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Abstract
Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-
term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently 
accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, 
and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and 
stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current 
challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced 
the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflamma-
tion, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, 
immunoresponse, extracellular vesicles, and microRNAs, are discussed.
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Introduction

Recent research in cardiological and neurological fields has 
shown that pathophysiological processes, once considered 
to lead solely cardiovascular or neurological manifestations 
respectively, may instead concomitantly affect both systems. 
Indeed, substantial available evidence has indicated a mul-
titude bidirectional connection between the cardiovascular 
and central nervous systems [1–3]. In 1985, the term “neu-
rocardiology” was coined for the first time to describe this 
new interdisciplinary area, which examines the interaction 
between the cardiovascular and autonomic nervous systems 
in pathological states [4].

In this context, accumulating clinical and experimental 
studies suggest a causal relationship between myocardial 
infarction (MI) and brain pathological alterations. MI and 
subsequent revascularization therapies could lead to tran-
sient reduction in cerebral blood flow, thereby damaging 

the brain [5]. It has also been argued that vascular inflam-
mation, which is common features of MI patients, could 
be involved in the induction of depression symptoms [6]. 
Patients with MI have a high prevalence of behavioral dis-
orders, such as anxiety and depression [7–9] and several 
associated symptoms, including cognitive deficits [10, 11]. 
In particular, a recent population-based cohort study showed 
that patients with MI exhibited a significantly higher risk 
of anxiety-like disorders (adjusted hazard ratio = 5.06) and 
depressive disorders (adjusted hazard ratio = 7.23) than those 
without MI, during the first 2 years of follow-up [9]. A large 
meta-analysis comparing patients with or without depres-
sion after MI showed that depression was associated with 
a 2.7-fold increased risk of cardiac-related death, a 2.3-fold 
increased risk of all-cause death, and a 1.6-fold increased 
risk of cardiovascular events in the 2 years after an acute MI 
[12]. Similarly, a recent meta-analysis, including 16 stud-
ies that enrolled patients with established acute MI, showed 
that MI patients with anxiety (prevalence ranged from 5.5 
to 58.2%) had a significant long-term poorer prognosis (risk 
ratios = 1.27) and increased long-term major adverse cardiac 
events (MACEs) (risk ratios = 1.54) than those without anxi-
ety [13]. On the other side, the casual relationship between 
MI and dementia is instead not fully demonstrated. In fact, 
only two studies have examined the risk of dementia after 
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MI, but with equivocal findings [14, 15]. A case–control 
study failed to demonstrate a clear association between 
dementia and MI [14], whereas a cohort study showed an 
increased risk for patients with unrecognized MI, but not for 
patients with recognized MI [15].

Several studies have also demonstrated the association 
between MI and stroke [16]. These two diseases could 
evolve in parallel since they share the same risk factors, 
such as hypertension, diabetes, arrhythmias (including atrial 
fibrillation), high cholesterol levels, smoking, and chronic 
kidney disease [17]. At the same time, MI is considered one 
of the etiological causes of stroke [18]. It has been observed 
that patients with MI have a higher risk of stroke in the 
first 4 weeks immediately after acute MI than in the corre-
sponding period of 4 weeks to 1 year after MI, and this risk 
remains high for the first 12 weeks [19, 20]. Of note, the risk 
of ischemic stroke was similarly elevated for up to 12 weeks 
for both ST-elevation myocardial infarction (STEMI) and 
non-STEMI [20], while the cumulative 3-month and 1-year 
ischemic stroke incidence were higher among patients with 
coronary artery bypass surgery (CABG) than among patients 
without CABG [21]. Over the last decade, the relative risk 
of ischemic stroke within 30 days [22] and 1 year [23] after 
acute MI has decreased by about 10% and 20% respectively, 
likely due to increased use of reperfusion therapies and 
more intense treatment with statins, acetylsalicylic acid, 
and P2Y12 inhibitors [21–23]. A recent study demonstrated 
that unrecognized MI, which makes up between one-third 
to one-half of all MI events [24], is also associated with an 
increased risk of stroke [25]. Relevantly, stroke following MI 
impairs the overall prognosis, since patients with ischemic 
stroke after acute MI have higher morbidity and mortality 
rates both in the short and long terms than patients with-
out stroke [26]. In this respect, a recent large retrospective 
cohort study showed that the perspective of 1‐year mortality 
was about 15% higher for patients with acute MI plus stroke 
(51.5%) than for those with MI without stroke (37.1%) [20].

Despite this evidence, the precise underlying relation-
ship between MI and stroke has not yet been elucidated. 
It is likely that the mechanisms could be different for early 
and late ischemic stroke after MI. Early ischemic stroke 
may be originated from embolization of blood clots in the 
left atrium after atrial fibrillation, or from mural thrombus 
formed in hypokinetic segments of the left ventricle [16], 
while late ischemic stroke may be caused by the presence 
of the mutual underlying risk factors. Instead, hemorrhagic 
stroke may be induced by antithrombotic medication to 
prevent the reoccurrence of MI. In addition, the incidence 
of both ischemic and hemorrhagic strokes was higher with 
percutaneous mechanical circulatory support device use in 
comparison to those without device in patients with STEMI 
and cardiogenic shock, suggesting that patients with devices 

may be hemodynamically sicker and require increased use 
of anticoagulation [27].

Overall, these findings suggest that the etiopathology of 
stroke after MI is a complex process. MI may result from 
a generalized and severe atherosclerotic disease associated 
with a systemic inflammation and alterations in the function 
of the neurocardiac axis [28] that, in turn, may increase the 
ischemic stroke risk. Although the improvement of medical 
treatment for hypercholesterolemia and pro-thrombotic sta-
tus among patients with MI has reduced the risk of stroke, 
this one remains a current challenge. Growing evidence, 
especially from experimental studies and still to be consoli-
dated, suggest that additional mechanisms could be involved 
in stroke development after MI. Thus, in this review, we will 
focus on these other possible signaling mechanisms relayed 
from the ischemic heart to the brain and the resulting altera-
tions in brain functioning.

