti; Beckman Coulter, Brea, CA, 

USA) at 4 °C. Pellet was resuspended in sterile phosphate buffer (PBS, composed of NaCl 

137 mM, KCl 2.7 mM, Na2HPO4 x 2H2O 8.1 mM, KH2PO4 1.7 mM - pH 7.4) and 

ultracentrifuged again under the same conditions. The resulting EV pellet was kept at -20 

°C for MS analysis. 

3.1.3.2 Serum and urine samples 
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Control human urine and serum samples, used for purification and extraction studies and 

for validation experiments, were obtained from healthy volunteers, which gave informed 

consent to offer their biological samples for research intent. Blood samples were collected 

in Vacuette® 6-mL non-gel serum separator tubes and aliquots of 1-2 mL serum were stored 

at −20 °C. Human urine specimens, obtained from volunteer colleagues, were collected after 

a circadian cycle and aliquots of 1-2 mL were stored at -20 °C until analysis. 

3.1.4 Standard solutions, calibrators and quality control (QC) samples 

Stock solutions of reference materials and internal IS were prepared at the final 

concentration of 10 μg/mL by appropriate dilution with ACN under a stream of nitrogen. All 

solutions were stored in the dark at – 20 °C. Working solutions were prepared in ACN from 

stock solutions and used for the preparation of calibration curves and quality QC samples 

at 100 ng/mL, except for AA, DHA, EPA and EPA-d5 (1 μg/mL).  

3.1.4.1 Cell samples 

Calibration standards (CS) containing 0, 0.1, 0.25, 0.5, 1.25, 2.5, 5 ng/mL for all compounds; 

0, 1, 2.5, 5, 12.5, 25 ng/mL for AA, DHA and EPA; 1 ng/mL for ISs and 10 ng/mL for EPA-

d5 were prepared daily for each analytical batch by adding suitable amounts of working 

solutions to 500 μL of SM. QC samples were prepared in SM at three different concentration 

levels (low, intermediate and high).  

3.1.4.2 Serum and urine samples 

CS and QC samples were prepared by adding ISs at same concentration levels (see 

paragraph 2.1.4.1) to 500 μL of PBS, serum and urine. Pooled serum and urine CS and QC 

used for validation experiments were prepared combining 20 and 5 different samples, 

respectively. 

3.1.5 Sample preparation 

EV, stored at -20°C, were resuspended in 500 μL of SM and strongly vortexed three times 

for 1 minute. Prior to extraction, 10 μL IS and 1 mL of ice-cold ACN were added to 500 μL 

CM (as well as for serum and urine) and EV suspension and centrifuged for 10 minutes at 

350 g at 4°C degrees. The clear supernatant was then transferred into glass test tubes and 

extracted with 4 mL of DCM/IPA (8:2; v/v). After centrifugation at 350 g for 10 minutes, the 

organic layer was separated and dried under a stream of nitrogen. The dried residue was 
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reconstituted with 60 μL methanol and a 3 μL aliquot was injected into UHPLC-MS/MS 

system for EC and NAE analysis. The remaining aqueous solution was used for PUFA and 

eicosanoids extraction, by adding 500 μL hydrochloride acid (HCl, 0.125 N) and 4 mL 

EtOAc/n-hexane (9:1; v/v). The organic phase was dried, and the residue was reconstituted 

with 60 μL ACN. A 30 μL aliquot of methanol obtained from the neutral extraction and a 30 

μL aliquot from acid extraction were merged and transferred into an autosampler vial. A 10 

μL aliquot was injected into UHPLC/MS-MS system for PUFA and eicosanoids 

determination. 

3.1.6 Equipment  

Analyses were performed on 1290 Infinity UHPLC system (Agilent Technologies, Palo Alto, 

CA, USA) coupled to a Q Trap 5500 triple quadrupole linear ion trap mass spectrometer 

(Sciex, Darmstadt, Germany) equipped with an electrospray (ESI) source. Compounds were 

separated on a Kinetex UHPLC XB-C18 column (100 mm x 2.1 mm i.d, 2.6 p.s.) 

(Phenomenex, CA, USA) using 0.1% formic acid in water (mobile phase A) and MeOH/ACN 

(5:1; v/v) (mobile phase B). For EC and NAE analysis, solvent A and B were 75% and 25% 

at 1.00 min, respectively. Solvent B was increased to 70% from 1.00 to 1.50 min, then 

increased to 85% from 1.50 to 6.00 min and to 100% from 6.00 to 7.00, held at 100% from 

7.00 to 9.00 min, and then decreased back to 25% from 9.00 to 9.20 min and held at 25% 

from 9.20 to 11.0 min for re-equilibration. For PUFA and eicosanoids analysis, solvent A and 

B were 75% and 25% at 1.00 min, respectively. Solvent B was increased to 40% from 1.00 

to 3.00 min, then increased to 95% from 3.00 to 5.50 min and to 100% from 5.50 to 7.00, 

held at 100% from 7.00 to 8.00 min, and then decreased back to 25% from 8.00 to 8.20 min 

and held at 25% from 8.20 to 10.0 min for re-equilibration. The flow rate was 0.60mL/min 

and the column thermostatic oven was kept at 40 °C. The working conditions and 

parameters of the MS were optimized by direct infusion (flow rate 7μL/min) of a standard 

mix solution (100ng/ml) as follows: the acquisitions were performed in positive mode for the 

EC/NAE and in negative mode for PUFA/eicosanoids analysis; the resolution of Q1 and Q3 

was set to 0.7 ± 0.1 amu; the curtain gas, ion gas 1, ion source gas 2 were set at 25, 45 and 

10 psi, respectively; the source temperature was 550 °C; the ionization voltage was 5500 

eV (positive mode) and -4500 eV (negative mode); the entrance potential was 10 eV; dwell 

time was fixed 70 msec for each MRM transitions. The MRM conditions and parameters 

including ion transitions, de-clustering potential (DP) and relative collision energy (CE) are 
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provided in Table 2. In detail, the following transitions parent ions > product ions were 

applied:  

- AEA, LNEA, LEA, PEA, OEA, SEA → m/z 62 relative to the protonated ethanolamine 

moiety; 

- 2AG → m/z 287 relative to glycerol neutral loss; 

- ODA, ADA → m/z 154 relative to the protonated dopamine moiety; 

- A5HT, O5HT, Pal5HT → m/z 160 relative to the protonated dehydroxy-5HT moiety; 

- ASer → m/z106 relative to the protonated serine moiety; 

- AGly, OGly, PalGly → m/z 76 relative to the protonated glycine moiety. 

Compound Precursor 
ion (m/z) 

Product ions 
(m/z) 

DP 
(eV) 

CE 
(eV) 

AA (20:4) 303.1 59.1 -45 -42 

  259.6 -45 -20 

EPA (20:5) 301.4 59.1 -55 -42 

  203.1 -55 -20 

DHA (22:6) 327.3 283.3 -80 -10 

  59.1 -80 -35 

TXB2 369 177 -50 -22 

  195 -50 -20 

PGE2 351.5 315 -50 -25 

  271.1 -50 -25 

PGD2 351.5 271 -50 -30 

  189 -50 -30 

PGF2α 353 291 -50 -35 

  193 -50 -35 

6αKeto-PGF1α 369.5 245 -50 -35 

  163 -50 -35 

LTB4 335 273 -45 -23 

  195 -45 -23 

5(S)-HETE 319.5 115 -50 -18 

  301.1 -50 -18 

15(S)-HETE 319.5 219 -50 -15 

  301.2 -50 -15 

14,15-EET 319.,5 219.1 -50 -22 

  301 -50 -40 

AEA 348 62 76 42 

  133 76 33 

2AG 379.4 287.3 76 18 

  203 76 25 

LNEA 322.3 62.2 85 35 
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  81.2 85 35 

LEA 324.3 62.2 85 35 

  109 85 32 

PEA 300.1 62 98 19 

  283 98 36 

OEA 326.3 62.2 85 35 

  309 85 21 

SEA 328.3 62.2 85 35 

  311.1 85 22 

DHEA 372.3 62 85 18 

  67 85 36 

AGly 362.3 287 85 18 

  76 85 18 

ADA 440.5 137 95 34 

  154 95 23 

2AGE 365.3 273 85 10 

  121 85 20 

ODA 418.3 137 85 24 

  154 85 35 

EPEA 346.3 62 85 35 

  135 85 35 

ASer 392.5 106 85 35 

  137.3 85 33 

OGly 340.5 76 85 35 

  265 85 35 

PalGly 314.5 76 85 35 

  239 85 20 

AGABA 406.5 287.4 85 24 

  84.1 85 55 

A5HT 463.3 160.4 85 35 

  132.2 85 35 

O5HT 441.7 160.4 85 35 

  132.2 85 35 

Pal5HT 415.7 160.4 130 47 

  132.2 130 47 

TXB2-d4 373 199 -50 -22 

  173 -50 -22 

PGF2a-d4 357 295 -50 -35 

  197 -50 -35 

LTB4-d4 339 197 -45 -23 

  277 -45 -23 

EPA-d5 306.3 59.1 -50 -35 

  208.1 -50 -18 

AEA-d8 356.3 62 76 35 

  70 76 35 

SEA-d4 332.3 66.2 85 35 

  62 85 18 

EPEA-d4 350.3 66 85 35 
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  135 85 35 

OEA-d2 328.3 62 85 35 

  311 85 35 

PEA-d5 305.1 62 85 35 

  288 85 35 

ADA-d8 448.5 137 85 35 

  154 85 35 

AGly-d8 370.6 76 85 20 

  84 85 20 

ASer-d8 400.6 106 85 35 

  70 85 35 

O5HT-d17 458.7 160.4 130 47 

  132.2 130 47 
Table 2 MRM parameters: precursor and product ion transitions (quantifier underlined) for all the 

analytes and IS, de-clustering potential (DP) and collision energy (CE) 

3.1.7 Data evaluation 

Data acquisition and processing were performed using Analyst®1.6.2 and MultiQuant®2.1.1 

software (Sciex, Darmstadt, Germany), respectively. Calculations for validation assessment, 

which includes linearity, precision, accuracy, sensibility, recovery, and stability were 

performed using Microsoft Office Excel 2013.  

3.1.8 Validation procedure 

Assay validation was carried out in accordance with the recommendations endorsed by FDA 

guideline referred to drugs and non-endogenous compounds (180) and specific issues for 

endogenous compounds (181) were addressed. A full validation was performed in the 

analyte-free SM and the following parameters were assessed: linearity, precision and 

accuracy, sensitivity in terms of limits of detection (LOD) and limits of quantitation (LOQ), 

specificity, recovery, matrix effect and stability. Additionally, the described method was 

partially validated in serum and urine. Surrogate analyte-free matrices (i.e. water and/or 

appropriate buffer) are usually used for the preparation of CS and QC when validation has 

to be performed for endogenous compounds, to overcome the lack of analyte-free matrix 

(181). For this reason, to avoid the interference of endogenous analytes, linearity, slope, 

recovery, and the influence of matrix effect were obtained by spiking serum and urine with 

ISs at the same concentrations’ levels (see paragraph 2.1.4.2), whereas LOD and LOQ 

evaluation was achieved on PBS. 

3.1.8.1 Calibration range and linearity  
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The 7-point calibration curve (n = 6) were obtained by spiking analyte-free SM with 

appropriate amounts of working solutions in the range 0.1 – 2.5 ng/mL and 1 – 25 ng/mL 

(EPA, AA and DHA), as described at paragraph 2.4. A linear model was used to describe 

the relation between analyte concentration and instrument response (analyte peak 

area/internal standard peak area). Linearity was considered satisfactory for each curve if R² 

≥ 0.990. Additionally, to evaluate linearity and slope, CS were also prepared in the analyte-

free PBS, as well as in urine and serum, by spiking IS at the same concentration levels. 

3.1.8.2 Sensitivity and specificity  

Reagents and consumables were extracted, following the procedures described before, and 

analyzed in triplicate to evaluate and exclude interferences and false positive responses 

derived from sample preparation. The specificity of the method and matrix-to-matrix 

reproducibility was evaluated by analyzing SM in triplicate from different lots number (n=3). 

Sensitivity was expressed in terms of LOD and LOQ, defined as the ratio between the 

standard deviation of the response and the slop of the calibration curve, and correspondent 

to 3.3 and 10 times, respectively. LOD and LOQ were calculated on calibration curves 

prepared in the analyte-free SM for cell samples quantification. Additionally, LOD and LOQ 

were also tested in the analyte-free PBS in order to quantify serum and urine samples. 

3.1.8.3 Precision and accuracy 

Precision and accuracy of the method were determined by analyzing six independent 

replicates of QC materials, extracted from the analyte-free SM at three concentration levels 

(low, intermediate, and high). Precision was denoted by percent coefficient of variation 

(CV%), while the accuracy was expressed as bias (BIAS%), the percent deviation of the 

mean determined concentration from the accepted reference value. The accuracy and 

precision were required to be ≤15% CV (Table S1 and S2). 

3.1.8.4 Recovery and matrix effects  

Extraction recovery (%) was measured by comparing the peak area of the analyte-free SM 

(n=3) fortified with standards at three concentration levels, prior and after extraction. Peak 

areas of pre- and post-extraction samples were used for calculations, considering the 

analytes area in post-extraction spiked samples as 100% recovery. The matrix effects (%) 

was determined by comparing the analytes peak area in PBS and in the analyte-free SM, 

fortified in the low, intermediate, and high concentration range after extraction. Concerning 
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the extraction recovery evaluation in human, serum and urine, matrices containing 

endogenously all the analytes, we spiked them with ISs before and after LLE. The matrix 

effect was assessed by comparing the peak area of ISs spiked in eluate from serum and 

urine to those in PBS. As for SM, the extraction recovery and matrix effect were evaluated 

at three concentration levels.  

3.1.8.5 Stability studies 

The stability was assessed in QC samples at low, intermediate and high concentration, by 

analyzing them the initial day (T0) as well as 24h later at 4°C and -20 °C. The response 

factor at each concentration was compared to the original vial at T0 and a mean deviation 

below 15 % from day 0 was considered acceptable. 

3.1.9 Efficiency evaluation in real samples  

The proposed method was firstly applied to Saos-2- and MG-63-derived CM, EV and cell 

lysates to identify and quantify lipids belonging to PUFA/eicosanoids and EC/NAE groups, 

as described at paragraph 2.1.3. Each sample was injected into UHPLC-MS/MS three times 

(n=3 analytical replicates). 

3.2 Mesenchymal stem cells (MSC) and dermal fibroblasts (DF) secretome 

characterization by UHPLC-MS/MS analysis 

3.2.1 ASC, BMSC and DF isolation and maintenance  

Human primary cell cultures were obtained from waste tissues deriving from aesthetic and 

prosthetic surgery performed at IRCCS Istituto Ortopedico Galeazzi upon Institutional 

Review Board approval. Written informed consent was provided from all donors. 

Adipose tissue derived MSC (ASC) 

Human ASC were isolated from the subcutaneous adipose tissue of 8 non obese (BMI<30) 

donors (females, 44±12 years old) who underwent total hip replacement surgery or 

liposuction. Adipose tissue samples were shredded with a sterile scalpel, digested for 30 

min with 0.75 mg/ml type I Collagenase (Worthington Biochemical Corporation, Lakewood, 

NJ, USA) and filtered with a 100 μm cell strainer (Corning Incorporated, Corning, NY, USA). 

ASC were cultured in a CDMEM composed by high glucose DMEM (Sigma-Aldrich, St. 

Louis, MO, USA), 10% Fetal Bovine Serum (FBS, Euroclone, Pero, Italy), 2mM L-glutamine, 
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50 U/ml penicillin, and 50 μg/ml streptomycin (Sigma-Aldrich, St. Louis, MO, USA) at 37°C, 

5% CO2. 

Bone marrow derived MSC (BMSC) 

Human BMSC were isolated from the bone marrow blood of 5 donors (2 males and 3 

females, 64±11 years old) who underwent total hip replacement surgery. The blood was 

centrifuged at 510 g for 10 min and the pellet resuspended in PBS and centrifuged again. 

The pellet was resuspended in CDMEM. BMSC were cultured in CDMEM at 37°C, 5% CO2. 

Dermal fibroblasts (DF) 

Human DF were obtained from the deepidermised dermis of 3 donors (females, 46±11 years 

old) undergoing abdominoplasty. Dermis tissue samples were fragmented with a sterile 

scalpel, digested with 0.1% type I Collagenase (Worthington Biochemical Corporation, 

Lakewood, NJ, USA) and filtered with a 100 μm cell strainer (Corning Incorporated, Corning, 

NY, USA). DF were cultured and maintained in a humidified atmosphere at 37°C, 5% CO2 

in CDMEM. 

For all primary cell cultures, the medium was replaced every other day and, at 70–80% 

confluence, cells were detached with 0.5% trypsin/0.2% EDTA, plated at a density of 10,000 

cells/cm2 for ASC and BMSC, 5000 cells/cm2 for DFs, and expanded. 

3.2.2 CM and EV production 

ASC, BMSC and DF from IV to XI passage at ~ 90% of confluence were incubated in starving 

conditions for 72 h (absence of FBS). No signals of cell suffering were ever observed during 

the period. The CM and EV were collected as previously described (paragraph 2.3.1.1) and 

the resulting products were kept at -20 °C until MS analysis. 

3.2.3 Secretome characterization by targeted lipidomic analysis 

The previously set-up and validated methods (paragraph 2.1) were applied to ASC (n=8), 

BMSC (n=5) and DF (n=3)-derived CM and EV in order to partially characterize the lipid 

profile related to PUFAs/eicosanoids and EC/NAE groups. 

3.2.4 Statistics 

Statistical analysis was performed one-way analysis of variance (ANOVA) followed by 

Tukey’s post hoc test. Differences were considered significant at P ≤ 0.05. Data for the three 
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groups are presented as box and whisker plots. The box represents the 25 to 75 interquartile 

range, and the horizontal line represents the median value. The whiskers represent the 

extremes values. All values are presented in ng/ml per million cells (CM) or ng per million 

cells (EV). All the analyses were performed using Prism 7 (GraphPad Software, La Jolla, 

CA, USA). 

 

3.3 Evaluation of the functional activity of two ASC-CM bioactive lipids – 2AG and 

SEA – in an in vitro model of osteoarthritis (OA) 

3.3.1 Human primary cells  

All the waste tissue was collected at IRCCS Galeazzi Orthopaedic Institute following 

Institutional procedure. Written informed consent was obtained from all the patients. Human 

ASC were isolated from the adipose tissue of 5 healthy donors (2 males and 3 females; 

49±13 y/o) undergoing total hip replacement surgery, following previously described protocol 

(paragraph 2.2.1). All ASC donors were normal-weight subjects (BMI < 30, no documented 

diagnosis of obesity) Human CH derived from the articular cartilage of the femoral heads 

collected from 14 patients (3 males and 11 females; 67±12 y/o) who underwent total hip 

replacement surgery at the same Clinical Institute. The areas of macroscopically healthy 

cartilage (white, shiny, elastic, and firm) were harvested through a scalpel and digested 

overnight at 37 °C with 1.5 mg/ml type II Collagenase (Worthington Biochemical 

Corporation, Lakewood, NJ, USA) (182,183). The areas characterized by irregular surface, 

discoloration or softening were never collected in order to exclude any experimental bias 

linked to the use of compromised cartilage. Cells were cultured in CDMEM added by 110 

μg/ml sodium pyruvate for CH maintenance at 37 °C in a humidified atmosphere with 5% 

CO2.  

3.3.2 ASC-CM production  

Conditioned medium was collected from ~ 90% confluent ASC from V to VIII passage were 

incubated in starving conditions for 72 h. No signs of cell suffering were ever recorded during 

the period. The CM was collected as previously described (paragraph 2.3.1.1) and the 

resulting products were kept at -20 °C until use. 

3.3.3 In vitro OA induction and treatments 
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In our experimental set up, CH were employed at 1st culture passage in order to prevent 

their dedifferentiation (184). CH were seeded at the density of 104 cells/cm2 in tissue culture 

treated 6-well plates (Corning Incorporated, Corning, NY, USA) and cultured in CDMEM 

until the full confluence was reached (185), then shifted in a complete medium containing 

1% FBS and treated with 10 ng/ml TNFα for 3 days to mimic OA microenvironment 

(134,186), without any media change. Concurrently, CH were treated with ASC-CM from 5 

× 105 cells, 2AG and PEA at real (1 and 0.5 pg/ml, respectively) and increasing concentration 

levels (0.1, 1 and 0.05, 0.5 ng/ml, respectively). CH culture media were collected and 

centrifuged for 5 min at 2000 g, 4 °C, to remove dead cells and debris and aliquoted. CH 

supernatants and cells lysates were stored at − 20 °C for further analyses. 

3.3.4 Western blotting of CH samples 

CH were lysed in 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP-40, and 0.1% SDS 

supplemented with protease inhibitor cocktail (PIC) and 2 mM PMSF. Upon incubation on 

ice for 30 min, lysates were centrifuged for 15 min at 15,000 g, 4 °C, in order to eliminate 

cell membranes. The protein content of each sample was quantified through BCA Assay 

(Thermo Fisher Scientific, Waltham, MA, USA). Measurements were performed in technical 

duplicates. Samples were analyzed by 10% SDS-PAGE and Western blotting (WB), using 

standard protocols (134). For each sample, 10 μg of protein extract were loaded and probed 

with the following primary antibodies: rabbit anti-COX2 (Cell Signaling, Danvers, MA, USA, 

1:1000 diluted), mouse anti-MMP13 (Thermo Fisher Scientific, Waltham, MA, USA, 0.4 

μg/μl, 1:100 diluted), rabbit anti-MMP3 (Cell Signaling, Danvers, MA, USA, 1:1000 diluted), 

rabbit anti-CB1 (Cayman Chemical, Ann Arbor, USA, 1:1000 diluted), rabbit anti-CB2 

(Cayman Chemical, Ann Arbor, USA, 1:1000 diluted) and goat anti-GAPDH (Santa Cruz 

Biotechnology, 0.1 μg/μl, 1:1000 diluted). Specific bands were revealed upon incubation 

with appropriate secondary antibodies conjugated to horseradish peroxidase (Rabbit IgG 

Secondary antibody, Thermo Fisher Scientific, Waltham, MA, USA, dilution 1:10,000; Mouse 

IgG Secondary Antibody, Thermo Fisher Scientific, Waltham, MA, USA, dilution 1:6000; 

Goat IgG Secondary Antibody, Santa Cruz Biotechnology, CA, USA; 0.1 μg/μl, 1:6000 

diluted) followed by detection with ECL Westar Supernova (Cyanagen, Bologna, Italy). After 

image acquisition with ChemiDoc Imaging System, protein expression was quantified 

through Image Lab Software (Bio-Rad, Milan, Italy). To normalize target protein expression, 

the band intensity of each sample was divided by the intensity of the loading control protein 
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GAPDH. Then, the fold change was calculated by dividing the normalized expression from 

each lane by the normalized expression of the control sample (CTR=1). 

3.3.5 Nitric oxide (NO) determination in culture medium 

NO was measured in CH culture media following reduction of nitrate to nitrite using an 

improved Griess method (Abcam, Cambridge, Regno Unito). Absorbance was measured at 

540 nm. Nitrite concentration was then determined from a nitrite standard curve (0–200 μM). 

3.3.6 Targeted lipidomic UHPLC-MS/MS analysis of CH culture medium and cell 

lysates 

500 μl CH supernatants and 40±15μl CH cell lysates were analyzed by UHPLC-MS/MS 

analysis for lipids determination by previously described methods (paragraph 2.1). The 

protein content of each cell lysate sample was quantified through BCA Assay (Thermo 

Fisher Scientific, Waltham, MA, USA). Measurements were performed in technical 

duplicates. 

3.3.7 Statistics 

Statistical analysis was performed by student’s t-test or one-way analysis of variance 

(ANOVA) followed by Tukey’s post hoc test in case of normally distributed measures, 

otherwise by Friedman’s test followed by Dunn’s multiple comparison. Differences were 

considered significant at P ≤ 0.05. Unless otherwise stated, data are expressed as mean ± 

SD of independent experiments. All the analyses were performed using Prism 7 (GraphPad 

Software, La Jolla, CA, USA). 
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4. Results  

4.1 Targeted MS analytical methods development and validation  

4.1.1 Instrumental parameters 

Mass spectrometry parameters were optimized by infusing a standard mix solution (100 

ng/ml in MeOH). Positive and negative transitions were selected for the EC/NAE and 

PUFA/eicosanoids, respectively, as described in paragraph 3.1.6. The source/gas 

parameters, CE and DP, were varied from 0 to ±60 eV and 0 to ±150 eV, respectively. 

Parents and product ions, CE and DP, shown in table 1, were selected for analytes 

quantification. The optimization of the chromatographic separation lead to obtain two 

different elution gradients, performed on a Kinetex UHPLC XB-C18 column, providing the 

best analytes sensitivity and peak shape. The mobile phase was 0.1% formic acid in water 

and MeOH/ACN (5:1; v/v), the total runtime was 11.0 min, comprising cleaning and 

reconditioning of the column. 

4.1.2 Method validation 

4.1.2.1 Calibration range and linearity 

The 7-point calibration curve (n = 6) were obtained by adding 500 μL analyte-free SM and 

PBS (for lipids quantification in human serum and urine) aliquots with a mix of standard 

solution, as described at paragraph 3.1.5. The calibration ranges were set as follow: 0.1-2.5 

ng/mL for all the compounds except for AA, EPA and DHA (1-25 ng/mL). All calibration 

curves displayed good linearity (R2 > 0.991) for all the analyzed compound over the entire 

investigated range, when using linear correlation. No interfering peaks were observed in 

either the blank SM or PBS, at the retention times of our analytes of interest. The LOD and 

LOQ have been calculated for all analytes both in the analyte-free SM and PBS and are 

listed in table 3.  
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Compound R2 Analytical 

range ng/ml 

LOD (SM) 

ng/ml 

LOQ (SM) 

(ng/mL) 

LOD (PBS) 

(ng/mL) 

LOQ (PBS) 

(ng/mL) 

AA  1.000 1-25 0.259 0.864 0.014 0.046 

EPA  1.000 1-25 0.039 0.132 0.007 0.024 

DHA  0.999 1-25 0.013 0.042 0.022 0.073 

TXB2 0.991 0.1-2.5 0.021 0.070 0.022 0.073 

PGE2 1.000 0.1-2.5 0.018 0.061 0.010 0.035 

PGD2 0.999 0.1-2.5 0.008 0.028 0.031 0.103 

PGF2α 1.000 0.1-2.5 0.008 0.028 0.018 0.059 

6aKeto-PGF1α 1.000 0.1-2.5 0.006 0.020 0.014 0.048 

LTB4 0.999 0.1-2.5 0.011 0.037 0.033 0.110 

5(S)-HETE 0.998 0.1-2.5 0.031 0.100 0.016 0.053 

15(S)-HETE 0.999 0.1-2.5 0.012 0.041 0.021 0.070 

14,15-EET 0.999 0.1-2.5 0.002 0.006 0.027 0.090 

AEA 0.996 0.1-2.5 0.013 0.045 0.027 0.088 

2AG 0.992 0.1-2.5 0.004 0.015 0.027 0.089 

2AGE 0.999 0.1-2.5 0.008 0.026 0.015 0.049 

LNEA 0.997 0.1-2.5 0.033 0.109 0.019 0.064 

LEA 0.992 0.1-2.5 0.030 0.100 0.028 0.094 

PEA 0.995 0.1-2.5 0.030 0.101 0.027 0.090 

OEA 0.999 0.1-2.5 0.020 0.076 0.025 0.084 

SEA 0.999 0.1-2.5 0.005 0.018 0.013 0.045 

DHEA 0.996 0.1-2.5 0.020 0.081 0.028 0.092 

EPEA 0.998 0.1-2.5 0.010 0.033 0.005 0.017 

ADA 0.998 0.1-2.5 0.018 0.059 0.029 0.099 

ODA 0.999 0.1-2.5 0.031 0.106 0.029 0.099 

ASer 0.996 0.1-2.5 0.019 0.064 0.023 0.081 

AGly 0.999 0.1-2.5 0.030 0.101 0.029 0.099 

OGly 0.998 0.1-2.5 0.028 0.094 0.035 0.100 

PalGly 0.999 0.1-2.5 0.006 0.019 0.026 0.099 

AGABA 0.999 0.1-2.5 0.021 0.084 0.017 0.057 

A5HT 0.998 0.1-2.5 0.008 0.028 0.007 0.024 

O5HT 0.994 0.1-2.5 0.002 0.073 0.013 0.043 

Pal5HT 0.998 0.1-2.5 0.007 0.023 0.012 0.042 

Table 3. Calibration parameters 
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4.1.2.2 Precision and accuracy 

The coefficients of variance (CV) and accuracy (BIAS) were always under 15%. Precision 

and accuracy levels, for all compounds, were displayed in the supplementary tables S1 and 

S2. A representative chromatogram of a SM sample spiked at intermediate concentration 

level for PUFA/eicosanoids and EC/NAE groups is reported in Fig. 5 and 6, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. MRM chromatogram of PUFA/eicosanoids extract. From the top: Total ion Current (a), 

selected ion monitoring relative to standard molecules standard (0.5 ng/mL and 5 ng/mL for AA, EPA 

and DHA) (b), and to IS (c) 
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Fig 6. MRM chromatogram of EC/NAE extract. From the top: Total ion Current (a), selected ion 

monitoring relative to standard molecules standard (0.5 ng/mL) (b), and to IS (c) 

 

4.1.2.3 Recovery and matrix effect 

The mean extraction recovery in analyte-free SM was satisfactory, being over 41% for all 

the compounds belonging to PUFA/eicosanoids class (Figure 7a) and 52% for the EC/NAE 

class (Figure 7b), except for the basic compounds A5HT, O5HT e Pal5HT. Matrix effects 

ranged from ±20% for both lipids groups, except for PGF2α, 5(S)-HETE and O5HT (Figure 

7c and 7d). To avoid the interference of serum and urine endogenous analytes on the 

evaluation of recovery and matrix effect, the peak area of ISs, spiked in these eluates, was 

compared to those in the extract and PBS, respectively. These results for PUFA/eicosanoids 

and EC/NAE are showed in the supplementary materials Table S3 and S4, respectively.  
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Fig 7. Extraction ecovery and matrix effect (%) values of PUFA/eicosanoids (a and c, respectively) 

and EC/NAE (b and d, respectively) 

 

4.1.2.4 Stability studies 

The analytes concentration in QC samples was not altered when kept at 4 °C and -20°C 

for 24 h, except for PGD2, 5(S)-HETE¸15(S)-HETE e 14,15-EET, especially at -20°C 

(Supplementary material Table S5). The response factor did not show unacceptable 

differences compared with the first determination (mean deviation from day 0 < 15%). 

