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a b s t r a c t

We consider positive critical points of Caffarelli–Kohn–Nirenberg inequalities and
prove a Liouville type result which allows us to give a complete classification of
the solutions in a certain range of parameters, providing a symmetry result for
positive solutions. The governing operator is a weighted p-Laplace operator, which
we consider for a general p ∈ (1, d). For p = 2, the symmetry breaking region for
extremals of Caffarelli–Kohn–Nirenberg inequalities was completely characterized
in Dolbeault et al. (2016). Our results extend this result to a general p and are
optimal in some cases.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the symmetry of critical points related to Caffarelli–Kohn–Nirenberg (CKN)
inequalities in Rd, with d ≥ 3. CKN inequalities were proved in [8] (see also [25,27,28]) and assert that
there exists a positive constant Ca,b such that

(∫
Rd

|x|−bq
uqdx

) 1
q

≤ Ca,b

(∫
Rd

|x|−ap|Du|pdx

) 1
p

(1.1)
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holds for any u ∈ D1,p(Rd, |x|−ap), where D1,p(Rd, |x|−ap) is the completion of C∞
0 (Rd) with respect to the

norm

∥u∥D1,p(Rd,|x|−ap) =
(∫

Rd
|x|−ap|Du|pdx

) 1
p

.

n this paper, we consider d ≥ 3, p > 1, a ≤ b < a + 1, q = dp
d−p(1+a−b) , a < ac, where ac = d

p − 1, and
a,b = Ca,b(d, p, a, b, q). We notice that the exponent q is determined by the invariance of the inequality
nder scaling. We mention that (1.1) is sometimes called the Hardy–Sobolev inequality, since it can be seen
s an interpolation between the Sobolev inequality (i.e. for a = b = 0) and the weighted Hardy inequalities
when b = a + 1), see [11] for more details.

In the last decades, a large effort has been spent to investigate the sharp constants in (1.1) [16,17], as well
s symmetry properties or symmetry breaking of extremals. Indeed, it is well-known that minimizers of (1.1)
ay not be radially symmetric for some values of a and b and hence symmetry breaking may occur [9,21].
he problem of identifying the optimal symmetry breaking region is still open for a general p, but it has
een recently settled in [19] for p = 2 (see also the references quoted in the introduction of [19] for many

nteresting partial results). In particular, in [19] the authors elegantly characterize the optimal symmetry
ange for minimizers, and more generally for positive critical points, of CKN inequalities for p = 2 by using
he so-called carré du champ method.

In this paper we do not restrict to the case p = 2 and we consider positive critical points of CKN
nequalities (1.1), which (up to a multiplicative constant) are solutions to⎧⎪⎨⎪⎩

div (|x|−ap|Du|p−2
Du) + |x|−bq

uq−1 = 0 in Rd,

u > 0,

u ∈ D1,p(Rd, |x|−ap)
(1.2)

ith 1 < p < d.
Our goal is to investigate the optimal region of symmetry breaking and we prove the following symmetry

esult for solutions to (1.2).

heorem 1.1. Let (a, b) ̸= (0, 0) and let u be a solution of (1.2) with

(1 + a − b)(ac − a)
ac − a + b

≤
√

d − 2
n − 2 , (1.3)

here n = d
1+a−b . If a = b or p < n/2, then

u(x) =
(

q

p(p − 1)p−1

) 1
q−p

⎛⎝ (d − p(1 + a))λ

λp + c2|x|
(q−p)(d−p(1+a))

p(p−1)

⎞⎠
p

q−p

(1.4)

for some λ > 0.

As already mentioned, CKN inequalities reduce to Sobolev’s inequality for a = b = 0. When p = 2,
ymmetry for positive critical points of Sobolev’s inequality goes back to the fundamental papers [7,23]. For
general p ∈ (1, d), it has been proved in [31,38] and, more recently, in [14] for general norms of Rd and in

onvex cones.
We mention that the case a = b = 0 could be included in Theorem 1.1, even if in this case the solution

1.4) is valid up to a translation. Indeed, as it is well-known, minimizers of Sobolev’s inequality are the
o-called Aubin–Talenti functions and it is easy to see that minimizers are unique up to multiplication by a
onstant, translations and scaling. When a or b do not vanish, minimizers have less degree of symmetry since
2
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the functional is not invariant under translations. For this reason and since our approach is a generalization
of [14] to the present case, we prefer to state Theorem 1.1 only for (a, b) ̸= (0, 0).

When (a, b) ̸= (0, 0), the presence of radial weights implies that a new crucial question must be addressed:
for what parameters a and b is the radial symmetry of (1.1) inherited by minimizers of (1.1) or, more
generally, by its critical points? Theorem 1.1 partially answers to this question and it is optimal in some
cases. Here we just mention that (1.3) holds for a large range of parameters, for instance whenever a ≥ 0
and p ≥ 2 (see also the more detailed discussion after Theorem 1.2). As far as we know, there are some
partial results on the rigidity of minimizers of (1.1) but few results are available for critical points when one
considers 1 < p < d (see [1,20,26] and references therein). We also mention that some results on symmetry
breaking for p > 1 are obtained in [6,10,29,34].

We notice that the approach used in this paper and the one in [19] have in common the same starting
point. When p = 2, our approach can be compared to the one in [19] and it can be seen that we use
an equivalent reformulation of the problem in a Riemannian setting (the approach in [19] uses a warped
manifold setting). The main difference between the two approaches is that in [19] the authors benefit of
the linearity of the Laplace operator and, in particular, they make use of the Kelvin transform and of the
spherical representation of the operator. Thanks to this setting, they are able to perform some further steps
in the proof which lead to optimality. These steps could be done also in our approach for p = 2 by closely
following the argument in [19] and revisiting it in our equivalent reformulation, but it would not be a relevant
contribution to the study of the problem. Instead, in this paper we are interested in starting a new way for
finding the optimal symmetry breaking region in the quasilinear case p ̸= 2.

Strategy of the proof. Our approach is based on a reformulation of CKN inequalities in a suitable
Riemannian manifold which gives a Sobolev type inequality on Rd with a weight |x|n−d, and then to extend
the approach contained in [14] to the present situation.

Inspired by [19], we consider the change of variables x ↦→ |x|α−1
x, with α ∈ R which has to be determined

ater. By setting w(|x|α−1
x) = u(x), CKN inequalities can be written as

α
1
q

(∫
Rd

wq|x|
d−bq

α −d
dx

)1/q

≤ Ca,bα
1
p

(∫
Rd

|A(x)Dw|p|x|
d−ap+(α−1)p

α −d
dx

)1/p

, (1.5)

here

A(x) =
(

δij + (α − 1)xixj

|x|2

)
.

e choose α such that
n := d − bq

α
= d − ap + (α − 1)p

α
,

.e.
α = (1 + a − b)(ac − a)

ac − a + b
(1.6)

and
n = pq

q − p
= d

1 + a − b
. (1.7)

Notice that α > 0. In this way, (1.5) can be written as follows

α
1
q − 1

p

(∫
Rd

wq|x|n−d
dx

)1/q

≤ Ca,b

(∫
Rd

|A(x)Dw|p|x|n−d
dx

)1/p

. (1.8)

It will be convenient to consider Rd with the metric g such that g−1 = AT A, i.e.

gij = δij +
(

1
2 − 1

)
xixj

2 (1.9)

α |x|
3



G. Ciraolo and R. Corso Nonlinear Analysis 216 (2022) 112683

H
m
o

T

L
s

T

f

and hence
gij = δij +

(
α2 − 1

) xixj

|x|2
. (1.10)

We notice that g is smooth outside the origin, it is zero homogeneous and det(g) = α−2 is constant. In this
setting, CKN inequalities can be written as(∫

Rd
wq|x|n−d

dVg

)1/q

≤ Ca,b

(∫
Rd

|∇w|pg |x|n−d
dVg

)1/p

, (1.11)

where ∇w is the gradient in the metric g. Inequality (1.11) is the starting point for our analysis, since critical
points of CKN-inequalities (1.11) (and hence of (1.1)) can be seen as the solutions of the Euler–Lagrange
equation of (1.11) (after an opportune re-normalization), which is given by

1
|x|n−d

div (|x|n−d|∇w|p−2
g ∇w) + wq−1 = 0 . (1.12)

Here we recall that, since det(g) is constant, then div X = divg X for any vector field X and for this reason
we omit the dependency on g in the divergence. Moreover, we look for a solution w which is positive and
belongs to the energy space D1,p

g (Rd, |x|n−d), i.e. such that∫
Rd

|∇w(x)|pg|x|n−d
dx < +∞.

