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Abstract

Researchers address the generalization problem of deep image processing networks mainly
through extensive use of data augmentation techniques such as random flips, rotations,
and deformations. A data augmentation technique called mixup, which constructs virtual
training samples from convex combinations of inputs, was recently proposed for deep
classification networks. The algorithm contributed to increased performance on classifi-
cation in a variety of datasets, but so far has not been evaluated for image segmentation
tasks. In this paper, we tested whether the mixup algorithm can improve the generaliza-
tion performance of deep segmentation networks for medical image data. We trained a
standard U-net architecture to segment the prostate in 100 T2-weighted 3D magnetic res-
onance images from prostate cancer patients, and compared the results with and without
mixup in terms of Dice similarity coefficient and mean surface distance from a reference
segmentation made by an experienced radiologist. Our results suggest that mixup offers
a statistically significant boost in performance compared to non-mixup training, leading
to up to 1.9% increase in Dice and a 10.9% decrease in surface distance. The mixup
algorithm may thus offer an important aid for medical image segmentation applications,
which are typically limited by severe data scarcity.
Keywords: magnetic resonance imaging, segmentation, prostate, data augmentation,
mixup
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1 Introduction

Much of the success of deep learning (DL)
models depends on their ability to generalize well
to instances outside the training set. However, the
ability to generalize well is not guaranteed, and
researchers typically employ several training tech-
niques to bolster this capacity. This is particularly
important in medical image analysis due to the lim-
ited availability of relevant data (typically on the or-
der of 102 cases for medical imaging studies, com-
pared to for instance the 106 training images in the
ImageNet-2012 data set for generic image classifi-
cation). One widely used technique in the field of
image analysis is data augmentation in which the
dataset is enlarged by constructing virtual training
samples via transformations such as random flips
and rotations to the original images.

A common task for medical image analysis is
that of organ or region-of-interest segmentation,
where the goal is to delineate a particular zone or
organ of interest. The current state of the art for
this task is represented by variants of the U-net DL
architecture [1]. In recent medical image segmenta-
tion challenges, these DL architectures have consis-
tently achieved the top ranking positions, with new
top contenders appearing regularly [2–4]. Likewise,
a number of research groups have also published
DL architecture variants with similar high-end per-
formance (see e.g. [5–12]). An important factor
uniting these high-end models is the extensive use
of data augmentation.

Three new data augmentation techniques were
introduced at the ICLR conference in 2018: mixup
[13], Between-Class (BC) learning [14, 15], and
Sample-Pairing [16]; all of which work by con-
structing augmented samples (x̂xx) by linearly com-
bining training data (xxx), e.g. as x̂xx = λxxxi +(1−λ)xxx j.
Mixup and BC learning further combine the corre-
sponding data labels (for classification) in the same
manner as the images. The mixup technique dif-
fers from BC learning in the way that λ is chosen:
in mixup, λ is drawn from a beta distribution with
shape parameter α (λ∼ β(α,α)) rather than fixing it
explicitly. As such, one can choose from a range of
distributions for λ that passes from a uniform dis-
tribution (for α = 1), to a delta function centered
at λ = 0.5 (for α → ∞). The authors of mixup re-

ported that the optimal choice for α was problem
dependent, with α falling within the range of 0.2 to
0.4 for normal image classification.

Linearly combining training data is completely
data-agnostic and orthogonal to most other com-
mon augmentation practices, and introduces little
computational overhead. Intuitively, mixing images
in this manner may not appear sensible (see Figure
1), especially for instances from different classes,
where it implies simultaneous membership of two
(or more) classes, e.g. a cat and a dog at the same
time (note that this is different from an image con-
taining both a cat and a dog). The authors argue,
however, that the algorithms work by promoting
linear behavior between training samples [13], and
reducing the ratio of the inter-class distance to the
intra-class variance [14]. Such behavior may be
beneficial for machine learning while not being di-
rectly comprehensible by humans.

Most of the focus in the aforementioned publi-
cations are on image classification tasks, with some
discussion about sound recognition [15] and sample
synthesising with generative adversarial networks
(GANs) [13,17–19]. The question remains whether
these techniques also can improve the performance
in image segmentation tasks – an issue that was
briefly mentioned in [13] but never explicitly tested.

In this paper, we tested the utility of the mixup
data augmentation technique for a medical image
segmentation task. In a data set of 100 magnetic
resonance imaging (MRI) scans of prostate cancer
patients with delineated prostates, we examined the
impact of different parameterizations of mixup for
image segmentation with a simple variant of the
standard U-net. If successful, the technique could
help improve the performance of medical segmen-
tation models (and potentially even other segmen-
tation models), which are often constrained by their
limited training data.

2 Methods

2.1 The mixup algorithm

The mixup algorithm involves constructing new
samples x̂xx from training samples xxxi and xxx j according
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Figure 1. Example of a simple linear combination of two images. The combination of the two may not be
very helpful for teaching humans how to distinguish between cats and dogs, but it may be beneficial for

teaching machines to generalize well.2

to x̂xx = λxxxi +(1−λ)xxx j. The lambda is drawn from a
symmetric beta distribution, i.e. λ ∼ β(α,α), where
α is a hyperparameter of the transformation.