Mechanisms of heart–brain interaction 
after MI

Figure 1 summarizes all the mechanisms discussed.

Immunoresponse and inflammation

It is widely documented that the immune system and inflam-
matory processes are activated following MI [29]. After 
MI, dying cardiomyocytes and the other cells populations 
in cardiac tissue release damage-associated molecular 
patterns (DAMPs) that can be recognized by pattern rec-
ognition receptors (PRRs) expressed by several immune 
cells, including neutrophils, monocytes/macrophages, and 
dendritic cells. In particular, cardiac resident CCR2+ mac-
rophages are activated by DAMPs through binding with the 
toll-like receptor (TLR) 9, and, as a result, they increase the 
expression of the chemokine (C-X-C motif) ligand CXCL2 
and CXCL5, stimulating the migration of neutrophils into 
cardiac ischemic tissue [30]. In turn, releasing their granule 
contents, neutrophils increase vessel permeability and pro-
mote, together with activated macrophages, the migration of 
monocytes to the site of inflammation [31]. The subsequent 
excessive production of the reactive oxygen species (ROS) 
and impairment of anti-oxidant system as well as enhanced 
production of matrix metalloproteinases (MMPs), pro-
inflammatory cytokines, and chemokines, further aggravate 
inflammation [32]. Experimental and clinical studies showed 
that also the adaptive immune cells contribute to inflamma-
tion following MI. Indeed, lymphocytes, especially CD4+ 
T cells, are activated after acute coronary syndrome (ACS) 
and MI [33–35], and B cells can influence the monocyte 
migration after MI producing the chemokine CCL7 [36].
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The activated immunoresponse and the inflamma-
tory processes, necessary for cardiac remodeling and 
scar formation, are localized not only in the cardiac tis-
sue, but also at the systemic level, as demonstrated by 
the high levels of circulating cytokines, such as TNF-α, 
IL-1, and IL-16, which persist for several weeks after the 
ischemic event and correlate with deteriorating cardiac 
function and increased mortality [37–41]. The circulat-
ing cytokines may evoke a cascade of events in the cer-
ebral circulation, including thrombus formation [16]. In 
parallel, it has been suggested that systemic inflamma-
tion induce neuroinflammation, namely, increasing pro-
inflammatory cytokines in the brain, within few minutes 
from MI [40, 42], and this inflammatory condition may 
persist even longer, approximately 6–8 weeks [40], after 
the initial peripheral inflammation has subsided [43]. The 
increased levels of cytokines in the brain may be due to the 
passage of peripheral cytokines through the blood–brain 
barrier (BBB). However, substantial increase in hypotha-
lamic cytokines early after MI is not easily explained since 
cytokines are too large to readily cross the BBB. Thus, 
active transport of peripheral pro-inflammatory cytokines 
across the BBB or cytokines-mediated endothelial leakage 
and altered BBB permeability could be the possible routes 
[43, 44]. In this context, it was recently demonstrated that 

the pro-inflammatory DAMP, high mobility group box 1 
(HMGB1), whose serum concentration increases early 
after the acute MI [45], dramatically enhances permeabil-
ity in primary human brain microvascular endothelial cells 
and in human cerebromicrovascular endothelial cell line, 
a widely used model of human BBB in vitro [46]. This 
BBB alteration is matched by a significant downregulation 
of the zona occludin-1 (ZO-1) expression at intercellu-
lar at tight junctions [46]. Cytokines transport across the 
BBB could also be mediated by circulating EVs which are 
enriched with pro-inflammatory cytokines after MI [47]. 
Otherwise, the high level of pro-inflammatory cytokines 
may be originated from an increase in local production, 
but the underlying mechanism is not clearly elucidated. 
One hypothesis has suggested that pro-inflammatory 
cytokines upon crossing BBB could induce PGE2 pro-
duction in endothelial cells of the cerebral blood vessels 
[48], leading to an increase in cerebral cytokine produc-
tion. Furthermore, circulating cytokines could themselves 
stimulate microglia and astrocytes to produce cytokines. 
Another hypothesis suggested that elevated levels of 
angiotensin II and aldosterone following MI could initi-
ate inflammatory response through induction of ROS [48]. 
The available evidence suggests that neuroinflammation 
after MI is a complex process in which several actors are 

Fig. 1   Mechanisms and cerebral effects of heart–brain interaction 
after MI. Brain alterations after MI may be caused by several mecha-
nisms, including systemic inflammation, activation of the renin–

angiotensin–aldosterone system (RAAS), circulating cardiac-derived 
DAMPs, EVs, and miRNAs, and reduced cardiac output
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involved in its occurrence and that integrates cellular and 
molecular responses, involving different cellular lineages 
(see “Neuroinflammation”).

EVs

EVs are nanometer-sized, lipid membrane-enclosed vesicles 
released by cells into the extracellular space to facilitate 
intercellular communication in diverse cellular processes 
[49]. EVs provide a unique mode of long-range delivery of 
lipids, metabolites, and proteins as well as ribonucleic acids 
(RNA) and deoxyribonucleic acids (DNA) from donor cells 
to distant recipient cells. A key role in regulating the EVs-
mediated interactions is played by the membrane-bound 
signaling proteins of EVs, which interact with the extra-
cellular environment determining the cell types they target. 
EVs have been traditionally subdivided into three major 
classes according to their diameter: exosomes (20–150 nm), 
microvesicles (also named microparticles; 100–1000 nm), 
and apoptotic bodies (> 500 nm) [50], but they could be 
often classified according to their surface proteins.

