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Abstract

Role mining techniques are frequently used to derive a set of roles representing the current organization
of a company following the RBAC model and simplifying the definition and the implementation of security
policies. Constraints on the resulting roles can be defined to have valid roles, that can be efficiently
managed, limiting for example the number of permissions included in a role or the users a role can
be assigned to. Since the associated problems are NP hard, several heuristics have been developed to
find sub-optimal solutions adopting the concurrent or the post-processing approach. In the first case,
assignment matrices are obtained satisfying the given constraints during the computation, while in the
second case, the intermediate solutions are obtained without considering the constraints, that are enforced
successively.

In this paper we present two heuristics for the Permission Usage and Role Usage Cardinality Con-
straints in the post-processing approach: we consider constraints limiting the number of permissions that
can be included in a role in the first case, and the number of roles that can include a permission in the
second case, refining the roles produced by some other technique (not considering any constraint). For
both heuristics we analyze their performance after their application to some standard datasets, showing
the improved results obtained w.r.t. state of the art solutions.

1 Introduction

Role mining techniques aim to define a valid set of roles starting from the existing user-permissions assignment
within a given organization and are usually executed as the first step for the implementation of Role Based
Access Control (RBAC) framework. RBAC model is one of the most popular approaches to organize access
to restricted resources, easing administration tasks and reducing costs in case of dynamic changes in the
organizational assets of a company. Introduced at the end of the ’90 [26], RBAC has been standardized by
Ferrajolo et al. [9], where a reference model has been defined, describing also the functional requirements
for the management of roles and relations and the support to the access control decision process.

Since roles are the key factor of the RBAC model, recently several frameworks have been enhanced with
the possibility to define some constraints on the way roles are shaped or utilized. The idea is that to get
effectively usable roles, they need to have some characteristics that the security manager can select in order
to drive the role mining process. For example constraints can be imposed on the number of permissions a role
can include, to avoid in the extreme cases trivial roles, containing just one or few permissions, or roles with
many permissions, that could make difficult the management of the security policy. In literature, different
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approaches have considered constrained role mining, often using different terminologies and constraints, see
[21] for a complete survey, while several works [12, 14, 4, 5] discuss their application during the role mining
process.

There are basically two ways in which constraints can be included in the role mining process that are
usually referred as the concurrent or the post-processing framework. In the first case, constraints are con-
sidered during each step of the computation, and they basically drive the way new roles and assignments
among users and permissions are devised. In the second approach, one determines a set of roles regardless
of any constraint. Successively, these mined roles are processed to meet the given constraints.

In this work we focus on two different kinds of cardinality constraints, namely role-usage cardinality
constraints (RUCC) and permission-usage cardinality constraints (PUCC). For the RUCC case, constraints
limit the number of roles that can be assigned to a user, while for the PUCC case, constraints restrict the
number of permissions that can be included in a role. In both cases, starting from an initial set of roles
and assignments, we operate in the post-processing framework where constraint satisfaction is imposed by
correcting their violations.

We present two heuristics for the constrained role mining in the RUCC and PUCC scenario and evaluate
them using real-world datasets [8] and considering standard metrics [16]. The results are then compared with
the ones obtained applying state of the art heuristics available in literature. In particular, for the RUCC
case, we consider the heuristics Role-Priority-based Approach and Coverage-of-Permissions-based Approach
described in [14] and the heuristic Fix Role Usage Constraint proposed in [12]. For the PUCC case, we
propose the first post-processing heuristic named postPUCC. In all cases, considering both the size of the
role set and the execution time, our heuristics improve over the previous proposals.

The paper is organized as follows: In the next section, related works on constraint role mining are
discussed. Section 3 introduces the role mining framework, reporting the basic definitions and the associated
problems. In Section 4 we describe the heuristics we propose for the PUCC and the RUCC cases, showing
some simple application examples, while in Section 5 we report the experimental evaluation including the
results obtained after the execution of the heuristics to standard real-world datasets. Finally, in section 6,
we draw some conclusions.

2 Related Work

Several different variants and extensions have been proposed in the literature for the basic Role Mining
model. Heuristics were also defined by resorting to mapping Role Mining to known problems, as in the case
of graph-based strategies [33], matrix decomposition [19], or formal concept analysis [23]. We refer to [21]
for a complete survey of these different approaches.

As regards constraints, they were firstly introduced in role mining in [26], where the RBAC2 model
considers different types of constraints, including mutually exclusive roles, used to enforce separation of duty
policies, and cardinality constraints, limiting some parameters of the resulting set of roles. In particular,
four kinds of cardinality constraints can be defined considering: the maximum number of roles that can be
assigned to a user; the maximum number of users that can be assigned to a role; the maximum number of
permissions that can be included in a role; the maximum number of roles that can include a given permission.

The first class of constraints is usually referred to as role-usage constraint, and it has been considered
in [14, 17, 18]. Lu et al [17, 18], consider two versions of the problem, one giving an exact solution, and
the other including a given number of errors, and provide two heuristics in the concurrent framework, for
both the correct and the approximate version. In [14], the authors propose two algorithms operating in the
post-processing framework, named Role-Priority-based Approach (RPA) and Coverage-of-Permissions-based
Approach (CPA). In [12], the heuristic Fix Role Usage Constraint (FixRUC), corresponding to Algorithm 1 in
Section 3.1 of [12], was described for the post-processing framework. Such an heuristic unassigns some roles
to the users violating the RUCC constraint and substitutes them with another role in such a way that, at
the end of the procedure, all users will possess at most the maximum number of permitted roles. The second
class of constraints is named role-distribution constraint, and it has been introduced in [13], where three
heuristics are presented, based on the minimum biclique covering approach, firstly proposed in [8]. The third
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and fourth class of constraints are one the dual of the other and are usually referred to as permission-usage
constraint and permission-distribution constraint, respectively. In [4], the authors propose a framework that
can be easily adapted to each class of constraints, specializing a general approach to role mining.

Works [15] and [2] propose some solutions considering the restrictions on the number of permissions a
role can include. In [2], two heuristics have been proposed, t-SMAR and t-SMAC. The symbol t refers to the
constraint value, that is to the maximum number of permissions each role can contain. Both heuristics form
a role selecting permissions from the users-to-permissions assignment matrix describing the permissions
assigned to users (a permission grants system access to authorized users). The heuristics in [2] differ in
how they select the permissions from the users-to-permissions assignment matrix: the first one chooses a
minimum-weight row (i.e., a row containing the minimum number of permissions), while the second one
chooses a minimum-weightcolumn. Kumar et al. [15] propose a technique named Constrained Role Miner
(CRM), where first roles are created by grouping similar permission assignments of one or more users, and
then roles satisfying the cardinality constraint are mined.

Some approaches considering multiple constraints holding on the final role-set, have also been discussed.
Indeed. in [20] a role mining technique has been designed to provide a set of roles where both role-distribution
and role-cardinality constraints are satisfied. The combination of role-usage and permission-usage constraints
has been analyzed also in [3, 5].

3 Role Mining

In this section we recall the basic definitions for the RBAC model, the computational complexity of the
related problems, and the two alternative frameworks for role mining.

The notation we use is based on the NIST standard for Core Role-Based Access Control (Core RBAC,
or RBAC 0), see [27] and [9]. We denote with U = {u1, . . . , un} the set of users, P = {p1, . . . , pm} the set of
permissions, and R = {r1, . . . , rk} the set of roles. The following assignment relations are defined:

• UA ⊆ U ×R is a many-to-many mapping user-to-role assignment relation.

• PA ⊆ R×P is a many-to-many mapping role-to-permission assignment relation.

• UPA ⊆ U × P is a many-to-many mapping user-to-permission assignment relation.

Obviously, we can represent the assignment relations by binary matrices. For instance, by UA we denote the
UA’s matrix representation. The binary matrix UA satisfies UA[i][j] = 1 if and only if (ui, rj) ∈ UA. This
means that user ui is assigned role rj . In a similar way, we define the matrices PA, and UPA. Moreover, we
define the following functions:

• AssignedRolesU : U → 2R. This function returns the set of roles assigned to a given user and any u ∈ U ,
is defined as AssignedRolesU(u) = {r : (u, r) ∈ UA}.

• AssignedRolesP : P → 2R. This function returns the set of roles assigned to a given permission and,
for any p ∈ P, is defined as AssignedRolesP(p) = {r : (r, p) ∈ PA}.

• AssignedUsers : R → 2U . This function returns the set of users assigned to a given role and, for any
r ∈ R, is defined as AssignedUsers(r) = {u : (u, r) ∈ UA}.

• AssignedPrmsR : R → 2P . This function returns the set of permissions assigned to a given role and, for
any r ∈ R, is defined as AssignedPrmsR(r) = {p : (r, p) ∈ PA}.

• AssignedPrmsU : U→ 2P . This function returns the set of permissions assigned to a given user and, for
any u ∈ U , is defined as AssignedPrmsU(u) = {p : (u, p) ∈ UPA}.

By denoting with [`] the set of positive integers up to ` included (i.e., [`] = {1, 2, . . . , `}), we can define the
above functions also as
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• AssignedRolesU(ui) = {rj : j ∈ [k] and UA[i][j] = 1}.

• AssignedRolesP(pi) = {rj : j ∈ [k] and PA[j][i] = 1}.

• AssignedUsers(rj) = {ui : i ∈ [n] and UA[i][j] = 1}.

• AssignedPrmsR(ri) = {pj : j ∈ [m] and PA[i][j] = 1}.

• AssignedPrmsU(ui) = {pj : j ∈ [m] and UPA[i][j] = 1}.