2.2 Data set

We conducted this study on a set of 100 T2-
weighted MRI scans of the prostate from patients at
IEO European Institute of Oncology IRCCS, Milan,
Italy. All patients gave their consent for use of their
data for research and educational purposes, and this
study was performed under ethical committee ap-
proval. All images had accompanying ground-truth
prostate labels generated by a radiologist with more
than 5 years experience and checked by one or more
other radiologists who revised the contours if they
felt it necessary. The images were acquired using a
1.5 T scanner (slice thickness 3.0-3.6 mm, slice gap
0.3 mm, pixel spacing 0.59×0.59 mm, echo time
118 ms, and repetition time 3780 ms).

Prior to training, we resampled the MRI vol-
umes to a common size of 320 × 320 × 32 using
bi-linear interpolation (in the three cases where the
image matrix was larger than 320× 320) and zero
padding (in the cases where there were fewer than
32 slices). The image intensities were then normal-
ized to zero mean and unit variance.

2.3 Experiments

2.3.1 Hyperparameter search

A hyperparameter exploration was first con-
ducted in order to select the best value for the
mixup parameter α. For this experiment, we ran-
domly split the data into two equally sized (N=50)

training and hold-out test sets. After splitting, the
clinical variable distributions of the two sets were
tested to be similar (Wilcoxon signed rank test),
which allowed us to control for adverse effects
stemming from different clinical traits between the
two groups. For each value of α (including α = 0
for no mixup), the network was trained until conver-
gence eight times with different initializations (see
sections below for training and implementation de-
tails). The best value of α was selected for the re-
mainder of our experiments.

2.3.2 Quantifying the impact of mixup

We performed a random five-fold cross vali-
dation procedure comparing the best value of the
mixup parameter α with no mixup. In addition to
mixup, the samples were augmented with a stan-
dard scheme of random horizontal flips, random
zoom and translation (scale f actor ∈ [0.5,1.5]), and
random rotations in the [−π

4 ,
π
4 ] range. Each session

was trained for 350 epochs, which was sufficient
for convergence, and the best weights were restored
prior to evaluation.

Segmentation performance was quantified by
the Sørensen–Dice similarity coefficient (Dice) and
mean surface distance (MSD) between the network
outputs and the ground truths. In addition, we in-
cluded the following associated metrics sometimes
seen in related research: absolute relative volume
difference, 95th percentile Hausdorff distance, and
sensitivity.

The Dice coefficient is defined by

Dice =
2|X ∩Y |
|X |+ |Y |

(1)
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Figure 1: Example of a simple linear combination of two images. The combination of the two may not
be very helpful for teaching humans how to distinguish between cats and dogs, but it may be beneficial for
teaching machines to generalize well.1
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2|X ∩Y |
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(1)

where X and Y are the sets of pixels of the struc-
tures being compared. As such, the Dice coefficient
ranges from 0 to 1, with 1 corresponding to a per-
fect overlap. In Boolean algebra, it’s equivalent to
the F1 score.
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where X and Y are the sets of pixels of the struc-
tures being compared. As such, the Dice coefficient
ranges from 0 to 1, with 1 corresponding to a per-
fect overlap. In Boolean algebra, it’s equivalent to
the F1 score.

The MSD (measured in pixels) is defined as

MSD =
∑x∈Xs d(x,Ys)+∑y∈Ys d(y,Xs)

|Xs|+ |Ys|
(2)

for the surfaces Xs and Ys of X and Y , using the Eu-
clidean distance from a pixel x ∈ Xs to surface Ys

given by d(x,Ys) = miny∈Ys ||x− y||. In evaluating
(2), only 2D (within-slice) distances were consid-
ered, and surface voxel connectivity was defined on
an eight-neighbour basis.

2.4 Network architecture

The architecture used for the segmentation net-
work was a variation of the classic U-net [1] as il-
lustrated in Figure 2 and inspired by high perform-
ing submissions to the PROMISE12 online prostate
segmentation challenge [20]. In contrast to other
models, the main features of our network are that:

1. Fewer filters were used, and the number of filters
at deeper levels of the network was increased by
a constant amount (+14) instead of a multiplying
factor (typically ×2).

2. Each level performs a single convolutional oper-
ation instead of two or more in series.

3. The first operation is strided instead of a normal
convolution in order to more efficiently manage
computational resources.

4. A PReLU [21] activation function was used in-
stead of the more common ReLU function.

All design choices above were motivated by
heuristic comparisons, favoring simplicity and
speed over minor performance gains. In addition,
we use heavy dropout with a fraction of 0.5 for the
encoding part of the network.

2.5 Training and implementation

The models were trained with the Adam opti-
mizer [22] with default learning parameters (β1 =

0.9,β2 = 0.999), a learning rate of 0.0005, and ex-
tended with the lookahead mechanism [23] (sync
period = 6, step size = 0.5) to reduce its variance.
As a loss function, we used the top-k cross entropy
[24], which calculates the pixel-wise cross entropy,
but only considers the top k pixels as contributing
to the final loss. This allows the network to fo-
cus training on hard to classify pixels (likely from
the edges of the prostate) and also speeds up train-
ing [24]. The parameter k was set to 5% of the num-
ber of pixels of the median image size (in this case
k = 143360) for each sample in the minibatch, and
the batch size was set to 8. The implementation was
done in Python 3.7 with TensorFlow 2.3 running on
an Nvidia Tesla K80 GPU (16 GB).

3 Results

A visualization of the mixup technique for two
samples in our data set is presented in Figure 3. In
this case (as in most), the mixup image does not
depict a realistic appearance for a prostate MRI,
and the target mask of the augmented sample is no
longer binary.

