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Abstract: Background: Implant primary stability can be affected by several factors related to implant
macrogeometry, local anatomy, and surgical techniques. The aim of this research was to study
primary stability on polyurethane foam sheets of wide-threaded implant design compared to narrow-
threaded implants. Materials and methods: Two different implant designs were positioned on
D3 density polyurethane blocks in a standardized environment: the wide-threaded implant and
the narrow-threaded implant, for a total of 160 specimens. Moreover, for each group, two different
sizes were considered: 3.8 mm × 12 mm and 4.8 mm × 12 mm. The insertion torque (IT) values, the
removal strength (RT), and the Periotest analyses were evaluated. Results: A significantly higher IT
and RT was reported for wide-threaded implants and two-stage implants (p < 0.01), compared to
the narrow-threaded implants. The diameters seemed to provide a significant effect on the primary
stability for both implants’ geometry (p < 0.01). A higher mean of the one-stage implant was evident
in the Periotest measurements (p < 0.01). Conclusions: Both of the implants showed sufficient
stability in polyurethane artificial simulation, while the wide-threaded implant design showed a
higher primary stability on alveolar cancellous synthetic bone in vitro. Additionally, the prosthetic
joint connection seemed to have a determinant effect on Periotest analysis, and the one-stage implants
seemed to provide a high stability of the fixture when positioned in the osteotomy, which could be
important for the immediate loading protocol.

Keywords: polyurethane; artificial bone; dental implant; primary stability; submerged implants

1. Introduction

Implant-supported rehabilitation represents a predictable and long-term successful
treatment option for fixed prosthetic rehabilitation of the edentulous arches [1,2]. Obtaining
primary stability is the main goal for the successful healing of dental implants and osseoin-
tegration processes, which are deeply influenced by several factors related to the device
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characteristics such as the geometry of the fixture and surface characteristics [3–8]. More-
over, these important aspects are related to surgical technique and the quality/quantity of
the receiving bone volumes, and are determinant for achieving osseointegration of dental
implants in the maxillary bones [9–11].

In the literature, the use of retentive microgeometry and surface treatments have
been proposed in order to increase the primary stability and osseointegration levels of
dental implants [3,12,13]. Anatomically, the micromechanical stability of the interface is
closely related to the frictional interaction generated during the implant positioning in the
osteotomy site [14–16]. Histologically, this relationship is associated with an increase in
Bone–Implant Contact (BIC) when it is correlated in vivo with higher primary stability,
which significantly influences the maturation and mineralization process of peri-implant
bone, inducing secondary stability [14,17]. Different methods have been proposed to evalu-
ate the stability parameters of dental implants, including insertion torque (IT), removal
value (RT), and implant micromotion using the Periotest score [3,17,18].

The Periotest represents a repeatable method that can be applied both to dental
elements and to natural teeth, achieving a digital evaluation of the micromovement in
a standardized and calibrated form. The IT and RT differs from the previous method
according to a nonrepeatable evaluation model, determined by the mechanical interaction
generated instantly between the fixture and the bone walls of the implant during the
implant positioning phase [19]. In the literature, the geometry of the threads, surface
characteristics, and implant microstructures can significantly affect IT and RT values [3],
especially in sites characterized by a lack of bioavailability of peri-implant bone and post-
extractive socket. The use of polyurethane solid sheets as artificial bone has been shown by
the American Society for Testing and Materials International (ASTM) to be able to perform
the biomechanical tests for implant fixtures in a standardized laboratory environment;
however, it excludes the local and structural variables typical of natural bone tissue [20].

Solid rigid polyurethane is characterized by physical and mechanical properties,
including compression, elasticity, and a homogeneous structure similar to bone, in order to
simulate the different densities of the different maxillary and mandibular regions [20–27].

The aim of this study is to evaluate the primary stability obtained using polyurethane
in a block of two different implant designs, consisting of different microgeometry, shape,
and pitch of the implant threads.