4.1.2.5 Efficiency evaluation in real samples: CM and EV from 2 OS cell lines 

The bioanalytical assays were applied to 2 OS cell lines-derived secretome (CM and EV) 

providing the absolute quantitation (> LOQs) of 3 PUFA (AA, EPA, DHA) and 7 EC/NAE 

(2AG, LEA, OEA, SEA, DHEA, PEA, PalGly), as displayed in Table 4.  

 

 Saos-2 MG-63 

 CM pg/ml x106 cells EV pg x106 cells CM pg/ml x106 cells EV pg x106 cells 

Compound Mean DS Mean DS Mean DS Mean DS 

AA 0.26 0.02 0.78 0.06 nd nd nd nd 

EPA 0.14 0.002 0.16 0.003 nd nd nd nd 

DHA  0.18 0.01 0.14 0.01 nd nd nd nd 

2AG  78.4 3.78 73.9 3.57 5.37 0.26 1.77 0.09 

LEA  3.18 0.29 1.31 0.12 22.5 2.07 3.13 0.29 
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OEA  1.91 0.09 3.88 0.18 nd nd 3.33 0.15 

SEA  6.34 0.51 10.4 0.85 11.3 0.92 12.1 0.90 

DHEA  2.84 0.16 2.47 0.14 nd nd nd nd 

PEA  nd nd 9.43 0.68 nd nd 16.1 1.15 

PalGly  nd nd 21.5 1.10 nd nd nd nd 

Table 4. Lipids quantitation in CM and EV samples from Saos-2 and MG-63 

 

4.2 MSC and DF secretome lipidomic characterization by UHPLC-MS/MS analysis 

 

CM and EV preparations were obtained, as previously described, from the culture medium 

harvested from confluent BMSC, ASC and DF, cultured for 3 days in serum-free conditions: 

in brief, CM was concentrated by centrifugal filter devices of about 60 times, while EV were 

isolated by differential centrifugation at 100,000 g. A total of 32 lipids belonging to 

eicosanoids and EC were analyzed by MS techniques in CM and EV samples using the 

previously described analytical methods. MS data were acquired for all the CM and EV 

samples from ASC (n=8), BMSC (n=5) and DF (n=3), obtained from the cells of eight, five 

and three different donors, respectively. Cells and donor features are listed in table 5. 

 

Primary cell type Cell passage Gender Age Surgery 

ASC-1 IX F 39 Total hip replacement 

ASC-2 VII F 35 Plastic surgery 

ASC-3 VII F 58 Plastic surgery 

ASC-4 VIII F 56 Total hip replacement 

ASC-5 X F 56 Total hip replacement 

ASC-6 XI F 26 Plastic surgery 

ASC-7 V F 46 Plastic surgery 

ASC-8 VIII F 34 Plastic surgery 

BMSC-1 VI M 47 Total hip replacement 

BMSC-2 VI F 69 Total hip replacement 

BMSC-3 VII F 60 Total hip replacement 

BMSC-4 VIII F 73 Total hip replacement 

BMSC-5 VI M 74 Total hip replacement 

DF-1 V F 46 Abdominoplasty 
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DF-2 IV F 46 Abdominoplasty 

DF-3 V F 26 Abdominoplasty 

Table 5. Cell passage and donor features 

 

Data analysis allowed to quantify a total of 9 lipid molecules in MSC and DF-derived CM 

and EV samples. In detail, the presence of 2AG – PEA – OEA – SEA – DHEA belonging to 

EC/NAE and AA – EPA – DHA belonging to PUFA were reported in both preparations. PGE2 

was found only in CM samples. An enrichment in lipid content were displayed in almost all 

MSC-CM and DF-CM rather than coupled MSC- and DF-derived EV. According to our 

previous findings (108), this result could be explained by the lower number of particles/106 

cells found in EV preparations in comparison with coupled CM samples. Mean values and 

confidential interval 95% (CI95) were reported in table 6. 

After a logarithmic transformation of lipids concentration levels found in CM and EV 

preparations to improve normality, all groups passed the Shapiro–Wilk test for normality. 

The lipids content from BMSC, ASC and DF groups were analyzed by a completely random 

ANOVA followed by post hoc Tukey’s test. Measured lipids concentration for each group are 

shown in the box and whisker plots in Figure 9 and 10. Interestingly, the major differences 

were observed between BMSC and ASC/DF groups, suggesting similar lipid profile between 

ASC and DF-derived secretome. By a differential proteomic analysis, we have recently 

demonstrated a degree of similarity between ASC and DF secretome also at protein levels 

(109). In detail, 2AG – PEA – SEA and OEA were significantly different among BMSC-EV 

and both ASC-EV and DF-EV groups, but they did not differ between ASC-EV and DF-EV 

(Figure 9). Moreover, a significant difference was reported also for DHEA between BMSC-

EV and DF-EV. In contrast, nonsignificant differences were found for PUFA and eicosanoids 

between MSC and DF-derived EV (Figure 9). Regarding CM samples, generally higher 

levels of lipids were displayed in BMSC group (Figure 8 and 9). 2AG and PGE2 were 

significantly different between BMSC and ASC, while PEA between BMSC and DF. 
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Table 6. Lipids quantitation in CM and EV samples from BMSC, ASC and DF 
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Fig 8. Box and whisker plots referred to EC and NAE levels in EV (ng per 106 cells) and CM (ng/ml 

per 106) cells from BMSC, ASC and DF 
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Fig 9. Box and whisker plots referred to PUFA and PGE2 levels in EV (ng per 106 cells) and CM 

(ng/ml per 106) from BMSC, ASC and DF 

 

4.3 Evaluation of the functional activity of two ASC-CM bioactive lipids – 2AG and 

PEA – in an in vitro model of osteoarthritis (OA) 
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Considering MSC-CM future clinical translation and its promising anti-inflammatory 

therapeutic potential, here, the role of 2 bioactive lipids previously detected in MSC-CM 

samples was investigated in vitro in a model of OA. In detail, ASC-CM contains 2AG at the 

mean and median concentration value of 53.2 and 56.2 pg/ml x106 cells, respectively, and 

PEA at 23.1 and 15.3 pg/ml x106 cells, respectively.  

 

4.3.1 CB1 and CB2 expression in primary articular CH 

Initially, in order to study the involvement of EC system in the OA context, we assessed the 

CB1 and CB2 expression in untreated primary CH. Both CB1 and CB2 were expressed in 

all considered isolated CH, as reported in Figure 10 (c and d, respectively). Additionally, the 

10ng/ml TNFα-treated CH as well as the effect of ASC-CM on TNFα-treated CH were 

assessed. The inflammatory stimulus significantly reduced the expression of both 

cannabinoid receptors after 3 days. ASC-CM did not affect TNFα-reduced CB receptors 

expression (Figure 10). Despite a decrease of CB1 and CB2 in TNFα-treated CH, we could 

observe their expression in all considered samples. 

 

 

 

Fig 10. Quantification of CB1 (a) and CB2 (b) expression in untreated, TNFα and TNFα+ASC-CM 

stimulated CH at day 3 analyzed by Western blot. Data (n=7 independent experiments) were 

normalized on GAPDH and expressed as relative values (CTR=1). (c-d) Representative Western 



50 

 

Blots of CB1 (c) and CB2 (d) expression by TNFα-stimulated and ASC-CM-treated CH. GAPDH 

was used as internal control and CB1 or CB2 densitometric evaluation was normalized on it. 

 

 

4.3.2 2AG and PEA differently modulate inflammation in TNFα-treated CH 

The PGE2 release and the protein expression of COX2, MMP3 and MMP13 were tested in 

in TNFα-stimulated CH in order to investigate a possible effect of the 2AG and PEA lipid 

mediators. As expected, 10 ng/ml TNFα raises the extracellular concentration of the 

inflammatory mediator PGE2 analyzed by MS (Figure 11a). In our previous study, we have 

demonstrated a possible counteracting effect of ASC-CM in decreasing PGE2 upregulation 

(166). In this case, an additional increment in PGE2 content was highlighted when CH were 

treated with the combination of TNFα and 2AG. In contrast, PEA showed a protective effect 

on the PGE2 release, providing a downmodulation up to the levels quantified in inactivated 

CH. Accordingly, TNFα increased the expression of COX2 especially when in association 

with 2AG (1pg/ml) (Figure 11b). By contrast, PEA (0.5pg/ml) partly blunts TNFα effect on 

the production of COX2. 

 

 

 

Fig 11. Modulation of PGE2 (a) and COX2 (b) by 2AG (1pg/ml) and PEA (0.5pg/ml). (a) PGE2 

release, analyzed by UHPLC-MS/MS in CH culture medium (n=8 independent experiments) 3 days 
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after treatments. (b) Quantification of the COX2 expression in TNFα-stimulated and 2AG or PEA-

treated CH at day 3 analyzed by Western blot. Data (n=4 independent experiments) were 

normalized on GAPDH and expressed as relative values (CTR=1). (c) Representative Western 

Blots of COX2 expression by TNFα-stimulated and 2AG- or PEA-treated CH. GAPDH was used as 

internal control and COX2 densitometric evaluation was normalized on it.  

At last, the expression of MMP3 and MMP13, two matrix-degrading enzymes involved in 

OA, were investigated. Our previous study showed that no significant effects were exerted 

on their expression by ASC-CM treatment on TNFα-stimulated CH (134,166). Consistently, 

also 2AG and PEA exert no effect on MMP3 and MMP13 expression (Supplementary 

materials F1). 

 

4.3.3 ASC-CM and PEA, but not 2AG, reduce NO production in CH culture medium 

Unstimulated CH produce low levels of NO, but its production is strongly enhanced by the 

inflammatory stimulus TNFα after 3 days (Figure 12). In addition, also the co-treatment of 

CH with TNFα and 2AG significantly increased NO production compared to untreated cells. 

By contrast, PEA seems to partially counteract TNFα-induced production showing no 

statistically significant difference if compared with unstimulated CH. Differently, ASC-CM 

significantly reverts TNFα effect. 
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Fig 12. Quantification of NO by 2AG (1pg/ml), PEA (0.5pg/ml) and ASC-CM treatments NO 

production, analyzed in CH culture medium (n=4 independent experiments) at day 3, is expressed 

as [nitrite] μM.  Data were expressed as relative values (CTR=1) 

 

4.3.4 Modulation of PUFA lipid precursors in untreated and TNFα-stimulated CH cell 

media  

Given the involvement of lipid precursors in inflammation and OA progression, a lipidomic 

analysis of PUFA in CH culture media was performed by previously developed UHPLC-

MS/MS methods. At first, PUFA levels were analyzed in the culture media of untreated CH 

as well as 2AG, PEA and ASC-CM treated CH without TNFα. No significant differences were 

showed among treatments (Figure 13).  

 

 

Fig 13. Quantification of AA, EPA and DHA in untreated and 2AG, PEA, ASC-CM treated CH cell 

media (absence of TNFα) at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=5 independent 

experiments) were expressed in ng/ml 

 

Differently, TNFα significantly decreases PUFA lipid precursors expression in CH culture 

media. Despite the inter-donor variability due to the use of patient-derived articular CH, a 

clear effect of TNFα on PUFA expression was always determined, as displayed in Figure 

14. A significant reduction of AA, EPA and DHA were displayed under TNFα stimulation. 

Conversely, 2AG, PEA and ASC-CM did not affect TNFα-reduced PUFA levels 

(supplementary materials F2). At intracellular level, TNFα did not exert a downmodulation 

of PUFA (supplementary materials F3).  
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Fig 14. Quantification of AA, EPA and DHA in TNFα-stimulated CH cell media at day 3 analyzed by 

UHPLC-MS/MS analysis. Data (n=9 independent experiments) were expressed in ng/ml 

 

4.3.5 Pro and anti-inflammatory lipids determination in CH culture media and lysates 

Lipidomic data analysis of eicosanoids and EC/NAE confirms the presence of specific lipid 

profiles both in CH cell media and lysates. Unstimulated CH secrete low levels of PGE2, as 

previously reported at paragraph 4.3.2, but also PGD2, PGF2α, PEA, SEA and DHEA were 

detected in the cell media of 2AG, PEA and ASC-CM treated CH without TNFα (Figure 15).  

 

Fig 15. Quantification of lipids in untreated and 2AG, PEA, ASC-CM treated CH cell media 

(absence of TNFα) at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=5 independent 

experiments) were expressed in ng/ml 
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Fig 16. Quantification of lipids in CH cell media at day 3 analyzed by UHPLC-MS/MS analysis. 

Data (n=7 independent experiments) were expressed in ng/ml 

However, except for PGE2 (Figure 11a), no significant differences were displayed also by 

all considered TNFα treatments (Figure 16), while 2AG was quantifiable only under TNFα 

alone and in combination with 2AG or ASC-CM treatments. Similar results were reported at 

intracellular levels. Picomolar concentrations of 2AG, PEA, SEA and DHEA were found in 

CH cell lysates, but no modulation was displayed among treatments (supplementary 

materials F4). 
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5. Discussion and conclusions  

5.1 Targeted MS analytical methods development and validation  

Lipid analysis is challenging because of the very low concentrations of lipids in biological 

samples (pg to ng per ml or mg), their different physio-chemical properties, the in vitro 

metabolism and the autoxidation. For an efficient extraction recovery of lipids like PUFA, 

eicosanoids, EC and NAE from biomatrices, an optimized solvent combination is necessary 

to cover the whole polarity and pKa ranges of these metabolites, including for example the 

polar PG and the less polar PUFA. Several protocols for the extraction and the subsequent 

analysis of either EC and NAE, mainly AEA and 2AG, or PUFA and eicosanoids have been 

previously published (187–189): the majority of LLE protocols according to Bligh and Dyer 

or Folch (20,190) are limited by the distribution of analytes in both water and chloroform 

layers. However, application of ternary solvent combinations including polar as well as 

nonpolar solvents seems to be a way to overcome these problems (21,188,189). In this 

work, different protocols for the purification and several combinations of solvents over the 

expected polarity range were examined for the extraction of the considered analytes. The 

highest lipids count was obtained through a double step extraction preparation with 

DCM/IPA (8:2; v/v) and EtOAc/n-hexane (9:1; v/v), respectively. Despite SPE is largely used 

for its capability to provide concentrated and free-interfering-matrix components extracts 

(187,191–193), there are some drawbacks, such as the fact that it’s money- and time-

consuming, due to the necessity of column cartridges and multiple steps. Contrarily, LLE is 

an easier and faster procedure, if compared to the most commonly SPE procedures, and 

these features could represent an advantage for studies that involve a huge number of 

samples. One critic issue of LLE (but also SPE) could be the toxicity of the organic solvents 

used. In the extraction protocol we applied, a simple and fast pretreatment, consisting of 

proteins exclusion with ACN followed by a first extraction with DCM/IPA (8:2; v/v) and a 

second one with EtOAc/n-hexane (9:1; v/v), was used: these solvents are surely less toxic 

than others commonly used, such as toluene, chloroform or tert-methyl-butyl ether (Figure 

17). In general, the combination of two or more sample preparation techniques, such as 

protein precipitation and LLE, improves method selectivity (189,191,192). Additionally, the 

second extraction is preceded by a pH adjustment step, which is crucial since some 

eicosanoids present a lower pKa value than EC. Indeed, a lower pH leads to a decreased 

protein binding and the protonation of carboxylate anions, which both allow improved 
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extraction by the organic solvent. Otherwise, greater acidification may lead to eicosanoid 

alteration (194), and therefore an extremely low pH should be avoided. The optimized 

solvent mixture, combined with the pH adjustment, which allows a lower protein binding and 

an enhanced extraction of the non-ionized forms, was necessary to cover the whole polarity 

range of these numerous metabolites. Moreover, the two sequential extraction steps, from 

a single sample, allow to analyze limited amount of samples, a very useful feature for in vitro 

and preclinical studies.  

 

 

 

 

 

 

 

 

 

 

Fig 17. Scheme of the LLE protocol for EC/NAE (step 1-5) and PUFA/eicosanoids (step 6-10) 

 

After the extraction procedure set-up, the instrumental UHPLC and MS parameters were 

optimized as previously described (paragraph 4.1.1). Several reversed phase columns (i.e., 

C18, C8, phenyl, biphenyl), mobile phases and elution gradients have been tested in order 

to improve the responses of the target compounds and to reduce the analysis time. Finally, 

two different elution gradients, performed on a Kinetex UHPLC XB-C18 column and 

characterized by the same mobile phases and a moderate runtime, were developed. This 

allowed the consequential analysis of the two classes of interest without changing either the 

elution column or mobile phases, and therefore without operator assistance. 
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According to the FDA guidelines, the major issue of analytical methods validation for 

biologics were satisfied, as previously described (paragraph 4.1.2). Methods specificity was 

achieved by the selection of the parent ion, followed by detection and quantification of 

product ions. The calibration curves were performed in SM and PBS, the latter in order to 

allow the lipid quantification also in different biomatrices such as serum and urine that may 

contain analytes of interest. To do this, we compared the calibration curves prepared spiking 

IS, at the same concentration levels, in PBS and in human serum/urine (see paragraph 

3.1.8.1). We obtained parallel curves, with a standard deviation of correlation coefficients 

below than 0.0001. For this reason, calibration lines obtained from CS spiked in PBS may 

be used for lipids quantification. Specificity tests, performed on all reagents and 

consumables used, have shown not to interfere with the detection or quantification of the 

analytes. To avoid the interference of endogenous analytes on the evaluation of recovery 

and matrix effect, the peak area of IS, spiked in serum and in urine eluates, was compared 

to those obtained in the extract and in PBS, providing results within the acceptance criteria, 

except for the PEA-d5, OEA-d2, and AGly-d8 matrix effect in human serum, whose 

percentage mean was 59% ± 8%, and TXB2-d4 in both serum and urine, which was 56% ± 

7% (supplementary materials). Concerning SM matrix, as previously displayed, a full method 

validation was performed, showing satisfactory values for all the considered parameters 

(LOD, LOQ, precision, accuracy, recovery, matrix effect and stability). At first, the developed 

analytical methods efficiency was evaluated in EV and CM samples from two osteosarcoma 

(OS) cell lines, Saos-2 and MG-63, as described at paragraph 3.1.9. Quantitative data are 

presented in table 2. Three PUFA (AA, EPA, DHA) and seven EC/NAE (2AG, LEA, OEA, 

SEA, DHEA, PEA, PalGly) were quantified (> LOQ). PUFA and the AA-related metabolite 

2AG were found to be more expressed in Saos-2-derived samples than in MG-63-derived 

ones. Surprisingly, no PUFA/eicosanoid was detectable in MG-63 samples. Among ECs, 

PalGly is the only compound, belonging to N-acylglycines, which was found in Saos-2-

derived EV only. 2AG, LEA and SEA were quantified in all the considered samples. LEA, 

PEA and SEA were found more abundant in MG-63-derived samples, with PEA detectable 

only in EV. Interestingly, 2AG and DHEA were more abundant and/or quantified only in 

Saos-2-derived samples, as well as their related compounds AA and DHA, respectively. It 

is well known that eicosanoids and EC/NAE are biologically active lipid mediators that play 

a critical role in different pathological processes, however little is still known about 

their release in OS secretome. Our results provided evidence of a different lipid secretion 
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between the two considered OS cell lines. Other peculiar characteristics that clearly 

differentiate this two bone tumor cell lines, including differences in growth, gene expression 

and immunohistochemical profiles, have already been demonstrated (195,196). Indeed, 

Saos-2 cells display a more mature osteoblastic phenotype with a stronger alkaline 

phosphatase activity and a larger expression of osteoblastic markers (osteocalcin, bone 

sialoprotein, decorin and procollagen-I) than MG-63. The latter exhibit both mature and 

immature osteoblastic features, with only a small subpopulation expressing the typical 

osteoblastic markers. In conclusion, we demonstrated that the methods we set-up in this 

work provide enough sensibility and specificity to analyze low amount of lipids in cell 

secretome like CM and EV, and this procedure could represent a useful tool to investigate 

other components of inflammatory microenvironment, relevant for the cellular crosstalk 

among injured tissues and mesenchymal stem/stromal cells, which are already under 

investigation in our laboratory by a proteomic approach.  

 

5.2 MSC and DF secretome lipidomic characterization by UHPLC-MS/MS analysis 

The therapeutic potential of the MSC secretome in disparate medical fields, from 

immunology to orthopedics, has been widely suggested by in vitro and in vivo evidences. 

Recently, in the context of cell therapy, also DF, the major cell type in the human dermis, 

have started to be considered a suitable alternative to MSC. Indeed, they share common 

characteristics including positivity to the same mesenchymal markers and multi-

differentiative potential towards mesodermal lineage and, additionally, they exert anti-

inflammatory, immunomodulatory and regenerative effects (197,198). Their therapeutic 

potential is similar and, in comparison to MSC, DF are easier to expand in vitro. Moreover, 

while the DF canonical therapeutic applications include skin regeneration and wound 

healing, our recent investigation have provided evidences of pro-osteogenic action of their 

secretome (177).  

Despite the overall success obtained in clinical trials, cell therapy presents several 

challenges, such as safety/regulatory concerns and technical aspects (harvesting 

procedure, cell expansion, and storage of the final product). However, nowadays it is widely 

accepted that MSC action is largely mediated by paracrine mechanisms (199), thus for this 

reason and due to the extreme complexity of their secretome/conditioned medium (MSC-

CM) composition, a great multidisciplinary scientific effort and an extensively 
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characterization are needed in the perspective of the future clinical translation. Our recent 

research has identified key ingredients, including lipids, of ASC secretome that may be 

involved in its therapeutic action and whose consistent levels among different ASC-CM 

batches may represent promising quality control criteria (200). 

In this context, we aim at partially disclosing the lipid content of the two most common 

secretome formulas, i.e. CM and EV, from primary BMSC, ASC and DF. The lipidomic MS 

developed methods have demonstrated their usefulness in assessing a total of 9 lipid 

molecules in MSC and DF-derived CM and EV samples. 2AG, PEA, OEA, SEA, DHEA 

belonging to EC/NAE and AA, EPA, DHA, PGE2 belonging to PUFA/eicosanoids were 

detected and quantified. The present data confirm previously findings obtained by analyzing 

the secretome of different cell sources (OS cell lines) (25). 

With this work we showed that (i) detected lipids are more enriched in CM samples than 

coupled isolated EV (ii) lipid content in CM and EV can distinguished BMSC from ASC and 

DF, but not ASC from DF and (iii) inflammatory factor PGE2 is expressed specifically by CM 

samples. An enrichment in lipid content was displayed in almost all MSC-CM and DF-CM 

rather than coupled MSC- and DF-derived EV. This result appears in accordance with our 

previous work demonstrating a 3–4 times higher number of particles per million donor cells 

in CM preparations compared to EV ones (108). This data could be explained by a 

suboptimal yield of the ultracentrifugation procedure, as already reported in the literature 

(201,202). However, our isolation procedure through ultracentrifugation did not affect EV 

quality in terms of size distribution and antigen profile (108).  

Interestingly, the major differences related to cell type were observed between both BMSC-

ASC and BMSC-DF groups, suggesting a more similar lipid profile between ASC and DF-

derived secretome. Accordingly, a Raman spectroscopy profile on ASC and DF secretomes 

demonstrates that CM from these cell types share also common proteomic patterns (177). 

In order to confirm these data, we have recently performed a quantitative proteomics to 

explore the protein composition of CM and EV from these two cell types providing evidences 

that multiple biological processes were shared between ASC and DF-derived (109).  

Finally, the levels of the inflammatory mediator PGE2 were found significantly lower in ASC-

CM than BMSC-CM. This PG is generally known to exert multiple opposed functions based 

on its concentration; its quantification in CM could be remarkable in several pathological and 

inflammatory context. 
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5.3 Evaluation of the functional activity of two ASC-CM bioactive lipids – 2AG and 

PEA – in an in vitro model of osteoarthritis (OA) 

Among other MSC sources, adipose tissue presents several advantages in terms of 

harvesting procedure, cell isolation, and expansion (203). In the last years, the safety and 

the efficacy of ASC in counteracting OA have been proved both in vitro (134,166) and in 

vivo (161,167), and confirmed by clinical trials (164). Since ASC act mainly through 

paracrine mechanisms, their secretome represents a promising therapeutic alternative. Two 

papers have been recently published, reviewing the MSC-CM therapeutic action on 

cartilage, subchondral bone and synovium (204,205). As previously described, ASC-CM is 

a complex cocktail of proteins, nucleic acids, and lipids released as soluble factors and/or 

conveyed into EV. In this way, CM represents a promising complete product characterized 

by an easier manufacturing procedure and a minor manipulation, accounting for a more 

feasible scale up, in comparison to ultracentrifuge-isolated EV. Additionally, it is well known 

that ASC-CM preparations allow also a complete retention of the vesicular component 

(134,206). Considering future clinical applications in the OA management and the previously 

promising results obtained in OA context by ASC-CM treatment, we investigated the 

potential role of two bioactive lipids, quantified in ASC-CM -i.e., 2AG and PEA-, whose action 

is widely documented in others inflammatory diseases (72,207), in an in vitro model of OA 

(Figure 18). The experimental settings were realized on the lipid concentrations found in 

ASC-CM: a mean concentration level of 53.2 pg/ml x106 cells for 2AG and of 23.1 x106 cells 

for PEA.  

 

 

 

Fig 18. Experimental in vitro model of OA 
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Although CB signaling and the regulation of cytokines by some cannabinoids are well 

documented (208,209), only few studies have looked so far at the effects of inflammatory 

cytokines on the cannabinoid system (210,211). Thus, at first, in order to study the 

interaction between the ECS and the inflammatory cytokine TNFα in articular CH, we found 

that CB1 and CB2 expression levels were most significantly reduced by TNFα treatment 

(Figure 10). In the literature, conflictingly results on the CB receptor modulation by TNFα 

and other cytokines are reported (212,213). This may be attributed to the different 

concentrations used or to the cell origin. However, both CB receptors were always detected 

in untreated and TNFα-treated CH. No significant differences were showed by ASC-CM 

treatment on TNFα-reduced CB receptors expression (Figure 10).  

An opposite modulation of inflammatory factors (i.e., PGE2 and COX2) by 2AG and PEA 

was reported in TNFα-treated CH. Our data confirm a PGE2 extracellular concentration 

enhancement under a 10 ng/ml TNFα treatment (Figure 11a). Indeed, we have recently 

demonstrated a possible counteracting effect of ASC-CM in decreasing PGE2 upregulation 

by TNFα-stimulated CH (166). Here, an additional increment in PGE2 content was 

highlighted when CH were treated with the combination of TNFα and 2AG. By contrast, PEA 

reduced the PGE2 production, providing a downmodulation up to 0.08±0.02 ng/ml and 

restoring its physiological levels linked to a healthy CH phenotype (0.07±0.01 ng/ml). 

Gabrielsson et al. proposed a linkage between reduced levels of PG and the blockage of 

hydrolysis of PEA to palmitic acid (214).  

Generally, unstimulated CH release low amounts of PGE2 that are consistent with the 

concentrations known to inhibit collagen cleavage and the expression of hypertrophy 

markers (215), while increasing PGE2 levels exerts a pro-catabolic and anti-anabolic effect 

on articular CH (216,217). Recently, a potential effect of CM in reducing TNFα-related 

inflammation by CH was linked to COX2 expression. Indeed, TNFα treatment induces PGE2 

release through the activation of COX2 transcription via NF-κB (218). Also, in this context, 

TNFα increased the expression of COX2 especially when in association with 2AG, 

suggesting a possible interconnection (Figure 11b). By contrast, PEA partly blunts TNFα 

effect on the production of COX2. The ability of PEA to reduce COX2 expression and/or PG 

release was determined in other in vivo studies using models of pain and/or inflammation 

(219–221), while a reduction in COX2 activity was observed in a macrophage cell line, but 

without a direct effect of PEA on COX2 levels (214).  
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Another promising result related to ASC-CM in OA context is the blunting of the TNFα- 

mediated hypertrophic shift. We previously demonstrated that ASC-CM is able to mediate a 

reduction of MMPs activity, correlated to the abundance of TIMPs in ASC secretome, rather 

than to a direct down-modulation of the expression and/or release of these proteases (134). 

Consistently, in this case, neither 2AG nor PEA exert any effect on MMP3 and MMP13 

expression (Supplementary materials F1). 

