
 
 

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, 

typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. 

Please cite this article as doi: 10.4081/ija.2021.1951 

 

A scoping review of side-dress nitrogen recommendation systems and their perspectives in 

precision agriculture 

Martina Corti1, Virginia Fassa1, Luca Bechini1 

 

1 Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, 

Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy 

 

Corresponding author: Martina Corti, martina.corti@unimi.it  

 

Keywords: Fertilization; fertilizer amount; sensors; empirical models; mechanistic models; data 

fusion 

 

Funding: this research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. Martina Corti holds a post-doc grant from Università Degli 

Studi di Milano. 

 

  

mailto:martina.corti@unimi.it


 

 

Abstract 

A scoping review of the relevant literature was carried out to identify the existing N recommendation 

systems, their temporal and geographical diffusion, and knowledge gaps. In total, 151 studies were 

identified and categorized. Seventy-six percent of N recommendation systems are empirical and 

based on spatialized vegetation indices (73% of them); 21% are based on mechanistic crop simulation 

models with limited use of spatialized data (26% of them); 3% are based on machine learning 

techniques with integration of spatialized and non-spatialized data. Recommendation systems started 

to appear worldwide in 2000; often they were applied in the same location where calibration had been 

carried out. Thirty percent of the studies use advanced recommendation techniques, such as 

sensor/approach fusion (44%), algorithm add-ons (30%), estimation of environmental benefits (13%), 

and multi-objective decisions (13%). Some limitations have been identified. Empirical systems need 

specific calibrations for each site, species and sensor, rarely using soil, vegetation and weather data 

together, while mechanistic systems need large input data sets, often non-spatialized. We conclude 

that N recommendation systems can be improved by better data and the integration of algorithms. 

 

Introduction 

From the late ’90s until now, precision agriculture has come to farmers’ attention due to its potential 

for decreasing economic and environmental costs (Pattey et al., 2001) by applying techniques that 

increase input use efficiency. Since then, attention has been focused on nitrogen (N), an important 

growth limiting factor,  the management of which can have important economic and environmental 

drawbacks (Olfs et al., 2005). There are different definitions of precision nitrogen management; one 

involves the concept of precision crop management that applies nitrogen inputs to match the spatial 

and temporal variability of crop requirements (Taylor and Whelan, 2005). Precision management is 

based on two steps: the first involves capturing the variability of soil and crop properties (monitoring); 

and the second is a decisional level where the pieces of information coming from the monitoring 

phase are used together to quantify the agronomic inputs to apply. So far, the scientific literature has 



 

 

dealt with the monitoring phase by studying proximal and remote sensing techniques suited for crop 

and soil monitoring (Mulla 2013), and by evaluating their capacity to estimate N-related crop 

variables (Corti et al., 2018; Corti et al., 2020). Regarding the second step (decision level), various 

attempts have been developed to define N recommendation systems assisted by new technologies 

(Shanahan et al., 2008; Franzen et al., 2016). 

Various recommendation systems have been proposed from the late 1990s until now.  Not all of them 

explicitly address field spatial variability, but are worth considering because they estimate 

recommended N rates for arable crops. Some of these systems have actually been used in operational 

conditions, such as the N mass balance model (Stanford, 1966) that relies on soil measurements 

together with weather and crop management information (without in-season monitoring); or 

commercialized algorithms that imply the use of optical sensors to retrieve crop status (Francis and 

Piekielek, 1999; Raun et al., 2005; Holland and Schepers, 2010) and make recommendations for N 

mineral fertilizers. Scientific reviews currently available on this topic are rather specific, because they 

focus on the approaches used in selected countries (e.g., Morris et al., 2018) or specifically assess 

methods based on crop sensors only (Shanahan et al., 2008; Franzen et al., 2016). However, no review 

has yet to summarize the state of the art of N recommendation systems. 