2. Materials and Methods

In the present in vitro study, a total of 160 implants, 40 screws for each study group, were
tested for homogeneous density using polyurethane foam blocks that were 12.5 pound per
cubic foot (PCF) (SawBones H, Pacific Research Laboratories Inc, Vashon, Washington, USA),
following the manufacturer osteotomy drilling protocol (F.M.D., Rome Italy) (Figure 1).

• Group A: cylindrical one-stage wide thread pitch implant, 3.8 mm diameter × 12 mm
length (Crystal, F.M.D., Rome Italy);

• Group B: cylindrical one-stage wide thread pitch implant, 4.8 mm diameter × 12 mm
length (Crystal, F.M.D., Roma Italy);

• Group C: cylindrical two-stage narrow thread pitch, 3.8 mm diameter × 12 mm length
(Elisir, FMD, Rome Italy);

• Group D: cylindrical two-stage narrow thread pitch, 4.8 mm diameter × 12 mm length
(Elisir, FMD, Rome Italy).

The drilling protocol for the polyurethane in the block of 12.5 PCF implants for the
3.8 diameter implants was: pilot drill; 2.3 mm cylindrical drill; 2.5 mm cylindrical drill;
2.8 mm cylindrical drill; 3.2 mm cylindrical drill; and 3.7 mm cylindrical drill cutter, at a
speed of 800 rpm in a clockwise rotation (Figure 2).

The sequence of the drilling protocol on polyurethane in the in block of 12.5 PCF
implants for the 4.8 diameter implants was: pilot drill; 2.3 mm cylindrical drill; 2.5 mm
cylindrical drill; 2.8 mm cylindrical drill; 3.2 mm cylindrical drill; 3.7 mm cylindrical drill;
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and 4.2 mm drill, at a speed of 800 rpm in a clockwise rotation, and a final passage with a
tap (Figure 2, Figure 3A,B).
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2.1. Periotest Measurement

The implant stability was evaluated by Periotest (Medizintechnik, Germany) with an
electromechanical punch that strikes the implant a total of 16 times. The tip presents a
pressure-sensitive head that records the contact time with the measured object.

The individual noncompliant pulses are eliminated. The Periotest Scale is closely
related to dental mobility through a scale of values which are as follows:

1. From −8 to 0: good bone integration; the implant is well integrated and can be loaded.
2. From +1 to +9: clinical control is required; the implant load is mostly not possible yet.
3. From +10 to +50: bone integration is not enough; the system cannot be loaded.

The measurements were performed two times by a single operator and the average
values were considered for the statistical evaluation and intra-examiner agreement assessment.

2.2. Insertion Torque and Removal Measurements

The experimental implants were positioned to record the IT, while the tensile and
removal resistance was recorded by dynamometric analysis during removal of the implant
from the block.

IT was evaluated using the OMEGA digital dynamometer (Arthur-Sauvé, St-Eustache,
QB, Canada) coupled with the implant insertion driver as per the implant system protocol.

2.3. Statistical Analysis

The sample size measurement was oriented in accordance with the mean and standard
deviation of a previous study, [28] while the alpha error was set at 0.05 with an effect size of
0.34, and the power (1-beta) was 0.95. The minimum number was 39 sites for each drilling
protocol, with a total of 156 sites.

Descriptive statistics are provided in summary tables by group based on the type of
measurement of the summarized result. The general descriptive statistics for continuous
outcome measures included: number of observed values, mean with a 95% CI, standard
deviation, median, minimum and maximum values. The hypothesis was tested with an
analysis of variance (ANOVA) with basal values of IT, RT, and Periotest. The accuracy of
the Periotest measurement was evaluated by Bland–Altman and linear regression models
to determine the agreement between the ISQ measurements. The groups were compared
at the 5% significance level. Data collection and statistical analysis were performed using
StatPlus 6 software (AnalystSoft Inc., Walnut, CA, USA).