 

Moreover, it is well known that inflammatory CH produce large quantities of NO by iNOS, 

for example when stimulated by IL-1 or LPS (135). NO is a signaling molecule produced in 

the oxidative deamination of L-arginine catalyzed by a NOS. During an inflammatory 

process, the inducible isoform of this enzyme (iNOS or NOS2), which is not expressed in 

non-pathological situations, is up regulated. This up-regulation can be initiated by different 

stimuli including lipopolysaccharide (LPS), inflammatory cytokines or IFN-γ. Also, cartilage 

obtained from arthritic patients produces significant amounts of NO ex vivo, even in the 

absence of IL-1 or LPS (135). NO produced by iNOS has been shown to be a key 

inflammatory mediator in tissue injury in a variety of pathological conditions and there are 

increasing evidences that excess NO production could be a pivotal factor in the early stages 

of OA (222–224). Here, while unstimulated CH produce low levels of NO, its release is 

strongly enhanced by the TNFα inflammatory stimulus. Indeed, in cytokine-stimulated CH, 

NO sustains nuclear translocation of NF-kB, maintaining the NF-kB-dependent transcription 

persistently activated (225). This may be the mechanism through which NO promotes 

cartilage degradation. In this way, NO may promote expression of proteinases (i.e., MMPs) 

responsible for the degradation of the ECM. Indeed, the selective inhibition of NF-kB blocks 

inflammatory bone destruction (226). Our results show that both ASC-CM and low doses of 

PEA (pg/ml) reduced NO formation in TNFα-stimulated CH (Figure 12). The PEA effect on 

NO production seems to be in line with previous investigations published by Mejerink et al, 

who reported comparable results by other anti-inflammatory NAE including DHEA (76). 

Moreover, Mbvundula et al. showed that a synthetic cannabinoid is more potent in inhibiting 

IL-1a-induced NO production in bovine articular CH than the endogenous AEA. It may be 

attributed to its readily metabolization by the FAAH. 

By contrast, we found that 2AG significantly increases NO production compared to untreated 

CH (Figure 12). 2AG may also be metabolized via COX2 pathway, leading to the formation 

of pro-inflammatory PG (67). Thus, PEA, but not 2AG, appear to have potential as cartilage 
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protective agent by abrogating cartilage matrix degradation through its ability to inhibit NO 

production. However, further studies are required to elucidate the mechanisms by which this 

occurs, for example by involving PEA antagonists receptors or FAAH inhibitors. 

 

At last, since it is well documented the PUFA involvement in inflammatory context, the cell 

medium of untreated and TNFα-treated CH was analyzed by previously developed analytical 

methods for lipids determination.  

Although previous studies support a role PUFA in modifying OA severity, data on the effect 

of TNFα on these lipid precursors are still missing. Here, we showed a clear reduction of all 

secreted PUFA, both ω6 and ω3, by CH under the inflammatory stimulus (Figure 14). In this 

case, all considered treatment were not able to revert the TNFα down-regulation. By 

contrast, no significant differences were displayed for PUFA derivatives (PGD2 and PGF2α) 

and NAE (PEA, SEA, DHEA) in the cell media from untreated and treated CH, suggesting 

there is no-influence by the different treatments including TNFα. 

 

 

Fig 19. Experimental design: from lipid MS analysis to their functional roles in an in vitro model of 

OA 

In conclusion (Figure 19), in this thesis, two targeted UHPLC-MS/MS analytical methods for 

the identification and quantification of 32 lipid molecules, belonging to PUFA, eicosanoids, 

EC and NAE families, were developed and fully validated in several bio-matrices, according 

to the FDA guidelines. We first applied the methods to the secretome from BMSC, ASC and 

DF in order to provide a partial characterization of their lipid content. This allowed to define 

a peculiar bioactive lipid profile of the secretome from different sources, giving evidence of 

differences between the two byproducts CM and EV. In our opinion, a clear identification of 
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the key ingredients, including lipids, of MSC secretome that may be involved in its 

therapeutic action could be pivotal for investigating its clinical potential At last, considering 

the future clinical applications in the OA management and the previously promising results 

obtained in OA context by ASC-CM treatment, we investigated the potential role of two 

bioactive lipids quantified in ASC-CM -i.e., 2AG and PEA- in an in vitro model of OA. Our 

results showed a possible protective effect of PEA and a pro-inflammatory activity and/or 

lack of effectiveness for 2AG in counteracting TNFα. All data were assessed after 3 days 

treatments of 1pg/ml PEA or 0.5pg/ml 2AG, since previous studies conducted by our 

laboratory revealed a beneficial action of ASC-CM at the same time point, including anti-

inflammatory properties, in the OA context.  Our findings support a possible implication of 

some bioactive lipids and their related pathways in the OA scenario and in the future use of 

these cell-free products therapeutic approach. For this reason, future studies may be 

addressed to more complex systems, including organoids or 3D models, and/or 

osteochondral explants. 
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Figures 

Fig 1. Lipid classification according to the International Lipids Classification and Nomenclature 

Committee, with one representative structure shown for each category (7) 

 

Fig 2. Analytical techniques and workflows for mass spectrometry-based lipidomic analysis. These 

workflows comprised 3 main components, namely, (i) Sample Preparation, (ii) Mass Spectrometry, 

and (iii) Data Analysis. The analytical options and commonly used techniques within each 

component are listed below. Legend: gas chromatography (GC), high-performance liquid 

chromatography (HPLC), (ultra-high-performance liquid chromatography (UHPLC), mass 

spectrometry (MS), tandem mass spectrometry (MS/MS), selective reaction monitoring (SRM), 

multiple reaction monitoring (MRM) 

 

Fig 3. Eicosanoids and endocannabinoids involved in inflammation. The green squares and the red 

dots indicate lipids with anti- and pro-inflammatory properties, respectively. Legend: PUFA: 

polyunsaturated fatty acids; MUFA: monounsaturated fatty acids; SFA: saturated fatty acids; EPA: 

eicosapentaenoic acid; DHA: docosahexaenoic acid; AA: arachidonic acid; Rvs: resolvins; MaRS: 

maresines; PD: protectins; PG: prostaglandins; TX: thromboxanes; LT: leukotrienes; LX: Lipoxins; 

HETE: hydroxyeicosatetraenoids; ETE: epoxyeicosatetraenoids AEA: anandamide; 2AG: 2-

arachidonoilglycerol; DHEA: N-docosahexaenoylethanolamine; EPEA: N-

eicosapentaenoylethanolamine; SEA: N-stearoylethanolamide; PEA: N-palmitoylethanolamide, N-

arachidonoylglycine (NAGly). Adapted by (37) 

 

Fig 4. Bioactive components of the complete MSC-secretome and MSC-EV. Adapted from (111,112) 

 

Fig 5. MRM chromatogram of PUFA/eicosanoids extract. From the top: Total ion Current (a), 

selected ion monitoring relative to standard molecules standard (0.5 ng/mL and 5 ng/mL for AA, EPA 

and DHA) (b), and to IS (c) 

 

Fig 6. MRM chromatogram of EC/NAE extract. From the top: Total ion Current (a), selected ion 

monitoring relative to standard molecules standard (0.5 ng/mL) (b), and to IS (c) 

 

Fig 7. Recovery and matrix effect (%) of PUFA/eicosanoids (a and c, respectively) and EC/NAE (b 

and d, respectively) 
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Fig 8. Box and whisker plots referred to EC and NAE levels in EV (ng per 106 cells) and CM (ng/ml 

per 106) cells from BMSC, ASC and DF 

 

Fig 9. Box and whisker plots referred to PUFA and PGE2 levels in EV (ng per 106 cells) and CM 

(ng/ml per 106) from BMSC, ASC and DF 

 

Fig 10. Quantification of CB1 (a) and CB2 (b) expression in untreated, TNFα and TNFα+ASC-CM 

stimulated CH at day 3 analyzed by Western blot. Data (n=7 independent experiments) were 

normalized on GAPDH and expressed as relative values (CTR=1). (c-d) Representative Western 

Blots of CB1 (c) and CB2 (d) expression by TNFα-stimulated and ASC-CM-treated CH. GAPDH 

was used as internal control and CB1 or CB2 densitometric evaluation was normalized on it. 

 

Fig 11. Modulation of PGE2 (a) and COX2 (b) by 2AG (1pg/ml) and PEA (0.5pg/ml). (a) PGE2 

release, analyzed by UHPLC-MS/MS in CH culture medium (n=8 independent experiments) 3 days 

after treatments. (b) Quantification of the COX2 expression in TNFα-stimulated and 2AG or PEA-

treated CH at day 3 analyzed by Western blot. Data (n=4 independent experiments) were normalized 

on GAPDH and expressed as relative values (CTR=1). (c) Representative Western Blots of COX2 

expression by TNFα-stimulated and 2AG- or PEA-treated CH. GAPDH was used as internal control 

and COX2 densitometric evaluation was normalized on it.  

 

Fig 12. Quantification of NO by 2AG (1pg/ml), PEA (0.5pg/ml) and ASC-CM treatments NO 

production, analyzed in CH culture medium (n=4 independent experiments) at day 3, is expressed 

as [nitrite] μM.  Data were expressed as relative values (CTR=1) 

 

Fig 13. Quantification of AA, EPA and DHA in untreated and 2AG, PEA, ASC-CM treated CH cell 

media (absence of TNFα) at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=5 independent 

experiments) were expressed in ng/ml 

Fig 14. Quantification of AA, EPA and DHA in TNFα-stimulated CH cell media at day 3 analyzed by 

UHPLC-MS/MS analysis. Data (n=9 independent experiments) were expressed in ng/ml 

Fig 15. Quantification of lipids in untreated and 2AG, PEA, ASC-CM treated CH cell media 

(absence of TNFα) at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=5 independent 

experiments) were expressed in ng/ml 

Fig 16. Quantification of lipids in CH cell media at day 3 analyzed by UHPLC-MS/MS analysis. 

Data (n=7 independent experiments) were expressed in ng/ml 
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Fig 17. Diagram of the LLE procedure for EC/NAE (step 1-5) and PUFA/eicosanoids (step 6-10) 

 

Fig 18. Experimental in vitro model of OA 

 

Fig 19. Experimental design: from lipid MS analysis to their functional roles in an in vitro model of 

OA 
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Table 1. Composition, biological functions and classes or examples of the different categories of 

bioactive lipids. Adapted by (37) 

 

Table 2 MRM parameters: precursor and product ion transitions (quantifier underlined) for all the 

analytes and ISs, de-clustering potential (DP) and collision energy (CE) 
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Appendix 

Supplementary Figures 

F1. Quantification of MMP13 and MMP3 expression in TNFα-stimulated and 2AG or PEA-treated 

CH at day 3 analyzed by Western blot. Data (n=4 independent experiments) were normalized on 

GAPDH and expressed as relative values (CTR=1) (pag.51) 

 

 

 

F2. Quantification of AA, EPA and DHA expression in TNFα-stimulated and 2AG or PEA-treated 

CH cell media at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=9 independent experiments) 

were expressed in ng/ml (pag.52) 

 

 

 

F3. Quantification of AA, EPA and DHA expression in untreated, TNFα-stimulated and 2AG- PEA-

or ASC-CM treated CH cell lysates at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=6 

independent experiments) were expressed in ng/μg proteins (pag.52) 
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F4 Quantification of lipids detected in untreated, TNFα-stimulated and 2AG- PEA-or ASC-CM 

treated CH cell lysates at day 3 analyzed by UHPLC-MS/MS analysis. Data (n=6 independent 

experiments) were expressed in ng/μg proteins (pag.54) 
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Supplementary Tables 

S1. Precision and accuracy parameters for PUFA/eicosanoids group (pag.41) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 
Measured 
amount 
(ng/mL) 

CV (%) BIAS (%) 

AA 1 14.9 10.8 

 5 9.00 8.32 

 25 1.08 0.88 

EPA 1 2.76 5.20 

 5 2.54 2.08 

 25 0.08 1.05 

DHA 1 7.81 9.52 

 5 3.49 6.96 

 25 3.43 3.84 

TXB2 0.1 8.84 14.1 

 0.5 4.23 11.5 

 2.5 10.6 12.6 

PGE2 0.1 12.4 10.1 

 0.5 4.58 4.49 

 2.5 0.45 0.90 

PGD2 0.1 5.23 6.98 

 0.5 2.22 2.31 

 2.5 2.99 3.19 

PGF2α 0.1 5.06 10.9 

 0.5 1.78 1.56 

 2.5 1.54 1.65 

6αKeto-PGF1α 0.1 3.66 10.8 

 0.5 7.61 7.25 

 2.5 1.38 1.13 

LTB4 0.1 6.16 10.5 

 0.5 10.1 9.36 

 2.5 9.79 9.30 

5(S)-HETE 0.1 2.30 1.91 

 0.5 11.1 13.7 

 2.5 4.76 9.72 

15(S)-HETE 0.1 10.2 13.5 

 0.5 10.0 14.1 

 2.5 13.4 11.9 

14.15-EET 0.1 3.23 13.6 

 0.5 14.5 12.0 

 2.5 3.15 3.67 
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S2. Precision and accuracy parameters for EC/NAE group (pag.41) 

Compound 
Measured 
amount 
(ng/mL) 

CV (%) BIAS (%) 

AEA 0.1 7.64 12.5 

  0.5 6.38 12.0 

  2.5 0.03 2.82 

2AG 0.1 4.65 7.38 

  0.5 1.82 1.70 

  2.5 8.01 11.3 

2AGE 0.1 13.3 13.5 

  0.5 11.7 10.6 

  2.5 0.71 0.58 

LNEA 0.1 14.3 11.0 

  0.5 13.4 10.1 

  2.5 1.23 1.59 

LEA 0.1 13.4 11.1 

  0.5 10.5 7.88 

  2.5 3.72 2.88 

PEA 0.1 1.24 14.0 

  0.5 11.1 14.6 

  2.5 9.13 10.2 

OEA 0.1 3.89 9.49 

  0.5 5.44 5.38 

  2.5 4.68 4.64 

SEA 0.1 10.9 12.7 

  0.5 4.31 3.40 

  2.5 9.15 8.54 

DHEA 0.1 14.9 14.3 

  0.5 0.85 0.85 

  2.5 1.28 3.74 

EPEA 
  
  

0.1 7.66 14.3 

0.5 13.5 10.4 

2.5 6.73 3.04 

ADA 0.1 14.1 12.2 

  0.5 3.18 5.09 

  2.5 8.19 9.37 

ODA 0.1 15.4 11.0 

  0.5 4.28 0.39 

  2.5 9.90 11.3 

ASer 0.1 14.4 12.5 

  0.5 14.1 11.1 

  2.5 0.86 2.58 

AGly 0.1 8.24 14.3 
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  0.5 13.3 14.4 

  2.5 2.50 4.41 

OGly 0.1 7.44 13.7 

  0.5 8.30 14.3 

  2.5 5.89 12.6 

PalGly 0.1 11.1 14.3 

  0.5 1.75 8.99 

  2.5 2.82 10.0 

AGABA 0.1 7.00 5.10 

  0.5 8.50 12.1 

  2.5 0.08 0.06 

A5HT 0.1 13.1 14.7 

  0.5 11.3 13.5 

  2.5 7.66 6.58 

O5HT 0.1 8.66 6.38 

  0.5 5.83 14.0 

  2.5 0.81 1.87 

Pal5HT 0.1 8.56 10.5 

 0.5 6.62 14.1 

 2.5 2.98 4.23 
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S3. Extraction recovery and matrix effect of PUFA/eicosanoids groups in human serum and urine 

(pag.42) 

Compound Measured amount (ng/mL) Matrix Recovery (%) Matrix effect (%) 

EPA-d5  1 Serum 63.6 +13.99 

  Urine 73.1 +10.01 

 5 Serum 79.3 +3.23 

  Urine 65.6 +10.39 

 25 Serum 62.4 +7.24 

  Urine 93.0 +28.79 

TXB2-d4 0.1 Serum 89.1 +68.0 

  Urine 110 +54.2 

 0.5 Serum 113 +49.5 

  Urine 101 +49.4 

 2.5 Serum 98.2 +52.2 

  Urine 103 +66.0 

PGF2α-d4 0.1 Serum 86.8 -14.9 

  Urine 110 -10.3 

 0.5 Serum 101 -2.04 

  Urine 113 -10.8 

 2.5 Serum 78.9 -9.01 

  Urine 108 -6.32 

LTB4-d4 0.1 Serum 110 +12.1 

   Urine 114 +4.81 

  0.5 Serum 98.18 -5.93 

   Urine 102 -14.1 

 2.5 Serum 110 -7.17 

   Urine 112 -10.5 
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S4. Extraction recovery and matrix effect of EC/NAE group in human serum and urine (pag.42) 

Compound 
Measured amount 
(ng/mL) 

Matrix Recovery (%) Matrix effect (%) 

AEA-d8 0.1 Serum 93.4 -14.6 

  Urine 67.6 -5.56 

 0.5 Serum 85.7 -13.3 

  Urine 67.7 -8.99 

 2.5 Serum 85.2 -14.4 

  Urine 79.6 -1.72 

PEA-d5 0.1 Serum 88.5 -66.5 

   Urine 89.8 -8.25 

 0.5 Serum 102.6 -59.3 

   Urine 80.7 -4.74 

 2.5 Serum 88.8 -52.5 

   Urine 87.7 +3.24 

OEA-d2 0.1 Serum 104 -57.1 

   Urine 89.2 -5.65 

 0.5 Serum 69.1 -63.7 

   Urine 77.8 +8.60 

 2.5 Serum 84.8 -75.0 

   Urine 91.0 +4.83 

SEA-d4 0.1 Serum 76.0 -17.8 

   Urine 95.7 -7.20 

 0.5 Serum 79.4 -19.9 

   Urine 78.0 +7.92 

 2.5 Serum 66.2 -10.6 

   Urine 82.9 +7.74 

EPEA-d4 0.1 Serum 93.4 +2.86 

   Urine 87.9 -6.86 

 0.5 Serum 98.1 -1.73 

   Urine 73.3 +7.96 

 2.5 Serum 93.5 +0.63 

  Urine 92.9 +3.92 

ADA-d8 0.1 Serum 82.0 -9.77 

  Urine 92.6 -11.9 

 0.5 Serum 69.8 -12.5 

  Urine 60.7 -6.50 

 2.5 Serum 74.5 -6.23 

  Urine 96.8 -13.4 

ASer-d8 0.1 Serum 10.8 -17.2 

  Urine 92.2 +6.73 

 0.5 Serum 85.2 -9.2 

  Urine 85.4 -1.55 
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 2.5 Serum 75.8 -11.3 

  Urine 90.8 +6.23 

AGly-d8 0.1 Serum 98.9 -63.8 

  Urine 74.1 -13.1 

 0.5 Serum 89.5 -51.3 

  Urine 80.9 -10.0 

 2.5 Serum 92.8 -46.5 

  Urine 98.2 -1.92 

O5HT-d17 0.1 Serum 92.6 -12.7 

  Urine 100 +5.23 

 0.5 Serum 74.6 +3.22 

  Urine 63.5 +10.9 

 2.5 Serum 89.3 -14.2 

  Urine 77.2 +13-3 
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S5. Stability of QC samples after exposure to 4 °C and – 20°C for 24h (pag.43) 

Compound Concentration (ng/mL) Condition Mean deviation (%) from Day 0 

AEA 
 
 

0.1 4 °C 
-20 °C 

+8.13 
+4.88 

0.5 4 °C 
-20 °C 

-2.14 
-1.58 

2.5 4 °C 
-20 °C 

+4.39 
+6.15 

2AG 
 
 

0.1 4 °C 
-20 °C 

+0.61 

-1.19 
 

0.5 4 °C 
-20 °C 

+9.66 

-9.72 
 

2.5 4 °C 
-20 °C 

+7.31 

+8.19 
 

2AGE 
 
 

0.1 4 °C 
-20 °C 

+3.93 

-3.51 
 

0.5 4 °C 
-20 °C 

-4.92 

-2.45 
 

2.5 4 °C 
-20 °C 

+7.19 

-2.62 
 

LNEA 
 
 

0.1 4 °C 
-20 °C 

+4.49 

-8.64 
 

0.5 4 °C 
-20 °C 

-0.72 

-2.26 
 

2.5 4 °C 
-20 °C 

+2.33 

+6.96 
 

LEA 
 
 

0.1 4 °C 
-20 °C 

-0.69 

0.51 
 

0.5 4 °C 
-20 °C 

-1.54 

-4.56 
 

2.5 4 °C 
-20 °C 

+1.08 

+6.68 
 

PEA 
 
 

0.1 4 °C 
-20 °C 

-14.6 

-13.1 
 

0.5 4 °C 
-20 °C 

-10.3 

-6.46 
 

2.5 4 °C 
-20 °C 

+13.58 
+13.70 

OEA 
 
 

0.1 4 °C 
-20 °C 

+11.4 

+7.48 
 

0.5 4 °C 
-20 °C 

-2.47 
-13.4 
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2.5 4 °C 
-20 °C 

+7.71 

+12.13 
 

SEA 
 
 

0.1 4 °C 
-20 °C 

-14.6 

-11.2 
 

0.5 4 °C 
-20 °C 

-1.19 

3.45 
 

2.5 4 °C 
-20 °C 

+11.1 

+4.17 
 

DHEA 
 
 

0.1 4 °C 
-20 °C 

+7.81 

-8.40 
 

0.5 4 °C 
-20 °C 

-5.57 

+10.2 
 

2.5 4 °C 
-20 °C 

-3.32 

+2.39 
 

EPEA 
 
 

0.1 4 °C 
-20 °C 

+11.5 

-3.54 
 

0.5 4 °C 
-20 °C 

+2.94 

+2.19 
 

2.5 4 °C 
-20 °C 

+8.91 

+6.74 
 

ADA 
 
 

0.1 4 °C 
-20 °C 

+8.54 

+11.0 
 

0.5 4 °C 
-20 °C 

+3.93 

+2.35 
 

2.5 4 °C 
-20 °C 

-2.38 

-4.35 
 

ODA 
 
 

0.1 4 °C 
-20 °C 

-10.8 

-4.62 
 

0.5 4 °C 
-20 °C 

-11.7 

+6.59 
 

2.5 4 °C 
-20 °C 

-13.7 

-6.88 
 

ASer 
 
 

0.1 4 °C 
-20 °C 

+10.6 

+1.30 
 

0.5 4 °C 
-20 °C 

+9.47 

+1.15 
 

2.5 4 °C 
-20 °C 

+10.0 

+5.96 
 

AGly 
 
 

0.1 4 °C 
-20 °C 

+9.10 

-9.79 
 

0.5 4 °C 
-20 °C 

-5.60 

-8.91 
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2.5 4 °C 
-20 °C 

+11.2 

+12.3 
 

OGly 
 
 

0.1 4 °C 
-20 °C 

-1.22 

-9.72 
 

0.5 4 °C 
-20 °C 

-10.0 

-3.31 
 

2.5 4 °C 
-20 °C 

+7.04 

+14.3 
 

PalGly 
 
 

0.1 4 °C 
-20 °C 

-8.38 

-5.24 
 

0.5 4 °C 
-20 °C 

-4.38 

+2.86 
 

2.5 4 °C 
-20 °C 

+11.8 

+7.55 
 

AGABA 
 
 

0.1 4 °C 
-20 °C 

+3.57 

+3.27 
 

0.5 4 °C 
-20 °C 

+5.31 

-3.66 
 

2.5 4 °C 
-20 °C 

+1.28 

+4.24 
 

A5HT 
 
 

0.1 4 °C 
-20 °C 

-7.66 

-0.90 
 

0.5 4 °C 
-20 °C 

-7.98 

-2.25 
 

2.5 4 °C 
-20 °C 

+2.91 

+7.10 
 

O5HT 
 
 

0.1 4 °C 
-20 °C 

-9.15 

-5.78 
 

0.5 4 °C 
-20 °C 

-1.55 

+1.16 
 

2.5 4 °C 
-20 °C 

+8.48 

+6.07 
 

Pal5HT 
 
 

0.1 4 °C 
-20 °C 

-8.84 

-9.01 
 

0.5 4 °C 
-20 °C 

+1.14 

-3.66 
 

2.5 4 °C 
-20 °C 

+6.28 

+3.27 
 

AA 1 4 °C 
-20 °C 

-6.75 
-1.78 

5 4 °C 
-20 °C 

-7.81 
-6.85 
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25 4 °C 
-20 °C 

-9.51 
-13.1 

EPA 0.1 4 °C 
-20 °C 

-2.72 
-7.61 

0.5 4 °C 
-20 °C 

-1.94 
-13.9 

2.5 4 °C 
-20 °C 

-1.50 
-12.2 

DHA 1 4 °C 
-20 °C 

-13.8 
-9.79 

5 4 °C 
-20 °C 

+3.91 
+11.4 

25 4 °C 
-20 °C 

-3.98 
+0.34 

TXB2 0.1 4 °C 
-20 °C 

-10.3 
-6.47 

0.5 4 °C 
-20 °C 

+10.6 
+10.5 

2.5 4 °C 
-20 °C 

+4.41 
+9.15 

PGE2 0.1 4 °C 
-20 °C 

+0.60 
+8.74 

0.5 4 °C 
-20 °C 

-8.17 
-11.4 

2.5 4 °C 
-20 °C 

-4.13 
-6.51 

PGD2 0.1 4 °C 
-20 °C 

+7.03 
+50.3 

0.5 4 °C 
-20 °C 

-2.27 
+33.1 

2.5 4 °C 
-20 °C 

-4.83 
+25.9 

PGF2α 0.1 4 °C 
-20 °C 

-10.9 
+0.89 

0.5 4 °C 
-20 °C 

-5.60 
-11.4 

2.5 4 °C 
-20 °C 

-14.6 
-1.00 

6αKeto-PGF1α 
 

0.1 4 °C 
-20 °C 

-8.90 

-5.74 
 

0.5 4 °C 
-20 °C 

-14.8 

-12.8 
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2.5 4 °C 
-20 °C 

-11.6 

-9.43 
 

LTB4 
 

0.1 4 °C 
-20 °C 

-13.5 
-10.3 

0.5 4 °C 
-20 °C 

-5.91 

-7.06 
 

2.5 4 °C 
-20 °C 

-14.8 
-14.2 

5(S)-HETE 
 

0.1 4 °C 
-20 °C 

-7.6 
-9.1 

0.5 4 °C 
-20 °C 

-13.3 
-33.3 

2.5 4 °C 
-20 °C 

-14.4 
-11.2 

15(S)-HETE 0.1 4 °C 
-20 °C 

-14.9 
-42.8 

0.5 4 °C 
-20 °C 

-14.3 
-36.5 

2.5 4 °C 
-20 °C 

-13.7 
-11.1 

14,15-EET 0.1 4 °C 
-20 °C 

-14.1 
-37.1 

0.5 4 °C 
-20 °C 

-6.95 
-23.9 

2.5 
 

4 °C 
-20 °C 

-10.0 
-4.08 
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A B S T R A C T

Recent clinical trials show the efficacy of Adipose-derived Stromal Cells (ASCs) in contrasting the osteoarthritis
scenario. Since it is quite accepted that ASCs act predominantly through a paracrine mechanism, their secretome
may represent a valid therapeutic substitute. The aim of this study was to investigate the effects of ASC con-
ditioned medium (ASC-CM) on TNFα-stimulated human primary articular chondrocytes (CHs).

CHs were treated with 10 ng/ml TNFα and/or ASC-CM (1:5 recipient:donor cell ratio). ASC-CM treatment
blunted TNFα-induced hypertrophy, reducing the levels of Osteocalcin (−37%), Collagen X (−18%) and MMP-
13 activity (−61%). In addition, it decreased MMP-3 activity by 59%. We showed that the reduction of MMP
activity correlates to the abundance of TIMPs (Tissue Inhibitors of MMPs) in ASC secretome (with TIMP-1
exceeding 200 ng/ml and TIMP-2/3 in the ng/ml range) rather than to a direct down-modulation of the ex-
pression and/or release of these proteases. In addition, ASC secretome contains high levels of other cartilage
protecting factors, i.e. OPG and DKK-1.

ASC-CM comprises cartilage-protecting factors and exerts anti-hypertrophic and anti-catabolic effects on
TNFα-stimulated CHs in vitro. Our results support a future use of this cell-derived but cell-free product as a
therapeutic approach in the management of osteoarthritis.

1. Introduction

Osteoarthritis (OA) is a common age-related condition affecting
millions of people worldwide. It is a multifactorial disease whose pa-
thogenesis involves multiple causes, processes and tissues (Martel-
Pelletier et al., 2016). This pathology is characterized by the destruc-
tion of articular cartilage associated with subchondral bone erosion and
inflammation. Cartilage damage seems to be one of the earliest disease-
causing events (Berenbaum, 2013). In OA, articular chondrocytes (CHs)
undergo a phenotypic change: from quiescent and stable they engage a
hypertrophic differentiation, characterized by increased cell prolifera-
tion and altered expression and activity of matrix-degrading enzymes
(matrix metalloproteinases, MMPs) (Singh et al., 2018). The hyper-
trophic shift of CHs starts with the abnormal modulation of several
signaling molecules and transcription factors that leads to the over-
expression of Collagen X and distinct MMPs, such as MMP-1, MMP-9

and MMP-13. Among these enzymes, the latter is considered the main
marker of hypertrophy (Singh et al., 2018). In animal models, the
down-modulation of hypertrophy-inducing factors enhances the re-
sistance to OA development, suggesting the arrest of chondrocyte hy-
pertrophy as a valid therapeutic approach (Bottini et al., 2016). In
addition, several in vitro models of hypertrophic chondrocytes have
been developed treating cells with IL-1β or TNFα, the two major players
in OA physiopathology (Cecil et al., 2009; Platas et al., 2013). Up to
now, most treatments against OA are not curative. Cartilage regenera-
tion does not occur spontaneously and the most common surgical ap-
proaches to circumvent the loss of cartilage, e.g. microfracture, sub-
chondral drilling or autologous cartilage implantation, often lead to the
formation of low-quality fibrocartilage. In the last years, the use of
Mesenchymal Stromal Cells (MSCs) has emerged as a promising tool
(Lopa et al., 2018). Its efficacy in contrasting cartilage damage has been
shown in vitro (Manferdini et al., 2013; Maumus et al., 2013) and in
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vivo (Lee et al., 2007; Xie et al., 2012). Moreover, > 50 clinical trials
have been investigating the safety, feasibility and efficacy of MSC intra-
articular injection (clinicaltrials.gov). Since nowadays it is widely re-
cognized that MSC therapeutic action largely depends on paracrine
mechanisms, the scientific interest has shifted to their secretome,
namely the conditioned medium (CM). MSC-CM has been successfully
tested in several preclinical models (e.g. Brini et al., 2017; Kay et al.,
2017; Kuljanin et al., 2019), suggesting its promising potential in future
clinical applications. Here, we have investigated the anti-hypertrophic
and anti-catabolic action of Adipose-derived Stromal Cell conditioned
medium (ASC-CM) on an in vitro model of TNFα-stimulated primary
human articular chondrocytes.