A growing number of experimental and clinical studies 
found that the level of microvesicles (MVs) in patients with 
coronary heart disease (CHD) increased significantly [47, 
51, 52]. In particular, leukocyte-derived (CD45+lMVs), 
endothelium-derived (CD31+CD42−eMVs), platelet-
derived (CD31+CD42+pMVs), erythrocyte-derived 
(CD235a+ ErMVs), and annexin-V+ MVs significantly 
increased in plasma of patients with subgroups of CHD, 
including stable angina (SA), unstable angina (UA), and 
MI (NSTEMI and STEMI) [53–55]. However, it is still 
controversial which EVs subpopulations are most useful 
for diagnostic or prognostic purposes. A recent meta-
analysis, including 599 participants (137 healthy sub-
jects, 148 patients with SA, 147 patients with UA, and 167 
patients with MI), found that the level of MVs, especially 
CD31+CD42− and CD144+ eEVs, was higher in patients 
with CHD than in healthy subjects and had an increas-
ing trend with the degree of CHD: SA < UA < MI [56]. 
Moreover, an increase in cardiomyocyte-derived EVs was 
found in plasma samples of STEMI patients, as well as 
in mice subjected to permanent left anterior descending 
(LAD) artery ligation [52]. EVs released from cardiomy-
ocytes under pathophysiological conditions may convey 
“danger or inflammatory signals” to other cells. In vitro, 
hypoxia-induced released of EVs carrying TNF-α [57] and 
heat shock protein 60 (HSP60), a ligand of TLR4, which 
activates the innate immune response [58]. In mice with 
permanent LAD artery ligation, cardiac EVs were tran-
siently accumulated in the infarcted heart, with a peak 
between 15 and 24 h post-MI, and originated mainly from 
cardiomyocyte (caveolin-3+; Troponin T+), cardiac fibro-
blast (CD90.2+), and endothelial cells (CD31+CD41−), 

while only a small population of leukocyte-derived CD45+ 
EVs was detected. These EVs were taken up by infiltrat-
ing monocytes/macrophages and regulated local inflam-
matory responses, leading an increased release of IL-6 
and chemokines CCL2 and CCL7 [59]. After MI, circu-
lating EVs could be also enriched with pro-inflammatory 
cytokines. Indeed, 24 h after MI in rats, plasma-derived 
EV were enriched with pro-inflammatory cytokines IL-1α, 
IL-1β, and Rantes. When added to the perfusates of iso-
lated-perfused hearts, these EVs induced cardiomyocyte 
death and cardiac dysfunction through activation of the 
TLR4/NF-κB axis, whereas circulating EVs from healthy 
rats did not [47].

To date, it is widely accepted that EVs released by mul-
tiple cell types in response to MI participate both in the 
inflammatory injury and in tissue repair, but it is likely that 
they may influence other organs, such as the brain.

EVs were suggested as important signals mediating 
heart–brain interactions [1]. In fact, EVs released from the 
heart in normal or pathological conditions could influence 
both heart and brain, since some of molecular mechanisms 
and signaling pathways involving EVs were similar in MI 
and stroke. Although they are two distinct pathological 
conditions affecting different organs and type of cells, cir-
culating EVs in patients after MI and stroke showed sev-
eral similarities in proteins and microRNAs (miRNA) [60]. 
In details, these EVs have in common 14 proteins which 
were absent in healthy controls, such as apolipoprotein L1 
(APOL1) and apolipoprotein C (APOC); involved in lipid 
metabolism; and complement C4 (C4) and C-reactive pro-
tein (CRP), factors, and activators of the complement sys-
tem, which is activated after stroke and MI and contributes 
to tissue injury after ischemia. However, the hypothesis of 
circulating EVs as possible mediators of heart–brain axis 
was supported by two studies demonstrating that their pas-
sage through the BBB is very low in non-pathological con-
ditions, but it was increased by orders of magnitude after 
chronic or acute systemic inflammation [61, 62]. Upon 
reaching the brain, likely via adsorptive-mediated transcy-
tosis, EVs were able to transfer functional genetic material 
leading to concomitant changes in miRNA content of the 
receiving cells. Of note, erythrocyte-derived EVs in pres-
ence of systemic inflammation or obtained from Parkinson’s 
disease patients provoked an increase in microglial inflam-
matory responses [62]. In line, a more recent study demon-
strated that peripheral circulating inflammatory exosomes 
induce neuroinflammation also in absence of systemic 
inflammation. In details, serum-derived exosomes purified 
from LPS-challenged mice or from mice fed high-fat diet 
induce microglial and astrocytic activation and increase the 
expression of inflammatory cytokines in the brain of recipi-
ent mice. The authors suggested that ependymal cells in the 
third and lateral ventricles may be the main entry sites via 
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the blood cerebral spinal fluid brain barrier (BCSFB) for the 
exosomes to translocate into brain parenchyma, where are 
primarily taken up by microglial cells [63].

The mechanisms by which EVs cross the BBB are not 
fully elucidated. An endocytic, transcellular mechanism was 
reported to mediate the enhanced exosome transport through 
the BBB elicited by TNF-α in an in vitro BBB model [64]. 
Other studies suggested that clathrin-mediated transcytosis 
may play a role in EVs crossing the BBB [65, 66]. Finally, 
adsorptive mediated transcytosis and macropinocytosis were 
proposed as additional transcytotic mechanisms at the BBB 
that allow internalization of EVs without requiring them to 
be coated with specific transportation molecules [67, 68] 
(Fig. 2). Peripheral inflammation may also influence brain 
homeostasis through the activation of choroid plexus epithe-
lium (CPE) and the subsequent release of choroid plexus-
derived extracellular vesicles. In mice treated with LPS, EVs 
were secreted by CPE into the cerebrospinal fluid (CSF) and 
were taken up by astrocytes and microglia, which in turn 
respond with an inflammatory program. As a confirmation of 
the role of CPE, the effects of the peripheral inflammation-
induced EV production by the CPE cells were reversed by 
the injection of an exosome inhibitor, and this was reflected 
by reduced upregulation of inflammatory genes [69]. How-
ever, we cannot rule out that systemic inflammation may 
stimulate the release of EVs by peripheral immune cells, 
which could directly cross the BBB through leaky tight junc-
tion, and target brain cells.