Given the n×m users-to-permissions assignment matrix UPA, the role mining problem (see [28], [8], and
[10]) consists in finding a binary decomposition of UPA, that is an n×k binary matrix UA and a k×m binary
matrix PA such that,

UPA = UA⊗ PA, (1)

where, the operator ⊗ is such that, for i ∈ [n] and j ∈ [m],

UPA[i][j] =

k∨
h=1

(UA[i][h] ∧ PA[h][j]). (2)

Therefore, in solving a role mining problem (see [28] and [8]), we are looking for a factorization of the matrix
UPA. Notice that, there are several matrices UA and PA satisfying (1). For instance, the two extreme cases
are: i) we set a role for each user, hence UA is the n × n identity matrix and PA = UPA; ii) we set a role
for each permission, hence UA = UPA and PA is the m ×m identity matrix. In particular, the role mining
problem consists in finding a user-to-role assignment UA and a role-to-permission assignment PA such that
the matrices UA and PA satisfy (1) and the number of columns (rows) of UA (PA) is minimized. The smallest
value k for which UPA can be factorized as UA⊗ PA is referred to as the binary rank of UPA.
A candidate role consists of a set of permissions along with a user-to-role assignment. Hence, it can be
described by a row of the matrix PA and a column of the matrix UA. The union of the candidate roles
is referred to as candidate role-set and can be described by matrices UA and PA. A candidate role-set
is complete if the permissions described by any UPA’s row can be exaclty covered by the union of some
candidate roles. In other words, a candidate role-set is complete if and only if it is a solution of the equation
UPA = UA ⊗ PA. Hence, equivalently, the role mining problem consists in finding a complete candidate role-
set having minimum cardinality. One could consider an incomplete role-set as well, where the matrices UA

and PA do not cover all permissions represented by the matrix UPA. Such uncovered permissions should be
handled separately, so they are directly assigned to users defining a direct user-permission assignment relation
DUPA ⊆ U × P. We can represent such a relations by the binary matrix DUPA satisfying DUPA[i][j] = 1 if
and only if (ui, pj) ∈ DUPA. Notice that, DUPA is not considered in standard RBAC models [27], but this
approach is more general and can handle anomalous situation where an assignement of a permission to a
user cannot be explained by a role (or, in other words, it does not make sense to introduce for a user a role
having a single permission).

The NIST RBAC Reference Model [27] comprises four model components. Core RBAC is the one con-
sidered ad the beginnig of this section, the other three model are Hierarchical RBAC, Static Separation of
Duty Relations, and Dynamic Separation of Duty Relations. Hierarchical RBAC (or RBAC 1, see [26]) adds
to Core RBAC a role hierarchy relation RH ⊆ R × R called inheritance relation and denoted by �. One
has that r1 � r2 (i.e, role r1 inherits role r2) if and only if all permissions assigned to r2 are also assigned
to r1 and all users assigned to r1 are also assigned to r2. Formally,

AssignedPrmsR(r2) ⊂ AssignedPrmsR(r1) and

AssignedUsers(r1) ⊆ AssignedUsers(r2).

We can represent the role hierarchy relation by the binary matrix RH satisfying RH[i][j] = 1 if and only if
r1 � r2.
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Following [22], we refer to the tuple ρ = 〈U ,P,UPA〉 as configuration of an RBAC instance. As we
have previously mentioned, the goal of role mining is to find a suitable decomposition of the matrix UPA,
but, depending on the scenario, role mining algorithms could output, as well, an inheritance and a direct
user-permission assignment relations. Therefore, in general, given a configuration ρ one wants to find an
RBAC state γ = 〈R,UA,PA,RH,DUPA〉 that is consistent with ρ. The RBAC state γ is consistent with
ρ if every user in U has the same set of permissions in the RBAC state as in UPA. In the case of Core
RBAC model, any role mining algorithm will output a configuration γ with both RH = ∅ and DUPA = ∅,
while in the case of Hierarchical RBAC model any algorithm will output DUPA = ∅.

3.1 Constrained Role Mining

We recall here the definition of constrained role mining problems, that is when a number of constraints may
be enforced on different characteristics of the roleset, limiting sometimes the size or the usage of the included
roles [14, 12, 4, 3].

We consider here two different kinds of constraints: 1) we limit the number of roles that can be assigned
to each user, defining the Role-Usage Cardinality Constraint Role Mining problem (RUCC); 2) we
fix an upper bound on the number of permission that can be assigned to each role, defining the Permission-
Usage Cardinality Constraint Role Mining problem (PUCC). More formally, we define the con-
strained role mining problems in the following way:

Problem 1. (RUCC) Given a set of user U , a set of permission P and a user-permission assignement matrix
UPA, find a decomposition (UA, PA) for which the following conditions hold: 1) UPA = UA⊗ PA; 2) the role-set
R cardinality is minimized; 3) for all users u ∈ U , it holds that |AssignedRolesU(u)| ≤ mru, where mru > 1.

Problem 2. (PUCC) Given a set of user U , a set of permission P and a user-permission assignement matrix
UPA, find a decomposition (UA, PA) for which the following conditions hold: 1) UPA = UA⊗ PA; 2) the role-set
R cardinality is minimized; 3) for all roles r ∈ R, it holds that |AssignedPrmsR(r)| ≤ mpr, where mpr > 1.

In [14, 12], the previous problems have been proved to be NP-Hard. The computational complexity
of the Role Mining problem (and of some of its variants) has been also considered in several papers (see,
for instance, [7, 8, 29, 28]). Other related problems considering similar constraints have been defined in
[12, 15, 13, 4].

4 Heuristics

Since finding an optimal solution to the constrained role mining problem is NP-hard, we have to resort to
some heuristics to get a sub-optimal solution. Our heuristics fall within the post-processing framework where
roles are first mined irrespectively of the constraint, using any other known role mining algorithm. Then,
the post-processing heuristic takes as input a decomposition of UPA into UA and PA and manages to fix the
cases that violate the constraints by deleting (unassigning) roles and/or adding (assigning) new ones. In
the following sections we present post-processing heuristics to mine roles satisfying the PUCC and RUCC
constraints.

4.1 Post-processing PUCC

In the following we present a post-processing heuristic, referred to as postPUCC, for the Permission-Usage
Cardinality Constraint scenario. As required by the post-processing framework, our heuristic takes as input
a decomposition of UPA into UA and PA mined irrespectively of the constraint and adjusts the roles violating
the constraint by substituting them with roles (new or existing ones) having less than mpr permissions.

To simplify the description of the procedure postPUCC we introduce some data structures (namely, ARU,
APR, and CR) representing, in a compact way UA, PA, and all mined roles possessing at most mpr permissions
contained in a given role of size bigger than mpr. The data structure ARU represents the roles assigned
to users, more precisely, ARU[i] contains the indices of the roles assigned to user ui; APR represents the

5



permissions assigned to roles (i.e., APR[j] contains the indices of the permissions assigned to role rj); while
CR represents the roles of size at most mpr contained in a given role possessing more than mpr permissions
(i.e., if |APR[j]| > mpr, then CR[j] contains all the indices j′ such that |APR[j′]| ≤ mpr and APR[j′] ⊂ APR[j]).
Previous data structures are filled in by the simple procedure extractInfo by exploring the entries of UA
and PA. We report it in the following for reader’s convenience, but we will not comment on it as it is
self-explanatory.

ALGORITHM 1: extractInfo

input : A decomposition (UA, PA) of the n×m matrix UPA and the constraint value mpr
output: The data structures ARU, APR, and CR

1 k = Number of rows in PA

2 foreach i in [n] do ARU[i] = {` : UA[i][j] = 1} // User ui has role rj
3 foreach j in [k] do APR[j] = {` : PA[j][`] = 1} // Role rj has permission p`
4 foreach (i, j) in [k]× [k] do // For all pairs of roles

5 if |APR[j]| ≤ mpr < |APR[i]| and APR[j] ⊂ APR[i] then // ri contains rj
6 CR[i] = CR[i] ∪ {j}
7 return (ARU, APR, CR)

The procedure postPUCC described below, starting from a decomposition of UPA into UA and PA, constructs
two new matrices newUA and newPA having, respectively, n rows (one for each user) and m columns (one for
each permission) as the corresponding matrices UA and PA. The new matrices will satisfy the permission-
usage cardinality constraint as postPUCC directily re-assigns the roles having at most mpr permissions to
each user holding them (i.e., it does reuse the UA assignement). If a user, say u, possesses a role r having
more than mpr permissions, then our heuristic re-distributes the permissions in r into smaller roles (i.e.,
roles of dimension at most mpr) that are assigned to user u. At the end of the procedure, the matrices newUA
and newPA will represent a complete role-set covering UPA.

ALGORITHM 2: postPUCC

input : A decomposition (UA, PA) of the n×m matrix UPA and the constraint value mpr
output: A new decomposition (newUA, newPA) of the matrix UPA satisfying the PUCC constraint

1 newUA = [n][·], newPA = [·][m]
2 (ARU, APR, CR) = extractInfo(UA, PA,mpr)
3 foreach i in [n] do // For any user ui

4 foreach j in ARU[i] do // For all roles rj assigned to ui

5 if |APR[j]| ≤ mpr then
6 (newUA, newPA) = update(newUA, newPA, i, APR[j])
7 else
8 tmpAP = APR[j]
9 foreach rc in CR[j] do

10 (newUA, newPA) = update(newUA, newPA, i, APR[cr])
11 tmpAP = tmpAP\APR[cr]
12 if tmpAP == ∅ then break

13 nr = ∅
14 foreach p in tmpAP do
15 nr = nr ∪ {p}
16 tmpAP = tmpAP\{p}
17 if tmpAP == ∅ or |nr| == mpr then
18 (newUA, newPA) = update(newUA, newPA, i, nr)
19 nr = ∅
20 return (newUA, newPA)

More in detail, in line 2, the procedure extractInfo returns the data structures ARU, APR, and CR previuosly
described. Then (see lines 3 and 4), procedure postPUCC examines all roles assigned to each user according
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to the decomposition (UA, PA). If the role rj assigned to user ui has at most mpr permissions (see line 5),
then postPUCC, through the procedure update (described below) will update the matrices newUA and newPA

by re-assigning rj to ui. On the other hand, if role rj has more than mpr permissions, then the procedure
postPUCC (see lines 8-12) updates the matrices newUA and newPA by assigning to user ui all roles described
by PA that are contained in rj and have less than mpr permissions (i.e., it assigns to ui the roles represented
by CR[j]). If a subset of the roles represented by CR[j] covers all rj ’s permissions (line 12), then we have
done. Otherwise, we have to reallocate the remaining uncovered permissions in one or more new roles
assigning them to user ui (see lines 13-19). The remaining uncovered permissions (represented by tmpAP )
are distributed into new roles, each containing at most mpr permissions (see lines 13-15). Each new role,
represented by the variable nr, is then assigned in line 18 to user ui updating, through the procedure update,
the matrices newUA and newPA.