Our mixup implementation did not introduce
any significant computational overhead; less than
0.04 s per batch of 8 images (roughly 0.1% in-
crease).

The parameter search concluded that the best
choice for α was α = 0.5 in terms of both Dice and
MSD (see Figure 4). Both α = 0.5 and α = 0.7
were significant improvements (Mann-Whitney U-
test) compared to non-mixup training for both eval-
uation metrics. Other α values also outperformed
non-mixup training, albeit without statistical signif-
icance. The mean performance of α = 0.5 resulted
in a 1.46% increase in Dice and a 10.9% decrease
in MSD over non-mixup training.
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Figure 2. Network architecture.

Figure 3. Examples of prostate MRI scans (a, b) from two patients with accompanying prostate masks (d,
e). The right images (c, f) show the results of the mixup data augmentation technique (λ = 0.5) of the two

patients.
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Figure 3: Examples of prostate MRI scans (a, b) from two patients with accompanying prostate masks (d,
e). The right images (c, f) show the results of the mixup data augmentation technique (λ = 0.5) of the two
patients.

Figure 4: Test results of the α parameter search on the holdout test set. Results are aggregated from eight
different initializations. A good performance is characterized by a high Dice and low surface distance.
p-values indicate the significance of the Mann–Whitney U-test.
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Figure 4. Test results of the α parameter search on the holdout test set. Results are aggregated from eight
different initializations. A good performance is characterized by a high Dice and low surface distance.

p-values indicate the significance of the Mann–Whitney U-test.

Figure 5. Cross validation results from training
without mixup and training with mixup with

α = 0.5. p-values indicate the significance of the
pair-wise Wilcoxon signed-rank test. The mean

pairwise differences of Dice and MSD were 0.016
(3.15%) and -0.207 (-13.9%), respectively.

In our cross-validation experiment with α =
0.5, mixup training increased mean Dice by 1.91%
(p = 0.005) and decreased mean MSD by 10.7%
(p = 0.054) over non-mixup training (see Figure 5).
An additional analysis of other common segmen-
tation metrics (absolute relative volume difference,
95th percentile Hausdorff distance, and sensitivity)
reveals that mixup training is superior in every case,

although not significantly so for MSD and absolute
relative volume difference (see Table 1).

Training curves from the k-fold cross validation
are displayed in Figure 6. The time to convergence
seems to be largely unaffected by the use of mixup,
and mixup training seems to generalize better and
with lower variance compared to non-mixup train-
ing, even though the train losses are very similar.

Table 1. Mean values of different commonly used
performance metrics for the cross validated test

performance. Parentheses indicate the 95% CI and
p-values show the significance of the Wilcoxon

signed rank test. aRVD: absolute relative volume
difference, HD95: 95th percentile Hausdorff

distance, Sen: sensitivity.

No mixup mixup p-value
Dice 0.839 (±0.03) 0.855 (±0.02) 0.005
MSD 1.93 (±0.57) 1.73 (±0.49) 0.054
aRVD 0.088 (±0.04) 0.066 (±0.03) 0.155
HD95 6.46 (±1.41) 5.78 (±1.45) 0.011
Sen 0.812 (±0.03) 0.832 (±0.03) 0.036
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Figure 3: Examples of prostate MRI scans (a, b) from two patients with accompanying prostate masks (d,
e). The right images (c, f) show the results of the mixup data augmentation technique (λ = 0.5) of the two
patients.

Figure 4: Test results of the α parameter search on the holdout test set. Results are aggregated from eight
different initializations. A good performance is characterized by a high Dice and low surface distance.
p-values indicate the significance of the Mann–Whitney U-test.

Figure 5: Cross validation results from training with-
out mixup and training with mixup with α = 0.5.
p-values indicate the significance of the pair-wise
Wilcoxon signed-rank test. The mean pairwise dif-
ferences of Dice and MSD were 0.016 (3.15%) and
-0.207 (-13.9%), respectively.

Appendices

A Patient Characteristics and
Dataset Split

A summary of the clinical characteristics within the
entire cohort of 100 prostate cancer patients is pre-
sented in Table 2. For the parameter search, the full
data set was split into two equally sized (N=50) train-
ing and hold-out test sets on which the models were
trained and evaluated on, respectively. The split was
conducted randomly and the clinical characteristics
of the respective sets were tested to be similar with
the Wilcoxon rank-sum test. The clinical character-
istics on which the test was performed were the vol-
ume of the prostate (p = 0.339) and the ECE score
(p = 0.345). According to the radiologists, these
were the clinical characteristics that were deemed to
have the most potential impact on the segmentation

results.
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Figure 4. Test results of the α parameter search on the holdout test set. Results are aggregated from eight
different initializations. A good performance is characterized by a high Dice and low surface distance.

p-values indicate the significance of the Mann–Whitney U-test.

Figure 5. Cross validation results from training
without mixup and training with mixup with

α = 0.5. p-values indicate the significance of the
pair-wise Wilcoxon signed-rank test. The mean

pairwise differences of Dice and MSD were 0.016
(3.15%) and -0.207 (-13.9%), respectively.

In our cross-validation experiment with α =
0.5, mixup training increased mean Dice by 1.91%
(p = 0.005) and decreased mean MSD by 10.7%
(p = 0.054) over non-mixup training (see Figure 5).
An additional analysis of other common segmen-
tation metrics (absolute relative volume difference,
95th percentile Hausdorff distance, and sensitivity)
reveals that mixup training is superior in every case,

although not significantly so for MSD and absolute
relative volume difference (see Table 1).