Therefore, we carried out a scoping review with the aim to: identify, summarize and review the N 

recommendation systems available and their geographical and temporal diffusion; define trends of 

the development and application of these systems over time; and identify knowledge gaps. The 

review, which involved the analysis of 354 scientific papers published between 2000 and 2020, was 

carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

extension for Scoping Reviews (PRISMA-ScR; Tricco et al., 2018). This technique allows mapping 

available evidence on a topic and identifying the main concepts and knowledge gaps.  

Four questions were established at the start of the bibliographic research and used as a guide: 1) what 

recommendation systems are available to support the decision to side-dress N rate at the field and 

sub-field scale in arable crops? 2) what are the temporal and geographical diffusion of these methods? 



 

 

3) what advanced solutions can be identified in N recommendation systems? 4) what are the 

knowledge gaps that limit the adoption of these systems? 

This paper describes the literature search and its results, and discusses the knowledge gaps identified. 

 

Materials and methods 

This work applied a scoping literature review according to the PRISMA method. Figure 1 summarizes 

the search flow of our work. Five steps were carried out to answer the research questions, according 

to the PRISMA method (Tricco et al., 2018): definition of search strategy, titles and abstract 

screening, definition of eligibility criteria, selection of the studies and data collection, and data 

charting. Each step is presented in the following sub-sections. 

 

Search strategy 

We identified publications in two steps. First, we searched scientific publications in Google Scholar, 

Scopus, and Web of Science using keywords defining agronomic recommendations (“decision 

support systems”, “decision support tools”) in combination with keywords describing nitrogen-

related topics (“nitrogen uptake”, “nitrogen status”, “nitrogen fertilization”), crop monitoring 

(“remote sensing”, “crop monitoring”, “soil monitoring”) and modelling (“crop modelling”, “crop 

model”, “soil model”). Second, we collected papers written by authors and research groups identified 

during step one, as well as relevant references cited in papers selected in step one. No time limits 

were imposed. All the publications found were collected in a unique database. 

 

Titles and abstracts screening 

A total of 354 publications (journal papers, conference papers, articles in trade journals, factsheets, 

reports, theses, and patents) were collected. Firstly, the publications were analyzed by type and 17 

patents were excluded. The remaining 337 publications were analyzed by reading their abstracts. 

After the abstract screening, 71 publications were eliminated, because they included qualitative and 



 

 

descriptive reviews of crop monitoring and precision agriculture techniques (n=33), informative 

articles (n=3), book chapters (n=7), operational manuals (n=5), and publications related to precision 

agriculture in general (n=23). 

 

Eligibility criteria 

After title and abstract screening, the publications considered for eligibility  were 266. The full-text 

papers were then read and evaluated against the eligibility criteria that a paper should either describe 

a nitrogen recommendation system or propose an advanced solution to estimate an N-related variable. 

Following this screening, 108 publications were excluded. 

 

Selected studies and data collection 

The publications that passed the eligibility criteria were 158. Each publication was classified 

following the scheme in Table 1. 

After the full-text reading of the selected publications and their classification, the database contained 

171 records (some publications studied more than one method): 105 records, coming from 91 

publications, describing nitrogen recommendation systems; 46 records from 44 publications 

describing recommendation systems and advanced solutions; and 20 records from 20 papers only 

describing advanced solutions. 

 

Data charting 

The information collected in the database was used to answer the research questions. To this aim, 

data were summarized in tables and figures using Microsoft Excel (2016) and QGIS (3.16 version; 

QGIS.org, 2021). Data were reported both as the absolute numbers of records and as percentages 

compared to the total. 

 

Results and discussion 



 

 

This section is divided in four sub-sections, each representing one of the research questions 

established at the beginning of the work. 

 

What nitrogen recommendation systems are available to support the deciding of side-dress 

nitrogen rate at the field and sub-field scale in arable crops? 

Algorithms used in nitrogen recommendation systems and their inputs 

The breakdown of the dataset according to the type of algorithms used in the recommendation systems 

is shown in Table 2. 

Empirical models, representing 76% of the dataset, define N recommendations based on empirical 

functions, from simple regression models to more complex models that need local calibrations. 