2. Methods

2.1. Human primary cells

Human ASCs were isolated from the adipose tissue of 8 healthy
donors (2 males and 6 females; 46 ± 16 y/o) undergoing aesthetic or
prosthetic surgery at IRCCS Galeazzi Orthopaedic Institute, following
previously described protocols (Niada et al., 2016). Human CHs were
isolated from the articular cartilage of the femoral heads collected from
18 patients (11 males and 7 females; 62 ± 11 y/o) undergoing total
hip replacement surgery at the same Clinical Institute (additional in-
formation in supplementary methods). All waste tissues were collected
following the procedure PQ 7.5.125, version 4, dated 22.01.2015, ap-
proved by IRCCS Istituto Ortopedico Galeazzi. Written informed con-
sent was obtained from all the patients.

2.2. Concentrated conditioned media

Conditioned media were collected from about 90–95% confluent
ASCs cultured for 72 h in starving conditions (i.e. without FBS) and
concentrated through Amicon Ultra-15 Centrifugal Filter Devices with
3 kDa cut-off (Merck Millipore)(Brini et al., 2017; Niada et al., 2018).
The product was concentrated about 40–50 folds becoming handy for in
vitro treatments (final volume of 50-60 μl~106 ASCs).

2.3. Cell viability

CHs were stimulated with 10 ng/ml TNFα and/or ASC-CM (added at
a 1:5 recipient to donor cell ratio). Cell viability was assessed by Alamar
Blue assay (Thermo Fisher Scientific) (Giannasi et al., 2018) before the
first treatment and after 3, 5 and 7 days. After 4 h incubation with
Alamar Blue (1:10 dilution), emitted fluorescence was measured using
Wallac Victor II plate reader (Perkin Elmer).

2.4. Analyses of gene and protein expression

CHs were seeded at the density of 8× 103 cells/cm2 in complete
medium with 1% FBS and treated with 10 ng/ml TNFα and/or ASC-CM
(1:5 recipient to donor cell ratio). 24, 48 and 72 h later, cells were
lysed, and total RNA was extracted with RNaeasy kit (Qiagen). cDNA
was synthesized using the High Capacity Reverse-Transcription Kit
(Thermo Fisher Scientific). The expression levels of the target genes and
of the housekeeping gene TBP were quantified by RT-qPCR using
TaqMan technology (MMP3: hs00968305_m1; MMP13:
hs00233992_m1; TBP: hs00427600_m1). The real-time PCR was con-
ducted on a StepOne Plus Applied Biosystem apparatus (Life
Technologies). Data were analysed with the 2-ΔΔCt method.

MMP-3, MMP-13 and Collagen X protein expression was assessed
after 1 or 3 days of treatment using western blotting, as described in
supplementary methods.

2.5. Luminex multiplex assay

CH culture supernatants were prepared as described in supple-
mentary methods. The analyses were conducted using MILLIPLEX MAP
Human Bone Panel (HBNMAG-51 K, Millipore), Human MMP Panel 1
and 2 (HMMP1MAG-55 K and HMMP2MAG-55 K), and Human TIMP
Magnetic Luminex Performance Assay (LKTM003, R&D Systems).
Technical duplicates were analysed for each condition (25-50 μl/
sample) and read through Bio-Plex Multiplex System (Bio-Rad) fol-
lowing standard procedures. Data analysis was performed with
MAGPIX xPONENT 4.2 software (Luminex Corporation).

2.6. MMP-3 and MMP-13 activity assay

72-h culture supernatants were analysed to assess the activity of
MMP-3 and MMP-13 with SensoLyte 520 Generic MMP Assay Kit
(AnaSpec) following the manufacturer's instructions. Pro-MMP activa-
tion was achieved after incubating samples with 1mM 4-aminophe-
nylmercuric acetate (APMA) at 37 °C for 4 h (MMP-3) or 40min (MMP-
13). Fluorescence (490 nm excitation λ, 520 nm emission λ) was read
with Wallac Victor II plate reader (Perkin Elmer).

2.7. Statistical analysis

Data are expressed as mean ± standard deviation (SD) of at least 3
independent experiments. Statistical analysis was performed by one-
way or two-way ANOVA using Prism 5 software (GraphPad Software
Inc). Differences were considered significant at p≤ .05.

3. Results

ASC-CM exerted specific effects on OA-related factors, blunting the
increase of hypertrophic markers induced by TNFα stimulation.
Collagen X expression and Osteocalcin (OC) release were reduced by
18% (day 1) and 37% (day 3) (Fig. 1C and D, Supplementary Fig. 1 A),
while MMP-13 activity was lowered by 61% (Fig. 1F). In addition, ASC-
CM halved the activity of MMP-3, another OA-related cartilage-de-
grading enzyme (Fig. 1E). These were most likely specific effects. In-
deed, ASC-CM did not induce any alteration in chondrocyte viability
and proliferation (Fig. 1A and B), not even when TNFα significantly
increased these parameters (+27% and+31% at day 5 and 7, re-
spectively). Since in the OA context the reduction in MMP-3 and MMP-
13 activity represents a promising goal, we explored its possible causes.
Initially, we investigated MMP expression and release. At an early time
point (24 h after treatments), ASC-CM reduced the expression ofMMP-3
(−49%) and, by a lower extent, MMP-13 (−31%) in TNFα-treated CHs
(Fig. 2A and B). The down-modulation of MMP-3 was maintained up to
day 3 (−38%, data not shown), while MMP-13 one was lost at later
time points (data not shown). Surprisingly, ASC-CM treatment stimu-
lated both the intracellular (Fig. 2C) and the extracellular (Fig. 2E)
levels of MMP-3. The intracellular expression was increased in both
untreated (+81%) and TNFα-treated CHs (+39%) (Fig. 2C and Sup-
plementary Fig. 1 B) and a similar induction was revealed extra-
cellularly (+245% versus control CHs and+ 33% compared to TNFα-
treated cells) (Fig. 2E). On the other hand, ASC-CM caused a mild re-
duction of MMP-13 expression (−12%, Fig. 2D and Supplementary
Fig. 1 B) in TNFα-stimulated CHs, in full accordance with its lower
release (−20%, Fig. 2F). Taken together these evidences cannot explain
the blunting effect of ASC-CM on TNFα-induced MMP activity. Since
MMP activities are physiologically modulated by their endogenous in-
hibitors, we analysed the levels of TIMPs in CH supernatants after
3 days of TNFα stimulation and/or ASC-CM administration. Following
CM treatment, TIMP levels were significantly increased in respect to
both control and TNFα-stimulated cells (Fig. 3). TIMP-1 was the more
abundant (> 200 ng/ml), followed by TIMP-2 (around 80 ng/ml),
TIMP-3 (around 5 ng/ml) and the less represented TIMP-4 (Fig. 3A-D
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respectively). Similar levels were already measured after 24 h of
treatments (data not shown). This, together with the analysis of the
naïve treating medium (Table 1), indicates that the high levels of TIMPs
depend on their abundance in ASC secretome rather than to an in-
creased production by treated CHs.

In conclusion, our data suggest that the reduction of MMP activity in
TNFα-stimulated-CHs can be ascribed to the presence of TIMPs in ASC
secretome rather than to its direct modulation of MMP gene and protein

levels. Similar speculations can be made considering other MMPs whose
secretion was enhanced by TNFα, such as MMP-1 (reduced by 31%
following ASC-CM administration), MMP-9 (−52%) and MMP-10
(−16%) (Supplementary Fig. 2).

Moreover, the analysis of the naïve treating medium revealed the
presence of two other factors involved in cartilage protection, namely
OPG and DKK-1 (Table 1). MMP-1, MMP-3 and MMP-10 were also
detected, even though their activity was probably inactivated by TIMPs

Fig. 1. Reduction of hypertrophic markers and MMP activity by ASC-CM treatment in TNFα-stimulated articular chondrocytes. (A) Cell metabolic activity measured
by Alamar Blue assay. Data are shown as mean ± SD (n=3) of relative values calculated as ratios on day 2 (red dashed line). Two-way ANOVA was performed, and
significance vs CTRL is shown as *p < .05, **p < .01 and ****p < .0001, vs CM as °°°p < .001. (B) Cell confluency at the final time point (day 7) displayed by Diff
Quick staining (100× magnification; scale bar: 200 μm). (C) Collagen X expression at day 1 by Western Blot. Data (n=4) were normalized on β-Actin and expressed
as relative values (CTRL=1). (D) Osteocalcin (OC) levels in CH culture media (day 3) measured by Luminex Multiplex Assay (n=9 CHs, 3 pools). (E-F) Activity of
MMP-3 and MMP-13 in chondrocyte culture medium (n=10 CHs, 3 pools and 1 single population) expressed as fluorescence units (FU). Data were analysed by one-
way ANOVA followed by Tukey's multiple comparison test. Significance vs CTRL is shown as *p < .05, vs CM as °p < .05.
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(e.g. MMP-3 in Fig. 1E).

4. Discussion

The complex nature of osteoarthritis might demand a multifactorial
treatment. Adipose-derived Stromal Cell secretome is a mixture of so-
luble (proteins, lipids and nucleic acids) and vesicular elements, re-
presenting the entire regenerative milieu of its cell source. However, in
the OA context, despite the chondroprotective action of ASCs has been
described in vitro (Manferdini et al., 2013; Maumus et al., 2013; Tofino-
Vian et al., 2018), in vivo (Choi et al., 2018; Desando et al., 2013) and
in clinical trials (Lopa et al., 2018), there is no consensus yet on the

efficacy of cell secretome (Manferdini et al., 2015; Platas et al., 2013).
The studies of Platas (Platas et al., 2013), Manferdini (Manferdini et al.,
2015) and Tofino-Vian (Tofino-Vian et al., 2018) suggest that ASC-CM
action depends on the “activated” status of recipient. Our data confirm
this hypothesis, as in our hands ASC-CM acts on TNFα-stimulated ar-
ticular chondrocytes only. Moreover, the reduction of OA-related fac-
tors did not correlate with a decrease in cell metabolism nor pro-
liferation, providing further evidence of the specificity of ASC-CM
effects. One of the most promising results is the blunting of the TNFα-
mediated hypertrophic shift. The reduction in MMP-13 activity is par-
ticularly interesting. Indeed, in vivo evidences on MMP-13-deficient or
-depleted mice demonstrate that the action of this hypertrophy-

Fig. 2. Gene, protein expression and extracellular levels of MMP-3 and MMP-13 by ASC-CM-treated and/or TNFα-stimulated chondrocytes. (A-B) MMP-3 (A) and
MMP-13 (B) mRNA expression at day 1 measured by real-time PCR. Data are expressed as 2-ΔΔCt (TBP was used as housekeeping gene). Data were analysed by
Friedman's test followed by Dunn's test. (C-D) MMP-3 (C) and MMP-13 (D) protein expression measured at day 3 by Western Blot. Data (n=7) were normalized on β-
Actin, expressed as relative values (CTRL=1) and analysed using one-way ANOVA followed by Tukey's test. (E-F) MMP-3 (E) and MMP-13 (F) levels measured by
Luminex Multiplex Assay (n= 9 CHs, 3 pools). Significance vs CTRL is shown as *p < .05 and ***p < .001, vs CM as °p < .05.
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associated metalloprotease plays a key role in cartilage erosion during
OA onset (Little et al., 2009; Wang et al., 2013). Here, we show that the
ASC-CM-mediated reduction of MMP-13 activity, as well as MMP-3 one,
depends only partially by the modulation of their expression. Indeed,
the downmodulation of MMP-3 and MMP-13 transcription, the latter
fully in agreement with what observed by Tofino-Vian (Tofino-Vian
et al., 2018), was evident until day 1 only. When we investigated MMP-
13 mRNA levels at subsequent time points (48 and 72 h,-data not
shown-), no clear-cut regulation emerged. A possible explanation is that
the effectors of MMP-13 downmodulation could be active only in a
short time period. As example, several miRNAs are among the major

players involved in MMP-13 inhibition (Li et al., 2017). In this per-
spective, the short-lasting effect of CM could be ascribed to miRNA
limited half-life, usually considered< 24 h. Regardless mRNA, also
intracellular and secreted MMP-13 levels were decreased to a minor
extent compared to the enzymatic activity. Moreover, the influence of
ASC secretome on MMP-3 protein expression is not consistent with
what observed at mRNA level. Even though this discrepancy was not
expected, a lack of correlation between MMP mRNA and protein levels
has been described before (Lichtinghagen et al., 2002). We hypothesize
that CM reduces both MMP-3 mRNA transcription and its degradation
rate, favouring the translation of MMP-3 and increasing the protein
levels. These aspects might demand further investigations. However, in
our setting, the robust inhibition of MMP-3 and MMP-13 activity is
mainly due to the presence of active TIMPs. Besides MMP-3 and MMP-
13, ASC-CM reduced also the activity of the collagenase MMP-1, the
metallopeptidase MMP-12 and MMP-9/10, both Aggrecan-degrading
enzymes (preliminary data not shown). The presence of these inhibitors
in the secretome of MSCs is particularly interesting considering the
relevance of developing clinical grade MMP inhibitors (Liu and Khalil,
2017). Of note, TIMPs in ASC secretome did not alter the physiologic
MMP activity but buffered the TNFα-induced one. In the OA context, it
is noteworthy that TIMPs are known to inhibit other metalloprotei-
nases, namely ADAM-10 (a disintegrin and metalloproteinase-10),
ADAM-12, ADAMTS-4 (a disintegrin and metalloproteinase with
thrombospondin motif) and ADAMTS-5 (Liu and Khalil, 2017; Yang
et al., 2017). Moreover, TIMP-1 has been implicated in the reduction of
angiogenesis mediated by MSC secretome (Zanotti et al., 2016). Con-
sequently, ASC-CM could also play a role in re-establishing the anti-
angiogenic environment of a healthy cartilage.

Fig. 3. TIMP levels in ASC-CM-treated and/or TNFα-stimulated chondrocyte culture media. (A-D) TIMP-1 (A), TIMP-2 (B), TIMP-3 (C) and TIMP-4 (D) levels
measured by Luminex Multiplex Assay (n=10 CHs, 3 pools and 1 single population). Data were analysed by one-way ANOVA followed by Tukey's multiple
comparison test. Significance vs CTRL is shown as *p < .05, **p < .01 and *** < 0.001, vs CM as °p < .05 and vs TNFα as § p < .05, §§ p < .01 and §§§
p < .001.

Table 1
Concentrations of factors in the treating medium containing ASC-CM. Protein
levels were measured by Luminex Multiplex Assay.

[] of factors in the treating medium containing ASC-CM (pg/ml)

TIMP-1 2.6×105

TIMP-2 2.7×104

TIMP-3 3.8×103

TIMP-4 166
OC nd
OPG 1.1–1.9× 103

DKK-1 1.8–2.1× 103

MMP-1 2.1–2.6× 103

MMP-3 1.9–2.1× 103

MMP-9 nd
MMP-10 17.7–20.3
MMP-12 0–56
MMP-13 nd
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Besides TIMPs, other cartilage-protecting factors, namely OPG and
DKK-1, were detected in ASC-CM (Table 1). OPG is known to prevent
cartilage degradation by inhibiting proteoglycan loss and chondrocyte
apoptosis (Feng et al., 2015; Kadri et al., 2008) while DKK-1 acts mainly
by preserving CH phenotype, counteracting hypertrophy (Zhong et al.,
2016) and inhibiting the expression of catabolic factors (Oh et al.,
2012). Of note, we have recently shown that DKK-1 is one of the 34
proteins more abundantly secreted by ASCs compared with dermal fi-
broblast (Niada et al., 2018).

In the last few years, the first in vivo evidences of the beneficial
effect of MSC-secretome administration in pre-clinical OA models have
been produced (Cosenza et al., 2017; Khatab et al., 2018; Tao et al.,
2017; Toh et al., 2017; Wang et al., 2017; Zhang et al., 2018; Zhu et al.,
2017). Even though many of these experimental plans rely on the ad-
ministration of the purified vesicular component, Khatab et al. showed
the effects of the whole secretome (Khatab et al., 2018) on pain re-
duction and arrest of cartilage damage in a murine collagenase OA
model. The rationale of their choice relies on the lack of current
knowledge on which component plays a major role. We chose to use a
cell product containing both freely dissolved factors and vesicular
components (Supplementary Fig. 3) for the same reason. Moreover, in
the OA context, the use of selected CM subcomponents may lead to a
diminished efficacy of the treatment. In fact, many factors released by
ASCs that can be therapeutically exploited are both conveyed in vesicles
and released as soluble mediators. TIMPs have been described both in
the whole secretome (Niada et al., 2018)(Egashira et al., 2012; Kono
et al., 2014; Maffioli et al., 2017) and in the vesicular elements (exo-
somes or microvesicles) (Haraszti et al., 2016). Similarly, DKK-1, HGF,
recognized as a mediator of ASC anti-fibrotic effect (Maumus et al.,
2013), and Prostaglandin E2, an immunosuppressive factor acting also
on chondrocyte hypertrophic shift (Li et al., 2004; Manferdini et al.,
2013), have been identified both in whole ASC-CM (Manferdini et al.,
2013; Maumus et al., 2013) and in vesicles (vesiclepedia (Pathan et al.,
2019)). Therefore, the use of secretome fractions would subtract ef-
fectors at the additional cost of increasing manipulations. This is par-
ticularly risky, also considering how different isolation methods can
alter EV content (Gualerzi et al., 2019).

In conclusion, ASC-CM might constitute a novel tool to counteract
OA development. It inhibits the aberrant activity of MMPs and blunts
the hypertrophic changes induced by the inflammatory cytokine TNFα
(Graphical Abstract). This complete cell product can be easily obtained,
prepared in advance and stored. Therefore it constitutes a ready-to-use
product. Both the soluble factors and the extracellular vesicles released
by ASCs may be responsible of CM beneficial action, including its well-
known anti-inflammatory properties. Further investigations should aim
at disclosing all the components of the secretome that are involved in its
therapeutic role in the perspective of a future clinical setting.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.scr.2019.101463.
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Abstract: Changes in lipid metabolism are involved in several pathological conditions, such as cancer.
Among lipids, eicosanoids are potent inflammatory mediators, synthesized from polyunsaturated
fatty acids (PUFAs), which coexist with other lipid-derived ones, including endocannabinoids (ECs)
and N-acylethanolamides (NAEs). In this work, a bioanalytical assay for 12 PUFAs/eicosanoids
and 20 ECs/NAEs in cell culture medium and human biofluids was validated over a linear range
of 0.1–2.5 ng/mL. A fast pretreatment method consisting of protein precipitation with acetonitrile
followed by a double step liquid–liquid extraction was developed. The final extracts were injected
onto a Kinetex ultra-high-performance liquid chromatography (UHPLC) XB-C18 column with a
gradient elution of 0.1% formic acid in water and methanol/acetonitrile (5:1; v/v) mobile phase.
Chromatographic separation was followed by detection with a triple-quadrupole mass spectrometer
operating both in positive and negative ion-mode. A full validation was carried out in a small amount
of cell culture medium and then applied to osteosarcoma cell-derived products. To the best of our
knowledge, this is the first lipid profiling of bone tumor cell lines (SaOS-2 and MG-63) and their
secretome. Our method was also partially validated in other biological matrices, such as serum and
urine, ensuring its broad applicability as a powerful tool for lipidomic translational research.

Keywords: polyunsaturated fatty acids (PUFAs); eicosanoids; endocannabinoids; N-acylethanolamides;
lipidomics; mass spectrometry; osteosarcoma

1. Introduction

1.1. Bioactive Lipids

Bioactive lipids comprise a variety of molecules, whose biosynthesis and activity are responsible
for several cell functions, including cell membrane integrity, energy storage, and lipid signaling,
by exchanges within and outside the cell [1,2]. The biosynthesis of many lipids depends on the presence
of their precursors, and changes in lipid metabolism are involved both in physiological processes
and in pathological conditions, such as inflammation, immune system diseases, and cancer [1–5].
Moreover, lipid moieties are necessary for the generation of lipid messengers, such as arachidonic
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acid (AA)-derived eicosanoids, endocannabinoids (ECs), and long-chain fatty acid derivatives such
as N-acylethanolamides (NAEs), which modulate important cellular processes, such as proliferation,
apoptosis, and inflammation. Among these, eicosanoids are potent lipid inflammatory mediators,
synthesized from polyunsaturated fatty acids (PUFAs) via cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450. Prostaglandins, the first identified eicosanoids, are synthesized from
AA by both COX-1 and 2. Cyclooxygenase-1 is constitutively expressed in almost all tissues,
whereas COX-2 expression is mainly correlated to acute inflammation [6]. Prostaglandins (PGs)
are pro-inflammatory molecules that promote the early stages of acute inflammation and are also
implicated in the initiation and propagation of cancer [1,7]. Another component of the eicosanoids
family is thromboxane, responsible for platelet aggregation and vascular smooth muscle contraction [8].
Alternatively, free AA may be metabolized by LOXs yielding leukotrienes, lipoxins, hepoxilins,
and hydroxyeicosatetraenoic acids [9–11]. Moreover, PUFAs and eicosanoids exist in a dynamic balance
with other different lipid-derived mediators, including ECs and NAEs [12,13]. Endocannabinoids
are a family of lipid mediators obtained from long-chain PUFAs linked to amides, esters, or ethers
able to modulate physiological responses through interaction with the endogenous cannabinoid
system (ECS) [14]. The ECS is composed of lipid-derived ECs, their G-protein-coupled receptors
(CB1 and CB2), and the enzymes responsible for their synthesis, transport, and metabolism [15].
The most common ECs, N-arachidonoylethanolamine (AEA) [16] and 2-arachidonoylglycerol
(2AG) [17,18], are two AA-derivatives belonging to the large families of N-acylethanolamines and
2-monoacylglycerols, respectively. Since AEA and 2AG are both derivatives of AA, there is an intimate
interrelationship between the EC and eicosanoid signaling systems. Other ECs have been identified,
including O-arachidonoylethanolamine and N-arachidonoyldopamine (ADA), which are derived
from non-oxidative metabolism of arachidonic acid [14]. Endogenous lipoamino acid analogs of
AEA, including glycine (AGly), alanine, and serine (ASer) have been identified in mammals [19].
Moreover, ethanolamides and amino acids derivatives of long-chain saturated or polyunsaturated
fatty acids, such as N-palmitoylethanolamide (PEA) and N-oleylethanolamide (OEA), belonging to
the NAEs family, have been demonstrated to interact with the ECS components, leading to entourage
effects [20,21]. Endogenous cannabinoid system ligands mediate most of the biological effects through
their interactions with CB1 and CB2 receptors expressed in the central nervous system and on immune
and peripheral cells [22]. Nevertheless, the ECs and NAEs interact not only with CB receptors
but also with the deorphanized GPR55 receptors, transient receptor potential vanilloid 1 channel,
and peroxisome proliferator-activated nuclear receptors that modulate anti-inflammatory and analgesic
effects [23]. The deregulation of the ECs activity and the consequent alteration of the levels of the
endogenous ECs and NAEs in different biological fluids have been associated to various pathological
conditions [24,25], such as inflammation and pain perception [26]. It is clear that an altered qualitative
or quantitative lipid profile, including PUFAs, eicosanoids, ECs, and NAEs, might be associated
to pathological conditions and contribute to the outcome and progression of different pathologies.
Therefore, a thorough understanding of the mechanisms underlying the action of PUFAs/eicosanoids
and ECs/NAEs in bio-matrices requires a sensitive analytical method for an accurate identification and
quantification of these molecules.

1.2. Lipid Analysis Features

Lipid analysis is challenging because of the very low concentrations in biological fluids and tissues
(picograms to nanograms per milliliter or milligram), in vitro metabolism, and autoxidation. For the
extraction of PUFAs/eicosanoids and ECs/NAEs from bio-matrices, an optimized solvent combination
is necessary to cover the whole polarity and pKa ranges of these metabolites, including the polar
prostaglandins and the less polar PUFAs. Several protocols for the extraction and the subsequent
analysis of ECs and NAEs, mainly AEA and 2AG, or PUFAs and eicosanoids in various bio-matrices
have been published [27–29]. The majority of liquid–liquid extraction (LLE) protocols according to
Bligh and Dyer or Folch [30,31], are limited by the distribution of analytes in both water and chloroform
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layers. However, application of ternary solvent combinations including polar as well as nonpolar
solvents seems to be a way to overcome these problems [28,29,32]. Moreover, the last step in sample
preparation is often manual desalting by solid-phase extraction (SPE) [33,34]. Special requirements for
lipid analysis in bio-matrices also include the preliminary deproteinization and pre-/post-extraction at
reproducible temperature conditions. Finally, the limited amount of sample available from in vitro
and preclinical studies should be taken into consideration since it may not be possible to perform
multiple analyses.

1.3. Aim of the Work

In this case, we proposed a double LLE step from a single sample in different mixtures of organic
solvents to cover a broad polarity range. The aim of the present work was to develop and validate fast
and sensitive quantitative ultra-high-performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS) methods using a simple LLE protocol for a simultaneous investigation of PUFAs,
eicosanoids, and ECs and NAEs from small amounts of different bio-matrices. This new method,
besides allowing a deep and quantitative lipid profiling of the four major lipid signaling families,
has been validated in a wide range of different biological matrices, such as cell lysates, extracellular
vesicles (EVs), conditioned medium (CM), urine, and serum. The validation of the method in very
small amounts of these matrices ensures its applicability to a large number of different studies, leading
to a powerful tool for lipidomic translational research.

1.4. Osteosarcoma-Derived Lipids

There is increasing evidence that the majority of ECS ligands exert significant effects on tumor cell
growth, motility, spread, and metastasis rate [35–38]. In particular, in this work, we assess the lipid
quantitative profile in osteosarcoma (OS)-derived samples. It has been demonstrated that the ECS
influence bone cell activity and bone remodeling in physiological and pathological conditions such
as cancer [39,40]. The most frequent primary cancers affecting skeletal system are osteosarcoma (OS)
and chondrosarcoma [41]. In particular, OS is the most common malignant tumor of bone in children
and young adults, exhibiting high invasion and metastasis rate [42]. It is well known that cancer cells
may communicate via the release of soluble factors or EVs that are enriched not only in protein and
nucleic acids but also in lipids. Several studies show a direct connection between tumor progression
and inflammatory status [43,44]. Therefore, elucidating the lipidomic profile, in OS cells, OS-derived
EVs, and secretome, might improve our understanding about OS biology. The OS-derived samples
(cell lysates, CM, and EVs) were collected from Saos-2 and MG-63 cell lines, and a partial elucidation
of their lipid composition was obtained. These results represent the first step in the challenging
final aim of investigating the role of lipid signaling molecules in the crosstalk between OS and the
surrounding microenvironment.

2. Material and Methods

2.1. Chemicals

Ultrapure water, acetonitrile, dichloromethane, isopropanol, methanol, ethyl acetate, n-exane,
and hydrochloride acid were of analytical grade and purchased from Carlo Erba (Milan, Italy).
Formic acid (98–100%) was purchased from Sigma–Aldrich (Milan, Italy). The reference materials
N-arachidonoylethanolamide (AEA), N-linolenoylethanolamide (LNEA), N-linoleoylethanolamide
(LEA), N-oleoylethanolamide (OEA), N-palmitoylethanolammide (PEA), N-stearoylethanolamide
(SEA), and N-stearoylethanolamide-d4 (SEA-d4) were synthesized and completely characterized in our
laboratories, as previously described [45,46]. The reference materials N-docosahexaenoylethanolamide
(DHEA), N-eicosapentaenoylethanolamide (EPEA), N-arachidonoyldopamine (ADA), N-oleoyldopamine
(ODA), N-arachidonoylglycine (AGly), N-oleoylglycine (OGly), N-palmitoylglicine (PalGly),
N-arachidonoylserine (ASer), N-arachidonoylserotonine (A5HT), N-oleoylserotonine (O5HT),
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N-palmitoylserotonine (Pal5HT), 2-arachidonoylglycerylether (2AGE), 2-arachidonoyglycerol
(2AG), N-arachidonoyl-3-hydroxy-γ-aminobutyric acid (AGABA), arachidonoyl acid (AA),
eicosapentaenoyl acid (EPA), docosahexaenoic acid (DHA), thromboxane-B2 (TXB2),
prostaglandin-F2α (PGF2α), 6α-keto-prostaglandin-F1α (6α-keto-PGF1α), prostaglandin-E2 (PGE2),
prostaglandin-D2 (PGD2), leukotriene-B4 (LTB4), 5-hydroxyeicosatetraenoic acid (5(S)-HETE),
15-hydroxyeicosatetraenoic acid (15(S)-HETE), and (±)14(15)-epoxyeicosatrienoic acid (14,15-EET),
and internal standards N-arachidonoylethanolamide-d8 (AEA-d8), N-oleoylethanolamide-d2
(OEA-d2), N-palmitoylethanolammide-d5 (PEA-d5), N-eicosapentaenoylethanolamide-d4 (EPEA-d4),
N-arachidonoyldopamine-d8 (ADA-d8), N-arachidonoylglycine-d8 (AGly-d8), N-arachidonoylserine-d8
(ASer-d8), N-oleoylserotonine-d17 (O5HT-d17), eicosapentaenoyl acid-d5 (EPA-d5), thromboxane-B2-d4
(TXB2-d4), prostaglandin-F2α-d4 (PGF2α-d4), and leukotriene-B4-d4 (LTB4-d4) were purchased from
Cayman Chemical (Ann Arbor, MI, USA).