3. Results
3.1. Insertion and Removal Torque

The IT and RT means of the study groups were presented in Tables 1–3. The group D
implant showed a significantly higher IT mean of 20.75 ± 3.5 Ncm compared to group A
(16.83 ± 1.9 Ncm), group B (19.1 ± 1.2 Ncm) and group C (12.65 ± 3.0 Ncm). The group D
implant showed a significantly higher RT mean of 15.85 ± 3.2 Ncm compared to group A
(5.85 ± 1.09 Ncm), group B (8.45 ± 1.28 Ncm) and group C (10.2 ± 3.2 Ncm).

An IT and RT significant difference was reported between the study groups as being
in favour of the wide diameter implant design (Group B–D), compared to the narrow
diameter implant (Groups A–C) (Figure 4A,B) (Tables 2 and 4) (p < 0.01).

Table 1. Summary of Insertion Torque for the study groups.

Insertion Torque [N/cm] Mean SD

CRYSTAL 3.8 16.83 1.947

CRYSTAL 4.8 19.1 1.236

ELISIR 3.8 12.65 3.034

ELISIR 4.8 20.75 3.514
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Table 2. ANOVA post-hoc of insertion torque comparisons of the study groups.

Insertion Torque Mean Diff. 95.00% CI of Diff. Adjusted p Value

CRYSTAL 3.8 vs. CRYSTAL 4.8 −2.275 −3.819 to −0.7306 0.0008

CRYSTAL 3.8 vs. ELISIR 3.8 4.175 2.631 to 5.719 <0.0001

CRYSTAL 3.8 vs. ELISIR 4.8 −3.925 −5.469 to −2.381 <0.0001

CRYSTAL 4.8 vs. ELISIR 3.8 6.450 4.906 to 7.994 <0.0001

CRYSTAL 4.8 vs. ELISIR 4.8 −1.650 −3.194 to −0.1056 0.0297

Table 3. Summary of removal torque means of the study groups.

Removal [N/cm] Mean SD

CRYSTAL 3.8 5.85 1.099

CRYSTAL 4.8 8.45 1.28

ELISIR 3.8 10.2 3.057

ELISIR 4.8 15.85 3.215

Table 4. ANOVA post-hoc of removal mean comparisons of the study groups.

Removal Mean Diff. 95.00% CI of Diff. Adjusted p Value

CRYSTAL 3.8 vs. CRYSTAL 4.8 −2.600 −4.014 to −1.186 <0.0001

CRYSTAL 3.8 vs. ELISIR 3.8 −4.350 −5.764 to −2.936 <0.0001

CRYSTAL 3.8 vs. ELISIR 4.8 −10.00 −11.41 to −8.586 <0.0001

CRYSTAL 4.8 vs. ELISIR 3.8 −1.750 −3.164 to −0.3359 0.0072

CRYSTAL 4.8 vs. ELISIR 4.8 −7.400 −8.814 to −5.986 <0.0001
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The study group comparison showed a significant increase in IT and RT related to the
dental implant diameter when compared to smaller screws (Tables 2 and 4).

All implant fixtures showed no evidence of loss of stability during positioning in the
preparation site.
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3.2. Periotest Stability Measurement

The intra-examiner agreement of the Periotest assessment was presented in Figure 5,
showing a mean bias of 0.17 ± 0.5 (95% CI: −2.914 to 3.258).
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The Periotest measurement showed lower stability of narrow thread implants (B–D),
compared to the wide diameter design (A–C) (p < 0.01) (Figure 4C, Table 5). The increasing
diameter produced significantly higher implant stability levels in both screw types (p < 0.01)
(Table 6).

Table 5. Summary of the Periotest means for the study groups.

Periotest Mean SD

CRYSTAL 3.8 4.3 1.1

CRYSTAL 4.8 5.1 1.4

ELISIR 3.8 4.1 1.6

ELISIR 4.8 2.0 0.4

Table 6. ANOVA post-hoc of Periotest comparisons for the study groups.