Approaches classified as mechanistic models (21%) define the N rate based on a crop and soil 

simulation model, i.e., computer-based tools that represent mathematically the dynamics of soil-crop-

atmosphere (Wallach et al., 2018). Approaches that define N rates by applying artificial intelligence, 

i.e., algorithms and statistical models able to analyze big data to understand underlying patterns and 

make inferences, were classified as machine learning (3%). Figure 2 shows the inputs for each group 

of algorithms. Most of the empirical models make use of data coming from vegetation sensors (73% 

of algorithms), often associated with N reference strips (67%) that define the optimal crop vigour 

used as a target. Empirical models also use reference information/measurements about the crop (e.g., 

crop species, developmental stage; 47%), weather (41%), soil (37%) and management (32%). 

Mechanistic models need more inputs compared to empirical models. Common inputs of simulation 

models generally refer to data about the crop (94%), soil (100%), weather (100%) and management 

(100%) that are needed to mathematically represent agro-ecosystem processes; in only a limited 

number of cases, mechanistic models made use of remotely sensed data about soil (3%) or vegetation 

(23%). Machine learning techniques were used only in five recommendation systems, where 

spatially-variable measurements coming from crop (60%) and soil (20%) sensors were used together 

with soil (80%), weather (40%), and management (40%) data by paying more attention to costs (40%) 



 

 

compared to the other algorithms. 

Tables 3 and 4 describe in detail the recommendation systems based on empirical and mechanistic 

models, respectively. 

 

Empirical models 

The majority of these algorithms (the first which appeared in the literature) are regression models 

(37%) using sensor measurements applied to vegetation (72%) to estimate N rate, N uptake or to 

estimate crop yields from which to retrieve, in turn, N rates, thanks to empirical N response functions. 

They have been proposed mainly in the context of cereal crops (maize and wheat) in the USA and 

EU and they are characterized by fragmentation of equations and inputs, a factor that contributed to 

the low level of implementation in operational conditions. The most used methods are from Oklahoma 

State University (OSU; Solie et al., 2012) and Nebraska State University (NSU; Holland and Schepers 

2010). They represent together 37% of empirical models. Their high diffusion is explained by the fact 

that they are commercialized using the vegetation sensors GreenSeeker (Trimble Inc, California, 

USA) and Crop Circle (Holland Scientific Inc, Nebraska, USA) (Muñoz-Huerta et al., 2013). Both 

algorithms have been fully reviewed (Samborski et al., 2009; Franzen et al., 2016) therefore here only 

the basic principles are reported. 

The OSU algorithm relies on two hypotheses: the NDVI (normalized difference vegetation index of 

the crop measured in-season is a predictor of the yield; the NDVI can also estimate the yield response 

to N. Thanks to proper calibrations, the measured NDVI is converted into the crop expected yield 

with no N added. Using local N-rich calibration strips (a small part of the field with no N limitation 

from sowing) the response of crop yield to N is estimated, so that the yield gap is calculated and the 

N rate defined. Initially calibrated for winter wheat in the USA (Raun et al., 2005), it has been also 

calibrated for maize in the USA (Teal et al., 2006), then generalized (Solie et al., 2012) and tested for 

several crops (Porter, 2010) and cropping systems (Virginia Corn Algorithm, Thomason et al., 2011; 

North Dakota State University maize algorithms, Franzen et al., 2014; Clemson University algorithm, 



 

 

Khalilian et al., 2017). The various calibration equations and modifications of the original algorithm 

are a reason for its wide diffusion. 

The NSU algorithm is based on the parametrization of a quadratic or quadratic-plateau function 

describing the relationship between N rate and yield, estimated by the sufficiency index. This index 

is defined as the ratio between the vegetation index of the actual field and the vegetation index of an 

N-rich strip (real or virtual, Holland and Schepers, 2013). The maximum N rate is established by the 

producer; recommended N rates are defined depending on the sufficiency index, the parameters of 

the function and the estimated contribution from the soil N pool. The NSU algorithm was proposed 

for maize in the USA. It accounts for 10% of the empirical models reviewed here. Other plant-based 

algorithms have been developed, mainly for maize in the USA, by relating chlorophyll meter readings 

to recommended N rates (e.g., Kim et al., 2006). Finally, we also recorded algorithms with no 

spatialized data inputs: the maximum return to N (MRTN) approach, N-mass balance (Morris et al., 