Taken together, all these data suggest that circulating EVs 
released by peripheral organs under pathological conditions, 

including MI, could influence brain responses. However, to 
our knowledge, there are no studies that have assessed the 
cerebral effects of circulating EVs released after MI. Beyond 
reasonable hypotheses, future studies are needed to demon-
strate whether circulating EVs is one of mechanisms through 
MI influences cerebral behavior.

miRNAs

MicroRNAs are bioactive small non-coding RNAs, which 
interact with the complementary sequences in the 3′ untrans-
lated region (3′UTR) of protein-coding mRNAs, resulting 
in the inhibition of protein translation or mRNA degrada-
tion [70]. miRNAs are secreted into the extracellular space 
through three main mechanisms: (1) direct excretion from 
the cell upon binding to RNA-binding proteins, (2) bud-
ding off the cells through MVs formation, or (3) packaged 
into multivesicular bodies and released from the cells as 
exosomes [71].

miRNAs are involved in a myriad of biological processes, 
including proliferation, apoptosis, metabolism, differen-
tiation, epithelial-to-mesenchymal transition, regulation of 
insulin secretion, division of stem cells, embryonic devel-
opment and pattering, fetal growth, and immune system, 
including resistance to viral infection [72]. miRNAs may 
have cell-type-specific or tissue-specific expression patterns 
or may be expressed ubiquitously, but their expression could 
change in spatial as well as in temporal manner in pathologi-
cal conditions, suggesting miRNA as potential biomarkers 
[73, 74].

Fig. 2   Potential pathways of cytokines, miRNAs, and EV passage 
across the BBB. Cytokines and miRNAs could cross BBB through 
EV-mediated transcellular routes, such as macropinocytosis, adsorp-
tive mediated transcytosis, and clathrin-mediated transcytosis. In 

addition to transcellular routes, the breakdown of tight junction by 
DAMPs or inflammatory mediator may increase the permeability of 
cytokines and EVs at the paracellular route
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Significant changes of miRNA expression in periph-
eral total blood samples of patients with MI were reported. 
Although 121 different miRNAs were observed to be dys-
regulated [75], robust evidence was found only for miR-1, 
miR-133a/b, miR-208a, and miR-499, whose serum levels 
increased in humans and animals following MI [76–79]. All 
these four miRNAs are regarded as heart-specific miRNAs 
[73] and found in plasma carried by exosomes (miR-1, miR-
208, and miR-499) or as free-circulating compound (miR-
133) [79].

In addition to modulating the signaling pathways after 
MI, several studies showed that these miRNAs are involved 
in cerebral physiological and pathological conditions, sug-
gesting a possible mechanism through which MI affects the 
brain (Fig. 3). Circulating miRNAs are localized in MVs 
or bind to other plasma components such as high-density 
lipoprotein (HDL) particles and RNA-binding proteins [80]. 

Several evidences suggested that circulating EV-associated 
miRNAs are able to cross the BBB using exosomes [81–83]. 
However, more research must be done to elucidate how cir-
culating cardiac-derived miRNA, in particular EV-free cir-
culating miRNAs, cross BBB after MI.

miR-1 is specifically expressed in adult cardiac and 
skeletal muscle tissues, and the increase of its serum level 
after MI suggests a necrotic death of cardiac myocytes as 
source [84]. Recently, it was proven that miR-1 might con-
trol the generation of synapses, brain growth, learning, and 
memory through regulation of brain-derived neurotropic 
factor (BDNF) and impact on target genes [85]. miRNA-1 
also played a role in the damage induced by hypoxia in neu-
rons affecting the expression of HSP-70 and consequently 
mediating hypoxia-induced apoptotic insults via an intrinsic 
Bax–mitochondria–caspase protease pathway [86]. In line, 
miRNA-1 knockdown by injections of anti-miR1 reduced 

Fig. 3   The possible role of miRNAs released from the heart after MI 
in mediating cerebral effects. An overview of the molecular mecha-
nisms and cerebral effects of the miRNAs whose expression are 

increased in the peripheral blood of patients with MI and for which it 
has been reported an involvement in cerebral physiological and path-
ological conditions
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the infarct volume in transient middle cerebral artery occlu-
sion (MCAO) models induced by endothelin-1 in female rats 
[87] and by intraluminal filament in male rats [88], likely 
modulating the IGF signaling pathway. Two recent studies 
have clearly demonstrated the possibility that the heart may 
affect the brain through miR-1. Indeed, transgenic mice with 
cardiac-specific over-expression of miR-1 showed cognitive 
impairment that may be associated, at least in part, with the 
downregulation of BDNF expression in the hippocampus. 
The authors reported also an increased expression of miR-1 
in the blood and hippocampus, although the expression of 
primary miR-1 was not changed. The latter data strongly sug-
gested that circulating cardiac-derived miR-1 is very likely 
transport from the blood to brain, leading to regulation of cer-
ebral target genes such as BDNF [81]. In mice with perma-
nent LAD ligation, MI induced an increase of miR-1 levels 
in blood and hippocampus, likely originated from infarcted 
heart, leading neuronal microtubule damage and a decrease 
in the tubulin polymerization, inhibiting protein TPPP/
p25 expression in the hippocampus. These changes were 
prevented by the selective knockdown of miR-1 in the hip-
pocampus [82]. Relevantly, in transgenic mice with cardiac-
specific over-expression of miR-1 and subjected to permanent 
LAD ligation, MI induced a reduction of learning, memory, 
and efficiency of synaptic transmission, likely through down-
regulation of BDNF, GluA1 subunit of the AMPA receptor, 
and dephosphorylation of GluA1. All these effects were pre-
vented by the injection of a miR-1 antisense inhibitor in the 
CA1 area of the hippocampus [89]. Taken together, these 
results strongly indicate that the cardiac-originated miR-1 is 
a direct actor of brain dysfunction after MI.