Training curves from the k-fold cross validation
are displayed in Figure 6. The time to convergence
seems to be largely unaffected by the use of mixup,
and mixup training seems to generalize better and
with lower variance compared to non-mixup train-
ing, even though the train losses are very similar.

Table 1. Mean values of different commonly used
performance metrics for the cross validated test

performance. Parentheses indicate the 95% CI and
p-values show the significance of the Wilcoxon

signed rank test. aRVD: absolute relative volume
difference, HD95: 95th percentile Hausdorff

distance, Sen: sensitivity.

No mixup mixup p-value
Dice 0.839 (±0.03) 0.855 (±0.02) 0.005
MSD 1.93 (±0.57) 1.73 (±0.49) 0.054
aRVD 0.088 (±0.04) 0.066 (±0.03) 0.155
HD95 6.46 (±1.41) 5.78 (±1.45) 0.011
Sen 0.812 (±0.03) 0.832 (±0.03) 0.036

MIXUP (SAMPLE PAIRING) CAN IMPROVE THE . . .

Figure 6. Training curves from the five-fold cross validation without mixup and mixup with with α = 0.5.
The large Dice variance in the early stages of training is a feature of the loss function: the time it takes for

top-k pixel loss to generalize globally varies strongly between runs.

4 Discussion

Our results suggest that mixup data augmen-
tation offers a clear and prominent generalization
improvement for segmentation of prostates in T2-
weighted MRI images with convolutional neural
networks.

It is possible that the generalization improve-
ment from mixup is dependent on the network ar-
chitecture, but we expect networks of the U-net
family to behave similarly since they all follow
the same principle of systematic feature extraction
with convolutions. Our network was designed to
be as simple and general as possible without sac-
rificing performance, and therefore it did not in-
corporate attention blocks [25] or residual refine-
ment blocks [26] which are utilized in many state-
of-the-art architectures today. Since generalization
improvement attributed to mixup for classification
has been demonstrated to be greater for larger net-
works (i.e. networks with more parameters) [13], it
is also plausible that the segmentation performance
gain from mixup could be greater for more complex
anatomical structures that require larger networks,
such as bone or blood vessels, compared to the rel-
atively simple prostate geometry.

Because the mixup procedure renders the target
mask non-binary, caution needs to be taken when
designing the desired loss function. For example,
the standard definition of the Dice coefficient in
(1) may be extended to continuous cases by sim-
ply defining the intersection as the product between
X and Y , but such an implementation is not always
maximized when X = Y because ∑i xiyi ≤ ∑i xi for
xi,yi ∈ [0,1]. Another continuous extension to the
Dice coefficient has been proposed in [27]. How-
ever, in this paper we used top-k cross entropy be-
cause of the previously demonstrated success of
standard cross entropy in combination with mixup
for classification [13], and because it outperformed
Dice in preliminary testing. Further exploration
in the interest of optimizing the loss function for
mixup segmentation is warranted, but is outside the
scope of this article. We do not expect the general-
ization improvement from mixup to be exclusive to
the cross entropy loss.

Additional theoretical explorations as to why
and how the mixup procedure leads to better gen-
eralization performance is also warranted since this
is still not well understood [13, 16, 18]. Two princi-
pally distinct intuitive explanations have been pro-
posed: first, it can be viewed as regularizing the net-
work by simply increasing the sample size, and sec-
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Figure 6: Training curves from the five-fold cross validation without mixup and mixup with with α = 0.5.
The large Dice variance in the early stages of training is a feature of the loss function: the time it takes for
top-k pixel loss to generalize globally varies strongly between runs.

greatest.

5 Conclusion

We have tested data augmentation by linearly
combining training samples (referred to as mixup,
sample-pairing, or between-class learning) for the
task of medical image segmentation with deep con-
volutional neural networks. This procedure, which
has been successful in improving the generalization
performance of image classification, has not previ-
ously been studied for image segmentation tasks.
Our results show a clear and statistically signifi-
cant generalization improvement of up to 1.9% in-
creased Dice score and 10.9% decreased mean sur-
face distance compared to non-mixup training. Our
best performance was achieved with sample mix-
ing weights drawn from a beta distribution, β(α,α),
with α = 0.5
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6 Patient Characteristics and
Dataset Split

A summary of the clinical characteristics within
the entire cohort of 100 prostate cancer patients is
presented in Table 2. For the parameter search, the
full data set was split into two equally sized (N=50)
training and hold-out test sets on which the mod-
els were trained and evaluated on, respectively. The
split was conducted randomly and the clinical char-
acteristics of the respective sets were tested to be
similar with the Wilcoxon rank-sum test. The clini-
cal characteristics on which the test was performed
were the volume of the prostate (p = 0.339) and
the ECE score (p = 0.345). According to the radi-
ologists, these were the clinical characteristics that
were deemed to have the most potential impact on
the segmentation results.
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ondly, as simultaneously learning multiple samples
such that the network learns to better distinguish be-
tween their corresponding classes. It has also been
suggested that mixing promotes more robust detec-
tion of low level features such as lines or edges.
If this is indeed the case, the strategy ought to be
less effective for transfer-learned networks, where
the low level feature weights are typically frozen.