2018) and Nutrient Expert (Pampolino et al., 2012). MRTN is well-known and considers costs, 

resulting in the optimum economic N rates; it relies on multiple years and locations of maize N rate 

field trials specific for the USA (Melkonian et al., 2008). The Nutrient Expert, on the other hand, is 

the most used approach in the Asian countries for cereals (rice, maize and wheat). Similarly to MRTN, 

Nutrient Expert has been developed from regional nutrient response studies (Chim et al., 2017). 

Requirements for macro-nutrients are estimated from the expected yield response to each nutrient, 

which is the difference between the attainable yield (the one achieved following the best practices) 

and the nutrient-limited yield (estimated from nutrient omission trials). The inputs needed are data of 

growing environment characteristics, soil fertility indicators, management and yields (Pampolino et 

al., 2012). 

 

Mechanistic and machine learning models 

Mechanistic models are used in 21% of recorded cases. The Adapt-N model is the most 

representative, being used in 42% of studies on maize in the USA. The model incorporates high-



 

 

resolution weather data and field-specific input information on soil, crop, and management, in order 

to estimate, during the growing season, the recommended N rate. Adapt-N is based on the Precision 

Nitrogen Management model, which simulates the growth of the crop, and the LEACHN model for 

the simulation of soil water and N dynamics (Melkonian et al., 2007). It is a web-based application 

developed by Cornell University, acquired by Yara International (Yara International ASA, Oslo, 

Norway), recently adapted to produce N recommendations for site-specific N management. Other 

crop models are used for N recommendations, sometimes considering spatial variability: STICS and 

APSIM for maize and wheat (e.g., Bourdin et al., 2017; Puntel et al., 2018, respectively) and CERES 

for wheat and rice (Cui et al., 2017; Zhang et al., 2018, respectively). When the crop models are 

spatialized to provide site-specific N recommendations, the information from vegetation is used to 

carry out the ??forcing of crop model (e.g., Guérif et al., 2007), while the use of soil spatialized 

information from proximal sensing or standard analysis is considered more than in the empirical 

models (Figure 2). Also, costs are considered more frequently by recommendation systems based on 

mechanistic models compared to empirical algorithms. 

Machine learning techniques are mainly used to integrate empirical models with additional 

information. In fact, in two of the five publications found, machine learning algorithms were used to 

integrate weather and soil data that were not considered in the original studies (Ransom 2018; Ransom 

et al., 2019). In one study, they were used to define N recommendation using spatialized vegetation 

monitoring integrated with soil measured characteristics (Tremblay et al., 2010) confirming the trend 

for deeper data integration. 

 

What are the temporal and geographical diffusion of these methods? 

Figure 3 reports the temporal evolution of the recorded studies. 

Empirical models were the first type of algorithms used, with a gradual increase since 2000. The 

years 2005 and 2010 corresponded to the publication of the OSU algorithm (Raun et al., 2005) and 

the NSU algorithm (Holland and Schepers, 2010). Starting from year 2012, studies involving Nutrient 



 

 

Expert (Pampolino et al., 2012) were published, contributing to the peak registered in 2017. 

Mechanistic methods appeared in 2006, but only after 2015 was there  a marked increase, with a 

maximum in 2017. Machine learning reports have increased very recently, from 2017 to 2020. Very 

probably,  this evolution is linked to the greater availability of a large data sets, essential for the 

algorithm training phase, along with the increase in computing capacity. 

The geographical distribution of the recorded studies is shown in Figure 4. 

Most of the algorithms were developed and used in the USA, where empirical approaches (Raun et 

al., 2005; Holland and Schepers, 2010; and their variants) were predominant compared to mechanistic 

models. Also, publications in the EU mostly involved the use of empirical regression models. 