Periotest Mean Diff. 95.00% CI of Diff. Adjusted p Value

CRYSTAL 3.8 vs. CRYSTAL 4.8 −1.534 −2.771 to −0.2966 0.0085

CRYSTAL 3.8 vs. ELISIR 3.8 0.5813 −0.6559 to 1.818 0.6632

CRYSTAL 3.8 vs. ELISIR 4.8 4.239 3.002 to 5.476 <0.0001

CRYSTAL 4.8 vs. ELISIR 3.8 2.124 0.8866 to 3.361 0.0001

CRYSTAL 4.8 vs. ELISIR 4.8 –1.534 –2.771 to –0.2966 0.0085
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Moreover, an increased micromovement was detected for the two-stage implants of
group C and group D, compared to the lower means of the monolithic implants of group A
and group B (p < 0.01).

4. Discussion

The vital bone represents a dynamic tissue in constant physiological remodelling as a
consequence of the external stimuli and function [29–32]. As a consequence of the loss of
function, the edentulism often determines not only a decrease in ridge volume, but also a
decrement of bone quality and density [33–36].

A greater component of alveolar cancellous bone, instead of poor cortical bone, is
clinically associated with increased difficulty to obtain sufficient implant stability and
osseointegration [37]. This research investigation has been focusing on the mechanical
features of dental implants positioned into synthetic polyurethane blocks within a stan-
dardized and calibrated environment. The outcome of the present investigation showed
a strict relationship between bone density and the primary stability of implants that is
significantly related to the geometry and the shapes of the screw. In fact, the wide-threaded
cylindrical implants placed according to the standard drilling protocol showed a signif-
icantly higher primary stability, insertion torque, and removal strength. In contrast, the
Periotest measurement showed an inverse relationship within the group that could be influ-
enced by the prosthetic joint [35,36,38,39]. It is well known that the transfer of the occlusal
forces can play a key role for the successful maintenance of the soft and hard peri-implant
tissues [40–42]. These aspects could be determinant in the case of the immediate loading
of the dental implant, while the occlusal stresses occur in contact of a nonmature osteoid
bone interfaces [24,25,43]. On the contrary, a two-stage technique takes advantage of a
submerged healing period during which the implant fixture completes the osseointegration
process and is protected by the oral biofilm and pathogen action [44,45].

In the present study, both of the dental implant macrogeometries showed a stability
parameter optimal for an occlusal loading in the simulated D3 bone density. This condition
is clinically associated with a proper ratio between the cortical and cancellous bone, where
the first one is the determinant factor for the immediate stability of the implant, while the
trabecular bone is able to provide the nutritional and vascular support necessary for the
secondary stability, after the healing period [46].

These suggest a confirmation of Frost’s mechanostatic theory while the loading proto-
col is able to generate two different biological responses of the bone tissues [47,48]. The
modeling is a process that produces an adaptation of the bone to the overloads, producing
a new bone formation and a morphological change of the anatomy architecture. The
remodeling process induces a response to the underloads with bone resorption next to the
marrow, maintaining the functional bone [47–50]. These adaptation models are strongly
influenced by prosthetic, metabolic, and anatomic factors, and the local bone density, while
an adapted state should be maintained between 1000–1500 microstrain for immediate, early,
delayed, and late loading protocols [47,48].

The limit of the present investigation was that the simulation did not provide a long
term evaluation of implant stability without the characteristics of the environment of
the intraoral cavity and saliva. Moreover, the study did not consider the interindividual
characteristics and a biological response of human bone to the implant treatment.

In literature, lower primary stability of dental implants is related to a decreased level
of osseointegration and bone-to-implant contact in retrieved implants [51–57]. In a split
mouth study, Amari et al. reported that higher implant osseointegration was observed at
30 Ncm insertion torque compared to a <10 Ncm torque group at 8 weeks [58].

The authors concluded that with lower osseointegration, observed in low-torque
implants and in the case of poor bone quality, an under preparation of the recipient sites
should be applied, and longer and wider implants should be positioned [58–66].



Appl. Sci. 2021, 11, 5612 8 of 11

5. Conclusions

In conclusion, the implant macrodesign and thread shape significantly influences the
frictional capability, and ultimately the primary stability in low density polyurethane blocks.
From a clinical point of view, the effects of different macrodesign characteristics should be
carefully interpreted and considered to improve the implant stability and osseointegration
quality into alveolar cancellous bone in vivo.
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