Instead, miR‐133b has been suggested to regulate neu-
rite outgrowth. Indeed, inhibition of miR‐133b expres-
sion by synthetic antisense oligonucleotides resulted in 
impaired locomotor recovery and reduced regeneration of 
axons after spinal cord injury (SCI) in adult zebrafish. The 
authors showed that miR-133b targets the Ras homolog gene 
family member A (RhoA), an inhibitor of axonal growth, 
as well as other neurite outgrowth‐related molecules [90]. 
Furthermore, in mice with SCI, the enhanced expression of 
miR-133b by lentiviral vector injection improved locomotor 
recovery by downregulation of the expression level of RhoA 
and chondroitin sulfate proteoglycans, and by decrease of 
infiltrating microglia/macrophage [91]. The same authors 
showed that transfection of miR-133b stimulated neurite 
outgrowth in cultured hippocampal neurons, likely decreas-
ing the expression of RhoA, but also of xylosyltransferase 
1 (Xylt1), an enzyme involved in the synthesis of chondroi-
tin and dermatan sulfates, ephrin receptor A7 (Epha7), a 
key regulator of axon guidance, and purinergic receptor 
P2X ligand-gated ion channel 4 (P2RX4). In cell culture 
models of Parkinson’s disease, the overexpression of miR-
133b ameliorated the MPP+-induced axon degeneration, 

blocking the MPP+-induced decrease in the Bcl-2/Bax 
ratio and increasing the activity of the pro-survival kinase 
Akt (p-Akt) [92], and was involved in the downregulating 
of α-synuclein [93]. Finally, the neuroprotective effect of 
miR-133b was also observed in a rat model of cardiac arrest 
[94]. In details, miR-133b incorporated in EVs, which were 
released from transplanted bone marrow mesenchymal stem 
cells (BMSCs), promoted survival of neuronal cells via reg-
ulation of JAK1 and AKT-GSK-3β-WNT pathway.

A recent study suggested that increased expression of 
miR-208 may augment susceptibility to schizophrenia by 
simultaneously conferring susceptibility to apoptosis and 
altering neural processing and connectivity through the sup-
pression of BCL2 and calcium voltage-gated channel subu-
nit alpha1 C (CACNA1C), respectively [95]. Furthermore, 
miR-208 reduced the expression of the RNA-binding protein 
quaking (QKI), whose suppression commonly contributes to 
demyelination of the neurons [96].

The serum level of miR-499 was markedly increased in 
the traumatic brain injury (TBI) patients compared with the 
healthy subjects and was associated with injury severity 
and clinical outcome, suggesting that miR-499 may serve 
as biomarker for the diagnosis and progression monitoring 
of TBI and that they may be involved in TBI pathogenesis 
[97]. However, the cerebral expression levels of miR-499-5p 
were gradually decreased after perinatal hypoxic-ischemic 
encephalopathy (HIE) in rats, while miR-499-5p injection 
significantly improved long-term neurological function 
recovery and decreased HIE-induced brain injury, reducing 
apoptotic neurons in the hippocampus, the infarct size, and 
level of CRP [98].

Cerebral alterations as a consequence of MI

Neuroinflammation

Neuroinflammation, defined as an inflammatory response 
within the brain, is mediated by the production of cytokines, 
chemokines, and ROS, which are produced by microglia, 
astrocytes, peripherally derived immune cells, and endothe-
lial cells (Fig. 4). It is widely recognized that MI is able 
to induce neuroinflammation, which may persist even long 
after the initial peripheral inflammation has subsided [43], 
approximately 6–8 weeks after MI in the hypothalamus of 
rats [40].

A recent study showed that MI, obtained in mice by per-
manent LAD coronary artery ligation, induced a cerebral 
increased expression of TNF precursor protein, a more than 
doubled TNFR1 expression, and almost 70% decline in 
TNFR2 expression, suggesting a shift toward a more pro-
inflammatory state [41]. Increased brain cytokines can affect 
several processes involved in neuronal function, including 
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apoptosis, oxidative stress, and metabolic processes [99]. 
In addition, neuroinflammation is thought to be a key for 
Alzheimer’s dementia progression [100], and it is able to 
influence behavioral aspects, including anxiety, cognitive 
deficit, and depression [101]. In this regard, sex and estrogen 
level could influence neuroinflammation and depression-like 
behavior. A recent study in male and female rats with per-
manent LAD artery ligation showed that cytokines (TNF-α, 
IL-1β, IL-2, and IL-6) increased significantly in the prefron-
tal cortex of MI male rats, while no changes were found in 
MI female rats [102].

Although circulating cytokines could cross BBB, as 
reported in “Immunoresponse and inflammation,” recent 
data indicate that the increase in pro-inflammatory cytokines 
involves the activation of cerebral cells [40, 103]. In 
response to injury or inflammation, context-specific signals 
can shape both astrocyte and microglial responses. In this 
context, for example, it has been shown that the blocking of 
TNF-α by its antagonist etanercept or by its genetic dele-
tion causes a reduction in microglia activation, pointing the 
pivotal role of this cytokine in glial activation in mice with 
permanent LAD coronary ligation [104]. In light of these 
evidences, several studies have analyzed the effect of MI on 
microglia and astrocytes.