Mechanistic solutions were different: Adapt-N (Melkonian et al., 2008) was the most used in the 

USA, while in the EU no specific crop model was predominant (Guérif et al., 2007; Granados et al., 

2013; Bourdin et al., 2017; Ravier et al., 2018; Morari et al., 2020; Table 4). In Asian countries, 

empirical models represented the majority of the approaches used (82% and 80%, respectively), while 

the use of mechanistic models was very limited; Nutrient Expert (Pampolino et al., 2012) was the 

most used algorithm, while 44% of empirical approaches consisted in attempts to calibrate the 

algorithms developed in the USA. Finally, studies conducted in China and India had the highest 

number of machine learning approaches (Figure 4). 

 

What advanced solutions can be identified in nitrogen recommendation systems? 

Our presented work also aimed at identifying “advanced solutions” in defining N doses. Four types 

of solutions were found, namely sensor/approach fusion, algorithm add-ons, environmental benefits, 

and multi-objective decisions. They were intended as attempts to account for the complexity of data 

coming from different monitoring systems (i.e., sensor/approach fusion, algorithm add-ons) and for 

the different impacts of N fertilization in the agro-ecosystem (i.e., environmental benefits, and multi-

objective decisions). 

Figure 5 shows the abundance of each type of advanced solution, separately for the two datasets: 



 

 

publications with (Figure 5A) and without (Figure 5B) N recommendation systems. 

“Sensor/approach fusion” and “algorithm add-ons” were the most explored solutions (40-44% and 

30%, respectively). In the publications proposing an N recommendation system, “sensor/approach 

fusion” mainly consisted in using the proposed algorithm differently for different management zones 

defined by soil variability (60% of the papers), while in the group of publications with estimates of 

N-related variables without defining N doses (See Section 2.3), it involved the use of more complex 

combinations such as crop models, machine learning and/or crop monitoring to give better 

predictions. Only the publications proposing an N recommendation system were analyzed by 

considering the advanced solutions by algorithm type (Figure 6). 

Within publications describing empirical algorithms, “algorithm add-ons” accounted for 41% of 

advanced solutions. These solutions account for the variability that was not considered in the original 

version of the algorithm or in the reference estimation method. In most cases these solutions used 

weather- or soil-correcting factors to improve the prediction (e.g., Bean et al., 2018). The advanced 

solutions involving environmental benefits (10%) and multi-objective decisions (7%) are represented 

by algorithms explicitly considering N losses (e.g., Lindblom et al., 2017 and Gramig et al., 2017) 

and taking decisions considering environmental and productive outcomes, respectively. The number 

of these solutions increased in the most recent years. Conversely to the studies involving empirical 

models, environmental effects (three studies; 21%) and multi-objective decisions (three studies; 

21%), (e.g., Mesbah et al., 2018; Moeller et al., 2009) were more frequently addressed with 

mechanistic models. On the other hand, since mechanistic models already need a high number of 

input data, the strategy of algorithm’s “add-on” was rare (one study, 7%). Machine learning did not 

consider environmental outcomes, probably because of the unavailability of a sufficient amount of 

data for the implementation of the algorithms. 

To better clarify what can be done practically to integrate data in recommendation systems, we have 

identified three examples at increasing levels of complexity: i) combine free remote sensing products 

with low-cost proximal sensors as inputs to an empirical N recommendation system (‘sensor fusion’); 



 

 

ii) combine empirical N recommendation systems with machine learning techniques to add 

knowledge about field properties (‘algorithm fusion’); iii) combine soil and crop sensing (either 

proximal or remote) with a crop model (‘high-level data integration’). 

Nutini et al. (2018) provided an example of the ‘sensor fusion’ strategy, by mixing satellite crop 

monitoring with smart apps for field scouting and site-specific N recommendation. They used free 

Sentinel-2 satellite products to drive field data acquisitions using smartphones as sensors to estimate 

crop N requirements (low, medium, high). The proposed solution is cost- and time-effective, widely 

applicable in operational workflows, but needs calibration of regression curves specific by rice variety 

group (Paleari et al., 2019), and does not account for soil and weather variability. 