The following procedure update, on input a partial decomposition (newUA, newPA) of the matrix UPA, a
user u, and a role r, assigns role r to user u by properly modifying newUA and newPA. The matrices newUA

and newPA have, respectively, n rows (one for each user) and m columns (one for each permission) as the
corresponding matrices UA and PA. In procedure update, the symbol k indcates the number of roles mined
so far, that is, the number of columns (resp., rows) of the matrix UA (resp., PA).

ALGORITHM 3: update

input : A partial decomposition (newUA, newPA) of UPA, a user u, and a role r
output: The modified decomposition (newUA, newPA) of the matrix UPA

1 k = number of rows in newPA

2 flag = True

3 foreach i in [k] do // Check whether r already appears in newPA

4 ri = {j : newPA[i][j] = 1}
5 if r == ri then
6 newUA[u][i] = 1 // Assign found role to u
7 flag = False

8 break

9 if flag then // r does not already appear in newPA

10 foreach j in r do // Add r to newPA

11 newPA[k + 1][j] = 1
12 newUA[u][k + 1] = 1 // Assign r to u

13 return (newUA, newPA)

The procedure update first checks (see lines 3-5) whether the role described by r already is comprised in
newPA. If so, it assigns its row index (i.e., i) to user represented by u. Otherwise (i.e., flag is equal to True),
the procedure update adds the new role to matrix newPA (lines 10 and 11) and assigns it to user represented
by u (line 12). Both procedures extractInfo and update wiil also be used by our heuristic for the RUCC
scenario described in the next section.

Illustrative Example for postPUCC. In the following we provide an illustrative example of the execution
of our heuristic postPUCC assuming that mpr = 2. The procedure starts having in input the matrices UA

and PA reported on the right-hand side of Figure 1 that have been computed by running SMAUR on the UPA

matrix depicted on the left-hand side of Figure 7.
The heuristic postPUCC, for each user u ∈ {u1, u2, u3, u4, u5}, re-assigns the roles having at most mpr
permissions, while, in case the role violates the constraint, it re-distributes the included permissions to
smaller roles. It is immediate to see that the role r1 = {p3, p4, p5} violates the constraint, and then it is
decomposed into two roles, one including permissions {p3, p4} and the other only {p5} that are assigned to
u1. The new temporary matrices newUA and newPA are as follows.
User u2 has role r3 and r4. Since r4 does not violate the constraint, it is re-assigned to u2 (as r′3), while
role r3 is split into two roles, one with permissions {p1, p4} and the other with permission {p5} (role already
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p1 p2 p3 p4 p5
u1 0 0 1 1 1
u2 1 1 0 1 1
u3 1 1 0 0 1
u4 0 1 1 1 0
u5 1 0 0 1 1

r1 r2 r3 r4 r5
u1 1 0 0 0 0
u2 0 0 1 1 0
u3 0 0 0 1 1
u4 0 1 0 0 0
u5 0 0 1 0 0

p1 p2 p3 p4 p5
r1 0 0 1 1 1
r2 0 1 1 1 0
r3 1 0 0 1 1
r4 0 1 0 0 0
r5 1 0 0 0 1

Figure 1: UPA matrix (left) and UA and PA matrices (right)

r′1 r′2
u1 1 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1

Figure 2: newUA matrix (left) and newPA matrix (right)

present in newPA as r′2; the updated matrices newUA and newPA are reported in Figure 3

r′1 r′2 r′3 r′4
u1 1 1 0 0
u2 0 1 1 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 0 1 0 0 0
r′4 1 0 0 1 0

Figure 3: newUA matrix (left) and newPA matrix (right)

Both roles assigned to u3 include less than mpr permissions, and can be reassigned. A new role r′5 is included
is newPA and assigned to u3 together with the already existing role r′3. After these updates, the matrices
newUA and newPA are in Figure 4.
Since the role assigned to user u4 violates the constraint, it is split into two new roles, both are already
present in newPA (they correspond to r′1 and r′3) that remains unchanged, while newUA contains the new role
assignment for u4 as reported in Figure 5.
Also for user u5, the assigned role includes more than mpr permissions and for this reason it is split into
two roles, one with permissions {p1, p4}), and the other with permission {p5}). Both roles have already been
defined in newPA and correspond to roles {r′4} and {r′2}. The matrix newUA includes the new assignment for
u5, while newPA is not modified as depicted in Figure 6. Since no more users are left to be examined these
matrices are the ones returned by heuristic postPUCC.

4.2 Post-processing RUCC

In the following we present an heuristics for the post-processing framework referred to postRUCC. Such an
heuristic takes as input a decomposition of UPA into UA and PA mined irrespectively of the constraint and
re-assigns roles to each user regardless of the constraint’s violation trying to reduce the overall number of
roles assigned to each user. In short, it tries to covers all the permissions of each user by using the minimum
number of roles described by PA. Our heuristic, first sort users in decreasing order with respect to the number
of assigned permissions, the it cover them. In effect, for each user, we compute an approximation of the
minimum covering, as cover user’s permissions using the minimum number of roles is an NP-Hard problem.
Indeed, it is easy to see that such problem corresponds to the Set-Covering Problem (for its decisional version,
see SP25 in [11]). If the number of required roles exceeds the threshold mru, then we select the first mru−1
roles, we transfer the remaining uncovered permissions to a new role, and we assign the mru − 1 selected
roles and the new one to the user. We decided to select the first up to mru− 1 roles, but any strategy could
be used. Indeed, we could have chosen any random mru − 1 roles (we experimentally saw that there is no
such a great difference and sometime the random choice produced worse results) or any up to mru− 1 roles
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r′1 r′2 r′3 r′4 r′5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 0 1 0 0 0
r′4 1 0 0 1 0
r′5 1 0 0 0 1

Figure 4: newUA matrix (left) and newPA matrix (right)

r′1 r′2 r′3 r′4 r′5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1
u4 1 0 1 0 0

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 0 1 0 0 0
r′4 1 0 0 1 0
r′5 1 0 0 0 1

Figure 5: newUA matrix (left) and newPA matrix (right)

belonging to the greatest number of users (this will cover a larger part of UPA, but to determine such mru−1
roles could take a prohibitively large amount of time).

ALGORITHM 4: postRUCC

input : The n×m matrix UPA, its decomposition into UA and PA, and the threshold mru
output: A new decomposition newUA and newPA of UPA satisfying the RUCC constraint

1 Sort UA’s rows in decreasing order with respect to the number of permissions in them
2 newUA = [n][·], newPA = [·][m]
3 k = number of rows in PA

4 (ARU, APR, CR) = extractInfo(UA, PA, 0)
5 for i = 1 to n do
6 perms = {j : UPA[i][j] = 1}
7 COVER = approxCover(perms, APR)
8 if |COVER| ≤ mru then ` = |COVER| else ` = mru− 1
9 for j = 1 to ` do

10 r = COVER[j] // j-th role in the cover

11 (newUA, newPA) = update(newUA, newPA, i, APR[r])
12 perms = perms\APR[r]

13 if perms 6= ∅ then
14 (newUA, newPA) = update(newUA, newPA, i, perms)
15 if perms 6∈ APR then
16 k = k + 1
17 APR[k] = perms // Add the new role to the role-set

18 return (newUA, newPA)

In line 4, Heuristic postRUCC, using procedure extractInfo described in Section 4.1, computes a compact
representation of the matrices UA and PA. Since, postRUCC does not need the data structure CR, the value
mpr is set equal to 0. In lines 5-17, postRUCC re-assigns roles to users so that at most mru roles will be
distributed to each user. More specifically, in line 7, our heuristic tries to cover all permissions of user ui by
using the mined roles represented by APR. Since to to cover ui’s permissions using the the minimum number
of roles is an NP-Hard problem, postRUCC uses the classical greedy approximation algorithm solving the
Set-Covering Problem [32]. Once a covering has been obtained, the postRUCC checks whether it contains at
most mru roles (see line 8). If so, all such roles are assigned to user ui (see lines 9-12); otherwise, only the
first mru− 1 roles returned by approxCover are assigned to ui (again, see lines 9-12). Such an assignment
is done (see line 11) by the procedure update described in Section 4.1. The procedure update assigns the
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r′1 r′2 r′3 r′4 r′5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1
u4 1 0 1 0 0
u5 0 1 0 0 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 0 1 0 0 0
r′4 1 0 0 1 0
r′5 1 0 0 0 1

Figure 6: newUA matrix (left) and newPA matrix (right)

role APR[r] to user ui by appropriately modifying the matrix newUA and also adds it to newPA if not present.
In line 12, postRUCC, by means of the variable perms keeps track of ui’s uncovered permissions. If, after
executing the lines 9-12, there still are uncovered permissions (see line 13), then they are packed into a role
and assigned to user ui using the procedure update (see line 14). Notice that, the test in line 13 will be
satisfied (i.e., there are uncovered permissions) when the procedure approxCover returns more than mru
roles (see line 8). If the role role induced by perms is a new one (i.e., the role represented by perms does not
belong to the role-set represented by APR, see line 15), then, in line 17, it will added to the data structure
APR.

