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Abstract. We introduce a method of iterated function systems (IFS)
over the space of set-valued mappings (multifunctions). This is done by
first considering a couple of useful metrics over the space of multifunc-
tions F(X, Y ). Some appropriate IFS-type fractal transform operators
T : F(X, Y ) → F(X, Y ) are then defined which combine spatially-
contracted and range-modified copies of a multifunction u to produce a
new multifunction v = Tu. Under suitable conditions, the fractal trans-
form T is contractive, implying the existence of a fixed-point set-valued
mapping ū. Some simple examples are then presented.
We then consider the inverse problem of approximation of set-valued
mappings by fixed points of fractal transform operators T and present
some preliminary results.
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1 Introduction

In this paper, we introduce a method of iterated function systems (IFS) over
spaces of set-valued mappings or multifunctions. The idea of studying the action
of sets of contraction mappings in R

n can be traced back to a number of very
interesting historical papers. However, the landmark papers by Hutchinson [8]
and Barnsley and Demko [2] showed how such systems of contractive maps with
associated probabilities – called “iterated function systems” by the latter – acting
in a parallel manner, either deterministically or probabilistically, could be used
to construct fractal sets and measures.

This formulation of an IFS-type method over multifunction represents re-
cent results of an ongoing research programme on the construction of appropri-
ate IFS-type operators, or generalized fractal transforms, over various spaces,
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i.e., function spaces and distributions [6,7], vector-valued measures [13], integral
transforms [5] and wavelet transforms [12,15]. Very briefly, and at the risk of
sacrificing rigor, the action of a GFT T on an element u of the complete metric
space (X, d) under consideration can be summarized as follows: (i) it produces a
set of N spatially-contracted copies of u, (ii) it then modifies the values of these
copies by means of a suitable range-mapping and finally (iii) it recombines these
copies using an appropriate operator to produce the element v ∈ X , v = Tu. (In
the case of fractal-wavelet transforms [12,15], the copies of u in (i) are actually
subtrees of a tree that are then copied onto lower positions of the tree.)

In each of the above-mentioned cases, the fractal transform T is guaranteed
to be contractive when the parameters defining it satisfy appropriate conditions
specific to the metric space of concern. In this situation, Banach’s fixed point
theorem guarantees the existence of a unique fixed point ū = T ū.

The inverse problem of fractal-based approximation is as follows: Given an
element y, can we find a fractal transform T with fixed point ū so that d(y, ū) is
sufficiently small. However, the search for such transforms is enormously compli-
cated. Thanks to a simple consequence of Banach’s fixed point theorem known
as the “Collage Theorem” (to be discussed below), most practical methods of
solving the inverse problem seek to find an operator T for which the collage
distance d(u, Tu) is as small as possible.

In this paper, as stated above, we formulate some IFS-type fractal transform
operators on the space of set-valued mappings over closed and bounded intervals
of R

n. We first consider a couple of metrics over these spaces and then establish
the Lipschitz constants of the fractal transforms in these metrics. Some graphical
examples are then presented.

Finally, we present an application of this method of “IFS over multifunctions”
(IFSMF) to fractal image coding and present a simple example of an IFSMF-
coded image multifunction.

2 Preliminary results on Hausdorff distance

In the following we will denote by H(Y ) the space of all non-empty compact
subsets of Y and by dh(A, B) the Hausdorff distance between A and B, that is

dh(A, B) = max{max
x∈A

d(x, B), max
x∈B

d(x, A)},

where d(x, y) is the Euclidean norm and d(x, A) is the usual d̈istance b̈etween
the point x and the set A, i.e.,

d(x, A) = min
y∈A

d(x, y).

It is well known that the space (H(Y ), dh) is a complete metric space if Y is
complete [8]. We now prove some results concerning this metric.

We now prove two results will be crucial for proving the contractivity of IFS
operators on multifunctions.
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Lemma 1. Let A, B, I ⊂ R
n. Then dh(A + I, B + I) ≤ dh(A, B).

Proof. We see that

d(A + I, B + I) = max
a+i

min
b+j

‖(a + i) − (b + j)‖

≤ max
a+i

min
b

‖(a + i) − (b + i)‖

= max
a+i

min
b

‖a − b‖ = d(A, B).

By symmetry we also have d(B + I, A + I) ≤ d(B, A), which gives the desired
result.