Ransom et al. (2019) developed an example of the second approach (‘algorithm fusion’). They 

incorporated soil and weather variables into an empirical N recommendation system via machine 

learning, obtaining better estimates of the economically optimum N rate compared to the original 

system, and proving that the N recommendation system takes advantage of added soil and weather 

variables. A limitation of this system is the high number of input data required, and the empiricism 

of the method that could limit its applicability. 

Jin et al. (2019) worked with the third option (‘high-level data integration’): they combined remote 

sensing, soil properties and a crop model to derive N recommendations. The system retrieved field 

management zones using yields estimated from satellite-derived vegetation index and weather. The 

crop model APSIM used inputs from the state soil national database and simulated yields and N losses 

at various N rates. This system offers high-level data integration and multi-objective decision making 

based on economic and environmental outcomes. Its main limitations are related to the difficulty of 

yield estimation and accurate retrieval of soil properties for sub-field scales. It was not tested on 

commercial fields. 

The three methods have a number of features in common: i) they need calibration of increasing 

complexity before they can be applied in operational conditions; ii) they need to consider spatial and 

temporal field variability; iii) they valorize the large data sets that are being made available by 



 

 

monitoring campaigns.  

 

What are the knowledge gaps that limit the adoption of these systems? 

One of the main issues linked to the limited application of N recommendation systems in operational 

conditions is represented by the type of algorithms proposed. Empirical models are the most studied 

but require calibration whenever they are applied in conditions other than those used for their setup. 

This is a severe limitation to their adoption. Moreover, these algorithms have been developed to be 

used with specific optical sensors, making their extension to other sensors cost- and time-consuming. 

Recent efforts have been made to develop different algorithms, based on mechanistic models and 

machine learning (Morris et al., 2018). They need large inputs datasets because they mathematically 

or statistically represent the interaction among soil, plants and weather. However, the greater effort 

needed to collect input data should correspond to a greater applicability of these algorithms. Despite 

this, their use is frequently limited to research applications. The Adapt-N is the only mechanistic 

algorithm that has had a commercial interest. It is used for maize in the USA, where it was developed. 

It was not originally developed for site-specific management (Melkonian et al., 2008). Moreover, 

coupling spatialized data with crop models has not yet been fully addressed. The process still has 

issues related to the identification of the correct scale of processes, the selection and integration of 

spatialized variables, their use, and the ability of the algorithm to manage uncertainty at different 

scales. In conclusion, one severe limitation is the poor ability of the algorithms to integrate different 

data sources. Our analysis showed a trend of developing advanced solutions. However, more efforts 

could be put in place. 

 

Current and future perspectives 

With the current availability of tools, precision N management can be carried out using the empirical 

recommendation systems. This requires extensive field work for their calibration. For example, 

specific guidelines are available to calibrate the OSU system 



 

 

(https://nue.okstate.edu/Hand_Held/New_N_Strategy.htm). This involves the implementation of 

field experiments with monitored no-nitrogen and N-rich strips in different locations. For these 

treatments, the NDVI is measured at side-dressing, and crop yield is measured at harvest. 

Alternatively, if one wants to use a more mechanistic solution, current crop models can be applied by 

coupling them with a customized decision support system. For example, Morari et al. (2020) have 

developed a decision support system based on the SiriusQuality model. When this coupling has been 

already realized, the system can be applied in different conditions, provided that input data are 

available, either directly via built-in data recovery functions or provided by the user. 

Future research should focus  on data and algorithm fusion and on proving the economic, agronomic 

and environmental benefits of the proposed algorithms at farm scales. In fact, nowadays big data are 

produced by precision agriculture techniques and Agriculture 4.0, thanks to the use of new soil and 

crop monitoring techniques together with reference measurements of soil and weather properties. A 

better integration of several types of data, sensors and algorithms could be carried out in order to 

valorize field data and to help the large-scale application of algorithms. On the other hand, the level 

of complexity of the algorithms must meet the knowledge and practical needs of farmers. In fact, 

some reviewed published works, demonstrated that more attention during the research process should 

be paid to overcoming the problems of implementation of N recommendation systems by developing 

friendly interfaces (Lindblom et al., 2017). Another factor that will allow a wider adoption of N 

recommendation systems is their capability to calculate and report the economic, agronomic and 

environmental advantages of precision compared to conventional management. This will require 

specific research actions aimed at measuring these advantages in the field and disseminating them. 