ALGORITHM 5: approxCover

input : A set of permissions perms and the set of roles APR

output: The set of roles coveringRoles ⊆ APR covering the permissions perms
1 origPerms = perms
2 coveringRoles = ∅
3 k = number of roles in APR

4 while perms 6= ∅ do
5 max = idx = 0
6 // Select a role covering the maximum number of uncovered permission

7 foreach r in [k] do
8 if APR[r] ⊆ origPerms and |perms ∩ APR[r]| > max then
9 max = |perms ∩ APR[r]|

10 idx = r

11 perms = perms\APR[idx]
12 coveringRoles = coveringRoles ∪ {idx}
13 return coveringRoles

The procedure approxCover returns a covering of user’s ui permissions using the roles in APR. We will
not comment on such a procedure as it implements the classical greedy approximation algorithm solving
the Set-Covering Problem [32]. Notice that in lines 7-10 we could have used any strategy to select the roles
to add to the covering. For instance, we could have chosen first the roles that have been assigned to the
maximum number of users. In the procedure approxCover we preferred to choose the roles according to
the classical strategy as, by experimental analysis, we have noticed that other strategies do not improve the
quality of the computed role-set.

We conclude this section by pointing out that heuristic postRUCC could have assigned to a user ui the
roles returned by approxCover only if |COVER| < |UA[i]| ≤ mru. That is, postRUCC uses the roles in COVER

only if they are fewer than the roles originally assigned to ui. We implemented both postRUCC and the
previously described variant and observed that in only six out of 12.859 tests the proposed variant returns a
role-set smaller (by one) than the one computed by postRUCC; while in nine tests postRUCC returns a smaller
role-set than that computed by the variant. Hence, to keep postRUCC’s description simple, we preferred not
to add this variant to postRUCC.

Illustrative Example for postRUCC. In the following we provide an illustrative example of the execution
of our heuristic postRUCC when mru = 2. We assume that postRUCC receives as input the matrices UA and
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PA described on the right-hand side of Figure 7 that have been computed by running SMAUR on the UPA

matrix depicted on the left-hand side of Figure 7.

p1 p2 p3 p4 p5
u1 0 0 1 1 0
u2 0 0 1 1 1
u3 1 1 1 1 1
u4 0 0 0 0 1
u5 1 0 1 1 1

r1 r2 r3 r4
u1 0 1 0 0
u2 1 1 0 0
u3 1 1 1 1
u4 1 0 0 0
u5 1 1 1 0

p1 p2 p3 p4 p5
r1 0 0 0 0 1
r2 0 0 1 1 0
r3 1 0 0 0 0
r4 0 1 0 0 0

Figure 7: UPA matrix (left) and UA and PA matrices (right)

The heuristic postRUCC, for each user u ∈ {u1, u2, u3, u4, u5}, invokes the function approxCover to cover
u’s permissions using the roles in ARU, while the function update build the new user-to-role and role-to-
permission matrices newUA and newPA. The role-set ARU is initialized with the roles mined by SMAUR (i.e.,
ARU = {r1, r2, r3, r4}. It is immediate to see that the role r2 = {p3, p4} covers all permissions of user u1.
Hence, the function approxCover returns role r2 (its index 2) and the new temporary matrices newUA and
newPA are as follows.

r′1
u1 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0

Figure 8: newUA matrix (left) and newPA matrix (right)

For user u2, the function approxCover returns the roles r2 and r1 in ARU (to be precise, approxCover returns
roles’ indices 2 and 1). Both roles are assigned to u2 in newUA, role r1 already appears in newPA as r′1, while
r2 is added, as role r′2, to newPA. Hence, the matrices newUA and newPA are as follows.

r′1 r′2
u1 1 0
u2 1 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1

Figure 9: newUA matrix (left) and newPA matrix (right)

Considering the user u3’s permissions (i.e., {p1, p2, p3, p4, p5}), the function approxCover, returns the roles
r2, r1, r3, and r4. Since, the number of returned roles is larger than the constraint’s value mru = 2, the
heuristic postRUCC assigns r2 = {p3, p4} (named r′1 in newUA) to u3. Then, a new role r′3, containing the
permissions {p1, p2, p5}, is formed and added both to newUA and ARU. After these updates, the matrices
newUA and newPA are in Figure 10.

r′1 r′2 r′3
u1 1 0 0
u2 1 1 0
u3 1 0 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 1 1 0 0 1

Figure 10: newUA matrix (left) and newPA matrix (right)

User u4 has assigned only the permission p5 that is the unique permission in role r1 of the original PA matrix
(this role corresponds to role r′2 of the newPA matrix). In this case, the function approxCover returns the role
r1 (i.e., the new role r′2) that is assigned to u4. Finally, for user u5, possessing permissions {p1, p3, p4, p5}),
the function approxCover returns the role r2, r1, and r3. The number of returned roles exceed the maximum
number of roles (e.g., 2) that can be assigned to any user in this example. Therefore, among the roles returned
by approxCover only the role r2 = {p3, p4}, corresponding to r′1 in newPA, is assigned to u5. Then, the new
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r′1 r′2 r′3 r′4
u1 1 0 0 0
u2 1 1 0 0
u3 1 0 1 0
u4 0 1 0 0
u5 1 0 0 1

p1 p2 p3 p4 p5
r′1 0 0 1 1 0
r′2 0 0 0 0 1
r′3 1 1 0 0 1
r′4 1 0 0 0 1

Figure 11: newUA matrix (left) and newPA matrix (right)

role r′4 = {p1, p5} is formed and assigned to u5. The matrices newUA and newPA are modified accordingly
and depicted in the following Figure 11.
No more users are left to be examined and the heuristic postRUCC returns the user-to-role and role-to-
permission matrices newUA and newPA described in Figure 11.

5 Experimental Evaluation

In this section, we compare our heuristics with state of the art ones. Since all heuristics have almost the
same running time, heuristics will not be evaluated by this means. Indeed, we run a set of experiments to
assess heuristics’ performance measuring by the quality of the RBAC state returned by them. In particular,
we consider the size of the role-set and the Weighted Structural Complexity (WSC). The Weighted Structural
Complexity measures the size of a Core RBAC state γ = 〈R,UA,PA,RH,DUPA〉 that is consistent with
a given configuration ρ = 〈U ,P,UPA〉 of a Core RBAC instance. Given a role hierarchy relation RH, its
transitive reduction treduce(RH) is the minimum relation having the same transitive closure as RH. For
instance, {(r1, r2), (r2, r3)} is the transitive reduction of {(r1, r2), (r2, r3), (r1, r3)}. According to [16, 22] the
Weighted Structural Complexity is defined as follows.

Definition 5.1 Given W = 〈wr, wu, wp, wh, wd〉, where wr, wu, wp, wh, wd ∈ Q+∪{∞}, the Weighted Struc-
tural Complexity (WSC) of an RBAC state γ, denoted by wsc(γ,W ), is computed as follow.

wsc(γ,W ) = wr · |R|+ wu · |UA|+ wp · |PA|+ wh · |treduce(RH)|+ wd · |DUPA|

where | · | denotes the size of the set or relation.

Given a weight vector W = 〈wr, wu, wp, wh, wd〉, one would like to find an RBAC state having the
smallest Weighted Structural Complexity. Hence, different weight vectors encode different mining objective
and minimization goals. For example, by setting W = 〈1, 0, 0,∞,∞〉 one wants to minimize the number of
role forbidding role hierarchy and direct user-permission assignment; while, setting W = 〈0, 1, 1,∞,∞〉 one
wants to minimize the number of assignments user-roles and role-permissions (this problem was referred to as
min-edge role mining in [19]). In our case we set W = 〈1, 1, 1, 0,∞〉, because we want to compare heuristics
that generate RBAC states exhibiting a complete role-set (i.e., we do not allow direct user-permission
assignment) and we stick to the Core RBAC model, where hierarchy relations do not come into play (since
our heuristics and the ones we compare with, do not generate roles hierarchies).

5.1 Test-bed

All heuristics have been implemented in Python 3.9 and tested on a MacBook Pro running OS X 11.11.2 on a
2.3 GHz Intel Core i9 8 core CPU having 16 GB 2667 MHz DDR4 RAM. In the evaluation, we use nine real-
world datasets that have been widely used in literature for analyzing the performances of various role mining
heuristics (see, for instance, [8, 24, 15, 12, 14]). The parameters of the real-world datasets are summarized
in Table 1 where, for each dataset, we report the number of users |U|, the number of permissions |P|, the
number of user-to-permission assignments |UPA|, the minimum and the maximum number of permissions
assigned to a user (respectively, min#P and max#P), and the minimum and the maximum number of users
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that have the same permission (respectively, min#U and max#U)1. The last column of Table 1 contains the
density of the UPA matrix, that is the number of entries equal to one with respect its size.

Dataset |U| |P| |UPA| min#P max#P min#U max#U Density
Americas Large 3485 10127 185294 1 733 1 2812 0.53%
Americas Small 3477 1587 105205 1 310 1 2866 1.61%

Apj 2044 1164 6841 1 58 1 291 0.29%
Customer 10021 277 45427 1 25 1 4184 1.64%
Domino 79 231 730 1 209 1 52 4.00%
Emea 35 3046 7220 9 554 1 32 6.77%

Firewall 1 365 709 31951 1 617 1 251 12.35%
Firewall 2 325 590 36428 6 590 46 298 19.00%
Healthcare 46 46 1486 7 46 3 45 70.23%

Table 1: Characteristics of the real-world datasets considered in this paper

The datasets Americas small and Americas large were obtained from Cisco firewalls granting access to the HP
network to authenticated users (users’ access depends on their profiles). Similar datasets are Apj and Emea.
The Healthcare dataset was received from the US Veteran’s Administration; the Domino data was from a
Lotus Domino server; Customer is based on the access control graph obtained from the IT department of an
HP customer. Finally, the Firewall 1 and Firewall 2 datasets are results of running an analysis algorithm
on Checkpoint firewalls. Such real-world datasets were publicly available on the web page at HP Labs of
one of the authors of [8]. With the exception of the dataset Customer, the optimal decompositions (i.e., a
representation of a minimum size role-set along with a user-to-role assignment relation) were available as well.
From such optimal decompositions, we derived the information listed in Table 2. For the dataset Customer,
since an optimal decomposition was not publicly available, we extrapolated data (listed in boldface) from
the user-to-permission assignment relation.