Notice that by CKN-inequality we also have that∫
Rd

|w(x)|q|x|n−d
dx < +∞.

ere and in the following, Du denotes the Euclidean gradient and ∇u denotes the gradient in the Riemannian
anifold (Rd, g), with g given by (1.9). Thanks to this new setting, Theorem 1.1 is an immediate consequence

f the following theorem.

heorem 1.2. Let (a, b) ̸= (0, 0), d ≥ 3, α and n be given by (1.6) and (1.7), respectively, and assume that

α ≤
√

d − 2
n − 2 . (1.13)

et w ∈ D1,p
g (Rd, |x|n−d) be a positive solution of (1.12), and assume that one of the following conditions is

atisfied

(H1) n = d, i.e. a = b;
(H2) p < n

2 .

hen

w(x) =
(

q

p(p − 1)p−1

) 1
q−p

(
(d − p(1 + a))λ
λp + c2|x|

p
p−1

) p
q−p

(1.14)

or some λ > 0.

Now, we comment the assumptions in Theorem 1.2. We first remark that assumptions (H1) and (H2)
are probably technical. More precisely, due to the lack of regularity of the solution, we need the following
integrability information:

(n − d)
∫

|∇w(x)|2(p−1)
g |x|n−d−2

dx < +∞. (1.15)

B1(O)

4
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Fig. 1. In the case p = 2 the optimal symmetry region is determined by the Felli–Schneider curve b = bF S(a). The symmetry region
that corresponds to (1.13) is the one between the dashed curve b = b(a) and the line b = a + 1.

When n = d this term disappears. Moreover, by using classical tools from elliptic regularity theory, in this
case one can prove that ∇w is bounded, which immediately would give the desired integrability on ∇w. It
is expected that (1.15) still holds when n − d is small following the approach in [35]. By using a scaling
argument, we prove that |∇w|g ≤ C/|x| as x → O, and this implies (1.15) under the assumption (H2).

Now we comment condition (1.13). As we already mentioned, for p = 2 it has been shown in [19] that the
optimal symmetry region is given by

α ≤
√

d − 1
n − 1 . (1.16)

hen p = 2, the equality case in (1.16) determines a curve b = bF S(a) (the Felli–Schneider curve) and a
orresponding region where symmetry is broken, see Fig. 1, and it is sharp for p = 2. The equality case
n (1.13) determines a curve that we denote by b = b0(a). We notice that (1.13) and (1.16) coincide for
n = d, i.e. for a = b, and hence in this case Theorem 1.2 is optimal (at least for p = 2). For a ̸= b, (1.13) is
stronger than (1.16) and hence, even in the case p = 2, we do not achieve the optimal region of symmetry
for any possible range of the parameters a and b (see Fig. 1). Since the two conditions coincide for a = b

and comparing our proof to the one in [19] we give the following conjecture:
Conjecture: for any 1 < p < d the optimal symmetry region is given by (1.16).
The paper is organized as follows. In Section 2 we set the mathematical framework by providing details

on the Riemannian reformulation of the problem and fix the notation. In Section 3 we prove a differential
identity which is at the starting point for proving Theorems 1.1 and 1.2. Due to the lack of regularity, the
differential identity proved in Section 3 must be used in a weaker integral formulation and for this reason
we need some regularity results and asymptotic estimates which are proved in Sections 4 and 5. In Section 6
we prove Theorems 1.1 and 1.2.

2. The Riemannian setting

In this section we give more details on the Riemannian setting that we use in this paper. We consider a
solution u of (1.2) and we change the coordinates as done for obtaining (1.5). This change of coordinates
suggests to consider a new formulation of the problem in the Riemannian manifold (Rd, g), where g is given
5
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by (1.9):
gij = δij +

(
1

α2 − 1
)

xixj

|x|2
.

e notice that g is zero-homogeneous and it has constant determinant

det(g) = α−2.

n this setting, finding a solution u for (1.2) is equivalent to find a solution w (up to a multiplication constant)
of the following problem ⎧⎪⎨⎪⎩

1
|x|n−d div (|x|n−d|∇w|p−2

g ∇w) + wq−1 = 0 in Rd ,

w > 0 ,

w ∈ D1,p
g (Rd, |x|n−d) ,

(2.1)

here D1,p
g (Rd, |x|n−d) is the completion of C∞

0 (Rd) with respect to the norm

∥w∥D1,p
g (Rd,|x|−ap) =

(∫
Rd

|∇w|pg|x|n−d
dx

) 1
p

.

Notice that, from CKN inequality (1.11), we also have that∫
Rd

|w(x)|q|x|n−d
dx < +∞.

efore proceeding further, we clarify and set the notation.

.1. Notation

Given a function u : Rd → R we denote by Du = (∂ju)j=1,...,d and D2u = (∂iju)i,j=1,...,d the Euclidean
gradient and the Euclidean Hessian of u, respectively. The Euclidean norm is denoted by | · | and a·b denotes
the scalar product between two points a and b of Rd. Given a vector field F : Rd → Rd, div F = ∂iF

i is the
divergence of F . Here and in all the paper the Einstein summation convention over repeated indices will be
adopted.

When we consider a function w on the manifold (Rd, g), we use a different notation for its gradient.
More precisely, we denote by ∇u = (∇iu)i=1,...,d the Riemannian gradient of u and recall that ∇u(x) =
g−1(x)Du(x) for any x ∈ Rd, where g−1 = (gij)i,j=1,...,d is the inverse matrix of g given by (1.10).

It is readily seen that det g = α−2 is constant: indeed the matrix (gij)i,j=1,...,d has d−1 eigenvalues equal
to 1 and one eigenvalue is equal to α−2. Since det(g) = α−2 is constant, the volume element dVg is α−1dx.

We denote by div g(F ) the divergence of a smooth vector field F on M , that is, in local coordinates

div g(F ) = 1√
|g|

∂i(
√

|g|F i) .

s usual, ∆gu = ∇i∇iu is the Laplace–Beltrami operator of u, where ∇i is the covariant derivative, that is
n local coordinates,

∆gu = divg ∇u = 1√
|g|

∂i(
√

|g|∇iu) = 1√
|g|

∂i(
√

|g|gij∂ju) ,

for all u : Rd → R smooth (say C2). Notice that, since det(g) is constant, then

div F = div F and ∆ u = ∂ (gij∂ u).
g g i j

6
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Moreover, we write g(·, ·) for the scalar product induced by g, and we set

|∇u|2g = g(∇u, ∇u) = gij ∂iu ∂ju.

he Hessian of u, when seen as a (0, 2)-tensor, is defined as follows

(Hessgu)ij = ∂iju − Γ k
ij ∂ku,

where Γ k
ij are the Christoffel symbols of the second kind. Given a (0, 2)-tensor field M , we have that

trg(M) = gijmji where M = (mij)i,j=1,...,d.