It has also been suggested that mixup train-
ing significantly improves the calibration issue and
uncertainty of deep convolutional networks [28].
This could be an incentive to use mixup for med-
ical image segmentation even if the performance it-
self is not improved by mixup, since uncertainty in
medicine is much more detrimental and may impact
patients well-being.

It should also be noted that, although our ex-
periments focused exclusively on T2-weighted MRI
images, it is likely that the benefits transfer to other
modalities or domains as well such as CT and PET
images, or even non-medical image segmentation.
Since medical image data tend to be severely more
scarce, this is where we believe the benefit to be
greatest.

5 Conclusion

We have tested data augmentation by linearly
combining training samples (referred to as mixup,
sample-pairing, or between-class learning) for the
task of medical image segmentation with deep con-
volutional neural networks. This procedure, which
has been successful in improving the generalization
performance of image classification, has not previ-
ously been studied for image segmentation tasks.
Our results show a clear and statistically signifi-
cant generalization improvement of up to 1.9% in-
creased Dice score and 10.9% decreased mean sur-
face distance compared to non-mixup training. Our
best performance was achieved with sample mix-
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Acknowledgements

This study was partially supported by the Ital-
ian Ministry of Health with Ricerca Corrente and

5x1000 funds. The study was supported by the Uni-
versity of Milan with APC funds.

Declaration of Interest

None.

Patient Characteristics and Dataset
Split

A summary of the clinical characteristics within
the entire cohort of 100 prostate cancer patients is
presented in Table 2. For the parameter search, the
full data set was split into two equally sized (N=50)
training and hold-out test sets on which the mod-
els were trained and evaluated on, respectively. The
split was conducted randomly and the clinical char-
acteristics of the respective sets were tested to be
similar with the Wilcoxon rank-sum test. The clini-
cal characteristics on which the test was performed
were the volume of the prostate (p = 0.339) and
the ECE score (p = 0.345). According to the radi-
ologists, these were the clinical characteristics that
were deemed to have the most potential impact on
the segmentation results.

References
[1] O. Ronneberger, P. Fischer, and T. Brox, U-net:

Convolutional networks for biomedical image seg-
mentation, in International Conference on Medical
image computing and computer-assisted interven-
tion. Springer, 2015, pp. 234–241.

[2] G. Litjens, R. Toth, W. van de Ven, C. Hoeks,
S. Kerkstra, B. van Ginneken, G. Vincent, G. Guil-
lard, N. Birbeck, J. Zhang et al., Evaluation of
prostate segmentation algorithms for mri: the
promise12 challenge, Medical image analysis,
vol. 18, no. 2, pp. 359–373, 2014.

[3] MICCAI challenges, http://www.miccai.org/
events/challenges/, 2020, accessed: 2020-08-03.

[4] grand-challenge.org challenges, https://grand-
challenge.org/challenges/, 2020, accessed:
2020-08-03.

[5] R. Cuocolo, A. Comelli, A. Stefano, V. Benfante,
N. Dahiya, A. Stanzione, A. Castaldo, D. R. De Lu-
cia, A. Yezzi, and M. Imbriaco, Deep learning
whole-gland and zonal prostate segmentation on a
public mri dataset, Journal of Magnetic Resonance
Imaging, 2021.



37L. J. Isaksson, P. Summers, S. Raimondi, S. Gandini, A. Bhalerao, G. Marvaso, G. Petralia, M. Pepa, B. A. Jereczek-Fossa

ondly, as simultaneously learning multiple samples
such that the network learns to better distinguish be-
tween their corresponding classes. It has also been
suggested that mixing promotes more robust detec-
tion of low level features such as lines or edges.
If this is indeed the case, the strategy ought to be
less effective for transfer-learned networks, where
the low level feature weights are typically frozen.

It has also been suggested that mixup train-
ing significantly improves the calibration issue and
uncertainty of deep convolutional networks [28].
This could be an incentive to use mixup for med-
ical image segmentation even if the performance it-
self is not improved by mixup, since uncertainty in
medicine is much more detrimental and may impact
patients well-being.

It should also be noted that, although our ex-
periments focused exclusively on T2-weighted MRI
images, it is likely that the benefits transfer to other
modalities or domains as well such as CT and PET
images, or even non-medical image segmentation.
Since medical image data tend to be severely more
scarce, this is where we believe the benefit to be
greatest.

5 Conclusion

We have tested data augmentation by linearly
combining training samples (referred to as mixup,
sample-pairing, or between-class learning) for the
task of medical image segmentation with deep con-
volutional neural networks. This procedure, which
has been successful in improving the generalization
performance of image classification, has not previ-
ously been studied for image segmentation tasks.
Our results show a clear and statistically signifi-
cant generalization improvement of up to 1.9% in-
creased Dice score and 10.9% decreased mean sur-
face distance compared to non-mixup training. Our
best performance was achieved with sample mix-
ing weights drawn from a beta distribution, β(α,α),
with α = 0.5

Acknowledgements

This study was partially supported by the Ital-
ian Ministry of Health with Ricerca Corrente and

5x1000 funds. The study was supported by the Uni-
versity of Milan with APC funds.

Declaration of Interest

None.