Dataset |R| min
ppr

max
ppr

min
rpu

max
rpu

Americas large 398 1 733 1 4
Americas small 178 1 263 1 12

Apj 453 1 52 1 8
Customer 276 1 25 1 25
Domino 20 1 201 1 9
Emea 34 9 554 1 1

Firewall 1 64 1 395 1 9
Firewall 2 10 2 307 1 3
Healthcare 14 1 32 1 6

Table 2: Characteristics of optimal decomposition (in boldface not optimal data)

In Table 2, the columns indexed by
min
ppr and

max
ppr contain, respectively, the minimum and the maximum

number of permissions assigned to roles in the optimal decompositions; while, the columns indexed by
min
rpu

and
max
rpu represent, respectively, the minimum and maximum number of roles assigned to users. For the

dataset Customer, the values
max
ppr and

max
rpu were substituted by their upper bound max#P given in the fifth

column of Table 1.
In the post-processing framework, any heuristic starts from a complete decomposition of UPA into two

matrices UA and matrix PA such that UPA = UA⊗ PA. Such matrices can be computed in several ways. Our
experiments will consider decompositions obtained applying the techniques in [30], [8], [1], and [19], as well

1Formally, min#P is defined as min{|AssignedPrmsU(u)| : u ∈ U}, we can define max#P, min#U, and max#U analogously.
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as, the optimal decomposition available from HP Labs. The heuristics used to get the decompositions used
in this paper are summarized in Figure 12.

Optimal, Biclique [8] SMAR, SMAUR, SMAC , SMAUC [1] FastMiner[30] OBMD [19]

Figure 12: Heuristics used to compute the starting UPA decompositions

In [30], the heuristic FastMiner computes a complete role-set starting from an initial role-set formed
by grouping the users having the same set of permissions and forming a role for each set of such common
permissions. Then, roles formed by the permissions in the intersections between pairs of initial roles are
added to the initial role-set. Notice that FastMiner could generate redundant roles. For a user i, a role
r is redundant if the permissions associated to r are a subset of the permissions associated to other roles
assigned to user i. The heuristic in [19] try reduce such redundancy. In [19] (see also [31]), the heuristic for
computing an UPA’s decomposition uses a greedy strategy that, starting from a role-set obtained by running
FastMiner, selects a subset of such roles that cover all ones in UPA. More precisely, the heuristic selects
a role that can be assigned to as many users as possible without violating relation (2) of Section 3. This
process is repeated until all ones in UPA are covered. In this paper, the heuristic in [19] will be referred to
as OBMD (Optimal Boolean Matrix Decomposition). In [8], the user-to-permission assignment relation UPA
is represented as a bipartite graph G. Any biclique in G (i.e., a complete bipartite subgraph of G) identifies
a role (i.e., users assigned to the role along with the permissions included in the role itself). The heuristic
Biclique [8] aims at finding a biclique cover of all the edges of the bipartite graph G. Finally, in [1], the
heuristic SMAR generates the role-set by covering the matrix UPA using its rows. That is, first SMAR forms a
role r by considering the permissions in a row with the smallest number of ones in it. Then, it assign r to any
user possessing the permissions in r. Another heuristic in [1], referred to as SMAC , forms roles by considering
UPA’s columns (i.e., it is a sort of SMAR run on UPA’s transpose by interchanging the functions of users and
permissions). To form a role, as stressed in [5], the permissions can be picked out either from the ones in
UPA (as done in the heuristics SMAR and SMAC) or from the permissions left uncovered during the mining
steps. Hence, from the heuristics SMAR and SMAC , another two heuristics can be derived, namely SMAUR and
SMAUC . Such heuristics, generate a role by considering, each time, a reduced instance of the problem (i.e., a
user-to-permission assignment matrix containing only uncovered permissions).

To get a complete decomposition of UPA used to test our heuristics, we ran the heuristics SMAR, SMAUR,
SMAC , SMAUC , FastMiner, OBMD, and Biclique on the real-world datasets listed in Table 1. We report the
role-set sizes and the WSC values obtained running these heuristics in Table 3 where the second column,
except for the Customer dataset, contains |R| and WSC of the optimal decompositions given in [8].

5.2 Experiments

To run the experiments, for the PUCC and RUCC scenario, we have to fix the constraint values. Except
that for the Customer dataset, we know the optimal decomposition for the real-world datasets in Table 1.
Hence, to choose the constraint values used in our tests, we consider the characteristics of the optimal
solutions summarized in Table 2. For each combination of dataset, heuristic, and starting decomposition, we
run a test changing the constraint’s value. In particular, the constraint values for the PUCC scenario will

be set to the 10%, 30%,50%, 80%, and 100% of
max
ppr . In the last test, setting mpr equal to

max
ppr allows us to

compare the heuristics against the optimal solution. From Table 2, one can see that the optimal solutions
distribute few roles to each user. Hence, for the RUCC scenario, we adopt a slightly different method to
select the mru values used in our tests. For all datasets, except Emea, the first value mru will take is 2,

the last but one is
max
rpu, and the last value is 20% bigger than

max
rpu. Moreover, if possible, we add at most

another two equally spaced values between the first and the last but one. For the dataset Emea, the optimal
decomposition, for the unconstrained case, distributes one role to each user. Hence, in our tests mru will
takes value in (1, 2, 3, 4, 5). We summarize in Table 4 the constraint values mpr and mru.
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Dataset Optimal SMAR SMAUR SMAC SMAUC FastMiner OBMD Biclique

Americas Large
398 430 415 612 416 6528 564 423 |R|

95407 107624 93138 91237 95176 1017743 126433 101494 WSC

Americas Small
178 225 207 204 198 1778 202 213 |R|

11217 22950 11656 15251 15978 168086 20947 22173 WSC

Apj
453 475 455 465 453 781 466 456 |R|
4867 6391 5115 5524 5271 12807 6373 5770 WSC

Customer
- 1154 276 276 276 40616 297 276 |R|
- 55184 45978 45845 45893 819509 48652 45978 WSC

Domino
20 20 20 22 20 64 21 20 |R|
754 789 761 775 758 1845 899 762 WSC

Emea
34 34 34 40 34 242 43 34 |R|

7280 7280 7280 7595 7280 23026 9086 7280 WSC

Firewall 1
66 71 68 74 65 266 66 69 |R|

2019 6517 3273 5020 5231 26680 5445 5531 WSC

Firewall 2
10 10 10 10 10 20 10 10 |R|

1120 1965 1564 1469 1466 3147 1977 1772 WSC

Healthcare
14 16 14 14 14 29 14 15 |R|
268 797 369 425 542 1314 685 444 WSC

Table 3: |R| and WSC of state-of-the-art heuristics (unconstrained scenario) for real-world datasets

Dataset mpr values mru values

Americas Large 73, 220, 367, 586, 733 2, 3, 4, 5
Americas Small 26, 79, 132, 210, 263 2, 6, 10, 12, 14
Apj 5, 16, 26, 42, 52 2, 4, 6, 8, 10
Customer 3, 8, 13, 20, 25 2, 4, 6, 8, 10
Domino 20, 60, 101, 161, 201 2, 4, 7, 9, 11
Emea 55, 166, 277, 443, 554 1, 2, 3, 4, 5
Firewall 1 40, 119, 198, 316, 395 2, 4, 7, 9, 11
Firewall 2 31, 92, 154, 246, 307 2, 3, 4
Healthcare 3, 10, 16, 26, 32 2, 4, 6, 7

Table 4: mpr and mru values used in the experiments

PUCC Scenario. To the best of our knowledge, beside the heuristic postPUCC presented in Section 4.1, in
the current literature there are no other heuristics for the PUCC scenario in the post-processing framework.
Hence, in the following we report some of the results of the applications of our heuristics to the decompositions
summarized in Table 3. As an example, in Tables 5 and 6, we report the results for the datasets Apj and
Healtcare when executing the heuristic postPUCC on the decompositions summarized in Figure 12 for the
mpr values given in Table 4.
We selected these two datasets as Apj has a low density (i.e., 0.29%), while Healthcare has a high density
(i.e., 70.23%). The experiments on the other datasets are available online in the supplemental material [6].
Considering the Apj dataset, we notice that for small values of mpr (i.e., mpr ∈ {5, 16}), our heuristic
computes the smaller role-set, when starting from the SMAUR decomposition, while, for larger values of mpr,
it generates a smaller role-set when starting from the Optimal decomposition. Anyway, except for the the
case mpr = 5, the size of the role-sets computed starting either from the Optimal decomposition or from
the SMAUR one differs just by at most two units. If we consider the WSC value, from Table 5 we see that,
regardless of the constraint value, our heuristic returns a solution with smaller WSC when starting from
an Optimal decomposition. The second best WSC value is attained when postPUCC starts from the SMAUR
decomposition. From Table 5, we also notice that, independently of the decomposition given as input to
postPUCC, when the value assigned to mpr increases, the number of generated roles decreases, in some cases
to a large extent. This reduction was someway expected, as larger roles, usually, can cover larger parts of
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Decomposition 10% 30% 50% 80% 100%

Optimal
564 467 458 454 453 |R|
5233 4898 4878 4870 4867 WSC

SMAR
644 518 489 478 476 |R|
6407 6365 6395 6398 6394 WSC

SMAUR
537 467 459 455 455 |R|
5329 5141 5124 5115 5115 WSC

SMAC
618 506 479 468 466 |R|
5629 5556 5554 5531 5527 WSC

SMAUC
604 492 467 456 454 |R|
5350 5282 5276 5278 5274 WSC

FastMiner
1026 821 795 784 782 |R|
12239 12242 12785 12814 12810 WSC

OBMD
619 509 480 469 467 |R|
6686 6383 6378 6380 6376 WSC

Biclique
600 492 469 459 457 |R|
5795 5783 5773 5777 5773 WSC

Table 5: |R| and WSC for the Apj dataset

the UPA matrix. Therefore, less roles have to be generated.