2.2. About the Riemannian metric g

Let g be given by (1.9). In terms of the coordinates of Rd the components of the Ricci tensor Ricg are
given by

Rjk = (1 − α2)d − 2
|x|2

(
δjk − xjxk

|x|2

)
, (2.2)

nd hence

Ricg(∇v, ∇v) = (1 − α2)d − 2
|x|2

(
|∇v|2 − (∇v · x)2

|x|2

)
. (2.3)

Notice that, by Cauchy–Schwarz inequality, Ricg(∇v, ∇v) ≥ 0 when α2 ≤ 1.
Since we are dealing with a weighted p-Laplace operator, with weight given by |x|n−d, the gradient and

the Hessian of the weight play a crucial role. Since

∂2

∂xi∂xj
|x|n−d = (n − d) 1

|x|2
(

δij − 2xixj

|x|2
)

,

e have that

Hessg(|x|n−d)[∇v, ∇v] = α2 n − d

|x|2

(
|∇v|2 − (∇v · x)2

|x|2

)
− (n − d) (∇v · x)2

|x|4
. (2.4)

.3. The weighted p-Laplace operator

As we have seen, we are dealing with a critical weighted p-Laplace type equation in the Riemannian
anifold (Rd, g) given by (2.1). In order to lighten the notation, the weighted p-Laplace operator in the
etric g is sometimes denoted by

Lw := |x|−(n−d)div (|x|n−d|∇w|p−2
g ∇w) . (2.5)

he operator L is degenerate both for the presence of a p-Laplace type structure and for the presence of the
eight that vanishes at the origin.
A crucial quantity in our analysis is the stress field A(∇v), which is defined by

A(∇w) = |∇w|p−2
g ∇w , (2.6)

nd hence Lw can be written as

Lw := |x|−(n−d)div (|x|n−dA(∇w)).

nless otherwise stated, A(∇w) is given by (2.6). However, the operator L may be degenerate or singular
t points where ∇w = 0 and then we need to argue by approximation and, for this reason, we are going
7
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to consider more general operators. A possible choice of the approximating stress field Aℓ is given by the
onvolution of A with a family of radially symmetric smooth mollifiers {ϕℓ}:

Aℓ(ξ) := (A ∗ ϕℓ)(ξ) . (2.7)

e will come back later on this approximation.
Forgetting for now the approximation problem, we clarify some notation and tools that we are going to

se. We consider a function V : TRd → R which is defined on the tangent bundle TRd. It is clear that TRd =
d ×Rd and we denote by (x, ξ) a generic point in the tangent bundle, i.e. x1, . . . , xd are the coordinates on

he manifold and ξ1, . . . , ξd are the coordinates on the tangent space. Let A : Rd ×Rd → Rd ×Rd be defined
y

Ai(x, ξ) = ∇i
gx

V (x, ξ) := gij
x ∂ξj

V (x, ξ) i = 1, . . . , d, for any (x, ξ) ∈ Rd × Rd .

In particular, if B : [0, +∞) → R is a smooth function and

V (x, ξ) = B(|ξ|gx
) , (2.8)

then
A(x, ξ) =

B′(|ξ|gx
)

|ξ|gx

ξ

or any vector field ξ in the tangent space at x. Notice that if B(t) = tp/p then A(x, ξ) = |ξ|p−2
gx

ξ and
iv A(x, ∇v) = ∆pv .

In order to lighten the notation and whenever it does not create confusion, we omit the dependency on
x and we set

A(ξ) = ∇V (ξ) (2.9)

for any tangent vector ξ. It is clear that when we write (2.9) we mean that we are working on a fixed tangent
space, so x is fixed, and ξ is a vector field belonging to the tangent space at x.

We are going to evaluate V and A at ξ = ∇v(x); in this case we have

A(∇v(x)) = ∇ξV (∇v(x)),

where the subscript ξ emphasizes that the derivatives in ∇ξV are meant in the tangent space at x (and not
with respect to x, which is the case of ∇v without the subscript ξ). We also notice that if (2.8) holds then

∇i
ξ∇j

ξV (ξ) =
[

B′′(|ξ|gx
)

|ξ|2gx

−
B′(|ξ|gx

)
|ξ|3gx

]
ξiξj +

B′(|ξ|gx
)

|ξ|gx

δij ,

nd for B(t) = tp/p we have

∇i
ξ∇j

ξV (ξ) = (p − 2)|ξ|p−4
gx

ξiξj + |ξ|p−2
gx

δij .

. A crucial differential identity

In this section we prove a differential identity which will be crucial in the rest of the paper. The starting
oint is the following preliminary lemma which, when p = 2 and for a = b = 0, reduces to the well-known
ochner’s formula (see [37,39] for other generalizations of Bochner’s formula when p ̸= 2).

emma 3.1. Let v : Rd → R and V : Rd ×Rd → R be smooth functions and set A(∇v(x)) = ∇ξV (∇v(x)).
or any x ∈ Rd we have

∇j

(
Ai(∇v(x))∇iAj(∇v(x))

)
= ∇jAi(∇v(x))∇iAj(∇v(x)) +

(∇j∇iAi(∇v(x)))Aj(∇v(x)) + (∇k∇i V (∇v(x)))∇jV (∇v(x))Rℓkij(x)∇ℓv , (3.1)
ξ ξ ξ

8
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where Rℓkij is the Riemann curvature tensor. In particular, if V is as in (2.8) then we have that

∇j

(
Ai(∇v(x))∇iAj(∇v(x))

)
= ∇jAi(∇v(x))∇iAj(∇v(x)) +

(∇j∇iAi(∇v(x)))Aj(∇v(x)) + Ric(A(∇v), A(∇v)) . (3.2)

roof. Before starting the proof, we make some remarks on the notation and the conventions we are going
o use in this proof. Whenever it does not create confusion and aiming at lightening the notation, we omit
he dependency of A(∇v(x)) and V (∇v(x)) on ∇v(x). In order to make the calculation easier we consider a
ormal coordinate system centered at the point under consideration. In this setting, the commutation rule
llows us to interchange the indexes in the third derivatives and we have

vij = vji, vijk − vikj = −Rℓijkvℓ (3.3)
vkii = viki = viik + Ricikvi, (3.4)

here we used the conventions vℓ = ∇ℓv, vij = ∇j∇iv, vijk = ∇k∇j∇iv, and R and Ric are the Riemann
urvature and Ricci tensors, respectively.

The starting point of this proof is the following identity:

(∇j∇iAi)Aj − (∇j∇iAj)Ai = −(∇k
ξ ∇i

ξV )∇j
ξV Rℓkijvℓ . (3.5)

n order to prove (3.5) we notice that, since Aj = ∇j
ξV , we have

∇j∇iAj(∇v) = ∇j∇i∇j
ξV (∇v)

= ∇j(∇k
ξ ∇j

ξV (∇v)vki)
= (∇ℓ

ξ∇k
ξ ∇j

ξV (∇v))vkivℓj + (∇k
ξ ∇j

ξV (∇v))vkij

nd
∇j∇iAi(∇v) = ∇j∇i∇i

ξV (∇v)
= ∇j(∇k

ξ ∇i
ξV (∇v)vki)

= (∇ℓ
ξ∇k

ξ ∇i
ξV (∇v))vkivℓj + (∇k

ξ ∇i
ξV (∇v))vkij ,

nd hence
(∇j∇iAi)Aj − (∇j∇iAj)Ai = (∇ℓ

ξ∇k
ξ ∇i

ξV ) (∇j
ξV )vkivℓj + (∇k

ξ ∇i
ξV ) (∇j

ξV )vkij

− (∇ℓ
ξ∇k

ξ ∇j
ξV ) (∇i

ξV )vkivℓj − (∇k
ξ ∇j

ξ)V (∇i
ξV )vkij

= (∇k
ξ ∇i

ξV ) (∇j
ξV )vkij − (∇k

ξ ∇j
ξV ) (∇i

ξV )vkij

= (∇k
ξ ∇i

ξV ) (∇j
ξV )vkij − (∇k

ξ ∇i
ξV ) (∇j

ξV )vkji ,

where in the last two equalities we simplified two terms and rearranged the indices. Since vkij − vkji =
−Rℓkijvℓ, we have (3.5). From