Lemma 2. Let A1, A2, B1, B2 ⊂ R
n and λi ≥ 0. Then

dh(λ1A1 + λ2A2, λ1B1 + λ2B2) ≤ λ1dh(A1, B1) + λ2dh(A2, B2).

Proof. Computing, we see that

d(λ1A1 + λ2A2, λ1B1 + λ2B2) = max
a1,a2

min
b1,b2

‖λ1a1 + λ2a2 − λ1b1 − λ2b2‖

≤ max
a1,a2

min
b1,b2

[λ1‖a1 − b1‖ + λ2‖a2 − b2‖]

= λ1 max
a1

min
b1

‖a1 − b1‖ + λ2 max
a2

min
b2

‖a2 − b2‖

= λ1d(A1, B1) + λ2d(A2, B2).

Similarly we have that d(λ1B1+λ2B2, λ1A1+λ2A2) ≤ λ1d(B1, A1)+λ2d(B2, A2).
Since d(A1, B1) ≤ dh(A1, B1) and d(B1, A1) ≤ dh(A1, B1), we have the desired
result.

Corollary 1. Let Ai, Bi ⊂ R
n and λi ≥ 0 for i = 1, 2, . . . , N . Then

dh(
∑

i

λiAi, λiBi) ≤
∑

i

λi dh(Ai, Bi).

It is easy to see that if A is convex and λi ≥ 0 with
∑

i λi = 1 then A =
∑

i λiA. Using this observation and the previous result we easily get the following
lemma.

Lemma 3. Let A, B, C ⊂ R
n, λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1. Suppose

that A, B, C are compact and A is convex. Then

dh(A, λ1B + λ2C) ≤ λ1dh(A, B) + λ2dh(A, C).

Example 1. The previous lemma is not true without the convexity of the set A;
for instance, take

A = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1, y = 1} ∪ {(x, y) ∈ R

2 : x = 0, 1/2 ≤ y ≤ 1}

∪{(x, y) ∈ R
2 : x = 1, 1/2 ≤ y ≤ 1}

and B = (0, 0), C = (1, 0), λ1 = λ2 = 1/2. Then

dh(A, λ1B + λ2C) = 1 ≥ λ1dh(A, B) + λ2dh(A, C) = 1/2.
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3 Some IFS operators on multifunctions

The aim of this section is to introduce some IFS operators of the space of mul-
tifunctions. We recall that a setvalued mappings or multifunction F : X ⇒ Y
is a function from X to the power set 2Y . We recall that the graph of F is the
following subset of X × Y

graphF = {(x, y) ∈ X × Y : y ∈ F (x)} .

If F (x) is a closed, compact or convex we say that F is closed, compact or convex
valued, respectively. Let (X, B, µ) be a finite measure space; a multifunction
F : X → Y is said to be measurable if for each open O ⊂ Y we have

F−1(O) = {x ∈ X : F (x) ∩ O 6= ∅} ∈ B

A function f : X → Y is a selection of F if f(x) ∈ F (x), ∀x ∈ X . In the following
we will suppose that Y is compact and F (x) is compact for each x ∈ X . Define

F(X, Y ) = {F : X → H(Y )}.

We place the following two metrics on F(X, Y ); the first is

d∞(F, G) = sup
x∈X

dh(F (x), G(x))

and the second (here µ is a finite measure on X and p ≥ 1)

dp(F, G) =

(
∫

X

dh(F (x), G(x))p dµ(x)

)1/p

.

Proposition 1. The space (F(X, Y ), d∞) is a complete metric space.

Proof. It is trivial to prove that d∞(F, G) = 0 if and only if F = G and that
d∞(F, G) = d∞(G, F ). Furthermore for all F, G, L ∈ F(X, Y ) we have

d∞(F, G) = sup
x∈X

dh(F (x), G(x))

≤ sup
x∈X

dh(F (x), L(x)) + dh(L(x), G(x))

≤ sup
x∈X

dh(F (x), L(x)) + sup
x∈X

dh(L(x), G(x))

= d∞(F, L) + d∞(L, G)

To prove that it is a complete, let Fn be a Cauchy sequence of elements of
F(X, Y ); so ∀ε > 0 there exists n0(ε) > 0 such that for all n, m ≥ n0(ε) we
have d∞(Fn, Fm) ≤ ε. So for all x ∈ X and for all n, m ≥ n0(ε) we have
dh(Fn(x), Fm(x)) ≤ ε and the sequence Fn(x) is Cauchy in H(Y ). Since it is
complete there exists A(x) such that dh(Fn(x), A(x)) → 0 when n → +∞. So
for all x ∈ X and for all n, m ≥ n0(ε) we have dh(Fn(x), Fm(x)) ≤ ε and sending
m → +∞ we have dh(Fn(x), A(x)) ≤ ε that is d∞(Fn, A) ≤ ε.
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Proposition 2. dp is a (pseudo) metric on F(X, Y ).