Decomposition 10% 30% 50% 80% 100%

Optimal
37 20 17 15 14 |R|
674 378 320 289 268 WSC

SMAR
56 31 24 19 18 |R|

1579 974 844 780 803 WSC

SMAUR
24 16 15 14 14 |R|
706 461 415 369 369 WSC

SMAC
52 29 22 17 16 |R|
728 427 388 376 414 WSC

SMAUC
48 27 21 17 15 |R|

1239 759 650 577 561 WSC

FastMiner
66 44 38 32 32 |R|

1854 1328 1256 1197 1308 WSC

OBMD
53 29 22 17 16 |R|

1512 922 780 668 691 WSC

Biclique
52 28 21 18 16 |R|
792 482 442 454 446 WSC

Table 6: |R| and WSC for the dataset Healthcare

In Table 6, we report the results of our experiments on the high density dataset Healthcare. In this
case, the smallest role-set is obtained starting from the SMAUR decomposition, and, as in the previous case,
our heuristics generate a solution with the smallest WSC value when it receives as input the Optimal

decomposition. We notice the same pattern, as well as, for the dataset Firewall 2 having a density equal to
19%. Such a behaviour might depend on the density of the UPA matrix.

If the experiments results are described as in Tables 5 and 6, then, to reduce either the role-set size or
the WSC value, it could be difficult to deduce what decomposition is preferable over the others as input of
the heuristic postPUCC. Therefore, we rank the decomposition using the method used in [24] and [5]. Since
there are eight possible decomposition (seven in the case of the dataset Customer), we rank them from 1 to
8 (from 1 to 7, for the dataset Customer). More precisely, considering the Table 6, for each fixed column
and a given evaluation criterion (i.e., |R| or WSC), we assign a rank from 1 to 8 to each decomposition. A
lower rank is better. If two or more decompositions produce a tie, they will be given the same ranking such
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that the sum of the ranking of all eight decompositions remains constant and equal to 36 as 1+2+ +8 = 36.

Dataset
|R| WSC

10% 30% 50% 80% 100% avg 10% 30% 50% 80% 100% avg

Optimal 2.0 2.0 2.0 2.0 1.5 1.9 1.0 1.0 1.0 1.0 1.0 1.0
SMAR 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
SMAUR 1.0 1.0 1.0 1.0 1.5 1.1 2.0 3.0 3.0 2.0 2.0 2.4
SMAC 4.5 5.5 5.5 4.0 5.0 4.9 3.0 2.0 2.0 3.0 3.0 2.6
SMAUC 3.0 3.0 3.5 4.0 3.0 3.3 5.0 5.0 5.0 5.0 5.0 5.0
FastMiner 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
OBMD 6.0 5.5 5.5 4.0 5.0 5.2 6.0 6.0 6.0 6.0 6.0 6.0
Biclique 4.5 4.0 3.5 6.0 5.0 4.6 4.0 4.0 4.0 4.0 4.0 4.0

Table 7: Rank for the Healthcare dataset

Consider, for instance, the column of Table 6 with label 10%. Both the decompositions SMAC and Biclique,
used as input of postPUCC, determine a role-set of size 52. Using the decompositions Optimal, SMAUR, and
SMAUC one gets smaller role-sets and, using the remaining decompositions, the resulting role-sets will be
larger. The decompositions SMAC and Biclique are tied both for fourth place. Hence, the rank assigned to
them is 4.5 = (4 + 5)/2. As another example, if four decompositions are tied for third place, then they will
all be given the rank 4.5 = (3 + 4 + 5 + 6)/4. In Table 7, we report the ranking of all decompositions for the
dataset Healthcare. For each decomposition, the seventh and thirteenth columns report the average ranking
over the five experiments of the role-set size and the Weighted Structural Complexity, respectively.

Dataset Optimal SMAR SMAUR SMAC SMAUC FastMiner OBMD Biclique

Americas Large 1.4 5.2 1.6 6.2 3.0 8.0 6.6 4.0
Americas Small 1.2 7.0 2.8 3.8 3.0 8.0 4.2 6.0
Apj 1.3 7.0 1.9 5.0 3.1 8.0 6.0 3.7
Customer - 6.0 1.8 2.7 3.7 7.0 5.0 1.8
Domino 3.0 4.2 2.2 5.6 4.2 8.0 6.6 2.2
Emea 3.0 3.0 3.0 6.0 3.0 8.0 7.0 3.0
Firewall 1 1.6 6.4 2.6 6.4 2.3 8.0 3.5 5.2
Firewall 2 1.7 5.3 1.3 4.9 5.3 8.0 5.3 4.2
Healthcare 1.9 7.0 1.1 4.9 3.3 8.0 5.2 4.6

Table 8: Average rank for the real-world datasets (role-set size)

Dataset Optimal SMAR SMAUR SMAC SMAUC FastMiner OBMD Biclique

Americas Large 4.0 6.0 1.8 1.2 3.0 8.0 7.0 5.0
Americas Small 1.2 6.6 1.8 3.0 4.0 8.0 5.4 6.0
Apj 1.0 6.6 2.0 4.0 3.0 8.0 6.4 5.0
Customer - 6.0 3.1 1.4 2.4 7.0 5.0 3.1
Domino 2.0 6.0 3.0 2.6 3.4 8.0 7.0 4.0
Emea 3.0 3.0 3.0 6.0 3.0 8.0 7.0 3.0
Firewall 1 1.0 7.0 2.0 3.2 4.2 8.0 5.4 5.2
Firewall 2 1.0 6.0 3.2 3.2 2.6 8.0 7.0 5.0
Healthcare 1.0 7.0 2.4 2.6 5.0 8.0 6.0 4.0

Table 9: Average rank for the real-world datasets (WSC)

The details of the experiments on the datasets described in Table 1 using the UPA decompositions compute
using the heuristics of Figure 12 can be found online in Section 2.10 of [6]. In Tables 8 and 9, we report the
average rank of the role-set size and WSC for such experiments. For each dataset, we denote in boldface
the smallest rank. From Table 8, we see that for four out of nine datasets, using the Optimal decomposition

17



as input to postPUCC gives rise to smallest role-set and the second best decomposition is SMAUR. For other
four out of nine datasets it is better use the SMAUR decomposition; while, for the dataset Emea, the two
decompositions are equivalent. This is a positive finding as, in general, given a user-to-permission assignment
matrix UPA, to compute the smallest role-set covering it is an NP-hard problem [28] (even the problem of
computing the minimal role-set cannot be approximated within any constant factor in polynomial time unless
P = NP , see [4]). So, it is not always feasible to compute an optimal decomposition of an UPA matrix and
starting from SMAUR decomposition (computable in polynomial time), our heuristic generates solutions quite
similar to the ones computed from an Optimal decomposition.
Considering the WSC measure, from Table 9, we see that for two datasets (i.e., Americas Large and Cus-
tomer), the best solution is obtained using the decomposition SMAC . For the dataset Emea, most decom-
positions allow to compute a solution with the lowest WSC and, as well, the smaller role-set. This is due
to the structure of the dataset Emea all users are assigned a different subset of permissions and the heuris-
tics Optimal, SMAR, SMAUR, SMAUC , and Biclique return the same decomposition. For the remaining six
datasets, using the Optimal decomposition allows to generate solutions with the lowest WSC value (recall
that for the dataset Customer, an Optimal decomposition is not available). For these six datasets, the
second best WSC value is attained when postPUCC starts from one of decompositions computed using the
heuristics in [1]. Hence, we can conclude that for generic UPA matrices, although an optimal decomposition
is not available, one can use UPA decompositions obtained from the heuristics in [1] without worsening much
the parameters of the computed solutions.

In the remaining part of this section, to stress our heuristic, we execute some experiments setting mrp = 2.
A large role-set returned by our heuristic is not a surprise at all. It depends on the structure of the UPA

matrix. Several users have much more than two permissions, so we need many roles to cover all of them.
For instance, users in the dataset Emea have assigned 3046 distinct permissions. So, independently of the
decomposition we use as input of our heuristic postPUCC, when mpr = 2, we need at least 1523 different
roles to cover them.