Patient Characteristics and Dataset
Split

A summary of the clinical characteristics within
the entire cohort of 100 prostate cancer patients is
presented in Table 2. For the parameter search, the
full data set was split into two equally sized (N=50)
training and hold-out test sets on which the mod-
els were trained and evaluated on, respectively. The
split was conducted randomly and the clinical char-
acteristics of the respective sets were tested to be
similar with the Wilcoxon rank-sum test. The clini-
cal characteristics on which the test was performed
were the volume of the prostate (p = 0.339) and
the ECE score (p = 0.345). According to the radi-
ologists, these were the clinical characteristics that
were deemed to have the most potential impact on
the segmentation results.

References
[1] O. Ronneberger, P. Fischer, and T. Brox, U-net:

Convolutional networks for biomedical image seg-
mentation, in International Conference on Medical
image computing and computer-assisted interven-
tion. Springer, 2015, pp. 234–241.

[2] G. Litjens, R. Toth, W. van de Ven, C. Hoeks,
S. Kerkstra, B. van Ginneken, G. Vincent, G. Guil-
lard, N. Birbeck, J. Zhang et al., Evaluation of
prostate segmentation algorithms for mri: the
promise12 challenge, Medical image analysis,
vol. 18, no. 2, pp. 359–373, 2014.

[3] MICCAI challenges, http://www.miccai.org/
events/challenges/, 2020, accessed: 2020-08-03.

[4] grand-challenge.org challenges, https://grand-
challenge.org/challenges/, 2020, accessed:
2020-08-03.

[5] R. Cuocolo, A. Comelli, A. Stefano, V. Benfante,
N. Dahiya, A. Stanzione, A. Castaldo, D. R. De Lu-
cia, A. Yezzi, and M. Imbriaco, Deep learning
whole-gland and zonal prostate segmentation on a
public mri dataset, Journal of Magnetic Resonance
Imaging, 2021.

MIXUP (SAMPLE PAIRING) CAN IMPROVE THE . . .

Table 2. Summary of clinical prostate cancer characteristics within the study cohort and the training and
test sets.

Characteristic Number of patients
Total Train set Test set

ECE score

1 5 3 2
2 22 12 10
3 27 12 15
4 30 15 15
5 14 6 8

T-stage cT1 18 14 4
cT2 71 32 29
cT3 9 3 6

Gleason Score
6 48 25 23
7 51 24 27
8 1 1 0

PIRADS score

2 2 2 0
3 20 15 5
4 35 13 22
5 42 20 22

Volume 42.4 (22.0)* 43.5 (26.9)* 41.3 (15.3)*
PSA 11.2 (33.4)* 13.9 (46.7)* 8.53 (5.31)*
*Mean (standard deviation)

[6] A. Comelli, N. Dahiya, A. Stefano, F. Vernuccio,
M. Portoghese, G. Cutaia, A. Bruno, G. Salvag-
gio, and A. Yezzi, Deep learning-based methods
for prostate segmentation in magnetic resonance
imaging, Applied Sciences, vol. 11, no. 2, p. 782,
2021.

[7] M. Penso, S. Moccia, S. Scafuri, G. Muscogiuri,
G. Pontone, M. Pepi, and E. G. Caiani, Auto-
mated left and right ventricular chamber segmen-
tation in cardiac magnetic resonance images using
dense fully convolutional neural network, Com-
puter Methods and Programs in Biomedicine, vol.
204, p. 106059, 2021.

[8] Y. Xie, J. Zhang, C. Shen, and Y. Xia, Cotr:
Efficiently bridging cnn and transformer for
3d medical image segmentation, arXiv preprint
arXiv:2103.03024, 2021.

[9] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang,
L. Lu, A. L. Yuille, and Y. Zhou, Transunet: Trans-
formers make strong encoders for medical image
segmentation, arXiv preprint arXiv:2102.04306,
2021.

[10] Y. Shu, J. Zhang, B. Xiao, and W. Li, Medi-
cal image segmentation based on active fusion-
transduction of multi-stream features, Knowledge-
Based Systems, vol. 220, p. 106950, 2021.

[11] H. H. Bo Wang, Shuang Qiu, Dual encoding u-
net for retinal vessel segmentation, Medical Im-

age Computing and Computer Assisted Interven-
tion, vol. 11764, pp. 84–92, 2019.

[12] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and
S. Escalera, Bi-directional convlstm u-net with
densley connected convolutions. institute of elec-
trical and electronics engineers (ieee); 2019; 406–
415, 2020.

[13] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-
Paz, mixup: Beyond empirical risk minimization,
arXiv preprint arXiv:1710.09412, 2017.

[14] Y. Tokozume, Y. Ushiku, and T. Harada, Between-
class learning for image classification, in Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 5486–5494.

[15] Y. Tokozume, Y. Ushiki, and T. Harada, Learn-
ing from between-class examples for deep sound
recognition, arXiv preprint arXiv:1711.10282,
2017.

[16] H. Inoue, Data augmentation by pairing sam-
ples for images classification, arXiv preprint
arXiv:1801.02929, 2018.

[17] L. Perez and J. Wang, The effectiveness of data
augmentation in image classification using deep
learning, arXiv preprint arXiv:1712.04621, 2017.

[18] D. Liang, F. Yang, T. Zhang, and P. Yang, Un-
derstanding mixup training methods, IEEE Access,
vol. 6, pp. 58 774–58 783, 2018.



38 L. J. Isaksson, P. Summers, S. Raimondi, S. Gandini, A. Bhalerao, G. Marvaso, G. Petralia, M. Pepa, B. A. Jereczek-Fossa

[19] C. Summers and M. J. Dinneen, Improved mixed-
example data augmentation, in 2019 IEEE Winter
Conference on Applications of Computer Vision
(WACV). IEEE, 2019, pp. 1262–1270.