Proof. It is clear that dp(F, G) = 0 iff dh(F (x), G(x)) = 0 for µ almost all x ∈ X
which happens iff F (x) = G(x) for µ almost all x ∈ X . It is also clear that dp is
symmetric. For the triangle inequality, notice that

dp(F, G) =

(
∫

X

dh(F (x), G(x))p dµ(x)

)1/p

≤

(
∫

X

[dh(F (x), H(x)) + dh(H(x), G(x))]p dµ(x)

)1/p

≤

(
∫

X

dh(F (x), H(x))p dµ(x)

)1/p

+

(
∫

X

dh(H(x), G(x))p dµ(x)

)1/p

= dp(F, H) + dp(H, G).

Notice that we only get a pseudo-metric since functions which differ only on
a set of µ measure zero will clearly be zero distance apart. However, this is the
usual situation with the Lp spaces.

Proposition 3. Let Y be a compact interval of R and suppose that F (x) is
convex for each x ∈ X and for all F ∈ F(X, Y ). Suppose that all F ∈ F(X, Y )
are measurable. Then F(X, Y ) is complete under dp.

Proof. To prove that it is a complete, let Fn be a Cauchy sequence of elements
of F(X, Y ); so ∀ε > 0 there exists n0(ε) > 0 such that for all n, m ≥ n0(ε)
we have dp(Fn, Fm) ≤ ε. Since Fn(x) is compact and convex then Fn(x) =
[min Fn(x), max Fx(x)]. The functions φ∗

n(x) = min Fn(x) and φ∗∗

n (x) = max Fn(x)
are measurable and

‖φ∗

n(x) − φ∗

m(x)‖p ≤ dp(Fn, Fm)

‖φ∗∗

n (x) − φ∗

m(x)‖p ≤ dp(Fn, Fm)

and so φ∗

n and φ∗∗

n are Cauchy in Lp(X). So there exists φ∗ and φ∗∗ such that
φ∗

n → φ∗ and φ∗∗

n → φ∗∗ in the usual Lp metric. If we build the function F (x) =
[φ∗(x), φ∗∗(x)] then

dp(Fn, F ) =

(
∫

X

dh(Fn(x), F (x))p dµ(x)

)1/p

=

(
∫

X

max{|φ∗

n(x) − φ∗(x)|p, |φ∗∗

n (x) − φ∗∗(x)|p} dµ(x)

)1/p

≤

(
∫

X

|φ∗

n(x) − φ∗(x)|p dµ(x)

)1/p

+

(
∫

X

|φ∗∗

n (x) − φ∗∗(x)|p dµ(x)}

)1/p

Having these preliminaries out of the way, in next sections we define a two
IFS-type operators on F(X, Y ).
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3.1 The union operator

Let wi : X → X be maps on X and φi : H(Y ) → H(Y ) with Lipschitz constants
Ki. Define T : F(X, Y ) → F(X, Y ) by

T (F )(x) =
⋃

i

φi(F (w−1
i (x))).

Proposition 4. If K = maxi Ki < 1, then T is contractive in d∞.

Proof. We compute that

d∞(T (F ), T (G)) = sup
x

dh

(

⋃

i

φi(F (w−1
i (x))),

⋃

i

φi(G(w−1
i (x)))

)

≤ sup
x

max
i

dh

(

φi(F (w−1
i (x))), φi(G(w−1

i (x)))
)

≤ sup
x

max
i

Kidh

(

F (w−1
i (x)), G(w−1

i (x))
)

≤ K sup
z

dh(F (z), G(z)) = Kd∞(F, G).

The result follows.

Proposition 5. Assume that dµ(wi(x)) ≤ sidµ(x) where si ≥ 0. Then

dp(T (F ), T (G)) ≤

(

∑

i

Kp
i si

)1/p

dp(F, G).