Dataset Optimal SMAR SMAUR SMAC SMAUC FastMiner OBMD Biclique

Americas Large

11343 11524 10956 11322 11274 20237 12352 11294 |R|
124029 129149 121079 145979 123729 305323 177006 131942 WSC

28.5 26.8 26.4 18.5 27.1 3.1 21.9 26.7 gf |R|
1.3 1.2 1.3 1.6 1.3 0.3 1.4 1.3 gf WSC

Firewall 2

325 457 297 445 457 470 457 395 |R|
19376 27510 19394 19832 19791 29582 27876 19492 WSC
32.5 45.7 29.7 44.5 45.7 23.5 45.7 39.5 gf |R|
17.3 14.0 12.4 13.5 13.5 9.4 14.1 11.0 gf WSC

Table 10: Computed solution vs unconstrained solution for mpr = 2

Table 10, for the datasets Americas Large and Firewall 2, summarizes the growing factor (denoted by gf)
of the role-set size and the WSC computed by our heuristic when mpr = 2. In particular, it reports report
the role-set size and the WSC value of the decomposition computed by postPUCC and ratio between the
role-set size (resp,. WSC) of the initial unconstraineddecompositions and the role-set size (resp., WSC) of
the computed ones. The results for the remaining datasets can be found online in Section 2.10 of [6]. For the
Americas Large dataset, we note that, considering the role-set size, the growing factor for all decompositions,
except FastMiner is between 18 and 28. This factor reduces to about 3 when postPUCC receives as input
the FastMiner decomposition. Anyway, the role-set computed using the FastMiner decomposition is much
bigger than the role-sets computed using the other decompositions. Hence, the growing factor measure
cannot be used to compare heuristics’ behaviour. For a fixed starting decomposition, it can only be applied
to see how the constraint impacts on the number of generated roles with respect to an unconstrained scenario.
Similar arguments apply to the dataset Firewall 2, too. Finally, notice that for the dataset Americas Large
the number of roles generated from any starting decomposition is bigger than the number |P| of permissions
of the UPA matrix (10127 according to the data in Table 1). Recall that, in the PUCC scenario, independently
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of the mpr value, there always exists a decomposition consisting of |P| roles (each role containing a single
permission) satisfying the constraint. Hence, the solutions generated for the Americas Large dataset, when
mpr = 2 are worse than the naive solution. Considering the results in Section 2.10 of [6], we see that this
phenomenon also emerges for some of the other decompositions. Nevertheless, for the other eight datasets,
when postPUCC receives as input the SMAUR decomposition, the resulting role-set size is smaller than |P|
confirming that SMAUR is the best decomposition to use in the post-processing framework for the PUCC
scenario.

RUCC Scenario. In the following, our heuristic postRUCC described in Section 4.2 is compared with state-
of-the-art ones. More specifically, postRUCC is compared against the heuristic Fix Role Usage Cardinality
Constraint (referred to as FixRUC, see Algorithm 1 in [12]) and the heuristics Role Priority based Algorithm
(referred to as RPA, see Algorithm 1 in [14]) and Coverage of Permissions based Algorithm (referred to as
CPA, see Algorithm 2 in [14]). Similarly to the PUCC scenario, the real-world datasets listed in Table 1 are
used to compare heuristics. Heuristics postRUCC, FixRUC, CPA, and RPA were tested on the decompositions
summarized in Figure 12 for the mru values given in Table 4.

mru decomposition
|R| WSC

postRUCC FixRUC CPA RPA postRUCC FixRUC CPA RPA

2

Optimal 279 298 294 294 15166 21460 15328 15328
SMAR 230 272 248 248 21519 26387 21695 21695
SMAUR 276 364 280 280 16224 21470 15983 15983
SMAC 278 324 295 295 16164 25152 15498 15498
SMAUC 258 277 272 272 16446 22892 16442 16442

FastMiner 259 1789 259 259 25488 115653 25488 25488
OBMD 263 334 294 294 15074 31014 14773 14773

Biclique 293 341 301 301 20171 26287 20227 20227

6

Optimal 187 202 196 211 10933 12868 10949 11268
SMAR 225 235 225 225 21479 23229 21479 21481
SMAUR 270 275 275 283 9821 14350 9958 10487
SMAC 219 262 229 230 13232 19260 13226 13517
SMAUC 214 238 220 222 13908 18079 13981 14061

FastMiner 259 1802 259 259 25488 123830 25488 25488
OBMD 196 264 198 200 14448 24633 14452 14428

Biclique 249 257 246 257 21120 22789 21091 21414

10

Optimal 178 181 179 178 10905 11213 10907 11033
SMAR 225 229 225 225 21479 22904 21479 21481
SMAUR 246 252 243 242 9631 12627 9584 9832
SMAC 205 234 205 205 13416 16888 13410 13362
SMAUC 198 222 198 198 13946 16262 13946 14003

FastMiner 259 1811 259 259 25488 126416 25488 25488
OBMD 196 236 196 195 14448 22041 14448 14409

Biclique 220 232 218 228 21105 22071 21081 21354

12

Optimal 178 178 178 178 10905 11217 10905 11033
SMAR 225 227 225 225 21479 22875 21479 21481
SMAUR 233 235 236 235 9785 11404 9660 9829
SMAC 204 228 204 204 13420 16387 13420 13420
SMAUC 198 213 198 198 13946 16011 13946 14003

FastMiner 259 1817 259 259 25488 127695 25488 25488
OBMD 196 224 196 195 14448 21576 14448 14409

Biclique 211 225 211 213 21155 21876 21152 21314

14

Optimal 178 178 178 178 10905 11217 10905 11033
SMAR 225 226 225 225 21479 22961 21479 21481
SMAUR 228 229 224 221 9917 11105 9838 9814
SMAC 204 220 204 204 13420 15809 13420 13420
SMAUC 198 209 198 198 13946 15725 13946 14003

FastMiner 259 1828 259 259 25488 129429 25488 25488
OBMD 196 214 196 195 14448 18010 14448 14409

Biclique 211 220 208 212 21207 21923 21193 21361

Table 11: |R| and WSC for the dataset Americas Small

The experiments on the dataset Americas Small are reported in Table 11. According to the data in this
table, for any fixed decomposition and in almost all experiments, the heuristic postRUCC returns a solution
having a smaller role-set and a lower WSC value than the other state-of-the-art heuristics. Indeed, postRUCC
generates a bigger role-set only in eight experiments out of forty. Since, from Table 11, it could be difficult
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to verify which combination of heuristic and variant is preferable over the others, the heuristics were ranked
as described for the PUCC scenario. In particular, in Table 12, for any fixed mru value, the heuristics
have been ranked considering the average rank over the starting decompositions. From Table 12, it results
that postRUCC returns, on average, a smaller role-set in three cases out of five and that FixRUC is the worse
heuristic. Considering the WSC measure, according to Table 12, heuristic CPA provides, on average, better
results in four case out of five. Anyway, postRUCC is not that bad, as, according to Table 11, it generates
solutions whose WSC is larger than the other heuristics in 15 cases out of 40 and in most of such cases the
difference is negligible (the best WSC values are only few units apart from the ones computed by postRUCC).

mru
|R| WSC

postRUCC FixRUC CPA RPA postRUCC FixRUC CPA RPA

2 1.12 4.0 2.44 2.44 2.12 4.0 1.94 1.94
6 1.38 3.62 1.94 3.06 1.56 4.0 1.81 2.62
10 2.12 4.0 2.06 1.81 1.94 4.0 1.69 2.38
12 1.94 3.62 2.31 2.12 1.88 4.0 1.62 2.5
14 2.25 3.81 2.0 1.94 2.0 4.0 1.75 2.25

Table 12: Ranking for the dataset Americas Small

In Table 13 the results of our experiments are ranked for any given decomposition. More precisely, the
heuristics have been ranked considering the average rank over the mru values. In this way, one can see at
a glance which starting decomposition allows to obtain a better solution. According to Table 13, heuristic
postRUCC, for all decompositions except OBMD, compute on average the smallest role-set. For the WSC
measure, the heuristic CPA returns solutions with smaller WSC in four cases (i.e., for the decompositions
SMAUR, SMAC , SMAUC , and Biclique), the heuristic postRUCC in two cases (i.e., Optimal and SMAR), and the
heuristic RPA in one case (i.e., OBMD). Using as input the decomposition FastMiner, heuristics postRUCC,
CPA, and RPA return role-sets of equal size and the same WSC value. Heuristic FixRUC returns the worse
solutions.

decomposition
R WSC

postRUCC FixRUC CPA RPA postRUCC FixRUC CPA RPA

Optimal 1.7 3.2 2.5 2.6 1.2 4.0 1.9 2.9
SMAR 1.8 4.0 2.1 2.1 1.4 4.0 1.7 2.9
SMAUR 1.8 3.4 2.6 2.2 2.2 4.0 1.5 2.3
SMAC 1.6 4.0 2.1 2.3 2.4 4.0 1.7 1.9
SMAUC 1.6 4.0 2.1 2.3 1.7 4.0 1.6 2.7

FastMiner 2.0 4.0 2.0 2.0 2.0 4.0 2.0 2.0
OBMD 1.9 4.0 2.4 1.7 2.5 4.0 2.4 1.1

Biclique 1.7 3.9 1.4 3.0 1.8 4.0 1.3 2.9

Table 13: Ranking for the dataset Americas Small

The results of the experiments for the other datasets are available online in the supplemental material [6].
For each dataset and each heuristic, Table 14 summarizes the average ranking over all experiments (i.e., over
all mru values given in Table 4 and all decomposition listed in Figure 12.
From Table 14 it results that, except for the datasets Customer and Domino, heuristic postRUCC returns,
on average, a smaller role-set than the other heuristics. Considering the WSC measure, the heuristic CPA

computes, in most cases, solutions having lower WSC values. A closer look to the online data [6] shows
that heuristic FixRUC returns the worse solutions and the solutions computed by the remaining heuristics
are quite similar.
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Dataset
|R| WSC

postRUCC FixRUC CPA RPA postRUCC FixRUC CPA RPA

Americas Large 1.67 3.23 2.52 2.58 2.13 3.63 1.81 2.44
Americas Small 1.76 3.81 2.15 2.27 1.90 4.00 1.76 2.34

Apj 1.89 3.00 2.51 2.60 1.99 3.15 2.30 2.56
Customer 2.29 3.11 2.17 2.43 2.72 3.14 1.74 2.40
Domino 2.33 3.10 2.29 2.29 2.30 3.18 2.26 2.26
Emea 2.30 3.06 2.30 2.34 2.30 3.06 2.26 2.38

Firewall 1 1.97 3.06 2.38 2.59 1.73 3.62 1.94 2.71
Firewall 2 1.98 3.64 2.18 2.18 2.02 3.50 2.17 2.31
Healthcare 1.94 3.39 2.33 2.35 1.80 3.78 2.14 2.28

Table 14: Average ranking for all datasets - RUCC Scenario

6 Conclusions

In the post-processing framework, constraints are evaluated after that a valid set of roles has been determined,
so that the resulting roles do not violate the imposed restrictions. This constitutes a clear advantage, since
the post processing phase can be executed on the results provided by any other role mining procedure.