Infarcted rat, subjected to permanent LAD coronary 
ligation, showed microglial activation in the paraventricu-
lar nucleus (PVN) of the hypothalamus, in periaqueductal 
grey (PAG), in rostral ventrolateral medulla (RVLM), in 
nucleus tractus solitarius (NTS), and in area postrema 
(AP) [105, 106] during the late post-ischemia phases, but 
not in the earlier phase (within 1 week) [107]. In contrast, 
an early activation of microglia was observed in more 
recent studies [108–110]. In particular, cardiac ischemia/
reperfusion (I/R) induced a shift of microglia phenotype 
from the beneficial M2 to the inflammatory harmful M1 at 
the end of 120 min of reperfusion period. Indeed, cardiac 
I/R induces an increase in Iba-1 positive cells, CD11b+/
CD45+high microglia, and microglial dendritic volume, 
while filament length and dendrite complexity signifi-
cantly decreased, suggesting that microglia tends toward 
an ameboid shape or M1 phenotype, indicating both acti-
vation and acquisition of phagocytic properties. These 
effects are, almost in part, mediated by the proprotein 
convertase subtilisin/kexin type 9 (PCSK9). Indeed, its 
cerebral expression is increased during cardiac I/R injury, 
and its inhibition reduces neuronal inflammation possibly 
because of a reduction of systemic inflammation [109].

Fig. 4   Summary of mechanisms for neuroinflammation after MI. 
Circulating pro-inflammatory cytokines, DAMPs, and angiotensin II 
(Ang II) released from the ischemic heart reach the brain through the 
blood. Here, they can compromise integrity and enhance permeability 
of BBB, reducing the expression of junctional proteins such as ZO-1, 
occludin, and claudin-5. Ang-II and pro-inflammatory cytokines 
induce the activation of astrocytes and stimulate resting microglia to 
assume the pro-inflammatory M1 phenotype, which is induced also 

by the excessive release of ATP from activated astrocytes. In turn, 
M1 microglia and activated astrocytes produce large amounts of 
cytokines and ROS, which perpetuate neuroinflammation and lead to 
enhanced neuronal apoptosis and decreased neurogenesis. Further-
more, they produce an imbalance between excitatory and inhibitory 
neurotransmission, potentiating excitatory (glutamatergic and adren-
ergic) currents and inhibiting GABAergic currents
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However, the microglial activation was relatively selec-
tive within the PVN, since changes in the phenotype of 
microglia and a re-arrangement of its cytoskeleton occur 
in the PVN but not in the adjacent areas and in the cortex 
of MI rats [107, 111, 112]. Taken together, these results 
seem to suggest that, unlike other peripheral inflamma-
tory conditions such as inflammatory bowel disease, MI 
not induces a generalized increase in the permeability of 
the BBB that could explain the activation of microglia, but 
only in selected brain regions that are centers for cardiovas-
cular autonomic regulation [43, 103, 105]. This hypothesis 
has been challenged by recent studies showing a decreased 
expression of BBB tight junction proteins, claudin-5, and 
occludin, in whole brain [110], and an increased number of 
hypertrophic and dystrophic-like microglia in the prefrontal 
cortex, thalamus, and hippocampus of rats with permanent 
LAD coronary ligation [113].

Analyzing the results, another consideration to take 
into account is the responsiveness of microglia to MI that 
seems different between rats and mice. Contrary to mice, 
in rats, microglia remain active for a long time after MI, up 
to 16 weeks [107], whereas, after 18 days from permanent 
LAD artery ligation, in MI mice was reported alternative 
activated hyper-ramified microglia in PVN, that may repre-
sent a state of increased alertness rather than reflecting neu-
roinflammation [114]. Similarly, in a study using permanent 
ligation of the coronary artery in mice, no changes in reac-
tive microgliosis were observed 3 months post-MI [115]. 
This discrepancy could be explained by the phasic pattern 
of microglia activation or the models used in mice. Indeed, 
a recent study, conducted in a mouse model of permanent 
cardiac ischemia, observed biphasic activation of microglia, 
with activity peaks after 1 and 8 weeks of ischemia, inter-
spersed with a decline to 4 weeks [2]. The authors state 
that the systemic inflammatory response to acute MI may 
serve as the primer for the subsequent reoccurrence of neu-
roinflammation in the chronic phase of MI leading to heart 
failure.

It was speculated that the release of cytokines from acti-
vated microglia could stimulate neurons of PVN, contribut-
ing to the elevated sympathetic nerve activity seen in chronic 
heart failure [116]. In this context, two recent studies in rats 
with permanent LAD artery ligation showed that MI acti-
vates microglia which subsequently release cytokines in the 
PVN. In the first study, MI induced production of ATP which 
activates microglia through P2X7 receptor acutely promot-
ing the synthesis of TNF-α and IL‐1β in the PVN [117]. 
The second study showed that MI induces, within the PVN, 
microglia stimulation through activation of macrophage-
inducible C-type lectin (Mincle), a receptor primarily 
expressed in microglia which recognizes the DAMPs derived 
from dead cells [118], further causing sympathetic hyper-
activity via NLRP3/IL‐1β dependent pathway [108]. The 

authors speculated that SAP130, a spliceosome-associated 
protein 130, and cytokines such as TNF‐α and IL‐6 derived 
from MI crossing through the BBB, could activate Mincle in 
microglia, resulting in pro‐inflammatory cytokines release 
and broader inflammatory response. However, how cytokines 
could affect sympathetic activity post‐MI is unknown. Previ-
ous studies have demonstrated that TNF-α and IL‐1β secre-
tion promotes expression of activated nuclear transcription 
factor kappa B (NF‐kB) and ROS, which could enhance glu-
tamatergic and adrenergic excitatory transmission and attenu-
ate GABAergic inhibitory activity in the PVN [119, 120].

It is well documented that microglia activation occurs 
in animal models of stress-induced depression [121]. Thus, 
the activation of microglia was suggested to be involved in 
depression-like behavior developing in the chronic phase 
after MI. In the hippocampus of mice undergoing cardiac 
I/R, an increase in the number of microglial cells has been 
observed, and it is associated with a worsening of perfor-
mance in learning tests involving hippocampus functionality 
[122]. Similarly, after permanent LAD coronary ligation, 
an increase in microglia and its activation, associated with 
a worsening of cognitive function, has been observed in the 
dentate gyrus of the hippocampus in mice [104, 114], and 
in dentate gyrus of the hippocampus and in the PVN of the 
hypothalamus in rats [106, 123]. It is likely that microglia 
activation, increasing local secretion of pro-inflammatory 
cytokines, could exacerbate neuronal activity [103, 105] and 
induce neuronal death [112] leading to behavioral signs of 
depression.