 

Conclusions 

Many studies have been carried out in the past twenty years to develop N recommendation systems. 

Many of them propose empirical N recommendation algorithms that depend on specific calibration 

conditions; therefore, they cannot be easily extended to soils, climates and crops which differ from 



 

 

those where their calibration was carried out. On the other hand, mechanistic or machine learning 

algorithms are hardly spatialized enough to provide site-specific N recommendations. In addition, 

information about soil properties, crops and weather data, and environmental outcomes is not yet 

fully integrated, with the result that field data are not valorized by most current algorithms. Following 

the trend already visible in the literature, future research must overcome the specificity of current 

algorithms and maximize the integration among high-resolution monitoring data sets.   
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*The number of publications selected was 138, but the total number of recommendation 

systems is 151 because some publications reported more than one system. 

 

Figure 1. Search flow to select the publications analyzed in this work.  
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Figure 2. Spider chart showing input data to nitrogen recommendation systems based on empirical models, 

mechanistic crop models or machine learning techniques. The data are represented as percentage of the total 

records of the group. 

 

 

 

 
Figure 3. Number of papers describing a nitrogen recommendation system by type of algorithm and by year. 

 

 

 



 

 

 
 

Figure 4. Map of the geographical distribution of the selected nitrogen recommendation systems. Countries with 

three or more studies are represented in blue (from light to deep blue) with the indication of the number of total 

studies. For countries with five or more studies, the statistics about the types of algorithm and the crops are 

presented with a pie chart and a table, respectively. 

 

 

 

 
 

Figure 5. Percentage and number of publications (n=66) by type of advanced solution adopted. A) Publications 

with N recommendation systems; B) Publications without N recommendation systems. 

 

 

 

 



 

 

 

Figure 6. Frequency (%) of the adoption of advanced solutions by type of algorithm within the publications 

describing N recommendation systems (n=46). 

 

 

 

 

 

Table 1. List of characteristics of nitrogen recommendation systems extracted from the selected publications. 

 

Category Characteristic Possible values 

Paper information 

Author  

Title  

Year  

Location  

Algorithm used in the nitrogen 

recommendation system, and its 

application 

Algorithm 
Empirical model / Mechanistic crop model / Machine 

learning 

Is it based on an existing 

system? 
Yes/No 

Crop species Name of crop species 

Timing of nitrogen 

application 

Development stage when the recommended nitrogen 

rate shall be applied 

Description of method 

The type of sensor, the variable that is estimated and 

the type of regression (for empirical methods) or the 

name of model/machine learning method 

Type of application 
Calibration / Validation / Comparison with another N 

recommendation system 

Spatially variable inputs  

Soil sensors Yes/No 

Vegetation sensors Yes/No 

Yield sensors Yes/No 

Non-spatially variable inputs 

Soil Yes/No 

Vegetation Yes/No 

Weather Yes/No 

Management Yes/No 

Yield Yes/No 

Costs Yes/No 

Nitrogen reference 

strips 
Yes/No 

Advanced solutions 

Type of solution 
Environmental impact estimation / Multi-objective 

decision / Data fusion / Add-ons 

In the case of data 

fusion, what was 

integrated? 

E.g., Soil and weather; Crop and weather; Soil, crop 

and weather, Satellite data and crop models, Machine 

learning and empirical model 

 

 

 

Table 2. Breakdown of the dataset according to the algorithm implemented in the nitrogen recommendation 

system. 