In this work we have focused on two different kinds of cardinality constraints, namely role-usage car-
dinality constraints (RUCC) and permission-usage cardinality constraints (PUCC) and we have provided
two heuristics. We have evaluated the behavior of the proposed heuristics by discussing their application to
standard datasets and have compared the results to the ones returned by other procedures that have been
previously presented in literature, registering an effective improvements in most of the cases. In the next
future, we plan to extend the approaches to obtain some estimates of the distance from the optimal result
as discussed in [24], and/or consider different kinds of approaches, derived from genetic programming and
machine learning [25].
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7 Illustrative Example for postPUCC

In this section we will provide an illustrative example of the execution of our heuristics postPUCC w.r.t.
the matrices UPA (represented in Table 17). In the example below described, the heuristics are executed
considering mpr = 2.

postPUCC is executed on input the matrices UA and PA represented in tables 16, 15 (these matrices are
obtained computing SMAUR); the algorithm proceeds as follows.

p1 p2 p3 p4 p5
r1 0 0 1 1 1
r2 0 1 1 1 0
r3 1 0 0 1 1
r4 0 1 0 0 0
r5 1 0 0 0 1

Table 15: Matrix PA

r1 r2 r3 r4 r5
u1 1 0 0 0 0
u2 0 0 1 1 0
u3 0 0 0 1 1
u4 0 1 0 0 0
u5 0 0 1 0 0

Table 16: Matrix UA

p1 p2 p3 p4 p5
u1 0 0 1 1 1
u2 1 1 0 1 1
u3 1 1 0 0 1
u4 0 1 1 1 0
u5 1 0 0 1 1

Table 17: Matrix UPA

The first step of the procedure is running extractInfo which returns data structures ARU, APR, and CR

expressed in tables 18, 19, 20.
postPUCC proceeds then analysing each user. We now describe the steps of postPUCC for each of them.

1. User u1 has just one role r1 that has three permissions, but this role does not satisfy the constrain
(mpr = 2). To substitute role r1 postPUCC proceeds as follow. The procedure postPUCC concludes
that there is not existing role in CR that could be assigned to u1, therefore postPUCC creates two roles
one with permissions p3, p4 and one with permission p5 to assign to u1. The matrices newUA and newPA

given in output by update are described in tables 21, 22.

2. User u2 has two roles r3, r4, the role r4 is maintained since it has cardinality one while r3 does not satisfy
the constrain (mpr = 2). To substitute role r3 postPUCC proceeds as follows. The procedure postPUCC

concludes that there is not existing role in CR that could be assigned to u2, therefore postPUCC creates
two roles one with permissions p1, p4 and one with permission p5 to assign to u2 (which corresponds
to role r2 in newPA). The matrices newUA and newPA given in output by update are described in tables
23, 24.

3. User u3 has roles r4 (which corresponds to role r3 in newPA) and r5 which satisfy the constrain so they
remain unchanged, the matrices newUA and newPA given in output by update are described in tables
25, 26.

4. User u4 has just one role r2 that does not satisfy the constrain (mpr = 2). To substitute role r2
postPUCC proceeds as follow. The procedure postPUCC using CR concludes that r4 (which corresponds
to r3 in newPA) could be assigned to u4, then postPUCC creates another role with permissions p3, p4 to
assign to u4 (which corresponds to r1 in newPA). The matrices newUA and newPA given in output by
update are described in tables 27, 28.
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5. User u5 has just one role r3 that has three permissions, but this role does not satisfy the constrain
(mpr = 2). To substitute role r3 postPUCC proceeds as follow. The procedure postPUCC concludes
that there is not existing role in CR that could be assigned to u3, therefore postPUCC creates another
two roles one with permissions p1, p4 (which corresponds to r4 in newPA) and one with permission p5 to
assign to u5 (which corresponds to role r2 in newPA). The matrices newUA and newPA given in output
by update are described in tables 29, 30 and they are the final output of the algorithm.

r1 p3 p4 p5
r2 p2 p3 p4
r3 p1 p4 p5
r4 p2
r5 p1 p5

Table 18: APR

u1 r1
u2 r3 r4
u3 r4 r5
u4 r2
u5 r3

Table 19: ARU

r2 r4

Table 20: CR

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1

Table 21: newPA

r1 r2
u1 1 1

Table 22: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 0 1 0 0 0
r4 1 0 0 1 0

Table 23: newPA

r1 r2 r3 r4
u1 1 1 0 0
u2 0 1 1 1

Table 24: newUA
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p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 0 1 0 0 0
r4 1 0 0 1 0
r5 1 0 0 0 1

Table 25: newPA

r1 r2 r3 r4 r5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1

Table 26: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 0 1 0 0 0
r4 1 0 0 1 0
r5 1 0 0 0 1

Table 27: newPA

r1 r2 r3 r4 r5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1
u4 1 0 1 0 0

Table 28: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 0 1 0 0 0
r4 1 0 0 1 0
r5 1 0 0 0 1

Table 29: newPA

r1 r2 r3 r4 r5
u1 1 1 0 0 0
u2 0 1 1 1 0
u3 0 0 1 0 1
u4 1 0 1 0 0
u5 0 1 0 1 0

Table 30: newUA
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8 Illustrative Example for postRUCC

In this section we will provide an illustrative example of the execution of our heuristics postRUCC w.r.t.
the matrices UPA (represented in Table 33). In the example below described, the heuristics are executed
considering mru = 2.

postRUCC is executed on input the matrices UA and PA represented in tables 32 (these matrices are
obtained computing SMAUR), 31; the algorithm proceeds as follows.

p1 p2 p3 p4 p5
r1 0 0 0 0 1
r2 0 0 1 1 0
r3 1 0 0 0 0
r4 0 1 0 0 0

Table 31: Matrix PA

r1 r2 r3 r4
u1 0 1 0 0
u2 1 1 0 0
u3 1 1 1 1
u4 1 0 0 0
u5 1 1 1 0

Table 32: Matrix UA

p1 p2 p3 p4 p5
u1 0 0 1 1 0
u2 0 0 1 1 1
u3 1 1 1 1 1
u4 0 0 0 0 1
u5 1 0 1 1 1

Table 33: Matrix UPA

The first step of the procedure is running extractInfo which returns data structures ARU, APRexpressed
in tables 34, 35.

postRUCC proceeds then analysing each user. We now describe the steps of postRUCC for each of them.

1. User u1 has associate roles r2 which is also identified by approxCover as the existing role in APR that
covers more (all) permissions of u1, therefore r2 is associated to u1 and no further actions are required.
The updated matrices newUA and newPA are described in tables 36, 37.

2. User u2 has associate roles r1, r2 which is also identified by approxCover as the existing role in APR

that covers more (all) permissions of u2, therefore r3 is associated to u2 and no further actions are
required. The updated matrices newUA and newPA are described in tables 38, 39.

3. User u3 has associate roles r1, r2, r3, r4 which violates the constrain since mru = 2. The first step of
postRUCC is to invoke the sub-procedure approxCover which returns the role r1 in APR. The remaining
permissions of u3, namely {p1, p2, p5}, are forming a new role that is added in APR (the update value of
APR is described in table 42). The matrices newUA and newPA given in output by update are described
in tables 40, 41.

4. User u4 has associate roles r1 which is also identified by approxCover as the existing role in APR that
covers more (all) permissions of u4, therefore r1 is associated to u4 and no further actions are required.
The updated matrices newUA and newPA are described in tables 43, 44.

5. User u5 has three roles r1, r2, r3 which violates the constrain since mru = 2. The first step of postRUCC
is to invoke the sub-procedure approxCover which returns the role r1 in APR. The remaining permis-
sions of u5, namely {p1, p5}, are forming a new role that is added in APR (the update value of APR is
described in table 47). The matrices newUA and newPA given in output by update are described in
tables 45, 46 and they are the final output of the algorithm.
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r1 p5
r2 p3 p4
r3 p1
r4 p2

Table 34: APR

u1 r1
u2 r1 r2
u3 r1 r2 r3 r4
u4 r1 r2 r3

Table 35: ARU

p1 p2 p3 p4 p5
r1 0 0 1 1 0

Table 36: newPA

r1
u1 1

Table 37: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1

Table 38: newPA

r1 r2
u1 1 0
u2 1 1

Table 39: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 1 1 0 0 1

Table 40: newPA

r1 r2 r3
u1 1 0 0
u2 1 1 0
u3 0 1 1

Table 41: newUA

r1 p5
r2 p3 p4
r3 p1
r4 p2
r5 p1 p2 p5

Table 42: APR

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 1 1 0 0 1

Table 43: newPA

r1 r2 r3
u1 1 0 0
u2 1 1 0
u3 0 1 1
u4 0 1 0

Table 44: newUA

p1 p2 p3 p4 p5
r1 0 0 1 1 0
r2 0 0 0 0 1
r3 1 1 0 0 1
r4 1 0 0 0 1

Table 45: newPA

r1 r2 r3 r4
u1 1 0 0 0
u2 1 1 0 0
u3 0 1 1 0
u4 0 1 0 0
u5 1 0 0 1

Table 46: newUA

r1 p5
r2 p3 p4
r3 p1
r4 p2
r5 p1 p2 p5
r6 p1 p5

Table 47: APR
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