In additions to microglia, MI could activate also astro-
cytes. As observed in the amygdala of rats, MI induced 
morphological changes of astrocytes starting from 3 days 
after permanent LAD artery ligation, and 14 days post-MI, 
several GFAP+ astrocytes showed hypertrophied cyto-
plasm and highly ramified processes [123]. This evidence 
was confirmed by a more recent study showing this typical 
“activated” morphology of GFAP+ cells in the PVN of rats 
at 1 day after permanent LAD. Relevantly, astrocytes inhi-
bition, by PVN injection of fluorocitrate, reduced the MI-
induced expression of pro-inflammatory cytokines (TNF-α 
and IL-6), neuronal activation, and ventricular arrhythmia 
occurrence, and improved ventricular electrical instability 
[124]. Similarly, an early astrocytic activation was observed 
in rat model of cardiac I/R, as suggested by the increased 
numbers of GFAP+ cells, dendritic volume and complexity, 
and decreased filament length at the end of the 120 min of 
reperfusion period [109]. As for microglia, a recent study 
suggested that astrocytes regulate sympathetic activity via 
the release of ATP in the RVLM of rats with MI [125]. On 
the contrary, in MI mice with permanent LAD artery liga-
tion were not observed an increased density of astrocytes 
in the hippocampus [114] and in the rostral ventrolateral 
medulla [126] after MI. This discrepancy in the effect of 
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cardiac ischemia on astrocytes activation appears to be 
species-related, as seems also for microglia. Overall, these 
results suggest that astrocyte activation is involved in neu-
roinflammation and in the early phase of cardiac sympa-
thetic hyper-activation following MI. This action seems to 
be mediated by the angiotensin II type 1 receptor (AT1R), 
which is weakly expressed in astrocytes under basal condi-
tion. The GFAP-specific AT1R deletion in mice with perma-
nent LAD artery ligation inhibited the MI-induced upregu-
lation of brain AT1R, despite the preservation of neuronal 
AT1R expression, and enhanced central sympathetic out-
flow, probably by inhibiting reactive oxygen species (ROS) 
[126].

Neuronal apoptosis, neuronal plasticity, 
and impaired neurogenesis

Inflammation is often associated with enhanced pro-apoptotic 
processes and altered neurogenesis, and these phenomena 
happen also in the brain after MI and could contribute to the 
development of the depressive-like behavior.

In rats subjected to cardiac I/R, MI acutely decreased 
P13K activity and increased Bax/Bcl-2 ratio, caspase-3 
activity, and numbers of TUNEL-positive cells in the amyg-
dala, suggesting a possible link with the major depressive 
disorder observed following MI [127]. The same result on 
a caspase-3 activation in the amygdala of rats with cardiac 
I/R was observed in a recent study [128]. Interestingly, in 
the same animal model, an increased Bax/Bcl-2 ratio was 
observed in the hypothalamus and prefrontal cortex, but not 
in the amygdala and hippocampus, at subacute phase after 
MI. Together with the absence of enhanced caspase-3 activ-
ity, these results suggest a caspase-3 independent mechanism 
or different time of apoptosis activation in these cerebral 
structures after MI [129], as demonstrated by another study 
[130].

It was suggested that the MI-induced brain apoptosis may 
be ascribed to oxidative stress, mitochondrial dysfunction, 
and enhanced permeabilization of the mitochondrial outer 
membrane. The latter may lead to the release of pro-apoptotic 
proteins including Bax and cytochrome c, which activates 
caspase cascade [110]. Another study in a rat model of car-
diac I/R also showed that MI decreased the expression of the 
receptor-interacting serine/threonine-protein kinase 1 (RIPK1), 
a protein implicated in the plasma membrane permeabilization 
and necrotic cell death, likely due to caspase-8-mediated cleav-
age, shifting the cell towards apoptosis [131]. An activation 
of apoptosis was also observed in rats with permanent LAD 
artery ligation. MI induced an increased mRNA expression 
of caspase-3, caspase-8, and caspase-9 and Bcl-2 in the hip-
pocampus, which were associated with anxiety-like behavior 
[132]. A recent study demonstrated that enhanced plasma 
level of TNF-α contributes to apoptosis via activation of the 

extrinsic pathway in the limbic system after MI. The inhibition 
of TNF-α by PEG sTNFRI, a soluble p55 type 1 TNF receptor, 
reversed the MI-induced increase of caspase-3 and caspase-8 
activity in medial amygdala, dentate gyrus, and hippocampus 
(CA1) [133].

The role of TNF-α signaling in the MI-mediated neurode-
generative processes is also supported by evidence showing 
that pharmacological blocking or genetic deletion of TNF-α 
ameliorated the reduction of cortical dendritic spines in mice 
with permanent LAD coronary ligation [104]. The dendritic 
spine density was also found to be reduced in the hippocam-
pus of rats with transient LAD artery ligation [109, 110]. A 
decreased loss of dendritic spine density was observed after 
inhibition of PCSK9, suggesting its involvement in neuronal 
damage following cardiac I/R insults [109]. On the contrary, 
two studies showed no neurodegeneration and neuronal 
death in the dentate gyrus and hippocampus (CA1) of rats 
[134] and mice [135] with permanent LAD artery ligation. 
These contrasting results may be caused by the short time 
scale of apoptosis, the time of sampling, or the sensibility 
of techniques utilized.