 

Type of algorithm Records (n) Records (%) 

Empirical model 115 76 

Mechanistic crop model 31 21 

Machine learning 5 3 

Total 151 100 

 

 

 

Table 3. Details about the algorithms classified as empirical models. For each algorithm, the number and the 

percentage of records, inputs used, starting year, geographical distribution, and main crop are indicated. The 

percentage of records for each category is reported (no number means 100%). 



 

 

 
Reviewed 

algorithms 

Record

s (n) 

Records 

(%) 

Inputs from remote 

sensing 
Measured data inputs First year 

Country

* 
Crop* 

Regression 
models 

43 37% 
Soil (9%), Vegetation 
(72%), Yield (2%) 

Soil (23%), Plant (26%), 

Weather (9%), Yield (40%), 
Management (26%), Costs 

(33%) 

2000 

USA 

(56%), 
EU 

(21%) 

Maize 

(58%), 
Wheat 

(26%) 

Oklahoma 

State 

University 
algorithm 

and 

modified 

versions 

31 27% Soil (9%), Vegetation 
Soil (15%), Plant, Weather, 

Yield, N reference strips 
2006 

USA 

(65%), 

China 

(13%), 

India 
(13%) 

Maize 

(42%), 

Wheat 

(39%) 

Nebraska 
State 

University 

algorithm 

12 10% 
Soil (8%), Vegetation, 

Yield (8%) 

Soil, Plant, Management, N 

reference strips, Costs (8%) 
2010 

USA 
(75%), 

EU 

(25%) 

Maize 

(75%) 

Nutrient 

Expert 
12 10% - 

Soil, Plant, Weather (33%), 

Management, Costs (42%) 
2006 

China 

(67%), 
Indonesia 

and 

Philippin

es (17%) 

Maize 

(42%), Rice 

(39%) 

Chlorophyll 
meter 

algorithms 

5 4% Vegetation Plant, Management (33%) 2006 USA 
Maize 

(58%) 

Virginia 

Corn 

Algorithm 

3 3% Vegetation Weather, N reference strips 2011 USA 
Maize 

(63%) 

Clemson 
University 

algorithm 

3 3% Soil, Vegetation 
Plant, Weather, N reference 

strips 
2011 USA 

Cotton 

(63%), 

Maize 

(37%) 

MRTN 3 3% - Soil, Plant, Yield, Costs 2014 USA Maize 

N-mass 

balance 
3 3% - 

Soil, Plant, Weather, 

Management, Costs (33%) 
2018 

Brazil 

(33%), 

Canada 

(33%), 
Turkey 

(33%) 

Maize 

(63%) 

* Countries and crops with more than 10% of studies. 

 

 

 

Table 4. Details about the algorithms classified as mechanistic models. For each algorithm, the number and the 

percentage of records, inputs used and starting year, geographical distribution and main crop are indicated. The 

percentage of records for each category is reported (no number means 100%). 

 
Reviewed 

algorithms 
Records (n) Records (%) 

Inputs from remote 

sensing 
Measured data inputs 

First 

year 

Country

* 
Crop* 

Adapt-N 13 42% - 
Soil, Plant, Weather, 
Management, Costs 

(23%) 

2007 USA Maize 

APSIM 5 16% 
Soil (20%), 

Vegetation (40%) 

Soil, Plant, Weather, 

Management, Costs 

(40%) 

2009 

USA 

(80%), 

Australia 
(20%) 

Maize 

(80%) 

Wheat 
(20%) 

STICS 4 13% Vegetation (50%) 
Soil, Plant, Weather, 
Management, Costs 

(25%) 

2007 

Canada 

(50%), 

EU 

(50%) 

Maize 

(50%) 

Wheat 

(50%) 

CERES 2 6% Vegetation (50%) 

Soil, Plant, Weather, 

Management, Costs 
(50%) 

2017 China 

Rice 

(50%) 

Wheat 

(50%) 

Others 7 23% 
Soil (14%), 

Vegetation (29%) 

Soil, Plant, Weather, 

Management, Costs 

(14%) 

2013 

USA 
(43%), 

EU 

(43%) 

Maize 
(57%) 

Wheat 

(29%) 

* Countries and crops with more than 10% of studies 
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