Proof. Computing, we get

dp(T (F ), T (G)) =

{

∫

X

dh

[

⋃

i

φi(F (w−1
i (x))),

⋃

i

φi(G(w−1
i (x)))

]p

dµ(x)

}1/p

≤

{
∫

X

max
i

dh

[

φi(F (w−1
i (x))), φi(G(w−1

i (x)))
]p

dµ(x)

}1/p

≤

{
∫

X

max
i

Ki dh

[

F (w−1
i (x)), G(w−1

i (x))
]p

dµ(x)

}1/p

=

{

∑

i

Kp
i

∫

Mi

dh

[

F (w−1
i (x)), G(w−1

i (x))
]p

dµ(x)

}1/p

≤

{

∑

i

Kp
i

∫

wi(X)

dh

[

F (w−1
i (x)), G(w−1

i (x))
]p

dµ(x)

}1/p

≤

{

∑

i

Kp
i si

∫

X

dh [F (z), G(z)]
p

dµ(z)

}1/p

=

[

∑

i

Kp
i si

]1/p

dp(F, G).



IFS on multifunctions 7

In the above, we have used the sets Mi ⊂ wi(X) defined by

Mi =
{

x ∈ X : dh(F (w−1
i (x)), G(w−1

i (x))) ≥ dh(F (w−1
j (x)), G(w−1

j (x))) for all j
}

.

That is, the set Mi consists of all those points for which the ith preimage gives
the largest Hausdorff distance.

Notice that if X ⊂ R and µ is Lebesgue measure and wi(x) satisfy |w′

i(x)| ≤ si

then the condition dµ(wi(x)) ≤ sidµ(x) is satisfied. This is the situation that is
used in image processing applications.

3.2 The sum operator

With a similar setup as in the previous section, define the operator T : F(X, Y ) →
F(X, Y ) by

T (F )(x) =
∑

i

pi(x)φi(F (w−1
i (x)))

where the sum depends on x and is over those i so that x ∈ wi(X). We require
that the functions pi satisfy that

∑

i pi(x) = 1 (again, with the dependence of
the sum on x).

The idea is to average the contributions of the various components in the
areas where there is overlap.

Proposition 6. We have

d∞(T (F ), T (G)) ≤

[

sup
x

∑

i

pi(x)Ki

]

d∞(F, G).

Proof. We compute and see that

d∞(T (F ), T (G)) = sup
x

dh

(

∑

i

pi(x)φi(F (w−1
i (x))),

∑

i

pi(x)φi(G(w−1
i (x)))

)

≤ sup
x

∑

i

pi(x)Kidh(F (w−1
i (x)), G(w−1

i (x)))

≤

[

sup
x

∑

i

pi(x)Ki

]

d∞(F, G).

Lemma 4. Let ai ∈ R, i = 1 . . . n. Then

∣

∣

∣

∣

∣

∑

i

ai

∣

∣

∣

∣

∣

p

≤ C(n)p
∑

i

|ai|
p
,

with C(n) = n(p−1)/p. Thus if p = 1, we can choose C(n) = 1.
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Proposition 7. Let pi = supx pi(wi(x)) and si ≥ 0 be such that dµ(wi(x)) ≤
sidµ(x). Then we have

dp(T (F ), T (G)) ≤ C(n)

(

∑

i

Kp
i sp

i p
p
i

)1/p

dp(F, G).

Proof. We compute and see that

dp(T (F ), T (G))p =

∫

X

(

dh

(

∑

i

pi(x)φi(F (w−1
i (x))),

∑

i

pi(x)φi(G(w−1
i (x)))

))p

dµ(x)

≤

∫

X

(

∑

i

pi(x) Ki dh

(

F (w−1
i (x)), G(w−1

i (x))
)

)p

dµ(x)

≤

∫

wi(X)

C(n)p
∑

i

pi(x)p Kp
i

(

dh

(

F (w−1
i (x)), G(w−1

i (x))
))p

dµ(x)

≤ C(n)p
∑

i

Kp
i sp

i

∫

X

pi(wi(z))p dh (F (z), G(z))p dµ(z)

≤ C(n)p

(

∑

i

Kp
i sp

i p
p
i

)

dp(F, G)p.

Notice that it is easy (but messy) to tighten the estimate in the Proposition.

4 Applications to fractal image coding and the inverse

problem

We now present some practical realizations and applications of IFSMF with
particular focus on the coding of signals and images. The idea of this section
is that to each pixel of an image is associated an interval which measures the
“error” in the value for that pixel. In this situation, therefore, we restrict our
set-valued functions so that they only take closed intervals as values. We also
need to restrict the φi maps so that they map intervals to intervals.