∇j

(
Ai∇iAj

)
= ∇jAi∇iAj + Ai∇j∇iAj .

nd by using (3.5), we obtain (3.1). Identity (3.2) immediately follows from (3.1). □

The following proposition contains the crucial identity that we are going to use in the proof of Theo-
ems 1.1 and 1.2 (see [4,5] for an analogous identity in the Euclidean case without weight). We prove such
dentity in a more general context, which may be useful for future investigations. More precisely, we consider
he following operator

Lf v = ef div (e−f A(∇v)) , (3.6)

here the weight e−f and the field A are smooth. It is clear that if e−f = |x|n−d and A(ξ) = |ξ|p−2
g ξ then
f = L is the weighted p-Laplace operator defined in (2.5) (apart from the smoothness issue at the origin).
9
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Proposition 3.2. Let f, v : Rd → R and V : Rd × Rd → R be smooth functions. Let A(ξ) = ∇V (ξ) as in
2.9), and let Lf be given by (3.6). For any x ∈ Rd we set W (x) = (W i

j (x))i,j=1,...,d, where

W i
j (x) = ∇jAi(∇v(x)) , i, j = 1, . . . , d.

e have the following differential identity

ef div
(
−e−f vγAi(∇v)∇iAj(∇v) + vγe−f Aj(∇v)Lf v + γ(p − 1)vγ−1V (∇v) e−f Aj(∇v)

)
= vγ

[
(Lf v)2 − tr(W 2)

]
+ γvγ−1[(p − 1)V (∇v) + Aj(∇v)∇jv]Lf v

+ γ(γ − 1)(p − 1)vγ−2V (∇v)Aj(∇v)∇jv

+ γvγ−1Ai(∇v)∇i(pV (∇v) − Aj(∇v)∇jv)
− Hessf(A(∇v), A(∇v)) − ∇k

ξ ∇i
ξV (∇v)Aj(∇v)Rℓkij∇ℓv . (3.7)

n particular, if V (∇v) = 1
p |∇v|pg then (3.7) is

ef div
(

−e−f vγAi(∇v)∇iAj(∇v) + vγe−f Aj(∇v)Lv + γ
p − 1

p
vγ−1|∇v|pg e−f Aj(∇v)

)
= vγ

[
(Lv)2 − tr(W 2)

]
+ γ

2p − 1
p

vγ−1|∇v|pgLv + γ(γ − 1)p − 1
p

vγ−2|∇v|2p
g

− vγ |∇v|2(p−2)
g Ric(∇v, ∇v) − vγ |∇v|2(p−2)

g Hessf(∇v, ∇v) . (3.8)

Proof. As in the proof of Lemma 3.1 we omit the dependency of A on ∇v. From Lemma 3.1 we have that

ef ∇j

(
−e−f vγAi∇iAj

)
= vγAifj∇iAj − γvγ−1vjAi∇iAj − vγ∇jAi∇iAj

− vγ
(
∇jAi(∇v(x))∇iAj(∇v(x)) + (∇j∇iAi(∇v(x)))Aj(∇v(x)) + Ric(A(∇v), A(∇v))

)
. (3.9)

straightforward computation yields

ef ∇j

(
vγe−f AjLf v

)
= γvγ−1AjvjLf v + vγ∇j(Lf v)Aj + vγ(Lf v)2

= γvγ−1AjvjLf v + vγAj∇j∇iAi − vγ∇j(fiAi)Aj + vγ(Lf v)2 ,
(3.10)

nd

ef ∇j

(
γ(p − 1)vγ−1V e−f Aj

)
= γ(γ − 1)(p − 1)vγ−2V Ajvj

+ γ(p − 1)vγ−1Aj∇jV + γ(p − 1)vγ−1V Lf v , (3.11)

here in (3.10) we have used that Lf v = ∇iAi − fiAi.
Now we notice that

(p − 1)∇jV Aj − (∇iAj)Aivj = (p − 1)∇jV Aj − ∇i(Ajvj)Ai + AjAivji

= p∇jV Aj − AiAjvji − ∇i(Ajvj)Ai + AjAivji

nd hence
(p − 1)∇jV Aj − (∇iAj)Aivj = ∇i(pV − Ajvj)Ai . (3.12)

Moreover, we have that
Aifj∇iAj − ∇j(fiAi)Aj = −fijAiAj . (3.13)

rom (3.9)–(3.13) we obtain (3.7). If V (∇v) = 1
p |∇v|pg then A(∇v) = |∇v|p−2

g ∇v and (3.8) immediately
follows. □

As already mentioned, (3.8) is the crucial tool in the proof of the main theorem. Due to the lack of
regularity, we cannot apply (3.8) directly and we need to provide an integral version of (3.8) which is valid
for solutions to (1.12). In order to do that, we need several regularity results which are proved in the next
two sections.
10
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4. Preliminary regularity results and asymptotic estimates

In this section we recall some known results on the regularity of the solution and we will prove some
preliminary result on regularity and asymptotic estimates at infinity and at the origin. Regularity results
for the field |∇w|p−2

g ∇w will be proved in Section 5.
Coming back to this section, Section 4.1 is devoted to prove the boundedness of solutions in a slightly

ore general setting, which is needed for the approximation argument used in Section 5. In Section 4.2 we
ecall some asymptotic estimates at infinity obtained in [33] and give asymptotic estimates for the second
erivatives of solutions to (1.2).

.1. Boundedness of solutions

In the following result we prove that solutions of problems involving approximations of p-Laplacian
perators are locally bounded. This result is a generalization of results in [15,30,32] to the present setting.
t is important to emphasize that the L∞ estimate is uniform with respect to the approximation that we
se.

roposition 4.1. Let d ≥ 3 and let w be a solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|x|n−d
div (|x|n−dA(Dw)) = Φ(x, w) in Rd,

w > 0,

w ∈ D1,p(Rd, |x|n−d),

(4.1)

here A : Rd → Rd is a continuous vector field such that there exist γ > 0 and 0 ≤ s ≤ 1/2 such that

|A(ξ)| ≤ γ(|ξ|2 + s2)
p−1

2 and ξ · A(ξ) ≥ 1
γ

∫ 1

0

(
t2|ξ|2 + s2

) p−2
2 |ξ|2 dt , (4.2)

or every ξ ∈ Rd, Φ : Rd × (0, ∞) → R is a Caratheodory function satisfying

|Φ(x, z)| ≤ Λzq−1 + Ψ(x) for all z ∈ R, (4.3)

for some constant Λ > 0, p > 1, a ≤ b ≤ a + 1, a ≤ ac, q = dp
d−p(1+a−b) and some function Ψ ∈ L∞(Rd).

hen ∥w∥∞ ≤ C, where C = C(γ,Λ, d, p, a, b, ∥Ψ∥∞) and in particular C does not depend on s.