2.2. Cell Cultures

The Saos-2 and MG-63 cell lines (ATCC, Rockville, MD, USA) were plated in tissue culture
vessels (Corning, New York, NY, USA) at a density of 5 × 103 cells/cm2 in complete culture
medium [47]: Dulbecco’s Modified Eagle Medium (DMEM, Euroclone, Milan, Italy) supplemented
with 10% fetal bovine serum (Euroclone), penicillin 50 U/mL, 50 µg/mL streptomycin (Sigma Aldrich,
Milan, Italy), and 2 mM L-glutamine (L-Glu, Euroclone). Cultures were maintained at 37 ◦C in a
humidified atmosphere, containing 5% CO2. After 48 h culture, non-adherent cells were removed,
and the medium replaced. At 70–80% confluence, the cells were detached with 0.5% trypsin/0.2%
ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich) and expanded.

2.3. Sample Collection

2.3.1. Cell Samples

Once at 80–90% confluence, cells were washed twice with phosphate buffered saline (PBS,
composed of NaCl 137 mM, KCl 2.7 mM, Na2HPO4 × 2H2O 8.1 mM, KH2PO4 1.7 mM-pH 7.4) and
kept for 1 h in starving medium (SM) (phenol red-free DMEM supplemented with 2 mM L-glutamine,
50 U/mL penicillin, 50 µg/mL streptomycin without fetal bovine serum) for additional washing.
Medium was replaced by fresh SM and cells were starved for 72 h.

Concentrated Conditioned Media (CM)

Conditioned media were collected from approximately 6 × 106 cells in starving conditions,
centrifuged for 15 min at 2500× g, at 4 ◦C to remove debris and large apoptotic bodies, and concentrated
through Amicon Ultra-15 Centrifugal Filter Devices with 3 kDa cut-off (Merck Millipore, Milan, Italy)
for 90 min at 4000× g, 4 ◦C [48]. The final product was concentrated about 40–50 folds. The purified
solution was analyzed for protein-anchored lipids or lipids enclosed in macromolecular components.

Extracellular Vesicles (EVs)

Extracellular vesicles were isolated from cell-conditioned medium using differential centrifugation,
as previously described [49,50]. In brief, after 72 h of starvation, the conditioned medium from
approximately 15 × 106 cells was centrifuged for 15 min at 2500× g, 4 ◦C, and then ultra-centrifuged
for 70 min at 100,000× g (L7–65; Rotor 55.2 Ti; Beckman Coulter, Brea, CA, USA) at 4 ◦C. Pellet was
resuspended in sterile PBS and ultra-centrifuged again under the same conditions. The resulting EV
pellet was kept at −20 ◦C for mass spectrometry analysis.
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Cells Pellets

After 72 h of starvation, cells were harvested with 0.5% trypsin/0.2% EDTA and centrifuged for
4 min at 350× g. Cell pellets (approximately 1 × 106 cells) obtained by this first centrifugation were
washed twice with sterile PBS and stored at −20 ◦C until use.

2.3.2. Serum and Urine Samples

Control human serum samples used for purification and extraction studies and for validation
experiments were obtained from healthy volunteers, which gave informed consent to offer their
biological samples for research intent. Blood samples were collected in Vacuette® 6 mL non-gel serum
separator tubes and aliquots of 1–2 mL serum were stored at −20 ◦C. Human urine specimens, obtained
from volunteer colleagues, were collected after a circadian cycle and aliquots of 1–2 mL were stored at
−20 ◦C until analysis.

2.4. Standard Solutions, Calibrators, and Quality Control (QC) Samples

Stock solutions of reference materials and internal standards (ISs) were prepared at the final
concentration of 10 µg/mL by appropriate dilution with acetonitrile (ACN) under a stream of nitrogen.
All solutions were stored in the dark at −20 ◦C. Working solutions were prepared in ACN from stock
solutions and used for the preparation of calibration curves and quality QC samples at 100 ng/mL,
except for AA, DHA, EPA, and EPA-d5 (1 µg/mL).

2.4.1. Cell Samples

Calibration standards (CS) containing 0, 0.1, 0.25, 0.5, 1.25, 2.5, and 5 ng/mL for all compounds,
0, 1, 2.5, 5, 12.5, and 25 ng/mL for AA, DHA, and EPA, 1 ng/mL for ISs, and 10 ng/mL for EPA-d5
were prepared daily for each analytical batch by adding suitable amounts of working solutions to
500 µL of SM. Quality control samples were prepared in SM at three different concentration levels
(low, intermediate, and high).

2.4.2. Serum and Urine Samples

Calibrators and QC samples were prepared by adding ISs at the same concentration levels
(see Section 2.4.1) to 500 µL of PBS, serum, and urine. Pooled serum and urine CS and QC used for
validation experiments were prepared combining 20 and five different samples, respectively.

2.5. Sample Preparation

Extracellular vesicles and cell pellets, stored at −20 ◦C, were resuspended in 500 µL of SM and
strongly vortexed three times for 1 min. Prior to extraction, 10 µL ISs and 1 mL of ice-cold ACN were
added to 500 µL CM (as well as for serum and urine), EVs, and cell suspensions, and centrifuged
for 10 min at 350× g at 4 ◦C. The clear supernatant was then transferred into glass test tubes and
extracted with 4 mL of dichloromethane/isopropanol (8:2; v/v). After centrifugation at 350 g for
10 min, the organic layer was separated and dried under a stream of nitrogen. The dried residue was
reconstituted with 60 µL methanol and a 3 µL aliquot was injected into the UHPLC-MS/MS system
for ECs and NAEs analysis. The remaining aqueous solution was used for PUFAs and eicosanoids
extraction, by adding 500 µL hydrochloride acid (HCl, 0.125 N) and 4 mL ethyl acetate/n-hexane
(9:1; v/v). The organic phase was dried, and the residue was reconstituted with 60 µL ACN. A 30 µL
aliquot of methanol obtained from the neutral extraction and a 30 µL aliquot from acid extraction were
merged and transferred into an autosampler vial. A 10 µL aliquot was injected into the UHPLC/MS-MS
system for PUFAs and eicosanoids determination (Figure 1).
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Figure 1. Diagram of the LLE procedure for ECs/NAEs (step 1–5) and PUFAs/eicosanoids (step 6–10).
Abbreviations: internal standards (ISs), acetonitrile (ACN), dichloromethane/isopropanol (DCM/IPA),
methanol (MeOH), endocannabinoids (ECs), N-acylethanolamides (NAEs), polyunsaturated fatty acids
(PUFAs).

2.6. Equipment

Analyses were performed on a 1290 Infinity UHPLC system (Agilent Technologies, Palo Alto, CA,
USA) coupled to a Q Trap 5500 triple quadrupole linear ion trap mass spectrometer (Sciex, Darmstadt,
Germany), equipped with an electrospray (ESI) source. Compounds were separated on a Kinetex UHPLC
XB-C18 column (100 × 2.1 mm i.d, 2.6 p.s.) (Phenomenex, Torrance, CA, USA) using 0.1% formic acid in
water (mobile phase A) and methanol/acetonitrile (5:1; v/v) (mobile phase B). For ECs and NAEs analysis,
solvent A and B were 75% and 25% at 1.00 min, respectively. Solvent B was increased to 70% from 1.00
to 1.50 min, then increased to 85% from 1.50 to 6.00 min, and to 100% from 6.00 to 7.00, held at 100%
from 7.00 to 9.00 min, and then decreased back to 25% from 9.00 to 9.20 min and held at 25% from 9.20 to
11.0 min for re-equilibration. For PUFAs and eicosanoids analysis, solvent A and B were 75% and 25% at
1.00 min, respectively. Solvent B was increased to 40% from 1.00 to 3.00 min, then ncreased to 95% from
3.00 to 5.50 min and to 100% from 5.50 to 7.00, held at 100% from 7.00 to 8.00 min, and then decreased
back to 25% from 8.00 to 8.20 min and held at 25% from 8.20 to 10.0 min for re-equilibration. The flow
rate was 0.60 mL/min and the column thermostatic oven was kept at 40 ◦C. The working conditions and
parameters of the MS were optimized by direct infusion (flow rate 7 µL/min) of a standard mix solution
(100 ng/mL) as follows: the ion source was ESI-operated in positive mode for the ECs/NAEs and in
negative mode for PUFAs/eicosanoids analysis, resolution of Q1 and Q3 was 0.7 ± 0.1 amu (atomic mass
unit), the curtain gas, ion gas 1, and ion source gas 2 were set at 25, 45, and 40 psi (pound per square
inch) respectively, the source temperature was 550 ◦C, the ionization voltage was 5500 eV (positive mode)
and −4500 eV (negative mode), the entrance potential was 10 eV, and dwell time was fixed 70 ms for
each multiple reaction monitoring (MRM) transition. The MRM conditions and parameters including
ion transitions, de-clustering potential (DP), and relative collision energy (CE) are provided in Table 1.
In detail, the following product ions were applied:

- AEA, LNEA, LEA, PEA, OEA, SEA→ m/z 62 relative to the protonated ethanolamine moiety.
- 2AG→ m/z 287 relative to glycerol neutral loss.
- ODA, ADA→ m/z 154 relative to the protonated dopamine moiety.
- A5HT, O5HT, Pal5HT→ m/z 160 relative to the protonated dehydroxy-5HT moiety.
- ASer→ m/z 106 relative to the protonated serine moiety.
- AGly, OGly, PalGly→ m/z 76 relative to the protonated glycine moiety.
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Table 1. Multiple reaction monitoring (MRM) parameters: precursor and product ion transitions
(quantifier underlined) for all the analytes and internal standards (ISs), de-clustering potential (DP),
and collision energy (CE).

Compound Precursor Ion (m/z) Product Ions (m/z) DP (eV) CE (eV)

AA (20:4) 303.1 59.1 −45 −42

259.6 −45 −20

EPA (20:5) 301.4 59.1 −55 −42

203.1 −55 −20

DHA (22:6) 327.3 283.3 −80 −10

59.1 −80 −35

TXB2 369 177 −50 −22

195 −50 −20

PGE2 351.5 315 −50 −25

271.1 −50 −25

PGD2 351.5 271 −50 −30

189 −50 −30

PGF2α 353 291 −50 −35

193 −50 −35

6αKeto-PGF1α 369.5 245 −50 −35

163 −50 −35

LTB4 335 273 −45 −23

195 −45 −23

5(S)-HETE 319.5 115 −50 −18

301.1 −50 −18

15(S)-HETE 319.5 219 −50 −15

301.2 −50 −15

14,15-EET 319.,5 219.1 −50 −22

301 −50 −40

AEA 348 62 76 42

133 76 33

2AG 379.4 287.3 76 18

203 76 25

LNEA 322.3 62.2 85 35

81.2 85 35

LEA 324.3 62.2 85 35

109 85 32

PEA 300.1 62 98 19

283 98 36

OEA 326.3 62.2 85 35

309 85 21

SEA 328.3 62.2 85 35

311.1 85 22
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Table 1. Cont.

Compound Precursor Ion (m/z) Product Ions (m/z) DP (eV) CE (eV)

DHEA 372.3 62 85 18

67 85 36

AGly 362.3 287 85 18

76 85 18

ADA 440.5 137 95 34

154 95 23

2AGE 365.3 273 85 10

121 85 20

ODA 418.3 137 85 24

154 85 35

EPEA 346.3 62 85 35

135 85 35

ASer 392.5 106 85 35

137.3 85 33

OGly 340.5 76 85 35

265 85 35

PalGly 314.5 76 85 35

239 85 20

AGABA 406.5 287.4 85 24

84.1 85 55

A5HT 463.3 160.4 85 35

132.2 85 35

O5HT 441.7 160.4 85 35

132.2 85 35

Pal5HT 415.7 160.4 130 47

132.2 130 47

TXB2-d4 373 199 −50 −22

173 −50 −22

PGF2a-d4 357 295 −50 −35

197 −50 −35

LTB4-d4 339 197 −45 −23

277 −45 −23

EPA-d5 306.3 59.1 −50 −35

208.1 −50 −18

AEA-d8 356.3 62 76 35

70 76 35

SEA-d4 332.3 66.2 85 35

62 85 18

EPEA-d4 350.3 66 85 35

135 85 35
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Table 1. Cont.

Compound Precursor Ion (m/z) Product Ions (m/z) DP (eV) CE (eV)

OEA-d2 328.3 62 85 35

311 85 35

PEA-d5 305.1 62 85 35

288 85 35

ADA-d8 448.5 137 85 35

154 85 35

AGly-d8 370.6 76 85 20

84 85 20

ASer-d8 400.6 106 85 35

70 85 35

O5HT-d17 458.7 160.4 130 47

132.2 130 47

Abbreviations: arachidonoyl acid (AA), eicosapentaenoyl acid (EPA), docosahexaenoic acid (DHA),
thromboxane-B2 (TXB2), prostaglandin-F2α (PGF2α), 6α-keto-prostaglandin-F1α (6α-keto-PGF1α),
prostaglandin-E2 (PGE2), prostaglandin-D2 (PGD2), leukotriene-B4 (LTB4), 5-hydroxyeicosatetraenoic
acid (5(S)-HETE), 15-hydroxyeicosatetraenoic acid (15(S)-HETE), (±)14(15)-epoxyeicosatrienoic acid
(14,15-EET), arachidonoylethanolamide (AEA), N-linolenoylethanolamide (LNEA), N-linoleoylethanolamide
(LEA), N-oleoylethanolamide (OEA), N-palmitoylethanolammide (PEA), N-stearoylethanolamide (SEA),
N-docosahexaenoylethanolamide (DHEA), N-eicosapentaenoylethanolamide (EPEA), N-arachidonoyldopamine
(ADA), N-oleoyldopamine (ODA), N-arachidonoylglycine (AGly), N-oleoylglycine (OGly), N-palmitoylglicine
(PalGly), N-arachidonoylserine (ASer), N-arachidonoylserotonine (A5HT), N-oleoylserotonine (O5HT),
N-palmitoylserotonine (Pal5HT), 2-arachidonoylglycerylether (2AGE), 2-arachidonoyglycerol (2AG),
N-arachidonoyl-3-hydroxy-γ-aminobutyric acid (AGABA), eicosapentaenoyl acid-d5 (EPA-d5),
thromboxane-B2-d4 (TXB2-d4), prostaglandin-F2α-d4 (PGF2α-d4), and leukotriene-B4-d4 (LTB4-d4),
N-arachidonoylethanolamide-d8 (AEA-d8), N-oleoylethanolamide-d2 (OEA-d2), N-palmitoylethanolammide-d5
(PEA-d5), N-stearoylethanolamide-d4 (SEA-d4), N-eicosapentaenoylethanolamide-d4 (EPEA-d4),
N-arachidonoyldopamine-d8 (ADA-d8), N-arachidonoylglycine-d8 (AGly-d8), N-arachidonoylserine-d8
(ASer-d8), N-oleoylserotonine-d17 (O5HT-d17).

2.7. Data Evaluation

Data acquisition and processing were performed using Analyst®1.6.2 and MultiQuant®2.1.1
software (Sciex, Darmstadt, Germany), respectively. Calculations for validation assessment,
which includes linearity, precision, accuracy, sensibility, recovery, and stability, were performed
using Microsoft Office Excel 2013.

2.8. Validation Procedure

Assay validation was carried out in accordance with the recommendations endorsed by Food
and Drugs Administration (FDA) guidelines referring to drugs and non-endogenous compounds [51],
and specific issues for endogenous compounds [52] were addressed. A full validation was performed
in the analyte-free SM and the following parameters were assessed: linearity, precision and accuracy,
sensitivity in terms of limits of detection (LODs) and limits of quantitation (LOQs), specificity, recovery,
matrix effect, and stability. Additionally, the described method was partially validated in serum and
urine. Surrogate analyte-free matrix (i.e., water and/or appropriate buffer) are usually used for the
preparation of CS and QC in the method validation of endogenous compounds to overcome the lack
of analyte-free matrix [52]. For this reason, to avoid the interference of endogenous analytes, linearity,
slope, recovery, and the influence of matrix effect were obtained by spiking serum and urine with ISs at
the same concentration levels (see Section 2.4.2), whereas LOD and LOQ evaluation was achieved on PBS.
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2.8.1. Calibration Range and Linearity

Calibration standards (n = 6) were obtained by spiking analyte-free SM with appropriate amounts
of working solutions in the range 0.1–2.5 and 0.5–25 ng/mL (EPA, AA, and DHA), as described at
Section 2.4. A linear model was used to describe the relation between analyte concentration and
instrument response (analyte peak area/internal standard peak area). Linearity was considered
satisfactory for each curve if R2

≥ 0.990. Additionally, to evaluate linearity and slope, CS were
also prepared in the analyte-free PBS, as well as in urine and serum, by spiking ISs at the same
concentration levels.

2.8.2. Sensitivity and Specificity

Reagents and consumables were extracted, following the procedures described before,
and analyzed in triplicate to evaluate and exclude interferences and false-positive responses derived
from sample preparation. The specificity of the method and matrix-to-matrix reproducibility was
evaluated by analyzing SM in triplicate from different lots number (n = 3). Sensitivity was expressed
in terms of LOD and LOQ as 3.3 and 10 times respectively, the ratio between the standard deviation
of the response and the slope of the calibration curve. LOD and LOQ were calculated on calibration
curves prepared in the analyte-free SM for cell samples’ quantification. Additionally, LOD and LOQ
were also tested in the analyte-free PBS in order to quantify serum and urine samples.

2.8.3. Precision and Accuracy

Precision and accuracy of the method were determined through the analysis of six independent
replicates of QC materials extracted from the analyte-free SM at three concentration levels
(low, intermediate, and high). Precision was denoted by percent coefficient of variation (CV%),
while the accuracy was expressed as bias (BIAS%), the percent deviation of the mean determined
concentration from the accepted reference value. The accuracy and precision were required to be ≤15%
CV (Supplementary Tables S1 and S2).

2.8.4. Recovery and Matrix Effects

Extraction recovery (%) was measured by comparing the peak area of the analyte-free SM (n = 3)
fortified with standards at three concentration levels prior to and after extraction. Peak areas of pre-
and post-extraction samples were used for calculations, considering as 100% recovery, the analytes area
in post-extraction spiked samples. The matrix effects (%) were determined by comparing the analytes
peak area in PBS and in the analyte-free SM, fortified in the low, intermediate, and high concentration
range after extraction. Concerning the extraction recovery evaluation in human and serum and urine,
which are matrices endogenously containing all the analytes, we spiked them with ISs before and after
LLE. The matrix effect was assessed by comparing the peak area of ISs spiked in eluate from serum
and urine to those in PBS. As for SM, the extraction recovery and matrix effect were evaluated at the
three concentration levels.

2.8.5. Stability Studies

Lipids’ stability was assessed in QC samples at low, intermediate, and high concentrations,
by analyzing them the initial day (T0) as well as 24 h later at 4 and –20 ◦C. The response factor at each
concentration was compared to the original vial at T0, and a mean deviation % below 15% from day 0
was considered acceptable.

2.9. Application to Real Samples

The proposed method was applied to Saos-2- and MG-63-derived CM, EVs, and cell lysates in order
to identify and quantify lipids belonging to PUFAs/eicosanoids and ECs/NAEs groups, as described at
Section 2.3. Each sample was injected into UHPLC-MS/MS three times (n = 3 analytical replicates).
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3. Results and Discussion

3.1. Sample Extraction

Different protocols for the purification and several combinations of solvents over the expected
polarity range were examined for the extraction of the considered analytes; however, the highest lipids
count was detected through a double-step extraction preparation with dichloromethane/isopropanol
(8:2; v/v) and ethyl acetate/n-hexane (9:1; v/v), respectively. On the basis of the analytes’
lipophilicity, a LLE procedure was developed with water-immiscible solvents in order to isolate
both PUFAs/eicosanoids and ECs/NAEs. Despite the fact that in several studies SPE has provided
concentrated and free interfering matrix components’ extracts [27,33,53,54], this extraction procedure
is money- and time-consuming (because of the different steps). Contrarily, LLE is easier, and its shorter
extraction time, as opposed to the most commonly used SPE procedures, could be an advantage for
studies that involve a huge number of samples. LLEs commonly used to isolate lipids from biological
samples require the use of toxic organic solvents. In our applied extraction protocol, a simple and
fast pretreatment method consisting of protein exclusion with can, followed by a first extraction with
dichloromethane/isopropanol (8:2; v/v) and a second one with ethyl acetate/n-hexane (9:1; v/v), both less
toxic than other solvents (i.e., toluene, chloroform or tert-methyl-butyl ether), was used. In general,
the combination of two or more sample preparation techniques, such as protein precipitation and
LLE, improves method selectivity [29,53,54]. Additionally, the second extraction is preceded by a
pH adjustment step, which is fundamental since some eicosanoids present a lower pKa value than
ECs. In detail, acidification with HCl improves the extraction of the less polar eicosanoids HETEs
and EETs. A lower pH leads to a reduced protein binding and the protonation of carboxylate anions,
which both allow improved extraction by the organic solvent. Otherwise, greater acidification may lead
to eicosanoid alteration [55], and therefore, an extremely low pH should be avoided. The optimized
solvent mixture combined with the pH adjustment, which allows the decreased protein binding and
the enhanced extraction of the non-ionized forms, was necessary to cover the whole polarity range of
these numerous metabolites. Moreover, the two sequential extraction steps from a single sample also
allowed the analysis when limited amounts of samples were available.

3.2. Instrumental Parameters

Mass spectrometry parameters were optimized by infusing a standard mix solution containing
PUFAs, eicosanoids, ECs, and NAEs at a concentration of 100 ng/mL in methanol, and by acquiring
both in the positive and negative ionization mode. Positive ionization mode provided better signal
responses for the ECs/NAEs group, whereas for the analysis of PUFAs and eicosanoids, a negative
polarization was used. The source/gas parameters were optimized to obtain the highest ion abundance
of the peaks. CE and DP were varied from 0 to ±60 eV and 0 to ±150 eV respectively, in order to obtain
the best response for the product ions used for quantitative MRM analysis. Precursors and product
ions, CE and DP, shown in Table 1, were selected for analytes’ quantification. Several reversed phase
columns, mobile phases, and elution gradients have been assessed in order to improve the responses of
the target compounds belonging to EC/NAE and PUFA/eicosanoid classes and to reduce the time of the
analysis. Two different elution gradients performed on a Kinetex UHPLC XB-C18 column using 0.1%
formic acid in water and methanol/acetonitrile (5:1; v/v), characterized by a total runtime of 11.0 min
each comprising cleaning and reconditioning of the column, exhibited the best analytes’ sensitivity
and peak shape. These instrumental conditions allowed the consequential analysis of the two classes
of interest using both the same elution column and mobile phases.
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3.3. Method Validation

Methods specificity was achieved by means of the selection of a precursor ion followed by
detection and quantification of product ions. All the reagents and consumables used for the methods
set-up and development have been shown not to interfere with the detection or quantification of the
analytes. False-positive response or co-eluting components were not detected in analyzed bio-matrices.

3.3.1. Calibration Range and Linearity

Standard calibration curves (n = 6) were obtained by fortifying 500 µL aliquots of analyte-free SM
with standard solutions, as described at Section 2.4.1. The calibration curves showed excellent linearity
(R2 > 0.991) over the following concentration ranges: 0.1–2.5 ng/mL for all the compounds and 1–25
ng/mL for AA, EPA, and DHA. Different calibration ranges for the eicosanoids AA, EPA, and DHA
have been chosen in relation to expected higher concentrations in real samples. The R2 values relative
to PUFAs/eicosanoids and ECs/NAEs are reported in Tables 2 and 3, respectively. Linearity was also
maintained in all matrices assessed. Calibration curves prepared spiking ISs at the same concentration
levels in PBS and in human serum and urine (see Section 2.4.2) were found to be parallel (standard
deviation of correlation coefficients <0.0001). For this reason, calibration lines obtained from CS spiked
in PBS may be used for PUFAs, eicosanoids, ECs, and NAEs quantification. Specificity tests, performed
on all reagents and disposable materials used, have shown no interference with the determination of
both PUFAs/eicosanoids and ECs/NAEs by UHPLC-MS/MS. LOD and LOQ values, obtained for the
two lipid groups both in the analyte-free SM and PBS, are listed in Tables 2 and 3.

Table 2. Calibration parameters for PUFAs/eicosanoids group.

Compound R2 Analytical Range
(ng/mL)

LOD (SM)
(ng/mL)

LOQ (SM)
(ng/mL)

LOD (PBS)
(ng/mL)

LOQ (PBS)
(ng/mL)

AA (20:4) 1.000 1–25 0.259 0.864 0.014 0.046

EPA (20:5) 1.000 1–25 0.039 0.132 0.007 0.024

DHA (22:6) 0.999 1–25 0.013 0.042 0.022 0.073

TXB2 0.991 0.1–2.5 0.021 0.070 0.022 0.073

PGE2 1.000 0.1–2.5 0.018 0.061 0.010 0.035

PGD2 0.999 0.1–2.5 0.008 0.028 0.031 0.103

PGF2α 1.000 0.1–2.5 0.008 0.028 0.018 0.059

6aKeto-PGF1α 1.000 0.1–2.5 0.006 0.020 0.014 0.048

LTB4 0.999 0.1–2.5 0.011 0.037 0.033 0.110

5(S)-HETE 0.998 0.1–2.5 0.031 0.100 0.016 0.053

15(S)-HETE 0.999 0.1–2.5 0.012 0.041 0.021 0.070

14,15-EET 0.999 0.1–2.5 0.002 0.006 0.027 0.090

Abbreviations: arachidonoyl acid (AA), eicosapentaenoyl acid (EPA), docosahexaenoic acid (DHA), thromboxane-B2
(TXB2), prostaglandin-F2α (PGF2α), 6α-keto-prostaglandin-F1α (6α-keto-PGF1α), prostaglandin-E2
(PGE2), prostaglandin-D2 (PGD2), leukotriene-B4 (LTB4), 5-hydroxyeicosatetraenoic acid (5(S)-HETE),
15-hydroxyeicosatetraenoic acid (15(S)-HETE), (±)14(15)-epoxyeicosatrienoic acid (14,15-EET).
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Table 3. Calibration parameters for ECs/NAEs group.

Compound R2 Analytical Range
(ng/mL)

LOD (SM)
(ng/mL)

LOQ (SM)
(ng/mL)

LOD (PBS)
(ng/mL)

LOQ (PBS)
(ng/mL)

AEA 0.9960 0.1–2.5 0.013 0.045 0.027 0.088

2AG 0.9918 0.1–2.5 0.004 0.015 0.027 0.089

2AGE 0.9986 0.1–2.5 0.008 0.026 0.015 0.049

LNEA 0.9965 0.1–2.5 0.033 0.109 0.019 0.064

LEA 0.9916 0.1–2.5 0.030 0.100 0.028 0.094

PEA 0.9954 0.1–2.5 0.030 0.101 0.027 0.090

OEA 0.9998 0.1–2.5 0.020 0.076 0.025 0.084

SEA 0.9999 0.1–2.5 0.005 0.018 0.013 0.045

DHEA 0.9964 0.1–2.5 0.020 0.081 0.028 0.092

EPEA 0.9982 0.1–2.5 0.010 0.033 0.005 0.017

ADA 0.9980 0.1–2.5 0.018 0.059 0.029 0.099

ODA 0.9998 0.1–2.5 0.031 0.106 0.029 0.099

ASer 0.9959 0.1–2.5 0.019 0.064 0.023 0.081

AGly 0.9998 0.1–2.5 0.030 0.101 0.029 0.099

OGly 0.9985 0.1–2.5 0.028 0.094 0.035 0.100

PalGly 0.9999 0.1–2.5 0.006 0.019 0.026 0.099

AGABA 0.9988 0.1–2.5 0.021 0.084 0.017 0.057

A5HT 0.9982 0.1–2.5 0.008 0.028 0.007 0.024

O5HT 0.9942 0.1–2.5 0.002 0.073 0.013 0.043

Pal5HT 0.9980 0.1–2.5 0.007 0.023 0.012 0.042

Abbreviations: arachidonoylethanolamide (AEA), N-linolenoylethanolamide (LNEA), N-linoleoylethanolamide
(LEA), N-oleoylethanolamide (OEA), N-palmitoylethanolammide (PEA), N-stearoylethanolamide (SEA),
N-docosahexaenoylethanolamide (DHEA), N-eicosapentaenoylethanolamide (EPEA), N-arachidonoyldopamine
(ADA), N-oleoyldopamine (ODA), N-arachidonoylglycine (AGly), N-oleoylglycine (OGly), N-palmitoylglicine
(PalGly), N-arachidonoylserine (ASer), N-arachidonoylserotonine (A5HT), N-oleoylserotonine (O5HT),
N-palmitoylserotonine (Pal5HT), 2-arachidonoylglycerylether (2AGE), 2-arachidonoyglycerol (2AG),
N-arachidonoyl-3-hydroxy-γ-aminobutyric acid (AGABA).