Thus, we shall consider X = [0, 1]n for n = 1 or 2 and Y = [a, b]. For each x,
let β(x) ∈ H be an interval in Y . Then we define T : F(X, Y ) → F(X, Y ) by

T (F )(x) = β(x) +
∑

i

pi(x) αiF (w−1
i (x))

where αi ∈ R.

Corollary 2. We have the following inequalities

d∞(T (F ), T (G)) ≤

[

sup
x

∑

i

αipi(x)

]

d∞(F, G)
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dp(T (F ), T (G)) ≤ C(n)

(

∑

i

αp
i s

p
i p

p
i

)1/p

dp(F, G)

where pi = supx pi(wi(x)) and si ≥ 0 be such that dµ(wi(x)) ≤ sidµ(x).

Proof. We only need to see that

dh

(

β(x) +
∑

i

pi(x)αiF (w−1
i (x)), β(x) +

∑

i

pi(x)αiG(w−1
i (x))

)

= dh

(

∑

i

pi(x)αiF (w−1
i (x)),

∑

i

pi(x)αiG(w−1
i (x))

)

from which point the proof is the same as the proof of Proposition 6.

In Figure 1 are presented the attractor multifunctions for two IFSMF with
contractive affine IFS maps wi. The top image corresponds to the attractor of
the following IFSMF

w1(x) = 0.6x, φ1(t) = 0.7t,

w2(x) = 0.6x + 0.4, φ2(t) = 0.5t,

0.5 ≤ β(x) ≤ 1.0.

The right image corresponds to the attractor of the IFSMF with the same wi

and φi maps but with

0 ≤ β(x) ≤ 1, 0 ≤ x < 0.5,

0.5 ≤ β(x) ≤ 1.5, 0.5 ≤ x ≤ 1.

4.1 Fractal block coding and the inverse problem

The inverse problem can be formulated as follows: Given a multifunction F ∈
F(X, Y ), find a contractive IFSMF operator T : F(X, Y ) → F(X, Y ) that
admits a unique fixed point F̃ ∈ F(X, Y ) such that d∞(F, F̃ ) is small enough.
As discussed in the introduction, it is in general a very difficult task to find such
operators. A tremendous simplification is provided by the “Collage Theorem”
[3,1], which we now state with particular reference to IFSMF.

Theorem 1. (Collage Theorem for IFMSF) Given F ∈ F(X, Y ) suppose that
there exists a contractive operator T such that d∞(F, T (F )) < ε. If F ∗ is the
fixed point of T and c := supx

∑

i αipi(x) then

d∞(F, F ∗) ≤
ε

1 − c

The inverse problem then becomes one of finding a contractive IFSMF oper-
ator that maps the “target” multifunction F as close to itself as possible.
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Figure 1. Fixed-point attractor multifunctions ū for the two IFSMF on [0, 1] given in
the text. The upper and lower values of ū(x) for x ∈ [0, 1] are sketched.
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Corollary 3. Under the assumptions of the Collage Theorem we have the fol-
lowing inequality

d∞(F, TF ) ≤
∑

i

pi sup
x∈X

max{Ai(x), Āi(x)}

where Ai(x) = |min F (x) − min(β(x) + αiF (w−1
i )(x))|, Āi(x) = |maxF (x)−

max(β(x) + αiF (w−1
i (x)))| and pi = supx∈X pi(wi(x)).

Proof. In fact using a previous result on the Hausdorff distance and recalling
that F is a closed interval multifunction,

d∞(F, TF ) = d∞(F (x), β(x) +
∑

i

pi(x)αiF (w−1
i (x)))

≤ d∞(F (x),
∑

i

pi(x)(β(x) + αiF (w−1
i (x))))

≤
∑

i

pid∞(F (x), β(x) + αiF (w−1
i (x)))

≤
∑

i

pi sup
x∈X

max{Ai(x), Āi(x)}

where Ai(x) = |min F (x) − min(β(x) + αiF (w−1
i )(x))|, Āi(x) = |maxF (x)−

max(β(x) + αiF (w−1
i (x)))| and pi = supx∈X pi(wi(x)).

We now prove a similar result for the dp metric.