Proof. We follow the proofs of [30, Theorem E.0.20] and [32, Theorem 1] (see also [14, Lemma 2.1] and
[13, Lemma 2.1]). We first notice that, as in [13, Lemma 2.1], there exists γ∗ > 0 such that

ξ · A(ξ) ≥ γ∗ (|ξ|p − sp) . (4.4)

for every ξ ∈ Rd.
Let w̃ = w + s. By (4.2) we obtain that w̃ satisfies

|A(∇w̃)|g ≤ γ∗(|∇w̃|2g + w̃2)
p−1

2 and g(∇w̃, A(∇w̃)) ≥ 1
2γ∗

(
|∇w̃|pg − w̃p

)
, (4.5)

hich are our starting point. In order to avoid heavy notation, we write w instead of w̃.
Given l > 0 and t ≥ 1, we define

F (w) =
{

wt if w ≤ l
t−1 t
tl (w − l) + l if w > l ,

11
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and

G(w) =
{

w(t−1)p+1 if w ≤ l

((t − 1)p + 1)l(t−1)p(w − l) + l(t−1)p+1 if w > l .

et
ξ = ηpG(w)

here η ∈ C∞
c (Rd) and η ≥ 0. From (4.1) with ξ used as test-function, we obtain∫

Rd
|x|n−d

g(A(∇w), ∇(ηpG(w))) dx =
∫
Rd

|x|n−d
Φ(x, w)ηpG(w) dx . (4.6)

rom (4.6), (4.5) and by the fact that G ≥ 0 we get

c1

∫
Rd

|x|n−d
ηpG′(w)|∇w|pg dx ≤

∫
Rd

|x|n−d
ηp−1G(w)|g(A(∇w), ∇η)| dx +

∫
Rd

|x|n−d
wpηpG′(w) dx

+
∫
Rd

|x|n−d
Φ(x, w)ηpG(w) dx,

or some c1 > 0. We estimate the second term by using Young’s inequality and (4.2), and we obtain

ηp−1|g(A(∇w), ∇η)| ≤ ϵ
p

p−1 w−1|A(∇w)|
p

p−1
g ηp + ϵ−pwp−1|∇η|pg

≤ C1ϵ
p

p−1 w−1(|∇w|pg + wp)ηp + ϵ−pwp−1|∇η|pg,

or any ϵ ∈ (0, 1), where C1 depends only on γ and p. From (4.3), since G(w) ≤ wG′(w) and G is convex,
e obtain

c1

∫
Rd

|x|n−d
ηpG′(w)|∇w|pg dx ≤ C1ϵ

p
p−1

∫
Rd

|x|n−d
ηpG′(w)|∇w|pg dx + C2

∫
Rd

|x|n−d
wpηpG′(w) dx

+ ϵ−p

∫
Rd

|x|n−d
G(w)wp−1|∇η|pg dx + Λ

∫
Rd

|x|n−d
wq−1ηpG(w) dx ,

+
∫
Rd

|x|n−d
ηpΨ(x)G(w) dx ,

or any ϵ ∈ (0, 1) and for some constant C2 which depends only on γ and p. We choose ϵ small enough and
btain

c2

∫
Rd

|x|n−d
ηpG′(w)|∇w|pg dx ≤

∫
Rd

|x|n−d
ηpwpG′(w) dx +

∫
Rd

|x|n−d
G(w)wp−1|∇η|pg dx

+
∫
Rd

|x|n−d
ηpwq−1G(w) dx +

∫
Rd

|x|n−d
ηpΨ(x)G(w) dx ,

here c2 > 0 depends only on n, p, γ and Λ. Since G′(w) ≥ c[F ′(w)]p, wp−1G(w) ≤ C[F (w)]p , and
∈ L∞

loc(Rd) we obtain

c3

∫
Rd

|x|n−d|∇(ηF (w))|pg dx ≤
∫
Rd

|x|n−d
ηpwpG′(w) dx +

∫
Rd

|x|n−d|∇η|pgF p(w) dx

+
∫
Rd

|x|n−d
ηpwq−pF p(w) dx +

∫
Rd

|x|n−d
ηpw1−pF p(w) dx ,

(4.7)

here c3 depends only on n, p, γ, Λ and ∥Ψ∥∞. Thanks to Caffarelli–Kohn–Nirenberg inequality (1.1), we
nd

c4

(∫
Rd

|x|n−d
F q(w)ηq dx

) p
q

≤
∫
Rd

|x|n−d
ηpwpG′(w) dx +

∫
Rd

|x|n−d|∇η|pgF p(w) dx

+
∫
Rd

|x|n−d
ηpwq−pF p(w) dx +

∫
Rd

|x|n−d
ηpw1−pF p(w) dx,

(4.8)

where c > 0 depends only on n, p, γ, Λ, ∥Ψ∥ and the CKN constant for Rd.
4 ∞

12
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Let ρ > 0 be such that (∫
Bρ(x0)

|x|n−d
wq dx

) q−p
q

≤ c4

2 .

et R < ρ and let η be such that supp(η) ⊂ BR(x0). From Holder’s inequality applied to the last term in
4.8), we obtain

c4

2

(∫
Rd

|x|n−d
F q(w)ηq dx

) p
q

≤
∫
Rd

|x|n−d
ηpwpG′(w) dx +

∫
Rd

|x|n−d|∇η|pgF p(w) dx

+
∫
Rd

|x|n−d
ηpw1−pF p(w) dx .

y taking the limit as l → ∞, from the definition of F and G and since η ≥ 0, by monotone convergence
e conclude that

c4

2

(∫
Rd

|x|n−d
ηqwtq dx

) p
q

≤
∫
Rd

|x|n−d
ηpwpw(t−1)p dx +

∫
Rd

|x|n−d|∇η|pgwtp dx

+
∫
Rd

|x|n−d
ηpw1−pwtp dx

≤
∫
Rd

|x|n−d(ηp + |∇η|pg)wtp dx +
∫
Rd

|x|n−d
ηpw1+(t−1)p dx.

oreover, since 1 + (t − 1)p < tp, by Holder inequality we have

c4

2

(∫
Rd

|x|n−d
ηqwtq dx

) p
q

≤
∫
Rd

|x|n−d(ηp + |∇η|pg)wtp dx +
(∫

Rd
|x|n−d

ηpwtp dx

) 1+(t−1)p
tp

,

ence, if ρ > R > R′ > 0 and we take η ∈ C∞
c (BR(x0)), 0 ≤ η ≤ 1, η = 1 in BR′(x0), |∇η| ≤ 1

R−R′ , then
e have (∫

BR′ (x0)
|x|n−d

wtq dx

) p
q

≤ c5

(
1 + 1

R − R′

)(∫
BR(x0)

|x|n−d
wtp dx

)

+
(∫

BR(x0)
|x|n−d

wtp dx

) 1+(t−1)p
tp

(4.9)

where c5 > 0. Inequality (4.9) is the starting point of a Moser iteration. Let Rk = r(1+2−k) with 0 < r < ρ/2
and tj =

(
q
p

)k

for k = 1, 2, . . . , and t = tk. By setting R = Rk, R′ = Rk+1 and t = tk, a finite iteration of
(4.9) gives that ∫

BRk
(x0)

|x|n−d
wtkq dx < ∞

or every k > 0. Now, we prove by contradiction that

sup
k

∫
Br(x0)

|x|n−d
wtkp dx < ∞.

ndeed, by contradiction let us assume that

sup
k

∫
Br(x0)

|x|n−d
wtkp dx = ∞,

.e.
lim

k→+∞

∫
|x|n−d

wtkp dx = ∞

BRk

(x0)

13
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since ∫
Br(x0)

|x|n−d
wtkp dx

s non-decreasing in k. Then there exists k̃ such that∫
BRk

(x0)
|x|n−d

wtkp dx > 1

or every k ≥ k̃; hence by (4.9) and by the fact that 1+(tk−1)p
tkp < 1 we have for some c6 > 0

(∫
BRk+1 (x0)

|x|n−d
wtk+1q dx

) 1
tk+1q

≤ c6

(
1 + 1

Rk − Rk+1

) 1
tk

(∫
BRk

(x0)
|x|n−d

wtkp dx

) 1
tkp

(4.10)

or every k ≥ k̃0. Iterating we can write(∫
BRk

(x0)
|x|n−d

wtkq dx

) 1
tkq

≤ c

∑k

j=k0
1
tj

6 Π k
j=k0

(
1 + 2j+1r−1) 1

tj

(∫
Bρ(x0)

|x|n−d
wtk0 p dx

) 1
tk0 p

, (4.11)

for k > k0. Therefore

sup
k

∫
Br(x0)

|x|n−d
wtkp dx ≤ sup

k

∫
BRk

(x0)
|x|n−d

wtkp dx < ∞.