3.3.2. Precision and Accuracy

Regarding precision and accuracy, the method showed good performance in terms of both
repeatability and reproducibility, showing CV values below 15%. The same results were obtained
for accuracy studies (BIAS < 15%). Precision and accuracy levels for all the analytes belonging
to PUFAs/eicosanoids and ECs/NAEs groups were within acceptable limits, as reported in the
Supplementary Tables S1 and S2, respectively. A representative chromatogram of a SM sample spiked
at the intermediate concentration level for PUFAs/eicosanoids and ECs/NAEs groups is reported in
Figures 2 and 3, respectively.
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Figure 3. MRM chromatogram of ECs/NAEs extract. From the top: Total ion Current (A), standard
extraction (0.5 ng/mL) (B), and ISs extraction (C).

3.3.3. Extraction Recovery and Matrix Effect

The mean extraction recovery in analyte-free SM was satisfactory, being over 41% for all the
compounds belonging to the PUFAs/eicosanoids class (Figure 4A) and 52% for the ECs/NAEs
class (Figure 4B), except for the basic compounds A5HT, O5HT, and Pal5HT. According to their
chemical-physical properties, the 5HT-derivatives are protonated at neutral pH and the passage from
aqueous solution to organic solvent is less-favored. Matrix effects ranged from ±20% for both lipids
groups, except for PGF2α, 5(S)-HETE, and O5HT (Figure 4C,D). To avoid the interference of serum
and urine endogenous analytes on the evaluation of recovery and matrix effect, the peak area of
ISs spiked in these eluates was compared to those in the extract and PBS, respectively. Results for
PUFAs/eicosanoids and ECs/NAEs are shown in the Supplementary Tables S3 and S4, respectively.
All results were within the acceptance criteria, except for the PEA-d5, OEA-d2, and AGly-d8 matrix
effect in human serum, whose percentage mean was 59% ± 8%, and TXB2-d4 in both serum and urine,
which was 56% ± 7%.
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3.3.4. Stability Studies

The analytes’ concentration in QC samples was not altered when kept at 4 and –20 ◦C for 24 h,
except for PGD2, 5(S)-HETE¸15(S)-HETE, and 14,15-EET, especially at –20 ◦C (Supplementary Table S5).
The response factor did not show unacceptable differences compared with the first determination
(mean deviation % from day 0 < 15%).

3.4. Application to Real Samples

The bioanalytical assay was applied to osteosarcoma cell (Saos-2 and MG-63) lysates, EVs, and CM,
as described at Section 2.3. By analyzing the CM, only protein-anchored lipids or lipids enclosed
in macromolecular components were detectable. The filtered solution, accounting for the free lipid
portion, will be analyzed in the near future. Quantitative data regarding the PUFAs/eicosanoids and
ECs/NAEs in the six samples are presented in Figures 5 and 6, respectively. Five PUFAs and eicosanoids
(AA, EPA, DHA, 5(S)-HETE, and 14,15-EET) and seven ECs/NAEs (2AG, LEA, OEA, SEA, DHEA, PEA,
and PalGly) were quantified (>LOQs). PUFAs (AA, DHA, and EPA) (Figure 5A–C) and AA-derived
metabolites 5(S)-HETE, 14,15-EET, and 2AG (Figure 5A,D,E) were more expressed in Saos-derived
samples than in MG-63-derived ones. Surprisingly, almost no PUFA/eicosanoid was detectable in
MG-63 samples, except for a small amount of DHA only measured in the cell lysate (Figure 5B).
Among ECs, PalGly is the only compound belonging to N-acylglycines, which was found only in
Saos-2-derived EVs (Figure 6C). Only three ECs/NAEs (2AG, LEA, and SEA) were quantified in all six
analyzed samples (Figure 6C,D,G). LEA, PEA, OEA, and SEA (Figure 6D–G) were found more abundant
in MG-63-derived samples, with PEA detectable only in EVs (Figure 6E). Interestingly, 2AG and DHEA



Biomolecules 2020, 10, 1302 17 of 22

(Figure 6A,B) were more abundant and/or quantified only in Saos-2-derived samples, as well as their
related compounds AA and DHA, respectively (Figure 5A,B). Several studies have focused on the
differences in growth, gene expression, and immunohistochemical profiles of OS cell lines [56,57],
revealing that they possess peculiar characteristics. In particular, Saos-2 cells exhibit a more mature
osteoblastic phenotype with a stronger alkaline phosphatase activity and a greater expression of
osteoblastic markers (osteocalcin, bone sialoprotein, decorin, and procollagen-I) than MG-63. The latter
present both mature and immature osteoblastic features, with only a small subpopulation expressing
the typical osteoblastic markers. Here, we provide evidence of several differences in the bioactive
lipid profile between these two bone tumor cell lines and their derivatives (both whole secretome and
isolated EVs). In this perspective, a recent work by Roy et al. [58] investigated the lipid profile of two
OS cell lines (the nonmetastatic HOS (human osteosarcoma) and the metastatic 143B cells). The authors
reported interesting differences in the expression of lipids involved in the metastatic process between
the two OS cell lines and in tumorigenesis in comparison to normal feline osteoblasts (FOB).
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Figure 5. UHPLC-MS/MS quantitation (ND = not detectable; LOQ = limit of quantitation) in EVs, CM,
and cell lysate from Saos-2 and MG-63 cell lines of (A) arachidonoyl acid (AA); (B) Docosahexaenoic
acid (DHA); (C) eicosapentaenoyl acid (EPA); (D) 5-hydroxyeicosatetraenoic acid (5(S)-HETE;
(E) (±)14(15)-epoxyeicosatrienoic acid (14,15-EET).
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Figure 6. UHPLC-MS/MS quantitation (ND = not detectable; LOQ = limit of quantitation)
in EVs, CM, and cell lysate from Saos-2 and MG-63 cell lines of (A) 2-arachidonoylglycerol
(2AG); (B) N-docosahexaenoylethanolamide (DHEA); (C) N-palmitoylglicine (PalGly);
(D) N-linoleoylethanolamide (LEA); (E) N-palmitoylethanolammide (PEA); (F) N-oleoylethanolamide
(OEA); (G) N-stearoylethanolamide (SEA).

4. Conclusions

In this work, a bioanalytical assay for 12 PUFAs/eicosanoids and 20 ECs/NAEs in culture medium,
human serum, and urine was developed and validated over a linear range of 0.1–2.5 or 1–25 ng/mL
(AA, EPA, and DHA). The method was fully validated in cell culture medium and partially in urine
and serum. Our double-step LLE protocol was found to be suitable for the simultaneous investigation
of PUFA, eicosanoid, ECs, and NAEs content by UHPLC–MS/MS in small amounts of bio-matrices.
The protocol allows simultaneous and reproducible analyses of a broad range of chemically different
bioactive lipids by a pH adjustment. The proposed protocol for cell lysates, EVs, and CM can be easily
adapted to other liquid and/or solid bio-matrices. With the LLE technique, we have achieved a shorter
extraction time, if compared to the most common SPE procedure, and this represent a clear advantage
for studies that involve a huge number of samples; moreover, the two sequential extraction steps from
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a single sample also allow the analysis when limited amounts of samples are available. However,
the limitations of the protocol may be the great manual effort and the lack of automation. In more
detail, the validated method applied to OS cell lysates, EVs, and CM allowed the quantification of
five eicosanoids and seven ECs/NAEs (>LOQs). Eicosanoids and ECs/NAEs are biologically active
lipid mediators that play a critical role in different pathological processes, and little is still known
about their release in secretome/EVs from OS cell lines. In this work, we investigated the lipid content
of Saos-2, MG-63, and their derivatives, providing evidence of a different lipid profile and secretion
between the two OS cell lines. This method could be harnessed to investigate other components of
OS microenvironment, relevant for the cellular crosstalk among bone tumor cells, normal osteoblasts,
and mesenchymal stem/stromal cells, which is actually investigated in our laboratory by a proteomic
approach. Moreover, an all-encompassing profiling of the lipids expressed and secreted by OS cells
in comparison to normal osteoblasts would provide an insight in the mechanisms of bone tumor
development and eventually suggest potential therapeutic targets and/or new biomarkers for the
diagnosis and monitoring of this pathology. These data could lay the basis to better elucidate the
biological role played by lipid mediators in a pathological context, which will be investigated in the
future by in vitro studies.
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Abstract: Lipidomics is a lipid-targeted metabolomics approach that aims to the comprehensive
analysis of lipids in biological systems in order to highlight the specific functions of lipid species in
health and disease. Lipids play pivotal roles as they are major structural components of the cellular
membranes and energy storage molecules but also, as most recently shown, they act as functional and
regulatory components of intra- and intercellular signaling. Herein, emphasis is given to the recently
highlighted roles of specific bioactive lipids species, as polyunsaturated fatty acids (PUFA)-derived
mediators (generally known as eicosanoids), endocannabinoids (eCBs), and lysophospholipids
(LPLs), and their involvement in the mesenchymal stem cells (MSCs)-related inflammatory scenario.
Indeed, MSCs are a heterogenous population of multipotent cells that have attracted much attention
for their potential in regulating inflammation, immunomodulatory capabilities, and reparative roles.
The lipidomics of the inflammatory disease osteoarthritis (OA) and the influence of MSCs-derived
lipids have also been addressed.

Keywords: bioactive lipids; lipidomics; mesenchymal stem cells; inflammation; osteoarthritis

1. Introduction: Lipidomics and Lipids Mediated Inflammation in Mesenchymal
Stem Cells
1.1. Lipidomics

The lipidome is defined as the complete set of lipids present within a cell, a tissue,
or an organism [1,2]. In the last decades, it has become clear that the lipidome, as well
as the transcriptome and the proteome, is in a dynamic balance and it can be affected
by physio-pathological conditions, stimuli, and changes in diet [3,4]. Lipidomics is a
relatively new “-omics” that characterizes, identifies, and quantifies the lipidome and
its metabolic pathways and other networks that are involved within different biological
mechanisms [5]. With analytical approaches, such as thin-layer chromatography (TLC) and
gas chromatography (GC), lipidomics was able to develop new diagnostic tools and thera-
peutic strategies [6]; but it was with the advent of the next-generation mass spectrometry
(MS) that there have been significant advances in the field of lipidomics [7–11]. In a typical
lipidomic workflow, lipids are extracted from the biological matrices using organic solvents
and analyzed by direct infusion into a mass spectrometer (technique known as “shotgun”
lipidomics), or separated by liquid (LC) or gas chromatography (GC), prior to detection by
MS. These two approaches are complementary, since the “shotgun” method allows a larger
lipid profiling by simultaneous identification of several classes of lipids, meanwhile LC or
GC/MS enable a more targeted analysis with the detection of structurally similar lipids
belonging to a single class [12–14]. In both methods, the quantification is performed using
a ratio against internal standard(s), which is routinely added for sample normalization
and matrix effect influence correction. Internal standard structures and physicochemical
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properties are representative of the endogenous lipid species of interest and are added
at the earliest possible step during sample preparation. For shotgun lipidomics, a semi-
quantification is generally possible by using exogenous lipids representative of the main
lipid classes of interest; whereas for targeted lipidomics, labeled lipids (i.e., deuterated
internal standards) should be included for absolute quantification. In the last few years,
the aforementioned advanced analytical techniques have led to multiple improvements in
lipidomics, particularly in the extraction methods and bioinformatics. These enhancements
have allowed important goals, such as the identification of several lipid-based biomarkers,
useful as diagnostic tools [5,10]. However, the number of lipidomics studies in the field
of mesenchymal stem cells (MSCs) remains rather limited, especially when compared to
the numerous investigations about their transcriptome and proteome. Thus, the objective
of the current review was to focus on recently highlighted roles of specific bioactive lipid
species and their involvement in the MSCs-related inflammatory scenario.

1.2. Involvement of MSC in Inflammatory Processes

MSCs are non-hematopoietic multipotent progenitor cells with the ability to differentiate
into different mesodermal lineages including osteocytes, chondrocytes, and adipocytes [15,16].
The three criteria adopted by the International Society for Cellular Therapy to define and
identify MSCs are: (1) MSCs must be adherent to plastic under standard culture conditions;
(2) their phenotypes must present the expression of CD105, CD73, and CD90 and lack
the expression of the hematopoietic cell surface markers CD45, CD34, CD14 or CD11b,
CD79α, or CD19 and HLA-DR; (3) they must be able to differentiate under stimulation
in vitro into osteoblasts, adipocytes, and chondroblasts [17,18]. MSCs are currently being
studied in many preclinical and clinical applications. In particular, they have attracted the
scientific interest for their ability to regulate inflammatory processes and promote tissue
repair due to their multi-lineage differentiation potential, pro-angiogenic characteristics,
and immune-modulatory properties [19–21]. Recently, MSC-based treatment has been
proposed as a suitable therapeutic approach for the severe acute respiratory infection
caused by the corona virus SARS-CoV-2. In the COVID-19 scenario, where the immune
system produces large amounts of inflammatory factors, the MSC therapy can prevent the
storm release of cytokines by the immune system and promote endogenous repair through
their immunomodulatory, anti-inflammatory, and reparative properties [22,23].

Furthermore, the therapeutic potential of MSCs, largely mediated by paracrine signal-
ing [24], is currently under investigation for several degenerative, autoimmune, and inflam-
matory disorders, as well as the exact mechanisms underlying their effect [21]. Nevertheless,
it is very likely that either a direct cell-cell contact and/or the secretion of soluble factors,
including bioactive lipids, and/or extracellular vesicles (EVs) are needed [24–26].

Generally, MSCs can modulate both innate and adaptive immune responses in vitro
and in vivo due to their ability to inhibit T-cell proliferation and dendritic cell matura-
tion, recruit regulatory T-cells, and modulate B-cell functions [21,27,28]. Expanded for
the first time from human bone marrow (BM), MSCs can also be collected and cultured
from several sources including adipose tissue, skeletal muscle, or umbilical cord blood
and expanded ex vivo for clinical use [29,30]. Compared to BMs, adipose-derived stem
cells (ASCs) have an easier and faster growth in culture, age with a lower rate, maintain
the mesenchymal pluripotency and stem cell phenotype even after a high number of
passages in culture, and show a great proliferative rate with a consequent relatively high
yield (about 2500 fold higher than BM) [15,16,31,32]. Moreover, ASCs have shown a great
potential of differentiation into several cellular lineages and a good stability throughout
long-term cultures; they are characterized by immunomodulatory properties making them
immunosuppressive [30]. Moreover, their secretome presents a mix of cytokines, extra-
cellular matrix molecules and proteases, lipid mediators, hormones, and growth factors
that are also involved in the angiogenesis process with a great utility and applicability
in wound healing and tissue regeneration [15,33–35]. In addition to BMSCs and ASCs,
skeletal muscle-derived stem cells (MDSCs) have been used in clinical trials for the regener-
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ation and repair of injured tissues, because of their high proliferation rate and their ability
to secrete trophic factors promoting endogenous tissues repair [36]; moreover, MDSCs
harvesting consists in micro-biopsies obtained as small skin punctures under local anesthe-
sia [37,38]. Although they exhibit slow-growing adherent behavior after isolation, MDSCs
are characterized by a long-term self-renewal, and an easy differentiation into osteoblasts,
adipocytes, and chondrocytes in vitro [37].

1.3. Functional Role of Endogenous Bioactive Lipids in Inflammation

Endogenous bioactive lipids cover a pivotal role in very important biological phenom-
ena, such as inflammation, immune regulation, and maintenance of homeostasis [39,40].
Indeed, defects in their metabolism and unbalanced biosynthesis are involved in the patho-
genesis and clinical course of chronic inflammation diseases [39,40]. Based on their biosyn-
thesis, bioactive lipids can be grouped into different families (Table 1): polyunsaturated
fatty acids (PUFA)-derived mediators (generally known as eicosanoids), endocannabi-
noids (eCBs), and lysophospholipids (LPLs) [41]. Bioactive lipids derived from PUFA
can be further divided into two subgroups: one is represented by ω6 arachidonic acid
(AA, 20:4 ω6)-derived lipid mediators, including prostaglandins (PGs), leukotrienes (LTs),
thromboxanes (TXs), and lipoxins (LXs); the other includes ω3-PUFA-derived lipid me-
diators, such as the eicosapentaenoic acid (EPA, 20:5 ω3) and the docosahexaenoic acid
(DHA, 22:6ω3), i.e., E-series and D-series resolvins (Rvs), protectins (PDs), and maresins
(MaRs), collectively termed “specialized pro-resolving mediators” (SPMs). Except for LXs,
ω6-PUFA-derived lipids are pro-inflammatory, in contrast withω3-PUFA-derived lipids,
which act as anti-inflammatory. In detail, SPMs stimulate key cellular events, by acting as
agonists, stopping further neutrophil influx and the activation of non-phlogistic responses
by macrophages and, therefore, leading to the resolution of the inflammation. ECBs and
eCB-like compounds originate fromω6- andω3-PUFA metabolism, but also from saturated
and monounsaturated fatty acids (SFA and MUFA), such as palmitic (16:0), stearic (18:0),
or oleic acids (18:1 n9). Nowadays, pro- and anti-inflammatory properties exerted by eCBs
and eCB-like compounds are issues of intense research [42,43]. Finally, membrane-derived
bioactive lipids derived from LPLs can be divided into lysoglycerophospholipids (LGPLs)
and lysosphingophospholipids (LSLs), based on the presence of glycerol or sphingosine
(S) as backbone of their structures. LPLs exert pleiotropic effects such as inflammation,
vesicular trafficking, endocytosis, apoptosis, cell migration, and cell-stress responses [44].
In this review, we will outline the biological activities and metabolisms of the major bioac-
tive lipids identified as essential regulators in the complex scenario of inflammation and as
players in the immunoregulation exerted by MSCs.

Table 1. Composition, functions, and classes or examples of the different categories of bioactive lipids.

Categories Composition Function Classes or Examples

Polyunsaturated fatty acids
Carboxylic acid + hydrocarbon chain;
synthesized by chain elongation of an

acetyl-CoA with malonyl-CoA

Cell signaling; building
blocks to complex lipids AA, EPA, DHA

Endocannabinoids and related
compounds

Ethanolamide or other head
groups + FAs Cell signaling AEA, 2AG

Lysophospholipids Polar head group + glycerol or
sphingosine backbone

Membrane and
lipoprotein composition,

cell signaling
LGPLs, LSLs

2. Lipids as Signaling Mediators in Inflammation
2.1. Eicosanoids

The group of eicosanoids represents the widest family of bioactive lipids and includes
several molecules characterized by the long carbon chainω6 AA orω3 EPA and DHA as
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common precursors. ω6 AA, released from membrane phospholipids firstly via phospholi-
pase A2 and secondarily by phospholipase C, is the substrate for three different enzymes
leading to the generation of pleiotropic and heterogenous compounds: (1) cyclooxygenases
1 and 2 (COX-1/2) drive the synthesis of PGs (PGD2, PGE2, PGI2, and PGF2α), prosta-
cyclins, and TXs [45,46], also known as prostanoids; (2) 5-, 12- and 15-lypooxygenases
(5/12/15-LOX) synthetize LTs [47,48], lipoxins (LXs) [49] and hydroxyeicosatetraenoids
(HETEs) [50]; (3) P450 epoxygenase generates also HETEs, and epoxyeicosatrienoids
(ETEs) [50]. ω3 PUFAs-derived bioactive products are Rvs, PDs, and MaRs. Rvs derive
from either EPA or DHA and can be further divided into E-series or D-series, respectively.
DHA acts also as a precursor for the biosynthesis of PDs and MaRs (Figure 1). The ω6
eicosanoids play an essential active role in the inflammatory response, such as leukocyte
chemotaxis and activation, fever, pain [40], and are usually associated to acute inflamma-
tory processes and chronic inflammation. Indeed, PGs seem to promote inflammation
through several mechanisms such as increasing the release of the pro-inflammatory cy-
tokines [51–53], enhancing the expression of pro-inflammatory genes, promoting innate
immunity response [54], recruiting leukocytes and activating two distinct T helper sub-
sets, TH1 and TH17 [55,56]. LTs generally recruit neutrophils, macrophages, eosinophils,
and TH17 lymphocytes, and are responsible for the induction of edema. Vasoconstriction
and vasodilatation are promoted instead by TXs and prostacyclins, respectively [57]. On the
other hand, theω3 family seems to have a beneficial impact on inflammation, by acting via
different mechanisms, for example by working as substrate competitors able to inhibit the
conversion of AA into pro-inflammatory eicosanoids or serving as an alternative substrate
to produce less potent LTs, PGs, and TGs. In animal models, Rvs and PDs shorten the
resolution of inflammation for certain diseases [41,58,59] and can also increase animal sur-
vival [60,61]. Two of the major Rvs, RvD1 and RvD2, have shown in vivo anti-inflammatory
and pro-resolution properties, by blocking the neutrophil infiltration in many disorders,
such as obesity and pathologies affecting the vascular [62], renal and dermal systems,
and also in processes as wound healing, fibrosis, and pain [60]. Moreover, ω3 PUFA-
derived mediators that have been found within the inflammatory exudate (RvE1 and PD1)
show great anti-inflammatory and pro-resolving actions both in vitro and in vivo [51,63].
However, the resolution of inflammation is also mediated by other metabolites of AA [64].
Indeed, PGJ (15-deoxy-delta-13,14-PGJ2), the bioconversion product of PGD2, increases
during the resolution phase and acts as a brake on inflammation by inducing apoptosis
of inflammatory cells [65]. The concentration of the lipoxygenase product LXA4 (lipoxin
A4) is also increased during the resolution phase and acts as a stop signal for the acute
response [66]. Finally, AA-derived EETs present anti-inflammatory properties through
the suppression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)
activation and govern vasorelaxation and fibrinolysis [67].

2.2. Endocannabinoids (eCBs) and Endocannabinoid-Like Compounds

eCBs are endogenous lipid compounds that can bind G-protein coupled cannabinoid
receptors (CB1 and CB2) in the same way as tetrahydrocannabinol (THC), the major psy-
choactive component of Cannabis sativa. The plant Cannabis sativa and its preparations, mari-
juana and hashish, are being used for many years for recreational and medical purposes [68]
because of the pleasurable effects triggered by THC, modulated by the other major, non-
psychoactive phytocannabinoid, called cannabidiol (CBD). Both components possess other
important medical properties, such as anti-inflammatory, analgesic, anti-emetic (THC),
and anxiolytic (CBD). [69]. Thanks to the studies performed on cannabis plants and their
peculiar chemical components, researchers were able to discover one of the most intriguing
and pleiotropic endogenous signaling systems, the endocannabinoid system (eCBS). eCBs,
CB receptors, and the biochemical entities that produce and degrade these lipids, are in-
volved in most aspects of the mammalian physiology and pathology [70]. The compound
arachidonoylethanolamide (AEA) [71], the first isolated ethanolamide of AA, represents a
partial agonist of CB receptors, while 2- arachidonoylglicerol (2-AG) (another derivative
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of AA) [72,73], is a full agonist (Figure 1). Both compounds AEA and 2-AG belong to the
group of PUFA AA-related lipid mediators, and as CB receptor ligands, they stimulate a va-
riety of bioactivities, including analgesia, catalepsy, hypolocomotion, and hypothermia [68].
Moreover, AEA exhibits anti-inflammatory properties [74], whereas 2-AG shows both pro-
and anti-inflammatory characteristics [75,76]. Thus, dysfunctions leading to changes in
concentration levels, metabolism, and receptors of eCBs could be related to alterations in
homeostasis and to the progression of chronic inflammatory status [77]. Moreover, two
metabolically activeω3 fatty acid ethanolamides, N-eicosapentaenoylethanolamine (EPEA)
and N-docosahexaenoylethanolamine (DHEA) [78,79], have been proposed as additional
CB receptor agonists [80]. Theseω3 eCBs were found to possess anti-inflammatory proper-
ties in macrophages [81] and adipocytes [82]. In addition to CB1 and CB2 receptors, phar-
macological studies suggest the presence also of different receptors that can mediate the
cannabinoids effects. Indeed, besides AEA, other ethanolamides coming from various long-
chain fatty acids were discovered, and collectively known as N-acylethanolamines (NAEs).
Ethanolamides of SFA and MUFA such as palmitic, stearic, and oleic acids, which are
more abundant than AEA in mammals, show no activity for CB receptors, but act on other
receptors, like the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα),
leading to the trigger of biological events including anti-inflammation and appetite sup-
pression [83,84]. In detail, the PPARα-mediated actions of N-palmitoylethanolamide (PEA)
include anti-inflammatory, analgesic, anti-epileptic, and neuroprotective properties [85,86].
Moreover, PEA could also activate the orphan G protein-coupled receptor GPCR55 [87],
one of the discussed candidates as CB3 receptor, even though this agonist activity has not
been fully elucidated yet. Another saturated NAE, N-stearoylethanolamide (SEA), was re-
ported to act as an anti-inflammatory/immunomodulatory agent and cell growth controller,
through still unknown targets [88–90]. Finally, a variety of eCB-related compounds, con-
taining fatty acid chains conjugated with different polar heads, have been discovered as
a result of advancements of the analytical techniques [91,92]. Within the novel group of
lipids generally referred as lipoamino acids, N-arachidonoylglycine (NAGly), the most
important member, possesses anti-inflammatory effects by targeting the G-protein coupled
receptor GPCR18 [93,94], vasorelaxant properties [95] and seems to be involved in cell
migration [96], and inhibition of the fatty acid amide hydrolase (FAAH) [97], the AEA
inactivating enzyme. Moreover, NAgly might have either a physiological role in the reso-
lution of acute inflammatory response and become a potential therapeutic candidate for
the resolution of chronic inflammation, by increasing the production of PGJ and LXA4,
reducing the migration of inflammatory cells into areas of acute inflammation and inducing
the death of inflammatory cells [93].
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2.3. Lysophospholipids (LPLs)

LPLs are bioactive signaling lipids consisting of O-acyl chain, generated from phospho-
lipase-mediated hydrolyzation of membrane glycerophospholipids (GPLs) and sphin-
golipids (SLs). Consequently, LPLs are classified into two main categories: glyceryl-based
LPLs (including LPA) and sphingosyl-based (including S1P) with a glycerol or a sphin-
gosine backbone, respectively [98,99] (Figure 1). Several LPLs compounds are asymmet-
rically distributed in the plasma membrane and are characterized by a polar head group
(ethanolamine, choline, inositol, serine) and a hydrophobic tail of carbon chain. LPLs
act as signaling mediators by binding seven-transmembrane domain G-protein coupled
receptors (GPCRs). The two major bioactive LPLs are the well-characterized lysophos-
phatidic acid (LPA) and sphingosine-1-phosphate (S1P) and they play important roles
in various physio-pathological processes, including inflammation. LPA, a byproduct of
lysophosphaditylcholine (LPC) and lysophosphatidilinositol (LPI), is a signaling mediator
involved in cell renewal, immune response, and inflammatory cascade [100,101]. LPA
can be synthetized both intracellularly and extracellularly by different enzymes and via
different pathways, such as autotaxin/ectonucleotide pyrophosphatase phosphodiesterase
2 (ENNP2) and/or phospholipases A1 and A2, whereas its degradation is mediated by lipid
phosphate phosphatases 1–3 [102]. Currently, six LPA receptors (LPA 1–6) are known [102].
Recently, LPA is reported to be rapidly formed during the resolution phase of the inflamma-
tion and, successively, to be recruited via the common pro-resolving formyl peptide receptor
2 (FPR2, also known as ALX), which is expressed on T cells and their subsets [103]. On the
other hand, SLs, such as ceramides and sphingosines, participate in different stages of in-
flammation as well, by controlling intracellular trafficking and signaling, cell proliferation,
adhesion, vascularization, survival, and apoptosis [104,105]. In particular, the phosphate
forms of sphingolipids, ceramide-1-phosphate (C1P) and S1P [106], are notably associated
to inflammatory responses. S1P is synthesized by the intracellular phosphorylation of
sphingosine via sphingosine kinases 1 and 2 (SK1 and SK2) and degraded by S1P lyase
or ceramide synthases. It is involved in the resolution phase (together with C1P) since
apoptotic cells present at the inflammation sites attract pro-resolving macrophages via S1P
receptor 1 [107] and, additionally, it can act either on COX-2 or NF-kB, whereas C1P acts
on phospholipase A2 [102].

3. Bioactive Lipids in MSCs
3.1. Lipid Metabolism in MSCs Maintenance and Differentiation

Lipid metabolism plays a pivotal role in stem cells physiopathology [108–110]. How-
ever, at the moment the number of studies about the lipidome of MSCs is limited, and mainly
focused on variations in lipid composition during stem cell proliferation and differentia-
tion [111–130] (Figure 2).