Corollary 4. Under the assumptions of the Collage Theorem we have the fol-
lowing inequality

dp(F, TF )p ≤ ‖min F − min TF‖p
p + ‖maxF − maxTF‖p

p

Proof. Computing, we have

dp(F, TF )p =

∫

X

(

dh(F (x), β(x) +
∑

i

pi(x)αiF (w−1
i (x)))

)p

dµ(x)

≤

∫

X

∣

∣

∣

∣

∣

min F (x) − min(β(x) +
∑

i

pi(x)αiF (w−1
i (x)))

∣

∣

∣

∣

∣

p

dµ(x)

+

∫

X

∣

∣

∣

∣

∣

maxF (x) − max(β(x) +
∑

i

pi(x)αiF (w−1
i (x)))

∣

∣

∣

∣

∣

p

dµ(x)

= ‖min F − min TF‖p
p + ‖maxF − maxTF‖p

p

Most fractal block coding methods are based upon a method originally re-
ported by Jacquin [11]. The pixel array defining the image is partitioned into
a set of nonoverlapping range subblocks Ri. Associated with with each Ri is a
larger domain subblock Di, chosen so that the image function u(Ri) supported on
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each Ri is well approximated by a greyscale-modified copy of the image function
u(Di). In practice, affine greyscale maps are used:

u(Ri) ≈ φi(u(wi(Di)) = αiu(wi(Di)) + βi, 1 ≤ i ≤ N

where wi(x) denotes the contraction that maps Ri to Di (in discrete pixel space,
the wi maps will have to include a decimation that reduces the number of pixels
in going from Ri to Di). The greyscale map coefficients αi and βi are usually
determined by least squares. The domain blocks Di are usually chosen from a
common domain pool D. The domain block yielding the best approximation to
u(Ri), i.e., the lowest collage error,

∆ij =‖ u(Ri) − φij(u(wij(Dj)) ‖, 1 ≤ j ≤ M,

is chosen for the fractal coding (the L2 norm is usually chosen).

In Figure 2 is presented the fixed point approximation ū to the standard
512×512 Lena image (8 bits per pixel, or 256 greyscale values) using a partition
of 8× 8 nonoverlapping pixel blocks (642 = 4096 in total). The domain pool for
each range block was the set of 322 = 1024 16×16 non-overlapping pixel blocks.
(This is not an optimal domain pool – nevertheless it works quite well.) The
image ū was obtained by starting with the seed image u0 = 255 (plain white
image) and iterating un+1 = Tun to n = 15.

Figure 2. The fixed point ū of the fractal transform operator T described in the main
text, designed to approximate the standard 512 × 512 (8bpp) Lena image.
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We now consider a simple IFSMF version of image coding, using the partition
described above. Since the range blocks Ri are nonoverlapping, all coefficients
pi(x) in our IFSMF operator will have value 1. From the Lena image function
u(x) used above, we shall construct a multifunction U(x) so that

U(x) = [u−(x), u+(x)].

The approximation of the multifunction range block U(Ri) by U(Di) then takes
the form of two coupled problems

u−(Ri) ≈ αiu
−(wi(Di)) + β−

i (Ri),

u+(Ri) ≈ αiu
+(wi(Di)) + β+

i (Ri), 1 ≤ i ≤ N.

For simplicity, we assume that the β+(x) and β−(x) functions are piecewise
constant over each block Ri. For a given domain-range block pair Di/Ri, we
then have a system of three equations in the unknowns αi, β−

i and β+
i . The

domain block yielding the best total L2 collage distance,

∆ij = ‖ u−(Ri) − αiu
−(wij(Dj)) − β−

i (Ri) ‖

+ ‖ u+(Ri) − αiu
+(wij(Dj)) − β+

i (Ri) ‖, 1 ≤ j ≤ M,

is selected for the fractal code. Corresponding to this fractal code will be the
multifunction attractor Ū(x) = [ū−(x), ū+(x)].

To illustrate, we consider the multifunction constructed from the Lena image
defined as follows,

Uij = [uij − δij , uij + δij ],

where

δij =







0, 1 ≤ i, j ≤ 255,
40, 256 ≤ i, j ≤ 512,
20, otherwise.

In other words, the error or uncertainty in the pixel values is zero for the upper
left quarter of the image, 20 for the upper right and lower left quarters and 40 for
the lower right. In Figure 3 below we show the lower and upper functions, ū−(x)
and ū+(x), respectively, produced by a fractal coding of this multifunction.
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Figure 3. The upper (top) and lower (bottom) functions, ū+ and ū− respectively, of the
attractor multifunction Ū produced by the IFSMF fractal coding procedure described
in the main text.
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