The latter implies that

∥w∥∞,r ≤ lim
k→∞

(∫
Br(x0)

|x|n−d
wtkq dx

) 1
tkq

< ∞. (4.12)

ndeed,

K = K lim
k→∞

(∫
Ak

|x|n−d

) 1
tkq

≤ lim
k→∞

(∫
Ak

|x|n−d
wtkq

) 1
tkq

< ∞.

or every K > 0, where AK = {w > K} ∩ Br(x0). By definition of ∥w∥∞,r, (4.12) holds. The proof is now
ompleted recalling the substitution w̃ = w + s. □

4.2. Asymptotic bounds at infinity

As it is shown in [33], the fact that u ∈ D1,p(Rd, |x|−ap) implies that the asymptotic behavior of the
solution at infinity can be optimally determined.

Proposition 4.2. Let d ≥ 3, p > 1, a ≤ b ≤ a + 1, q = dp
d−p(1+a−b) and a ≤ ac and let w be a solution to

2.1). Then there exists C = C(d, p, a, b) > 0 such that

||x|
µ
α w(x) − α| ≤ |x|−

δ
α , (4.13)

1
C

≤ |x|
µ
α +1|∇w(x)|g ≤ C, (4.14)

nd
|x|

µ
α +2|Hessgw(x)| ≤ C (4.15)

or every x ∈ Rd\B and µ = d−p(1+a) .
1 p−1

14
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Proof. Estimates (4.13) and (4.14) are straightforward consequences of [33, Theorem 1.1]. Indeed, we have
hat the solution u to (1.2) satisfies the following asymptotic estimates

||x|µu(x) − α| ≤ C|x|−δ ∀x ∈ Rd\B1

nd
||x|µ+1

Du(x)| ≤ C ∀x ∈ Rd\B1.

|x|µ+1
Du(x) + αµ|x|−1

x → 0 as |x| → ∞,

here µ = d−p(1+a)
p−1 , for some constants α, δ, C > 0. From the definition of w and since g is zero-homogeneous

e immediately have the assertions.
To prove (4.15) we use a scaling argument. Let ρ > 1 be fixed. For y ∈ E = B1\B1/2, we define

w̃(y) = ρµw(ρy).

ince (2.1) holds, w̃ satisfies

div (|y|n−d|∇w̃|p−2∇w̃) = −ρ( µ
α +1)(p−1)+1− µ

α (q−1)|y|n−d
w̃q−1 in E. (4.16)

Thanks to (4.14) and by using the zero-homogeneity of g, from elliptic regularity and Schauder’s estimates
(see [24]) we have that |D2w̃| ≤ C for some C > 0 and then (4.15). □

5. Regularity estimates for A(∇w)

In this section, by using a weighted Caccioppoli inequality, we prove that A(∇w) ∈ W 1,2
loc (Rd, |x|n−d).

Before proving this result, we give a preliminary asymptotic estimate on ∇w at the origin, which will be
used later.

Lemma 5.1. Let w be a solution to (2.1). Then there exists a constant C = C(d, p, a, b) such that

|∇w(x)|g ≤ C

|x|
,

for x ∈ B1 \ {O}.

Proof. This proof follows by a scaling argument. Let E := B4 \ B1. For any µ ∈ (0, 1/4) we define

ζµ(x) := w(µx),

or any x ∈ E. Since the metric g zero homogeneous, we readily find that ζµ satisfies

Lζµ = −µpζq−1
µ (5.1)

n E. We notice that, since |x| > 1 in E, we have that the operator L does not degenerate in the variable
and L is in the class of operators considered in [18,36] (see also [2]). From Proposition 4.1, we have that

ζµ∥L∞(E) ≤ c uniformly with respect to µ and then the RHS in (5.1) is uniformly bounded. From elliptic
egularity theory [18,36], this implies that there exists a constant C independent of µ such that

|∇ζµ(x)| ≤ C

B . By recalling the definition of ζ, the assertion immediately follows. □
or any x ∈ B3 \ 2

15
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Since (2.1) may be degenerate, in the following we argue by approximation. We recall that, for fixed
x ∈ Rd, A can be seen as the gradient of V (ξ) = p−1|ξ|pgx

with respect to ξ which is in the tangent space of
d at x, i.e.

Ai(ξ) = ∇i
ξV (ξ) ,

or any ξ in the tangent space at x. Let {ϕℓ}ℓ∈N be a family of radially symmetric smooth mollifiers and
efine

Vℓ(ξ) = (V ∗ ϕℓ)(ξ)

nd then
Aℓ(ξ) := (A ∗ ϕℓ)(ξ) . (5.2)

tandard properties of convolution and the fact A(·) is continuous imply that Aℓ → A uniformly on compact
ubset of Rd. From [22, Lemma 2.4] we have that Aℓ satisfies the first condition in (4.2) with s replaced by
ℓ, where sℓ → 0 as ℓ → ∞. In addition, since

1
α̃

(|z|2g + s2
ℓ)

p−2
2 |ξ|2g ≤ g(∇Aℓ(z)ξ, ξ)

or any z, ξ vector fields in the tangent space at x and for some α̃ > 0, we obtain that Aℓ satisfies also the
second condition in (4.2).

Let Ω ⊂ Rd be an open set such that Ω ⊂ Rd \ {O}. We approximate w in Ω by wℓ > 0 which are
olutions to {

1
|x|(n−d) div (|x|(n−d)Aℓ(∇wℓ)) = −wq−1 in Ω

wℓ = w on ∂Ω ,
(5.3)

where Aℓ is as in (5.2).

Lemma 5.2. Let 0 < r < R, d ≥ 3 and let wℓ satisfy (5.3). Then Aℓ(∇wℓ) ∈ W 1,2
loc (Br, |x|n−d) and, by

etting Wℓ = ∇Aℓ(∇wℓ), we have

c

∫
Br

|Wℓ|2g |x|n−d
dx

≤
∫

BR

(
(n − d)2

|x|2
+ |∇η|2g

)
|Aℓ(∇wℓ)|2g |x|n−d

dx +
∫

BR

|∇(|x|n−d
wq−1)|g|Aℓ(∇wℓ)|gdx , (5.4)

for any η ∈ C∞
0 (BR) such that η = 1 in Br, where c does not depend on ℓ.

Proof. The idea is to prove a weighted Caccioppoli-type inequality for Aℓ(∇wℓ), with weight |x|n−d. Since
wℓ solves a non-degenerate equation with smooth coefficients, we have that wℓ is smooth and wℓ ∈ W 2,2

loc (Rd).
In order to simply the notation, in (5.3) we set Φ(x) = wq−1(x), e−f = |x|n−d and we omit the dependency

n ℓ. With this notation, (5.3) takes the form

ef div (e−f A(∇w)) = −Φ . (5.5)

et φ ∈ C∞
0 (BR) and m ∈ {1, . . . , d}. We multiply (5.5) by e−f ∇mφ and integrate over a ball BR ⊂ E to

et ∫
BR

div (e−f A(∇w))∇mφ dVg = −
∫

BR

e−fΦ(w)∇mφ dVg .

e also recall that dVg = α−1dx. From the divergence theorem we have∫
g(e−f A(∇w), ∇(∇mφ)) dx =

∫
e−fΦ(w)∇mφ dx, (5.6)
BR BR

16
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and, by integrating by parts, we get∫
BR

g(∇m(e−f A(∇w)), ∇φ) dx =
∫

BR

∇m(e−fΦ(w))φ dx . (5.7)

Now, we take a cut-off function η ∈ C∞
0 (BR) with η = 1 in Br, and for m ∈ {1, . . . , n} we set

= Am(∇w)η2. Hence, by summing over m and recalling (5.7), we proved that∫
BR

gij∇m(e−f Ai(∇w))∇j(Am(∇w)η2) dx =
∫

BR

∇m(e−fΦ(w))Am(∇w)η2dx,

here we recall that all the repeated indexes are summed. Since ∇jAm = gjk∇kAm, and

gij∇mAi ∇jAm = gijgjk ∇mAi ∇kAm = δk
i ∇mAi ∇kAm = ∇mAk ∇kAm = tr (W 2),

hen we have∫
BR

η2e−f tr W 2dx +
∫

BR

∇me−f gijAi(∇w)∇j(Am(∇w)η2)dx

+
∫

BR

e−f gij∇m(Ai(∇w))Am(∇w)2η∇jη dx =
∫

BR

∇m(e−fΦ(w))Am(∇w)η2dx , (5.8)

here we recall that W j
i = ∇jAi(∇w).