[20] Promise12 online challenge leaderboard,
https://promise12.grand-challenge.org/evaluation
/leaderboard/, 2020, accessed: 2020-08-04.

[21] K. He, X. Zhang, S. Ren, and J. Sun, Delving
deep into rectifiers: Surpassing human-level per-
formance on imagenet classification, in Proceed-
ings of the IEEE international conference on com-
puter vision, 2015, pp. 1026–1034.

[22] D. P. Kingma and J. Ba, Adam: A method
for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

[23] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton,
Lookahead optimizer: k steps forward, 1 step back,
in Advances in Neural Information Processing Sys-
tems, 2019, pp. 9597–9608.

[24] Z. Wu, C. Shen, and A. v. d. Hengel, Bridging
category-level and instance-level semantic image

segmentation, arXiv preprint arXiv:1605.06885,
2016.

[25] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee,
M. Heinrich, K. Misawa, K. Mori, S. McDonagh,
N. Y. Hammerla, B. Kainz et al., Attention u-net:
Learning where to look for the pancreas, arXiv
preprint arXiv:1804.03999, 2018.

[26] M. Z. Alom, M. Hasan, C. Yakopcic, T. M.
Taha, and V. K. Asari, Recurrent residual convo-
lutional neural network based on u-net (r2u-net)
for medical image segmentation, arXiv preprint
arXiv:1802.06955, 2018.

[27] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and
N. Harel, Continuous dice coefficient: a method
for evaluating probabilistic segmentations, arXiv
preprint arXiv:1906.11031, 2019.

[28] S. Thulasidasan, G. Chennupati, J. A. Bilmes,
T. Bhattacharya, and S. Michalak, On mixup train-
ing: Improved calibration and predictive uncer-
tainty for deep neural networks, in Advances in
Neural Information Processing Systems, 2019, pp.
13 888–13 899.

Lars Johannes Isaksson is a Ph.D. 
student of computational biology at the 
European School of Molecular Medi-
cine. While trained as a theoretical 
physicist with a B.Sc. and M.Sc. from 
Lund University, his recent research 
interests mostly include machine 
learning and its application to medical 
images and radiomics.

Dr. Paul Summers has received B.Sc. 
degrees in Physics (1987) and Math-
ematics (1989) from the University of 
Alberta, Edmonton, Canada, and in 
Tecniche di radiologia medica, per im-
magini e radioterapia (2018) from the 
University of Milan, Milan, Italy. He 
received a Ph.D. in Medical Physics 
(1999) from the University of London, 

London, England. He is currently a researcher at IEO - Eu-
ropean Institute of Oncology in Milan, Italy. His research 
interests center around clinical applications of magnetic reso-
nance imaging in oncology and neurovascular disorders. 

Sara Raimondi is a staff biostatisti-
cian and epidemiologist at the Depart-
ment of Experimental Oncology at 
the European Institute of Oncology in 
Milan, Italy. She received her M.Sc. 
Degree in Biostatistics and Experi-
mental Statistics in 2005 and a Ph.D. 
in Medical Statistics in 2013. Her main 
research interest are molecular epide-

miology and big data analysis, with special focus on radiomic 
studies. She is the referent statistician for radiomic studies at 
the IEO. She is co-author of 115 publications and her H-index 
of 37 (Google Scholar) - 32 (Scopus) places her on the Top 
Italian Scientists list.

Sara Gandini is a biostatistician and 
epidemiologist (Ph.D.) Group Leader 
at the Department of Experimental 
Oncology at the IEO. She is adjunct 
professor in medical statistic at Uni-
versity “Statale di Milano” (National 
Academic Qualification as Associate 
Professor in medical statistics from 
2017) and faculty member of System 

Medicine PhD (SEMM) University (“Statale di Milano”). 
Chair Epidemiology subgroup EORTC melanoma. She pub-
lished more than 250 publications in peer journals. H-in-
dex=68, Google scholar (July 2021).

Abhir Bhalerao is Reader in Com-
puter Science. He received his B.Sc. 
and Ph.D. degrees in 1986 and 1992 
respectively. He joined as faculty at 
Warwick in 1998 having been a re-
search scientist with the NHS and 
Kings Medical School, London and a 
Research Fellow at Harvard Medical 
School. His current research interests 

are in computer assisted medical diagnosis, computer vision 
for intelligent vehicles, biometrics and security. He has pub-
lished around 80 refereed articles in image analysis, medical 
imaging, computer vision and machine learning. In 2007 he 



39L. J. Isaksson, P. Summers, S. Raimondi, S. Gandini, A. Bhalerao, G. Marvaso, G. Petralia, M. Pepa, B. A. Jereczek-Fossa

[19] C. Summers and M. J. Dinneen, Improved mixed-
example data augmentation, in 2019 IEEE Winter
Conference on Applications of Computer Vision
(WACV). IEEE, 2019, pp. 1262–1270.

[20] Promise12 online challenge leaderboard,
https://promise12.grand-challenge.org/evaluation
/leaderboard/, 2020, accessed: 2020-08-04.

[21] K. He, X. Zhang, S. Ren, and J. Sun, Delving
deep into rectifiers: Surpassing human-level per-
formance on imagenet classification, in Proceed-
ings of the IEEE international conference on com-
puter vision, 2015, pp. 1026–1034.