Recently, profiles of glycerophopholipids (GPLs) present in human BMSCs were as-
sessed from young and old donors and across passages during in vitro culture [111–113].
In particular, since the clinical use of MSCs demands sequential ex vivo expansion, the de-
termination of GPL profiles through the different steps of the in vitro culture represents a
crucial and relevant advancement. In general, long-term culturing could contribute to the
decrease of the proliferation and the differentiation potential, shorten the telomers, and ac-
cumulateω6 PUFAs with signaling roles, consequently promoting inflammation [114,115].
It is well established that membrane GPLs provide precursors for signaling lipids that
modulate cellular functions, and small changes in their compositions can lead to signif-
icant biological consequences. Kilpinen et al. studied the effect of the donor’s age and
cell doublings on the profile of GPLs of human BMSCs, demonstrating that an extensive
expansion modulates membrane GPLs, by increasing total phosphatidylinositol (PI) and
lysophospatidylcholine (LPC). Specifically, the effect was more pronounced when BMSCs
were isolated from young donors. Moreover, changes in membrane FAs profile during
expansion and senescence of BMSCs was highlighted: theω6 AA content increased, while
ω3 PUFAs (especially DHA) decreased during long-term cultivation, leading to an impair-
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ment of the immunological functionality [111]. In addition, in the later steps of the process,
an increment of the fraction of individual SFA was noticed [111]. A significant modification
of membrane FAs composition of MSCs derived from human fetal membranes (FM-MSCs),
occurring during in vitro culture, was assessed by Chatgilialoglu et al. [112]. In detail, fresh
uncultured FM-MSCs showed variability in their membrane FAs composition, likely due
to the genetic diversity and different lifestyle of the donors. This study also reveals that cul-
tured cells have lower proportions of PUFAs than freshly isolated cells showing a great drop
in ω6 FAs, counterbalanced by a marked increase in MUFA and ω3 FAs. These data are in
contrast with Kilpinen et al. [111]. More recently, a lipidomics profiling analysis during
BMSCs culturing passages by Lu et al. investigates the metabolic alteration of various lipid
species in the senescence process [113]. They applied an untargeted lipidomics approach
based on liquid chromatography coupled to mass spectrometry (HPLC-MS), which allowed
the reduction of the complexity of the matrix and the enhancement of the sensitivity, factors
that represent an improvement relative to the previously described shotgun-based meth-
ods. The majority of GPLs, as well as SLs, were found to significantly increase across the
culturing passages, whereas the PA, PIs, and phosphatidylserines (PSs) levels were lower in
aged cells. These findings were largely coherent with previous described studies, except for
PI species, which were found to be increased during all the passages [111]. Nevertheless,
the reduced amount of PIs is inconsistent with the relative transcriptomics analysis, which
showed an increase in the enzymes expression with consequential conversion of PA into
PIs suggesting an enhanced PIs biosynthesis activity. Moreover, research on the functional
FAs has largely supported regulatory roles for PGs in MSCs proliferation. In particu-
lar, PGE2 increases human umbilical cord blood-derived MSCs (UCMSCs) proliferation
through β-catenin-mediated c-Myc and vascular endothelial growth factor expression via
exchange protein directly activated by cAMP (Epac1)/Ras-related protein 1 (Rap1)/Akt
and PKA cooperation [116], and through interaction of profilin-1 (Pfn-1) and filamentous-
actin (F-actin) via EP2 receptor-dependent β-arrestin-1/JNK signaling pathways [117].
On the contrary, the investigation of PGE2 and prostaglandin D2 (PGD2) effects on MSCs
proliferation and osteogenic differentiation suggests that both their receptors are highly
expressed in these cells and both prostaglandins seem to have a negative impact [118].
In detail, PGE2 firstly enhances the MSCs growth-rate, while longer stimulation leads
to a growth-inhibitory effect. Contrarily, PGD2 inhibits MSCs growth regardless of the
duration of the exposure. Moreover, their inhibitory effect on calcium deposition also
suggests a negative impact on MSCs osteogenic differentiation [118]. Moreover, TXs class
has been investigated for its effect on MSCs proliferation, suggesting the role of TXA2
as potent modulator of ASCs migration and proliferation through ERK and p38 MAPK
signaling mechanisms [119]. In addition, TXA2 appears to induce ASCs differentiation into
smooth-muscle-like cells [119,120]. Concerning eCBS, Rossi et al. [121] described a gradual
decrease during subculture in AEA and 2-AG levels secreted by human BMSCs starting
from passage 1 (AEA: 5 pmol/mg protein and 2-AG: 11 pmol/mg protein 2-AG) and this
finding was also confirmed by Kose et al. [122]. ASCs secrete AEA and 2-AG at 3.5 and 7.3
pmol/mg protein, respectively, at early passages [123]. In addition, 2-AG and CB1/CB2
stimulation recruits BMSCs, most probably via an indirect activation of CB2 receptors [124].

During MSCs differentiation, eCBS variation was also highlighted and the expression
of CB1 and CB2 is considerably lower in undifferentiated cells and it increases during
osteogenic [125,126] and adipogenic commitment [125]. Furthermore, the activation of CB2
signaling plays an important role in promoting the osteogenic differentiation of BMSCs
in vitro, with an increase of alkaline phosphatase activity (ALP), an induction of the expres-
sion of specific osteogenic genes including Runx2, Osterix, IBSP, SPP1, OCN, COL1a1, and
an enhanced deposition of calcium in the extracellular matrix [126]. This result indicates a
key role of CB2 receptor in BMSCs differentiation towards osteoblasts, suggesting also that
MSCs might produce endogenous cannabinoids able to reinforce their osteogenic differen-
tiation as well. Moreover, the knockdown of CB2 receptor in BMSCs by small interference
RNA (siRNA) inhibits ALP activity and mineralization [126]. Most recently the osteogenic
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differentiation induced by CB2 signaling activation has been shown to involve autophagy
induction and sequestosome 1/p62-mediated Nuclear Factor Erythroid 2Related Factor
2 deactivation [127]. Whereas, the implication of eCBs in BMSCs physiology related to
their adipocyte differentiation was validated looking at the increased expression of CB1,
transient receptor potential vanilloid type 1 (TRPV1) and PPARγ during adipogenesis [128].
Moreover, the effects of AEA, N-arachidonoydopamine (NADA), and 2-AG were evaluated
suggesting a promotion of adipocyte differentiation by AEA and an inhibition by NADA.
No changes were observed with 2-AG at non-cytotoxic concentrations. Furthermore, CB1
may stimulate protein expression, such as adiponectin during adipogenesis [125,129], since
it is enriched in mature adipocytes compared to other cell types [129]. Moreover, based on
the effect of AEA, CB1 expression seems to be correlated to the increment of FAAH and
COX-2 during adipogenic differentiation [130].
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ange arrows indicate an increment and a decrease of lipids or their receptors, respectively; whereas blue arrows indicate
their action on MSCs. Abbreviations. AA: arachidonic acid; PUFAs: polyunsaturated fatty acids; SFAs: saturated fatty
acids; MUFAs: monounsaturated fatty acids; PGE2: prostaglandin E2; PGD2: prostaglandin D2; TXA2: thromboxane A2;
GPLs: glycerophospholipids; SLs: sphingolipids; PA: phoshatidic acid; PIs: phosphatidylinositols; PSs: phosphatidylser-
ines; LPCs: lysophosphatidylcholines; AEA: anandamide; 2-AG: 2-arachidonoilglycerol; CB2: cannabinoid receptor 2;
CB1: cannabinoid receptor 1; TRPV1: transient receptor potential vanilloid type 1; PPARγ: peroxisome proliferator-activated
receptor-γ; NADA: N-arachidonoydopamine; BMSCs: bone marrow-derived stem cells; FM-MSCs: fetal membrane-derived
stem cells; UCMSCs: umbilical cord blood-derived stem cells; ASCs: adipose-derived stem cells.

In addition, Pagano et al. found out that ASCs exposed to the synthetic cannabinoid
WIN55,212–2 increase the glucose uptake, the calcium influx, and the expression of the
adipogenesis regulator PPAR-γ; contrarily, these effects are inhibited by the specific CB1-
antagonist Rimonabant [131]. Finally, Silva et al. has analyzed the lipidome of rabbit ASCs
and MDSCs and their adipogenic and osteogenic differentiation identifying 1687 lipid
species [132]. These animal MSCs have shown different lipid profiles as well as changes in
lipid composition after adipogenic and osteogenic differentiation. Moreover, the N-acyl-
phosphatidylethanolamine (PE) and phosphatidylcholine (PC) expression levels suggest
lipid similarities in cells differentiated from different stem cell sources [132]. In conclusion,
PUFAs and their bioactive derivatives affect both the proliferation and differentiation of
several MSCs and consequently modulate their immunological interaction with other cells.
In this perspective, lipid profiling can represent a valuable tool also in the screening of
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MSC populations prior to their use in both experimental and clinical settings. Indeed,
the possibility of evaluating selected lipid classes or MSC entire lipidome can rapidly
provide a screenshot of their differentiative status and growth rate, thus, allowing to
harness MSC potential at its best for the diverse applications.

3.2. Pro and Anti-Inflammatory Properties of MSC-Derived Lipids

MSCs present anti-inflammatory properties and are being used with great success as
treatment for inflammatory and autoimmune diseases. They have been shown to migrate
towards injured tissues affected by inflammatory events, led by several growth factors,
cytokines, and chemokines [133]. Being physiologically recruited at the damaged site,
MSCs are often submitted to a strong, pro-inflammatory environment. It is well known
that the PGE2 secretion is increased upon incubation with the tumor necrosis factor alpha
(TNF-α) and the interferon gamma (IFN-γ) [28]. To better understand the involvement of
the lipidome in the MSCs anti-inflammatory properties and underlying its mechanisms of
action, Campos et al. [134] have performed a wide range lipidomic analysis of MSCs under
pro-inflammatory conditions induced by the presence of 10 ng/mL TNF-α and 500 U/mL
IFN-γ. This study has evidenced a change in MSCs PL profile under the pro-inflammatory
stimulus: indeed, higher levels of molecular PC species with longer FA acyl chains and
lower levels of molecular PC species with shorter FA acyl chains were assessed. Moreover,
the expressions of the specific PE(40:6), PS(36:1), LPC(18:0), and SM(34:0) were enhanced,
while PE(O-38:6) and PS(40:4) expressions decreased simultaneously. The increase of LPC
(18:0) has already been correlated with anti-inflammatory properties by others [135,136].
These differences were identified only in specific GPL subspecies, suggesting that each
GPL subspecies could play a role in MSCs immunological functions. Moreover, the charac-
teristics of the lipidome of the untreated MSCs described by Campos et al. were consistent
with previous results [111], with the exception of the presence of sphingomyelins [134],
which have not been previously identified. As formerly described, some derivatives of SLs,
such as S1P, are bioactive and mediate essential cell functions [137].

Concerning the MSCs lipid secretion, PGE2 was widely investigated given its key
role in the immunosuppressive activity of MSCs [28]. Masoodi and colleagues [138] have
analyzed the release of PGs by human heart-derived MSCs by HPLC-MS/MS, finding
the presence of PGE1, PGE2, PGE3, 6-keto PGF1α, PGF2α, and PGJ2 in the conditioned
medium. Although PGE2 has been linked to the immunosuppressive effects of MSCs
since their inhibitors production attenuate MSC-mediated immunomodulation [28], PGs
are best known for their ability to mediate vasodilatation that allows immune cells to
invade inflamed tissue. Indeed, recent evidence suggests also that PGE2 may have an
immunostimulatory role by facilitating Th1 differentiation and expanding the Th17 T-
cells population [55]. Since prostaglandins have a short half-life, they act as paracrine
and autocrine factors in the local environment. MSCs themselves also express receptors
for prostaglandins: EP1, EP2, EP4, FP, and IP. The effects triggered by the stimulation
of these receptors on MSCs are still unknown. However, the profile of PGs highlighted
in MSCs is superimposable with that of their receptors (prostaglandins type E and F,
and prostacyclin). Thus, the dual and controversial immunomodulatory properties of
MSCs can depend on the local environment, where IFN-γ and TNF-α play a pivotal role in
promoting immunosuppressive function of MSCs [139,140].

In the presence of PGE2, also a higher expression of EP3, which is involved in the
stimulation of angiogenesis, was obtained in MSCs suggesting a possible correlation with
the early phases of inflammation [118].

Recent studies have evidenced the roles of LXs as regulators of the resolution phase of
inflammation [61] and of Rvs as players in the immunoregulation of MSCs [141]. Fang et al.
have demonstrated the MSCs ability of promoting the resolution of acute lung injuries
in mice through the secretion of lipoxin A4 (LXA4), the first identified anti-inflammatory
and pro-resolving lipid mediator [142], signaling via the G protein coupled ALX/FPR2
receptors [141].
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3.3. Effect of Exogenous Supplements of PUFAs on MSCs

The ω3 fatty acids EPA and DHA, which are found mainly in marine oils, have
long been thought to have anti-inflammatory properties, whereby they compete with
AA, by reducing pro-inflammatory eicosanoids [143]. The molecular mechanism through
which this occurs is still unclear, and there are no evidences about beneficial effects ofω3
EPA and DHA for human health as well as their role as potential treatments for human
diseases. In most mammalian cell types, different exogenous supplements of PUFAs are
incorporated into plasma membrane GPL and then metabolized by phospholipases in
order to produce various lipid mediators. Thus, the biochemical homeostasis of lipid
profile in mammalian membranes must be perturbed not only by physio-pathological
inputs, but also by external lipid uptake (i.e., dietary fats). A recent study performed on
human BMSCs has demonstrated the increase of the secretion of the pro-inflammatory
PGE2 after AA supplements intake. However, this possible harmful effect can be attenuated
by the chain elongation on the less active precursor, ω6 22:4. The ω3 PUFAs precursor,
the alfa-linolenic acid (18:3), shows a slight reduction of its GPL AA content, while the EPA
(20:5) and DHA (22:6) acid supplements efficiently displace the AA, creating several pools
of GPL species substrates that allow attenuation of inflammatory signaling [144].

3.4. MSCs as an Alternative Treatment of Inflammatory Diseases: The Example of Osteoarthritis

Osteoarthritis (OA) is a heterogeneous chronic joint disease characterized by the
processes of degradation, repair, and inflammation that occur in the connective tissue,
the vulnerable layer of joints, synovium, and subchondral bone [145]. From a molecular
point of view, the catabolic and anabolic activities are unbalanced, and the major injury
response occurs at the joint cartilage level. Recently, findings regarding the involvement of
lipids in OA development and progression indicate a possible involvement ofω3 PUFAs
and their anti-inflammatory SPMs derivatives [146]. The most studied bioactive lipids,
PGs and LTs, have been detected in plasma and synovial fluid of OA patients showing
pro-inflammatory and catabolic effects on fibroblasts, osteoblasts and cartilage [147]. More-
over, the PGE2 and AA-derived oxylipin 15-HETE levels were related to knee OA [148],
suggesting a possible role in the disease progression. Because of the similarities between
OA course and chronic wound accompanied by cell death, inflammation, and pain [149]
and since ω3 PUFAs/SPMs have been shown to target all these processes, it is conceiv-
able that these lipids could be effective therapeutic agents for OA. In the context of this
disease, few studies have investigated the FAs presence in OA affecting patients and their
relationship to clinical symptoms. These studies indicated that increases ofω3 FAs levels
could be associated with a reduced cartilage loss while the increase of the increase ofω6
FAs levels with enhanced synovitis [150]. All studies performed withω3 PUFAs suggest
that the beneficial effects consist primarily in an improvement in symptoms and pain,
whereas little effects are observed on structural progression of the OA disease. However,
previous studies have reported thatω3 PUFAs can counteract the pro-inflammatory and
catabolic actions of interleukin-1a (IL-1a) on cartilage in vitro [151]. These results were
consistent with a more recent study in which the authors have shown the involvement
of DHA in the downregulation of MMP-13 through a P38 mitogen activated protein ki-
nases (p38-MAPK)-mediated mechanism [152] both in vitro and in vivo in a rat model
of OA. Apart from direct effects of ω3 PUFAs on OA, it is conceivable that ω3-derived
oxylipins could be generated in vitro (i.e., by chondrocytes) and these could mediate the
observed effects. Another study confirmed the presence of pro-inflammatory lipid medi-
ators, such as PGE2, in OA synovial fluid, as well as oxylipins derived from ω3 and ω6
PUFA such as 15-HETE (derived from AA), 17-HDHA (derived from DHA), and 18-HEPE
(derived from EPA). When the pro-inflammatory response occurs in the cartilage, some
types of prostanoid enzymes, such as COX, will be produced and released in excessive
amounts. COX activation will increase the production of MMP, inhibit the expression of
PGE2 and collagen genes and will stimulate the apoptosis process. Studies conducted
by Hardy et al. [153] and Shimpo et al. [154] have analyzed the role of PGE2 in chondro-
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cytes. The pro-inflammatory cytokine IL-1β stimulates the production of PGE2 in large
quantities, and this could induce the degradation process of OA. At the molecular level,
IL-1βwill increase the expression of the COX-2 gene and the microsomal prostaglandin
E synthase-1 at mRNA and protein levels. Therefore, an increase in PGE2 production is
related to mPGES-1 and COX-2 derivatives from osteoarthritis chondrocytes stimulated
by IL-1β. Another recent study has shown the beneficial effects of resolvin D1 on OA
chondrocytes. RvD1 belongs to the family of D-series Rvs, which includes RvD2–RvD6
and share the common precursor 17-HDHA. In one study, RvD1 was found to inhibit the
IL-1β-mediated upregulation of COX-2, PGE2, MMP13, and nitric oxide and to prevent
chemically induced apoptosis in human osteoarthritis chondrocytes [155]. These effects
are mediated by the downregulation of the nuclear factor NF-kB, p38-MAPK, and c-Jun
N-terminal kinases activation, as well as inactivation of caspase9 and upregulation of Bcl-2
and Akt. Despite the high concentrations of RvD1 used in this study (mM range), these
data indicate for the first time the potency of an SPM to counteract deleterious processes
in OA chondrocytes. MSCs have been demonstrated to be effective in the treatments
of different tissue injuries and, in particular, they have been considered as a promising
alternative cell source for cartilage repair [156]. However, recent studies have suggested
that the beneficial effects of MSCs on injured tissues could be attributed to the activation
of a protective mechanism and the stimulation of endogenous regeneration rather than to
their differentiation potential [157]. MSC-secreted bioactive molecules and/or EVs may
act as paracrine or endocrine mediators that directly activate target cells or neighboring
cells to secrete functionally active agents. Indeed, we recently demonstrated the thera-
peutic potential of ASCs secretome and EVs both in vitro on TNFα-stimulated articular
chondrocytes [158,159], and in vivo in a mouse model of OA [160], providing evidences
of MSC mediated anti-inflammatory and immunomodulatory action. Consistently, the
influence of MSCs towards PGE2 gene expression was studied in the pathogenesis of OA.
One study showed that MSCs could significantly (p < 0.05) reduce PGE2 expression in
OA synoviocytes after 24 and 48 h co-culture compared to control cells [161]. Moreover,
several researches disclosed that MSC-derived EVs stimulate tissue regeneration [162],
and EVs have generally important functions in cell communication and regulation. EVs
are home to the inflammatory site and transfer proteins/peptides, mRNA, microRNA,
lipids, or organelles with reparative and anti-inflammatory properties [161,163]. Lipids are
essential components of the EVs membranes, and it is well known that specific lipids are
enriched in EVs compared to their parent cells. For example, it has been shown a 2–3 times
enrichment from cells to EVs for cholesterol, GPLs, and PSs [164,165]. On the contrarily,
EVs generally contained less PCs than their parent cells. At the moment, the physiological
importance of the asymmetric lipids distribution between EVs and parent cells is still
largely unknown. Compared to the original BMSCs, Xiang et al. found out that MSC-EVs
were highly enriched in the cell proliferation and migration mediator S1P by the involve-
ment of sphingosine kinase 1 (SK1) [166]. In detail, human chondrocytes were co-cultured
with MSC-EVs showing enhanced proliferation and decreased apoptosis induced by IL-1β,
known as one of the main inflammatory mediators for arthritis. The highlighted MSC-EVs
therapeutic effect occurs in part through the S1P/S1P receptor 1 (S1PR1) signaling pathway
activation. So, also this study suggests the implication of lipids and their related pathways
(i.e., S1P/S1PR1) into the clinical application of MSC-EVs to the treatment of articular
cartilage defect. Future lipidomic research, aimed at characterizing the lipid mediators of
the crosstalk among MSCs and other articular cell types (e.g., chondrocytes, synoviocytes,
or osteoblasts), would likely uncover additional inflammatory pathways associated with
OA, with interesting repercussions in the clinical management of this pathology.

4. Conclusions

In the last few years, lipidomics has gathered the interest of the scientific community
because of the recently confirmed role of lipids in several biochemical aspects as first
actors. In detail, lipids are recognized as key players in cells membrane and signaling
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processes, such as inflammation and immunomodulation. Furthermore, cell lipidome
changes according to different cell phases and microenvironment features. Therefore,
by analyzing differences in profiles of specific lipid species, it is possible to obtain insights
regarding lipids interference in cell signaling and other cellular mechanisms. Lipidomics
has proved being successful in identifying viable and functional cell cultures, which could
guarantee efficient and safe MSCs application. Despite the limited availability of data
regarding MSC lipidomics, the pleiotropic biological actions of different lipid families
indicate them as promising candidates for future therapeutic interventions.
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2-AG 2-arachidonoilglycerol; AA arachidonic acid; AEA anandamide; ALP alkaline phosphatase
activity; ASCs adipose-derived stem cells; BM bone marrow; BMSCs bone marrow-derived stem
cells; C1P ceramide 1-phosphate; CB cannabinoid receptors; CBD cannabidiol; COL1a1 collagen
type I α 1; COVID-19 coronavirus disease 2019; COX cyclooxygenases; DHA docosahexaenoic acid;
DHEA N-docosahexaenoylethanolamine; eCB endocannabinoids; EETs epoxyeicosatrienoic acids;
EPA eicosapentaenoic acid; EPEA N-eicosapentaenoylethanolamine; ETEs epoxyeicosatrienoids; EVs
extracellular vesicles; FAs fatty acids; FM-MSC fetal membrane-derived stem cells; GC gas chromatog-
raphy; GPCR G protein-coupled receptor; GPLs glycerophospholipids; GPLs glycerophospholipids;
HETEs hydroxyeicosatetraenoic acids; HPLC-MS liquid chromatography coupled to mass spectrom-
etry; IBSP integrin-binding sialoprotein; IFN-γ interferon gamma; LC liquid chromatography; LGPLs
lysoglycerophospholipids; LOX lipoxygenases; LPA lysophosphatidic acid; LPCs lysophosphatidyl-
cholines; LPEs lysophosphatidylethanolamines; LPIs lysophosphatidylinositols; LPLs lysophos-
pholipids; LPSs lysophosphatidylserines; LSLs lysosphingophospholipids; LTs leukotrienes; LXs
lipoxins; MaRs maresins; MDSCs skeletal muscle-derived stem cells; MS mass spectrometry; MSCs
mesenchymal stem cells; MUFAs monounsaturated fatty acids; NADA N-arachidonoyldopine; NAEs
N-acylethanolamines; NAGly N-arachidonoylglycine; OA osteoarthritis; OCN osteocalcin; OSX
osterix; PA phoshatidic acid; PDs protectins; PEA N-palmitoylethanolamide; PGs prostaglandins;
PIs phosphatidylinositols; PPARα receptor peroxisome proliferator-activated receptor-α; PSs phos-
phatidylserines; PUFAs; polyunsaturated fatty acids; RUNX2 runt-related transcription factor 2; Rvs
resolvins; S1P sphingosine 1-phosphate; SEA N-stearoylethanolamide; SFAs saturated fatty acids; SK
sphingosine kinases; SLs sphingolipids; SPMs specialized pro-resolving mediators; SPP1 secreted
phosphoprotein 1; THC delta9-tetrahydrocannabinol; TLC thin-layer chromatography; TNF-α tu-
mor necrosis factor alpha; TRPV1 transient receptor potential vanilloid type 1; TXs thromboxanes;
UCMSCs umbilical cord blood-derived MSCs; ω-3 PUFAs omega-3 polyunsaturated fatty acids;
ω-6 PUFAs omega-3 polyunsaturated fatty acids.
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The therapeutic potential of the conditioned medium (CM) derived from MSCs (mesenchymal stem/stromal cells) in disparate
medical fields, from immunology to orthopedics, has been widely suggested by in vitro and in vivo evidences. Prior to MSC-
CM use in clinical applications, appropriate quality controls are needed in order to assess its reproducibility. Here, we
evaluated different CM characteristics, including general features and precise protein and lipid concentrations, in 3
representative samples from adipose-derived MSCs (ASCs). In details, we first investigated the size and distribution of the
contained extracellular vesicles (EVs), lipid bilayer-delimited particles whose pivotal role in intercellular communication has
been extensively demonstrated. Then, we acquired Raman signatures, providing an overlook of ASC-CM composition in terms
of proteins, lipids, and nucleic acids. At last, we analyzed a panel of 200 molecules including chemokines, cytokines, receptors,
and inflammatory and growth factors and searched for 32 lipids involved in cell signalling and inflammation. All ASC-CM
contained a homogeneous and relevant number of EVs (1:0 × 109 ± 1:1 × 108 particles per million donor ASCs) with a mean
size of 190 ± 5:2 nm, suggesting the appropriateness of the method for EV retaining and concentration. Furthermore, also
Raman spectra confirmed a high homogeneity among samples, allowing the visualization of specific peaks for nucleic acids,
proteins, and lipids. An in depth investigation that focused on 200 proteins involved in relevant biological pathways revealed
the presence in all specimens of 104 factors. Of these, 26 analytes presented a high degree of uniformity, suggesting that the
samples were particularly homogenous for a quarter of the quantified molecules. At last, lipidomic analysis allowed the
quantification of 7 lipids and indicated prostaglandin-E2 and N-stearoylethanolamide as the most homogenous factors. In this
study, we assessed that ASC-CM samples obtained with a standardized protocol present stable features spanning from Raman
fingerprint to specific marker concentrations. In conclusion, we identified key ingredients that may be involved in ASC-CM
therapeutic action and whose consistent levels may represent a promising quality control in the pipeline of its preparation for
clinical applications.

1. Introduction

Over the years, the transplantation of autologous or alloge-
neic stem cells, either naïve, differently primed, or geneti-
cally manipulated, has paved the way to the successful
clinical management of several diseases whose pharmacolog-
ical need was previously unmet. In particular, mesenchymal
stem/stromal cells (MSCs), thanks to their regenerative and

immunomodulatory potential [1, 2], have gained popularity
as cell therapy in disparate clinical scenarios, from immuno-
logical diseases [3] to orthopedic conditions [4] and central
nervous system injuries and disorders (e.g., traumatic brain
injury, Parkinson’s disease, and ischemic stroke) [5]. Besides
the overall promising results, MSC transplantation (as well
as cell-based therapy in general) entails evident drawbacks,
such as ethical controversies, concerns linked to ex vivo
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expansion and high manufacturing costs. Starting from 2006
with the work of Gnecchi et al. [6], a growing body of evi-
dence identifies paracrine signalling as the main effector of
MSC therapeutic action, overturning the initial hypothesis
that acknowledged cell engraftment, differentiation, and
replacement as the main actors. Consequently, in 2010, Pro-
fessor Caplan, the father of MSCs who firstly characterized
and named them, proposed the new terminology of medi-
cine signalling cells to highlight their secretory nature [7].
The term secretome, coined at the beginning of 2000’s by
Tjalsma and colleagues [8], defines the plethora of factors
of different natures (lipids, nucleic acids, and proteins)
secreted by a cell, both freely dissolved and conveyed into
extracellular vesicles (EVs). The paradigm shift on MSC
mode of action promoted cell secretome, intended both as
an entire formula and as selected fractions (i.e., soluble and
vesicular subcomponents), to a novel class of biological ther-
apeutics. Indeed, the last few years witnessed the entrance of
MSC secretome to several clinical trials, mostly in the regen-
erative medicine field, retracing the path of the clinical appli-
cation of donor cells [9]. A critical search through
ClinicalTrials.gov database, performed at the end of April
2021 using alternatively the keywords “secretome,” “condi-
tioned medium,” or “extracellular vesicles” and the filter
“interventional” as study type, lists a total of 14 studies based
on MSC-secretome administration. Interestingly, most of
these protocols relied on the use of CM (n = 11 versus n =
3 studies using EVs) derived from allogeneic MSCs (n = 8
versus n = 1 study specifically following an autologous set-
ting). Thus far, only 3 of these studies are completed
(NCT04315025, NCT03676400, and NCT04134676), but
unluckily, there are no available results yet. Nevertheless, this
picture allows us extrapolating some general considerations
on the state of the art of MSC-based cell-free therapies:

(i) To date, the clinical use of complete secretome,
accounting for both soluble and vesicular fractions,
seems more easily applicable than isolated EVs.
However, at the moment, EV potential in diagnos-
tics remains pivotal, as confirmed by the high num-
ber of clinical trials relying on their use in this field

(ii) Allogeneic settings are widely implemented, con-
firming the lack of immunogenicity and allowing
to minimize interdonor variability and to avoid
the need of performing additional procedures on
patients for cell harvesting, thus excluding also
donor site morbidity

(iii) Donor MSCs are harvested from both neonatal
(mostly umbilical cord) and adult (e.g., adipose tis-
sue and bone marrow) tissue sources

(iv) As for MSC-based cell therapy, the nature of the tar-
geted pathologies is extremely various (among
others, COVID-19 pneumonia, chronic wounds,
alopecia, and osteoarthritis)

It is worth noting that up to now, the regulatory frame-
work for the clinical use of cell secretome, or its subproducts,
has not been clearly stated by any national nor international

agency such as the FDA or the EMA. In the light of a suc-
cessful translation to the clinics, there are still many techni-
cal issues to be addressed, mainly concerning the mode of
action, scalability, standardization, and characterization.

In recent years, our research focused on the investigation
of the conditioned medium (CM) from adipose tissue-
derived MSCs (ASCs) in terms of biochemical composition
[10–13] and therapeutic action, both in vitro [14, 15] and
in vivo [16, 17]. Most of these studies provided the compar-
ison between ASC-CM, consisting of both soluble factors
and vesicle-conveyed ones, and ultracentrifuge-isolated
EVs. Here, we decided to focus selectively on complete
secretome. The present work takes a step forward in the per-
spective of ASC-CM characterization by quantifying a wide
panel of molecules (cytokines, chemokines, receptors,
growth and inflammatory factors, and bioactive lipids) in 3
different samples, in order to define some quality control cri-
teria in the light of its future translation into clinics as an
innovative cell-free therapeutic.