The first term on the LHS in (5.8) can be handled as in the proof of Theorem 4.1 in [3, p. 681]. More
recisely, by using the properties of A and some tools from linear algebra, one can prove that there exists a
onstant c (which is uniform with respect to the parameter ℓ in the approximation Aℓ of A) such that

tr W 2 ≥ c |W |2g , (5.9)

here |W |2g = gijgabW i
aW j

b is the square of the Hilbert–Schmidt norm of W . We estimate the second and
hird integrals in (5.8) as⏐⏐⏐ ∫

BR

∇me−f gijAi(∇w)∇j(Am(∇w)η2)dx
⏐⏐⏐+
⏐⏐⏐ ∫

BR

e−f gij∇m(Ai(∇w))Am(∇w)2η∇jη dx
⏐⏐⏐

≤ C

∫
BR

(|∇e−f |gη2 + e−f η|∇η|g)|A(∇w)|g|W |gdx + 2
∫

BR

|∇e−f |g|A(∇w)|2gη|∇η|gdx

nd the RHS in (5.8) as∫
BR

∇m(e−fΦ(w))Am(∇w)η2dx ≤
∫

BR

|∇(e−fΦ(w))|g|A(∇w)|gdx ,

nd, by combining these last two estimates and (5.9), from (5.8) we obtain that∫
BR

η2e−f |W |2gdx ≤ C

∫
BR

(|∇e−f |gη2 + e−f η|∇η|g)|A(∇w)|g|W |gdx

+ 2
∫

BR

|∇e−f |g|A(∇w)|2gη|∇η|gdx +
∫

BR

|∇(e−fΦ(w))|g|A(∇w)|gdx .

e use Young’s inequality twice and we have

c

∫
BR

η2|W |2g e−f dx

≤
∫

BR

(
|∇e−f |2g

e−2f
η2 + |∇η|2g

)
|A(∇w)|2g e−f dx +

∫
BR

|∇(e−fΦ(w))|g|A(∇w)|gdx ,

hich completes the proof. □
17
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We are ready to prove the main result of this section.

Proposition 5.3. Let d ≥ 3 and p ≤ n/2. Let w be a solution of (2.1). Then A(∇w) ∈ W 1,2
loc (Rd, |x|n−d).

Proof. From Lemma 5.2 it is clear that it is enough to prove the result in B1. Since the approximation
argument used in the proof of Lemma 5.2 may present difficulties due to the degeneracy of the weight at
the origin, we argue by scaling as already done in the proof of Lemma 5.1.

Let Ω = B5/2 \ B1/2. For any µ ∈ (0, 1) we define

ζµ(x) := w(µx),

or any x ∈ Ω , and hence ζµ satisfies (5.1) in Ω and ζµ and |∇ζµ|g are uniformly bounded independently of
. Now we apply Lemma 5.2 with Ω = B5/2 \ B1/2 and Ω ′ = B2 \ B1. Since ζµ satisfies (5.1), we consider
ℓ to be the solution to {

1
|x|(n−d) div (|x|(n−d)Aℓ(∇wℓ)) = −µpζq−1

µ in Ω

wℓ = ζµ on ∂Ω .
(5.10)

From Lemma 5.2 we have that

c

∫
Ω ′

|Wℓ|2g |x|(n−d)
dx ≤

∫
Ω

(
(n − d)2

|x|2
+ |∇η|2g

)
|Aℓ(∇wℓ)|2g |x|(n−d)

dx

+ µp

∫
Ω

|∇(|x|(n−d)
ζq−1

µ )|
g
|Aℓ(∇wℓ)|gdx , (5.11)

here c does not depend on ℓ and µ. Since d ≥ 3 and wℓ and ζµ are bounded in C1,α uniformly with respect
o ℓ, we obtain that ∫

Ω ′
|Wℓ|2g |x|(n−d)

dx ≤ C,

here C does not depend on ℓ and µ (here we are assuming that 0 < µ ≤ 1). This implies that ∇Aℓ(∇wℓ)
s uniformly bounded in L2(Ω ′, |x|n−d). Moreover we recall that from [18,36] we have that wℓ are uniformly
ounded and converge to w in C1,α

loc (Ω ′). Since Aℓ(∇wℓ) converges to some function Â weakly in W 1,2
loc , then

ˆ = A(∇w). In particular we have ∫
B2\B1

|∇A(∇ζµ(x))|2|x|n−d
dx ≤ C , (5.12)

here C does not depend on µ.
Now, we consider a sequence of radii rj = 2−j and set

Ij =
∫

B2rj
\Brj

|∇A(∇w(x))|2g |x|(n−d)
dx.

rom the scaling properties of A(∇w), we have that∫
B2µ\Bµ

|∇A(∇w(x))|2|x|n−d
dx = µn−2p

∫
B2\B1

|∇A(∇ζµ(y))|2|y|n−d
dy ≤ Cµn−2p,

here the last inequality follows from (5.12). By choosing µ = rj we readily find that∫
B1

|∇A(∇w(x))|2|x|n−d
dx ≤

+∞∑
j=0

Ij ≤ C

+∞∑
j=0

1
2n−2p

hich is bounded provided that p < n/2, which implies the assertion. □
18
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6. Proof of Theorems 1.1 and 1.2

In this section we give the proof of Theorems 1.1 and 1.2. More precisely, we prove Theorem 1.2 and then
Theorem 1.1 follows as a corollary. It will be convenient to work with v which is given by

v(x) = w(x)− q−p
p , (6.1)

where w is the solution to (1.12). We mention that, in our approach, the function v is the analogue of the
o-called pressure function in [19]. Clearly, v inherits some regularity properties from w (and hence from u).

In particular, v is of class C1,γ
loc (Rd \ {O}) and it satisfies

Lv = n(p − 1)
p

|∇v|pg
v

+
(

p

n − p

)p−1 1
v

, (6.2)

here
Lv := |x|−(n−d)div (|x|n−d|∇v|p−2

g ∇v).

oreover, from Proposition 4.2 we have the following asymptotic estimates

C1|x|
p

p−1 ≤ v(x) ≤ C2|x|
p

p−1 , C1|x|
1

p−1 ≤ |∇v(x)|g ≤ C2|x|
1

p−1 , |Hess v(x)|g ≤ C2|x|
2−p
p−1 , (6.3)

for some 0 < C1 ≤ C2 and every x ∈ Rd\BR, with R > 0 large enough. By setting

A(∇v) = |∇v|p−2
g ∇v,

from Proposition 5.3 we also have that A(∇v) ∈ W 1,2
loc (Rd, |x|n−d), and we set

W j
i := ∇iAj(∇v) , (6.4)

for i, j = 1, . . . , d.
The proof of Theorem 1.1 is based on the following lemma, which gives an integral version of the

differential identity proved in Proposition 3.2.

Lemma 6.1. Let v and W be given by (6.1) and (6.4), respectively. The following integral identity∫
Rd

v1−n
[
(Lv)2 − tr(W 2) − (n − 1)2p − 1

p

|∇v|pg
v

Lv + n(n − 1)p − 1
p

|∇v|2p
g

v2

− Ricg

(
A(∇v), A(∇v)

)
− Hessf

(
A(∇v), A(∇v)

)]
|x|n−d

dx = 0 (6.5)

olds.

roof. This identity can be obtained by approximation starting from (3.7) in Proposition 3.2 by choosing
= 1 − n. The approximation argument is analogous to the one given in the proof of Proposition 5.3. For

this reason we omit the details of the approximation argument and we consider directly (3.8) instead of
(3.7).