[22] D. P. Kingma and J. Ba, Adam: A method
for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

[23] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton,
Lookahead optimizer: k steps forward, 1 step back,
in Advances in Neural Information Processing Sys-
tems, 2019, pp. 9597–9608.

[24] Z. Wu, C. Shen, and A. v. d. Hengel, Bridging
category-level and instance-level semantic image

segmentation, arXiv preprint arXiv:1605.06885,
2016.

[25] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee,
M. Heinrich, K. Misawa, K. Mori, S. McDonagh,
N. Y. Hammerla, B. Kainz et al., Attention u-net:
Learning where to look for the pancreas, arXiv
preprint arXiv:1804.03999, 2018.

[26] M. Z. Alom, M. Hasan, C. Yakopcic, T. M.
Taha, and V. K. Asari, Recurrent residual convo-
lutional neural network based on u-net (r2u-net)
for medical image segmentation, arXiv preprint
arXiv:1802.06955, 2018.

[27] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and
N. Harel, Continuous dice coefficient: a method
for evaluating probabilistic segmentations, arXiv
preprint arXiv:1906.11031, 2019.

[28] S. Thulasidasan, G. Chennupati, J. A. Bilmes,
T. Bhattacharya, and S. Michalak, On mixup train-
ing: Improved calibration and predictive uncer-
tainty for deep neural networks, in Advances in
Neural Information Processing Systems, 2019, pp.
13 888–13 899.

was the co-chair of the British Machine Vision Conference, 
and Medical Image Understanding and Analysis, 2010. He 
was a co-founder of Warwick Warp Ltd., a university spin 
out company specializing in biometric technologies worked a 
research offi  cer for SMEs.

Giulia Marvaso is a Radiation Oncol-
ogist working, since September 2015, 
at the Istituto Europeo di Oncologia 
(IEO) IRCCS as medical assistant. In 
March 2020 she also obtained the posi-
tion as Researcher in the Department 
of Oncology and Onco-Hematology 
at the University of Milan. Her major 
clinical interests include the manage-

ment of patients with urological and head and neck cancer, 
oligometastatic status, palliative setting and stereotactic 
body radiotherapy (SBRT). Dr. Marvaso’s research focuses 
on clinical research related to the use of radiotherapy in the 
management of cancer patients, moreover the technologi-
cal and biological issues of high precision radiotherapy with 
particular attention to hypofractionation (i.e. delivery of high 
radiotherapy doses to small volumes called also ablative ra-
diotherapy if doses > 5 Gy/fraction).

Giuseppe Petralia is Professor in 
Radiology at the University of Milan 
and Director of the Precision Imag-
ing and Research Unit at the European 
Institute of Oncology, Milan (Italy). 
The mission of this Unit is to deliver 
the promise of Precision Medicine to 
cancer patients, by the use of the most 
advanced imaging techniques in con-

junction with clinical parameters and other biomarkers. His 
main research areas include prostate cancer (multiparametric 
MRI, in-bore MRI–targeted biopsy) and whole-body MRI 
(prostate and breast cancer, multiple myeloma, and cancer 
screening in high-risk and general populations).

Matteo Pepa is a Biomedical Engineer 
at the Division of Radiation Oncology 
and at the Radiomic Group of the IEO 
European Institute of Oncology IRCCS 
in Milan, Italy. He is also adjunct pro-
fessor at the University of Milan and 
his areas of expertise include medical 
imaging, artifi cial intelligence, radi-
omics and radiation oncology.

Barbara Jereczek-Fossa MD Ph.D. 
is an Associate Professor of Radiation 
Oncology at the University of Milan, 
Italy and a Head of the Department of 
Radiation Oncology at the European 
Institute of Oncology in Milan, Italy. 
Her other commitments include among 
others:
- Director of the School of Specializa-

tion in Radiation Oncology.  
- Chair of the RTT BSc Degree of the University of Milan, 

Italy.  
- Chair of the Scientifi c Committee of the Italian Association 

of Radiotherapy and Clinical Oncology (AIRO).  
- Chair of the National Societies Committee of the European 

Society for Radiotherapy and Oncology (ESTRO).  
Prof. Jereczek-Fossa is an active member of numerous na-
tional and international societies and scientifi c committees 
and coordinates many research projects. Her main research 
and clinical interests include: urological malignancies, breast 
cancer, combined modality approach, high precision radio-
therapy, oligometastatic cancer, and new prognostic and pre-
dictive factors. Prof. Jereczek-Fossa is an author of over 330 
peer-reviewed scientifi c papers and 7 book chapters and her 
H-index of 42 places her on the Top Italian Scientists list.  

MIXUP (SAMPLE PAIRING) CAN IMPROVE THE . . .

Table 2. Summary of clinical prostate cancer characteristics within the study cohort and the training and
test sets.

Characteristic Number of patients
Total Train set Test set

ECE score

1 5 3 2
2 22 12 10
3 27 12 15
4 30 15 15
5 14 6 8

T-stage cT1 18 14 4
cT2 71 32 29
cT3 9 3 6

Gleason Score
6 48 25 23
7 51 24 27
8 1 1 0

PIRADS score

2 2 2 0
3 20 15 5
4 35 13 22
5 42 20 22

Volume 42.4 (22.0)* 43.5 (26.9)* 41.3 (15.3)*
PSA 11.2 (33.4)* 13.9 (46.7)* 8.53 (5.31)*
*Mean (standard deviation)
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