2. Materials and Methods

2.1. Cell Cultures. ASCs were isolated from the subcutaneous
adipose tissue of 3 nonobese (BMI < 30) donors (1 male and
2 females, 54:7 ± 2:3 years old) who underwent total hip
replacement surgery (n = 2) or liposuction (n = 1). All tissues
were collected at IRCCS Istituto Ortopedico Galeazzi upon
Institutional Review Board approval. Every donor provided
a written informed consent. Adipose tissue samples were
shredded with a sterile scalpel, digested for 30min with
0.75mg/ml type I collagenase (Worthington Biochemical
Corporation, Lakewood, NJ, USA), and filtered with a
100μm cell strainer (Corning Incorporated, Corning, NY,
USA). ASCs were grown in a culture medium composed
by high-glucose DMEM (Sigma-Aldrich, St. Louis, MO,
USA), 10% fetal bovine serum (FBS, Euroclone, Pero, Italy),
2mM L-glutamine, 50U/ml penicillin, and 50μg/ml strepto-
mycin (Sigma-Aldrich, St. Louis, MO, USA) at 37°C, 5%
CO2.

2.2. CM Production. ASCs from V to VII passage at 90% of
confluence were incubated in starving conditions (without
FBS) for 72h. No signals of cell suffering were ever recorded
during the period. The medium was then collected and cen-
trifuged at 2500g for 15min at 4°C with the purpose of elim-
inating cell debris, dead cells, and large apoptotic bodies.
The supernatants were then concentrated about 60 times
by centrifuging at 4000g for 90min at 4°C in Amicon
Ultra-15 Centrifugal Filter Devices with 3 kDa molecular
weight cut-off (Merck Millipore, Burlington, MA, USA).
This procedure allows the retention of the vesicular compo-
nent of cell secretome, as previously demonstrated in [12, 13,
15]. The safety and efficacy of the final product obtained
through this procedure have been already tested both
in vitro [14, 15] and in vivo [16, 17].

2.3. Nanoparticle Tracking Analysis (NTA). ASC-CM
samples were appropriately diluted in 0.22μm triple-
filtered PBS and analyzed by NanoSight NS3000 (Malvern
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Panalytical, Salisbury, UK). Three videos, each one lasting
1min, have been recorded for every sample. All measure-
ments respected the quality criteria of 20-120 particles/-
frame, concentration of 106 − 4 × 109 particles/ml, and
number of valid tracks > 20%. After capture, the videos have
been analyzed by the in-build NanoSight Software NTA.

2.4. Protein Array. Undiluted ASC-CM samples were ana-
lyzed by RayBiotech facility (RayBiotech, Norcross, GA,
USA). The concentration (pg/ml) of 200 analytes of different
natures (cytokines, chemokines, receptors, and inflamma-
tory and growth factors) was investigated using the Quanti-
body® Human Cytokine Array 4000 Kit, a combination of
Human Cytokine Array Q4, Human Chemokine Array Q1,
Human Receptor Array Q1, Human Inflammation Array
Q3, and Human Growth Factor Array Q1 (https://www.
raybiotech.com/quantibody-human-cytokine-array-4000/).
Obtained values were normalized on donor cell number
(pg/106 ASCs).

2.5. Raman Spectroscopy. ASC-CM samples were diluted in
sterile saline solution and analyzed with the Raman micro-
spectroscope (LabRAM Aramis, Horiba Jobin Yvon S.A.S.,
Lille, France) equipped with a 532nm laser following a pre-
viously reported protocol [10, 13]. CM samples were depos-
ited on a calcium fluoride slide and air-dried, and then,
measurements were performed in the spectral ranges 600-
1800 and 2600-3200 cm-1. At least 15 spectra per sample
were acquired and processed (baseline correction, unit vec-
tor normalization, and postacquisition calibration) taking
advantage of the integrated software LabSpec 6 (Horiba
Jobin Yvon S.A.S., Lille, France).

2.6. Targeted UHPLC-MS/MS-Based Lipidomics. Polyunsat-
urated fatty acids, eicosanoids, endocannabinoids, and N-
acylethanolamides were quantified on a QTRAP 5500 triple
quadrupole linear ion trap mass spectrometer (Sciex, Darm-
stadt, Germany) coupled with an Agilent 1200 Infinity pump
ultrahigh-pressure liquid chromatography (UHPLC) system
(Agilent Technologies, Palo Alto, CA, USA) using the
UHPLC-MS/MS methods previously reported [18]. Briefly,
undiluted ASC-CM samples (approximately 200μl/sample)
were spiked with deuterated internal standards and 1ml of
cold acetonitrile was added for protein precipitation. After
centrifugation, the supernatants were extracted with a 4ml
of dichloromethane/isopropanol (8 : 2; v/v) and centrifuged
again. The organic layer was separated, dried, and reconsti-
tuted in 60μl methanol. 3μl aliquot was analyzed for endo-
cannabinoids and N-acylethanolamides. The remaining
solution was added with 500μl hydrochloride acid
(0.125N) and 4ml ethyl acetate/n-hexane (9 : 1; v/v). The
organic phase was dried, and the residue was reconstituted
in 60μl acetonitrile. 30μl aliquot of methanol obtained from
the neutral extraction and 30μl aliquot from acid extraction
were merged, and 10μl was analyzed for polyunsaturated
fatty acids and eicosanoid determination. Data acquisition
and processing were performed using Analyst®1.6.2 and
MultiQuant®2.1.1 software (Sciex, Darmstadt, Germany),
respectively.

2.7. Validation of Selected Proteins and Lipids. The validation
of selected proteins was performed on 5 additional ASC-CM
samples (deriving from cells harvested from 2 female and 3
male donors, mean age = 54:6 ± 22:3 years old). The Human
Magnetic Luminex Screening Assay Rk4yTGNI (R&D Sys-
tems, Minneapolis, MN, USA) was customized to contain 5
molecules: MCP-4, PDGF-AA, TNF RI, DKK-1, and RAGE.
Duplicates of each ASC-CM (50μl/sample) were tested,
undiluted, and read through Bio-Plex Multiplex System
(Bio-Rad, Milan, Italy) following standard procedures. Data
analysis was performed with MAGPIX xPONENT 4.2 soft-
ware (Luminex Corporation, Austin, TX, USA). The valida-
tion of SEA and PGE2 levels was performed through the
UHPLC-MS/MS methods previously described on the CM
derived from 5 additional ASC populations (all female
donors, mean age = 49:0 ± 11:1 years old).

2.8. Data Analysis and Statistics. Statistics was performed
with GraphPad Prism 7 software (GraphPad Software, La
Jolla, CA, USA) and Excel. p values < 0.05 were considered
statistically significant. NTA data were analyzed by the
Kruskal-Wallis test to evaluate interdonor variability. For
the Raman spectra, descriptive and multivariate statistical
analyses were performed with Origin2021 (OriginLab,
Northampton, MA, USA). Principal component analysis
(PCA) was performed to reduce the dimensionality of
Raman spectral datasets and to highlight differences between
the spectra, with the resulting principal components (PC)
representing these spectral differences with increasing per-
centage of variance. For protein array data, D’Agostino and
Pearson omnibus normality test was used to determine
whether the samples come from a Gaussian distribution.
None of the datasets passed the normality test and correla-
tion (Spearman r), and linear regression analyses were then
performed accordingly. Coefficient of variation (CV, also
known as relative standard deviation or RSD) was calculated
as the ratio of the standard deviation to the mean. A CV <
33% was set as threshold. PCA and clustering were per-
formed by ClustVis (https://biit.cs.ut.ee/clustvis). Proces-
s/pathway analysis was performed by STRING (https://
string-db.org/) following default settings.

3. Results

CM samples were obtained, as previously described, from
the culture medium harvested from confluent ASCs cultured
for 3 days in serum-free conditions and concentrated by
centrifugal filter devices of about 60 times. Since EVs repre-
sent a fundamental component of cell secretome, the first
step of CM characterization focused on particle analysis.
NTA revealed a similar size distribution between all the sam-
ples (Figures 1(a)–1(c)), with a mean EV size of 190 ± 5:2
nm (Figure 1(d)). Mode values (Figure 1(e)) further con-
firmed the homogeneity between preparations, indicating
that the dimensions of the most frequently occurring particle
populations ranged from 110 to 150nm. All samples
counted a relevant number of EVs, with an average of 1:0
× 109 ± 1:1 × 108 particles per million donor ASCs
(Figure 1(f)), confirming the appropriateness of our protocol
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in retaining the vesicular component of cell secretome. No
significant difference was observed in any parameter (non-
parametric Kruskal-Wallis test, p > 0:05).

CM samples were then characterized by Raman spec-
troscopy, a vibrational spectroscopy method that was
already proved to be effective in characterizing the soluble
and the vesicular components of MSC secretome, verifying
the purity and reproducibility of cell-free preparations [10,

13]. The obtained average spectra (Figure 2(a)) provide
detailed biochemical information about the considered sam-
ples, with the Raman fingerprint accounting for proteins
(amide I 1.650 cm-1), lipids (2700–3200 cm-1), and nucleic
acids (720–820 cm-1), in agreement with previously reported
data [13]. In particular, CM spectra showed a good signal-
to-noise ratio and a good reproducibility, as assessed by
the reported standard deviation (gray shaded areas in
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Figure 1: Dimensional characterization and quantification of ASC-CM extracellular vesicles. (a–c) Representative images of NTA referred
to ASC-CM1 (a), ASC-CM2 (b), and ASC-CM3 (c). (d–f) Size distribution (d, e) and vesicular yield (f) deriving from 3 NTA
measurements/sample. Data are shown as the mean ± SD.
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Figure 2(a)). The similarities in the chemical composition of
the samples were further verified by multivariate statistical
analysis: the PC1 and PC2 scores obtained for the three con-
sidered samples showed substantial overlap in the reported
scatter plot (Figure 2(b)).

In order to identify and quantify putative key factors
involved in ASC-CM therapeutic action, we analyzed a panel
of 200 chemokines, cytokines, receptors, and inflammatory
and growth factors (40 molecules/category). 104 proteins

were reliably quantified in all the samples (19 chemokines,
14 cytokines, 24 receptors, and 37 inflammatory and 10
growth factors), while 44 molecules were always undetectable
(5 chemokines, 10 cytokines, 7 receptors, and 1 inflammatory
and 21 growth factors) (Supplementary Tables 1 and 2). PCA
on the 104 quantified factors unveiled a similar heterogeneity
across the 3 samples (Figure 3(a)). The heat map further
confirmed the lack of major differences among the
specimens (Figure 3(b)). Correlation analysis, performed
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Figure 2: Raman spectroscopy analysis of ASC-CM samples. (a) Average Raman spectra obtained with 532 nm laser line on air-dried drops
of ASC-CM samples. Gray shaded areas represent ±1 standard deviation. (b) Scatter plot of the PC1 and PC2 scores obtained for the 3
considered samples after multivariate statistical analysis (PCA). Ellipses represent the 95% confidence intervals calculated for each sample.

5Stem Cells International



–60
–60

–30

0

30

ASC-CM1
ASC-CM2

ASC-CM3

60

–30 0
PC1 (62%)

PC
2 

(3
8%

)

30 60

(a)

A
SC

-C
M

1

A
SC

-C
M

2

A
SC

-C
M

3 –3

–2

–1

0

1

2

3LAP(TGFb1)
ICAM-3
ErbB3
Endoglin
IL-28A
LYVE-1
SDF-1b
MICA
IL-15
Eotaxin-3
IL-4
PF4
MCSF
MCP-3
OPN
IL-21R
Dtk
ICAM-2
TRAIL R3
MICB
Flt-3L
GCP-2
ENA-78
PDGF Rb
IL-1 RI
HVEM
LIMPII
XEDAR
IL-11
EGF R
IL-8
IL-17
Angiogenin
MCP-1
MIP-1a
IGFBP-6
MIP-1b
IL-1ra
G-CSF
TIMP-2
ALCAM
uPAR
RAGE
IL-16
GM-CSF
ICAM-1
IP-10
IGFBP-2
PDGF-AA
Eotaxin-2
RANTES
DR6
NRG1-b1
IL-6R
HGF
I-309
TGFb1
DAN
Lymphotactin
IFNg
OPG
Axl
MCP-4
IL-7
Eotaxin
IGFBP-1
TNF RII
Cathepsins
Fas
IL-12p70
IL-17R
TNFa
CXCL16
CD14
IL-9
IL-12p40
MIP-3a
I-TAC
SDF-1a
IL-2 Rb
IL-17B
Siglec-5
BLC
gp130
DKK-1
FGF-7
IL-2 Ra
NAP-2
MIG
VEGF
E-Selectin
IL-5
PDGF-BB
IL-2
HCC-4
TNF RI
TIMP-1
PARC
PAI-1
IL-10
IL-13
TNFb
IL-23
MIP-1d

(b)

Figure 3: Continued.
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both on the entire datasets (Figure 3(c)) and on 26 selected
factors with a coefficient of variation (CV) lower than 33%
(Figure 3(d) and Figure 4(a)), showed a strong relationship
between the quantitative variables among samples. Indeed,
the slope of the regression lines always tended to 1
(Figures 3(c) and 3(d)). Moreover, Spearman r always
resulted higher than 0.8, confirming a highly significant
direct correlation between specimens (Figures 3(c) and
3(d), nonparametric Spearman correlation, p < 0:0001).

Since we aim at suggesting standards for CM quality con-
trol, further analyses focused on selected analytes particularly
homogeneous across the samples. In details, around 25%
(n=26) of the quantified factors presented a CV < 33%, indi-
cating a high degree of uniformity in all CM (Figure 4(a),
Supplementary Table 3). Of note, 15 of these were
inflammatory factors (Supplementary Table 3). STRING
analysis underlined strict interconnections between these
factors (Figure 4(b)). As expected, a strong enrichment in
proteins involved in immune system regulation emerged by
pathway analysis (Supplementary Table 4). In particular, the
top 15 pathways ranked by FDR (Figure 4(c)) list proteins
involved in cytokine-cytokine interaction (cytokine-cytokine
receptor interaction/Jak-STAT signalling pathway) and T
cell regulation (T cell receptor signalling pathway/Th1 and
Th2 cell differentiation).

Besides proteins, lipidsmight also exert important roles in
immune regulation. For this reason, in our CM samples, we
analyzed a panel of endocannabinoids and eicosanoids
known to be involved in inflammation. Seven lipidmolecules,
i.e., arachidonoyl acid (AA), eicosapentaenoyl acid (EPA),
docosahexaenoic acid (DHA), prostaglandin-E2 (PGE2),
prostaglandin-F2α (PGF2α), N-palmitoylethanolamide
(PEA), and N-stearoylethanolamide (SEA) (Supplementary
Table 5), were reliably quantified by UHPLC-MS/MS analysis
in all ASC-CM samples. Except for 2-arachidonoylglycerol
(2AG), quantified in 2 out of 3 samples, the other 24 lipids

were always undetectable or unquantifiable (<LODs or
LOQs). A coefficient of variation lower than 33% was found
for SEA and PGE2 molecules (Figures 5(a) and 5(b),
Supplementary Table 5), indicating a good degree of
uniformity in the 3 CM. It is interesting to point out that,
in CM, bioactive lipid by-products are more homogenous
than precursors. This could suggest that mainly the firsts
are released in a controlled fashion. Indeed, analyzing the
pellets of the donor cells and also the precursors DHA, AA,
and EPA presents strongly similar concentrations at
intracellular level (Supplementary Table 6).

Since quantifying specific analytes could become a good
quality control step for ASC-CM, we analyzed the concen-
tration of a subset of factors in larger validation cohorts
(n = 5 ASC-CM for both protein and lipid validation).
Regarding proteins, our results confirmed both the presence
and the homogeneity of the selected factors in all the
analyzed samples (Figure 6(a)). Of note, while the mean
concentrations of RAGE (18:5 ± 9:3 pg/106 ASCs), TNF RI
(368:4 ± 78:3 pg/106 ASCs), and MCP-4 (19:5 ± 11:6 pg/
106 ASCs) nicely fit the ones observed in the original set
(Figure 4(a)), the detected values for PDGF-AA (3:7 ± 2:9 pg/
106 ASCs) and DKK-1 (2524:9 ± 734:6 pg/106 ASCs) are,
respectively, lower and higher than expected. This discrep-
ancy can be attributed to the implementation of distinct
immunological techniques that therefore may have a differ-
ent sensibility and specificity and may rely on the use of anti-
bodies raised against disparate regions of the analytes.
Conversely, lipid validation was performed through the same
UHPLC-MS/MS methods used to test the original set. As
shown in Figure 6(b), SEA (128:2 ± 98:8 pg/106 ASCs) and
PGE2 (50:8 ± 38:6 pg/106 ASCs) were quantified in the entire
ASC-CM lipid validation cohort within a concentration
range that strongly overlaps what was previously observed
(Figure 5(a)).
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Figure 3: Clustering and correlation analysis of the 104 factors quantified in all ASC-CM samples. For the analyses, the levels of each analyte
(pg/ml) were normalized on donor cell number and expressed as pg/106 ASCs. (a) PCA plot and (b) heat map visualization of the protein
levels in ASC-CM1, ASC-CM2, and ASC-CM3. (c, d) Correlation analysis of all the 104 factors (c) and of the 26 molecules (d) having a
coefficient of variation below 33% (CV < 33%). For each graph, the equation of the regression lines is reported, together with Spearman r
values.
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Figure 4: Protein interactions and functional prediction of the 26 most homogeneous factors quantified in ASC-CM samples. (a) List of the
26 selected factors having a coefficient of variation below 33% (CV < 33%) and (b) corresponding protein-protein interactions uncovered by
STRING analysis. (c) Top 15 KEGG pathways associated with the 26 proteins selected based on false discovery rate (FDR) p value (-log10
FDR p values are reported as orange bars). Fold enrichment was calculated as follows: Fold enrichment = ðobserved protein count/number
of most homogeneous factorsÞ/ðbackground gene count/total gene numberÞ and is reported as blue bars.
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4. Discussion

The secretome from mesenchymal stem/stromal cells repre-
sents a mixture of biologically active ingredients whose indi-
vidual role is still unknown. Nevertheless, their synergistic
action in producing a clear therapeutic effect supports the
rationale for investigating its clinical potential. This study
is aimed at defining key elements of ASC secretome pro-
duced according to our protocol, which contemplates the

culture of 90% confluent cells for 72 hours under serum dep-
rivation and the following concentration of the conditioned
medium through 3 kDa molecular weight cut off filters.
Other groups currently implement a similar procedure [19,
20], although in literature, there are plenty of alternatives
[21]. Therefore, according to the aphorism “the process is
the product,” any change in the manufacturing process will
undoubtedly affect the final product. Moreover, it should
be pointed out that ASC-CM thus produced retains a
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Figure 5: Lipid levels in ASC-CM samples. (a) Concentration of SEA and PGE2 in ASC-CM and (b) corresponding multiple reaction
monitoring (MRM) chromatograms.
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substantial number of EVs and indeed previous evidences
demonstrated a vesicular yield even higher than the one
obtained by ultracentrifugation [13, 15].

Here, we focused on key parameters that could be
exploited either as general quality controls, such as vesicular
component and Raman signature, or as specific markers,
such as the quantification of selected proteins and lipids. A
summary of the production process and the proposed qual-
ity controls is indicated in Figure 7. For the sake of com-
pleteness, even though nucleic acids such as miRNAs were
not investigated in the current study, their role has been
largely discussed by others (e.g., [22]) making them interest-
ing candidates for additional or alternative quality control
checks.

Given the biological relevance of EVs, their determina-
tion in CM was the first analysis performed in this study.
EVs were abundant in all samples. Their number and size
distribution were homogeneous and coherent with previous
findings [13, 15]. Of note, the filtration protocol allows the
retaining and concentration of the vesicular component with
a process that is faster, easier, and less demanding than the
gold-standard procedure (i.e., ultracentrifugation) [15].
Since EVs are strategic shuttles for biologicals, we suggest
their quantification in CM preparations as a general quality
control. Together with EV quantification, also Raman spec-
troscopy can provide a comprehensive picture of CM com-
position. It reveals the presence of macromolecules and
points out differences and similarities across the samples,
as reported here and in a previous study [13].

Differently, the investigation and quantification of selected
factors could be adapted according to specific downstream
applications.

The broad range analysis on 200 proteins playing pivotal
roles in a variety of biological processes highlighted the pres-
ence of 26 highly conserved molecules in the 3 ASC-CM.
Among these, we chose to validate 5 analytes, each belonging

to a different panel: the chemokine MCP-4 (CV = 32%), the
cytokine DKK-1 (CV = 30%), the receptor RAGE (CV = 8%),
the inflammatory mediator TNF RI (CV = 8%), and the
growth factor PDGF-AA (CV = 17%). For all these analytes,
a high homogeneity among ASC-CM samples was con-
firmed. Given our promising in vitro [14, 15] and in vivo
[17] results on the therapeutic action of ASC-CM in counter-
acting osteoarthritis (OA), herein, we focused our attention
on the potential role of each molecule in this frame.

Monocyte chemoattractant protein 4 (MCP-4, also
known as CCL13) is a member of the CC chemokine family
that displays, besides a strong chemotaxis towards immune
cells, a variety of immunomodulatory functions, spanning
from induction of cytokine release to antimicrobial activity
[23]. Interestingly, MCP-4 can undergo proteolytic cleavage
by matrix metalloproteinases (MMPs), resulting in biologi-
cally active peptides that exert opposite actions on chemo-
taxis and inflammation [24]. This aspect is particularly
intriguing since the aberrant MMP activity represents one
of the milestones of OA progression [25]. In this perspective,
ASC-CM therapeutic potential may rely also on the possibil-
ity of harnessing the anti-inflammatory properties of MCP-4
metabolites generated in situ by MMPs.

DKK-1 (Dickkopf-1) is a chondroprotective factor, act-
ing as inhibitor of the Wnt/β-catenin signalling pathway.
A massive activation of this pathway is involved in diseases
like OA [26], where the conditional accumulation of β-
catenin affects chondrocytes inducing a hypertrophic phe-
notype together with the overexpression of MMPs [27].
Interestingly, recent in vitro evidences described positive
changes in the expression of β-catenin by subchondral
osteoblasts following the administration of DKK-1 [28].
Consequently, its abundance in ASC-CM may represent
a promising cue in counteracting OA progression.

The receptor for advanced glycation end products
(RAGE) appeared remarkably homogenous in ASC-CM

RAGE (MOK) 29,1 21,4 12,3 23,7 5,9

PDGF-AA 1,7 6,3 7,5 1,7 1,4

TNF RI (TNFRSF1A) 356,6 347,4 443,0 441,0 254,1

DKK-1 3593,3 2871,1 2415,0 2004,0 1741,2

MCP-4 (CCL13) 16,3 39,9 13,2 16,9 11,2

ASC-CM PV5ASC-CM PV4ASC-CM PV3ASC-CM PV2ASC-CM PV1

pg/106 ASCs

(a)

SEA 97,8 85,7 116,1 298,3 43,2

PGE2 44,9 34,8 45,9 115,6 12,8

pg/106 ASCs

ASC-CM LV1 ASC-CM LV2 ASC-CM LV3 ASC-CM LV4 ASC-CM LV5

(b)

Figure 6: Validation of selected proteins and lipids. (a) Levels of 5 selected proteins (RAGE, PDGF-AA, TNF RI, DKK-1, and MCP-4)
quantified in an ASC-CM protein validation (PV) cohort (n = 5). (b) SEA and PGE2 levels confirmed in an ASC-CM lipid validation
(LV) cohort (n = 5). The levels of each analyte (pg/ml) were normalized on donor cell number and expressed as pg/106 ASCs.

10 Stem Cells International



samples. Physiologically and pathologically, this is a trans-
membrane receptor whose activation by ligand interaction
triggers intracellular signalling leading to increased release
of reactive oxygen species and proinflammatory cytokines
[29]. The presence of RAGE in ASC-CM cannot induce such
a response so it might act as a decoy receptor. This could be
exploited for the treatment of pathologies presenting a
reduction of soluble RAGE (sRAGE, the “conventional”
RAGE decoy receptor), together with an increase of its
ligands. In OA, a reduction of sRAGE is associated with an
increase in AGE levels in the synovial fluid [29, 30]. In this
context, we hypothesize that ASC-CM injection in a limited
space such as the synovial environment could mitigate the
pathological sRAGE/AGE unbalance.

A similar consideration can fit for TFN RI (TNFRSF1A).
This receptor is usually involved in the transduction of var-
ious inflammatory/stress stimuli by the activation of NF-κB
and the consequent transcription of specific genes leading
to the production of proinflammatory and catabolic factors
[31]. Again, the molecule present in ASC-CM medium can-
not trigger these intracellular events while it could compete
with cellular receptor. This could be of particular relevance
in the treatment of pathologies associated with a relevant
increase in TNF, such as rheumatoid arthritis [32], Crohn’s
disease [33], and OA [34]. In the latter, ASC-CM intra-
articular administration could be particularly beneficial since
the increase in TNF in the synovial fluid, synovial mem-
brane, cartilage, and subchondral bone is also associated
with an increased TNFRI in synovial fibroblasts, further
amplifying the noxious signalling [34].

Platelet-derived growth factors (PDGFs) are key players
in bone metabolism, and, in particular, PDGF-AA is
involved in the crosstalk between subchondral bone and
articular cartilage during OA onset [35]. Moreover, recent
evidences suggest that PDGF-AA promotes remyelination

and increases tissue repair in a rat model of spinal cord
injury, overall improving the locomotor functional recov-
ery [36].

Since recently, the involvement of lipids in physiological
and pathological processes has been widely demonstrated; in
our opinion, their analysis holds paramount importance.
With the advent of the next-generation mass spectrometry
(MS), significant advances occurred in the field of lipido-
mics. Our UHPLC-MS/MS method [18] is aimed at profiling
a high number of bioactive lipids belonging to structurally
similar classes, including polyunsaturated fatty acids, eicosa-
noids, endocannabinoids, and N-acylethanolamides. Since it
is conceivable that these lipids released by ASCs may play a
role in inflammatory processes, we performed an absolute
quantification of 32 molecules thanks to the high sensitivity
and specificity of triple quadrupole mass spectrometry and
the use of labeled lipids. Among quantified lipids, SEA and
PGE2 showed a relevant uniformity that was therefore vali-
dated in a larger ASC-CM cohort. SEA is an endogenous
lipid belonging to the N-acylethanolamides family that acts
as an anti-inflammatory/immunomodulatory agent through
the downregulation of several proinflammatory cytokines
[37]. Conversely, PGE2 exerts a well-known inflammatory
action. Nevertheless, in the OA context, it can exert either
anabolic or catabolic effects on chondrocytes and synovio-
cytes depending on its concentration [38–40]. Evidence sug-
gests also that PGE2 may have an immune stimulatory role
by facilitating Th1 differentiation and expanding Th17 T
cells [37].

5. Conclusions

In conclusion, in this work, we identified key ingredients of
ASC secretome that may be involved in its therapeutic
action and whose stable levels among different ASC-CM
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Figure 7: Scheme of our strategy for ASC-CM production together with the proposed quality control steps discussed in the text.
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batches may represent promising quality control criteria.
Indeed, these indications may be relevant for a rapid and
convenient reproducibility assessment of ASC-CM prior its
use for different applications.

Nevertheless, we suggest not to focus reservedly on
selected components but rather to aim at acquiring an over-
view of the great complexity of this promising cell-free ther-
apeutic, whose strength relies precisely on the presence of a
multitude of biologically active factors of different natures.
Here, we propose multiple steps for secretome standardiza-
tion, either providing an overlook of its composition by
NTA and Raman spectroscopy or specifically focusing on
the quantification of key molecules of different natures.
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Summary of the research for the general public  

Italian: Questo progetto di ricerca ha riguardato lo studio di alcune classi lipidiche bioattive 

nel secretoma di cellule mesenchimali stromali e nella successiva valutazione della loro 

funzione biologica in un modello cellulare di osteoartrosi (OA). L’utilizzo di tecniche 

analitiche avanzate per la determinazione di queste molecole ha permesso la loro 

quantificazione in concentrazioni dell’ordine dei pico-nanogrammi. I lipidi sono stati 

principalmente ricercati nel prodotto di secrezione, cosiddetto secretoma, di alcune cellule 

mesenchimali stromali, isolate da midollo spinale e da tessuto adiposo di derivazione 

umana. Tale approccio ha consentito una parziale caratterizzazione dei lipidi contenuti 

all’interno del secretoma e, in secondo, luogo la definizione della loro concentrazione. Tali 

evidenze sono state fondamentali per studiare l’attività biologica di due molecole lipidiche 

riscontrate nel secretoma, il 2-arachinoilglicerolo (2AG) e l’N-palmitoiletanolammina (PEA), 

in un modello cellulare di OA ottenuto mediante la stimolazione di condrociti primari con uno 

stimolo infiammatorio. I risultati ottenuti mostrano un effetto pro-infiammatorio del 2AG e un 

possibile effetto anti-infiammatorio del PEA. 

English: This research project involved the study of some bioactive lipid classes in the 

secretome of mesenchymal stem/stromal cells and the evaluation of their biological function 

in a cellular model of osteoarthritis (OA). Advanced analytical techniques were used for the 

determination of lipids, providing their quantification of pico-nanograms concentrations. The 

lipids were mainly assessed in the secretome of mesenchymal stem/stromal cells, isolated 

from the human bone marrow or adipose tissue. This approach allowed a partial 

characterization of the lipids contained within the secretome and, secondly, the definition of 

their concentration. These findings were crucial to study the biological activity of two lipids 

found in the secretome, 2-arachinoylglycerol (2AG) and N-palmitoylethanolamine (PEA), in 

a model of OA obtained by the primary chondrocyte treatment with an inflammatory stimulus. 

The results showed a potential pro-inflammatory effect of 2AG and a possible anti-

inflammatory effect of PEA.  
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