We multiply (3.8) by |x|n−d and integrate in dx in a ball of sufficiently large radius R. From the regularity
roperties of v and A(∇v) and by using the divergence theorem, we have∫

∂BR

g

(
−e−f vγAi(∇v)∇iAj(∇v) + vγe−f Aj(∇v)Lv + γ

p − 1
p

vγ−1|∇v|pg e−f Aj(∇v), ν

)
=
∫

BR

{
vγ
[
(Lv)2 − tr(W 2)

]
+ γ

2p − 1
p

vγ−1|∇v|pgLv + γ(γ − 1)p − 1
p

vγ−2|∇v|2p
g

− vγRic
(
A(∇v), A(∇v)

)
− vγHessf

(
A(∇v), A(∇v)

)}
e−f dx ,
19
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where e−f = |x|n−d and γ = 1 − n. By letting R → ∞ and using the decay estimates (6.3), one has that the
oundary integral on the LHS vanishes at infinity and then we get (6.5). □

We are now ready to prove our main result.

roof of Theorems 1.1 and 1.2. We prove Theorem 1.2 and then Theorem 1.1 immediately follows by
ecalling that u(x) = cw(|x|α−1

x) for some constant c. We multiply (6.2) by v−n and integrate in dVg over
Rd. By using the divergence theorem and the decay estimates in Proposition 4.2 we obtain that

− n

2

∫
Rd

|x|n−d|∇v|2gv−n−1dx + 2
n − 2

∫
Rd

|x|n−d
v−n−1dx = 0. (6.6)

ow we use (6.2) in (6.5) and, by taking into account (6.6), we find∫
Rd

v1−n
( 1

n
(Lv)2 − tr(W 2) − |∇v|2(p−2)

g Ricg(∇v, ∇v) − |∇v|2(p−2)
g Hessgf

)
|x|n−d

dx = 0, (6.7)

where we recall that W is given by (6.4).
Now we show that the quantity inside the integral in (6.7) is non-negative almost everywhere. We mention

that, since v ∈ C1,γ
loc outside the origin and A(∇v) ∈ W 1,2

loc , the following calculations make sense almost
everywhere.

We notice that Lv can be written as

Lv = Lpv + (n − d)|∇v|p−2
g s(v) , (6.8)

where
Lpv = div (|∇v|p−2

g ∇v) = div (A(∇v))

is the usual p-Laplace operator and
s(v) = g(∇ log |x|, ∇v).

We recall that by, using Newton’s inequality (see [12, Lemma 3.2]), one has

tr (W 2) ≥ 1
d

(Lpv)2 (6.9)

and from (6.8) we have

tr (W 2) ≥ 1
d

(
(Lv)2 − 2(n − d)|∇v|p−2

g s(v)Lv + (n − d)2|∇v|2(p−2)
g s(v)2

)
. (6.10)

ince from (6.10)

1
n

(Lv)2 − tr (W 2) ≤ −n − d

nd
(Lv)2 + 2(n − d)

d
|∇v|p−2

g s(v)Lv − (n − d)2

d
|∇v|2(p−2)

g s(v)2 . (6.11)

Now we distinguish two cases: n = d and n > d and prove that

W j
i = λ(x)δj

i for a.e. x ∈ Rd, (6.12)

i, j ∈ {1, . . . , d}, for some function λ : Rd → R.

Case 1: n = d. In this case (6.11) implies that

1
d

(Lv)2 − tr (W 2) ≤ 0

nd from (6.7) we obtain that the equality sign holds in Newton’s inequality and then (6.12) follows.
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Case 2: n > d. From (6.11) and by using

2|∇v|p−2
g s(v)Lv ≤ n|∇v|2(p−2)

g s(v)2 + 1
n

(Lv)2 , (6.13)

e get
1
n

(Lv)2 − tr (W 2) ≤ (n − d)|∇v|2(p−2)
g s(v)2 . (6.14)

rom (6.14), (2.3) and (2.4), we find that
1
n

(Lv)2 − tr (W 2) − Ricg(A(∇v), A(∇v)) − Hessf(A(∇v), A(∇v)) ≤

2 − d + α2(n − 2)
|x|2

|∇v|2(p−2)
g

(
|∇v|2 − (∇v · x)2

|x|2

)
nd then, by using condition (1.13)

α2 ≤ d − 2
n − 2 ,

we find 1
n

(Lv)2 − tr (W 2) − Ricg(A(∇v), A(∇v)) − Hessgf(A(∇v), A(∇v)) ≤ 0.

his last inequality, which holds a.e. in Rd, and (6.7) imply that the equality sign must hold, and hence
ll the inequalities in this proof are actually equalities. In particular, the equality sign must hold in the
ollowing two inequalities:

tr (W 2) ≥ 1
d

(Lpv)2,

and
2|∇v|p−2

g s(v)Lv ≤ n|∇v|2(p−2)
g s(v)2 + 1

n
(Lv)2,

nd then we must have that (6.12) holds. We notice that in this case, the last inequality also implies that

Lv = n|∇v|p−2
g s(v) . (6.15)

Hence, in both Cases 1 and 2 we have that (6.12) holds and then

Lpv = tr W = λ(x)d ,

We notice that from (6.2) and (6.8) we have that

λ(x)d = n(p − 1)
p

|∇v|pg
v

+
(

p

n − p

)p−1 1
v

− (n − d)|∇v|p−2
g s(v).

Since v is positive and of class C1,γ in Rd \ {O}, we know that λ is locally of class Cγ in Rd \ {O} and,
from elliptic regularity theory, λ is C1,γ at points where ∇v ̸= 0 in Rd \ {O}. Thanks to the regularity of
λ at points where ∇v ̸= 0, for any fixed i, j ∈ {1, . . . , d} we have that (in the following formula repeated
indices are not summed)

∇jλ(x) = ∇j∇iAi(∇v(x)) = ∇i∇jAi(∇v(x)) − Ri
jikAk(∇v(x)) = ∇i(λ(x)δi

j) − Ri
jikAk(∇v(x)),

where we used (6.12). By summing over i = 1, . . . , d, we obtain that

(d − 1)∇jλ(x) = −RjkAk(∇v(x)),

where Rjk are the components of the Ricci tensor given by (2.2). Hence we have that

RjkAk(∇v(x)) = (1 − α2)d − 2
2

(
Aj −

(
A · x

)
xj

)
,

|x| |x| |x|
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the last two equations imply that

∇jλ(x) = (α2 − 1)d − 2
d − 1

1
|x|2

(
Aj −

(
A · x

|x|

)
xj

|x|

)
,

nd then ∇λ does not have radial components. Hence we obtain that on each connected component of
∇v ̸= 0} either λ is constant (for α = 1) or λ is zero-homogeneous (for α < 1). This property actually

holds in the whole space, since λ is continuous and {∇v ̸= 0} has no interior points.
If α = 1 (i.e. a = b) then the fact that λ is constant implies that v(x) = c1 + c2|x − x0|

p
p−1 . If α < 1 then

e have to work a little more. In this case we know that λ is zero-homogeneous and hence from (6.12)
e have that ∇jAi(∇v) is zero homogeneous for any fixed i, j = 1, . . . , d. This implies that A(∇v) is

one-homogeneous up to an additive constant. Since

Lv = tr (W ) + (n − d)|∇v|p−2
g s(v)

and from (6.15) we obtain that Lv is zero-homogeneous. By using (6.2) we have that vf0 = |f1 + x0|
p

p−1 +c,
here c is a constant, x0 ∈ Rd, f0 := Lv is a zero-homogeneous function and f1 is a vectorial one-
omogeneous function. By letting x → ∞ and using Proposition 4.2, we obtain that f1 is constant in the
ngular direction. Since v is continuous at the origin (see [15]), we obtain that also f0 is constant. This
mplies that

v(x) = A|x + x0|
p

p−1 + B

for some constant A and B and some x0 ∈ Rd. By using this expression in (6.2) we conclude. □
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