In addition to apoptosis, MI could also affect neurogen-
esis. In mice with transient LAD artery ligation, neurogen-
esis in the granular zone of dentate gyrus was significantly 
decreased both acutely and chronically after MI, potentially 
contributing to the cognitive decline [122]. In contrast, in 
rats with permanent LAD artery ligation, MI enhanced 
cell proliferation and neuroblast differentiation in the sub-
granular zone of the dentate gyrus [134], while in mice 
with permanent LAD artery ligation, MI did not influence 
neurogenesis [41, 135]. In a more recent study using mice 
with permanent LAD artery ligation, neurogenesis slightly 
decreased in the hippocampus and in the piriform cortex 
[114]. These discrepancies may be ascribed to difference of 
the model, the species, and the age of animals.

Future prospective

As detailed in this review, the innate immune response 
and systemic inflammation could play a pivotal role in the 
development of neuroinflammation after MI. Thus, it would 
be rational to suppose that appropriate immunosuppres-
sant and anti-inflammatory therapeutic strategies may have 
potential beneficial effects on the brain in post-MI condi-
tions. Although there are no studies in this regard, some 
data obtained in different experimental or clinical contexts 
of systemic inflammation appear promising. In a model of 
chronic inflammatory disorder, as rheumatoid arthritis, the 
antagonism of TNF-α with infliximab reduced the infarct vol-
ume and the amount of microglia and activated macrophages 
in the ischemic hemisphere and improved the integrity of 
BBB and the neurological deficit in mice with ischemia/ 
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reperfusion (I/R) brain injury [136]. In patients with psoriasis, 
the antagonism of TNF-α with etanercept also reduced the cir-
culating levels of inflammatory and cardiovascular proteins, 
such as TNF-α, IL-1β, IL-6, and IL-8 [137]. Moreover, the 
antagonism of IL-1β with canakinumab significantly reduced 
the evidence of residual inflammatory risk in patients with 
prior MI [138]. Relevantly, the systemic administration of 
interleukin-1 receptor antagonist (IL-1Ra) has shown to be 
neuroprotective and increased post-stroke neurogenesis in a 
murine model of atherosclerosis, obesity, and insulin resist-
ance after cerebral ischemia, suggesting that this strategy as 
potential neuroprotective in patients with a raised inflamma-
tory burden [139].

However, this anti-inflammatory strategy is far to be dem-
onstrated safe in post-MI conditions, and instead could be 
contraindicated. Indeed, etanercept reduced systemic inflam-
mation but increased platelet activation in MI patients [140], 
possibly leading a higher risk of cardiovascular events. 
In line, high doses of infliximab, a chimeric monoclonal 
antibody to TNF-α, increased the combined risk of death 
from any cause or hospitalization for heart failure (hazard 
ratio = 2.84) in patients with moderate-to-severe heart fail-
ure [141]. In rats, infliximab had a slight protective effect 
in the early hours after MI, but in the following days, it 
exacerbated the cardiac dysfunction, likely blocking the 
functions of compensatory mechanisms after MI such as 
cardiac remodeling, preventing tissue repair, and promot-
ing further myocardial injury [142]. Altogether, these data 
suggest that a tolerable inflammatory process following MI 
could boost a healing procedure of heart tissue injuries and 
remodeling. Thus, anti-inflammatory strategies to reduce 
systemic inflammation after MI should be carefully balanced 
as they might interfere with cardiac tissue repair and healing.

In addition to cytokine antagonists, EVs could offer thera-
peutic chances for neuroprotection after MI, because of the 
low immunogenicity and toxicity, high blood circulation 
stability, and the unique ability of EVs to pass through the 
BBB. In particular, mesenchymal stem cell (MSC)derived 
EVs emerge as a potential candidate. This type of EVs could 
play a beneficial role in both the heart and brain in post-
MI conditions. Indeed, the treatment with MSC-derived 
EVs was shown to reduce infarct size and enhance cardiac 
function and geometry, by decreasing oxidative stress and 
activating pro-survival signaling, in several animal mod-
els of MI [143–145]. Parallel to the effectiveness at car-
diac level, MSC-derived EVs exerted also neuroprotective 
effects. In vitro studies have shown that MSC-derived EVs 
increase neuronal survival and stimulate neural cell regen-
eration, growth, and proliferation [146, 147]. Relevantly, 
MSC-derived EVs shifted microglia from activated pro-
inflammatory states towards homeostatic and shriveling 
functions after cortical injury in aged monkeys [148]. In rats 
with focal brain injury, human bone marrow, MSC-derived 

EVs attenuated neuroinflammation, decreasing the level of 
pro-inflammatory cytokines and chemokines, and the num-
ber of activated immune cells, such as astrocytes, microglia, 
and infiltrating leucocytes, including T cytotoxic cells [149]. 
However, the neuroprotective effects of EVs are not exclu-
sive of MSC-derived EVs. Indeed, treatment with platelet-
derived EVs increased proliferation of neural progenitor 
cells, induced angiogenesis, and improved general motor 
and cognitive functions in rats after permanent ischemic 
stroke [150].

Several evidence reveal that the mechanisms of neuro-
protective action of EVs might involve the transfer of spe-
cific miRNAs to resident cells [151, 152]. Various types 
of miRNAs could be involved in these processes, includ-
ing miR-133b [153]. In vitro studies have proven that EVs 
from astrocytes, which were treated with MSC-derived EVs 
over-expressing miR-133b, significantly increase neurite 
growth in primary cortical neuronal cultures subjected to 
oxygen–glucose deprivation (OGD) as compared to EVs 
derived from untreated astrocytes [154]. In vivo studies con-
firmed that EVs modulate responses after ischemic stroke by 
transferring miR-133b. Indeed, MSC-derived EVs improved 
functional recovery and exhibited increased axonal plastic-
ity and neurite remodeling in rats with transient cerebral 
ischemia. These neuroprotective effects were attenuated by 
the knocking-down of the miR-133b level in MSC-derived 
EVs, while were significantly enhanced by the miR-133b 
over-expression [83].

However, to translate MSC-derived EVs over-expressing 
miR-133b from the bench to the bedside, further studies 
evaluating the impact on the heart–brain axis, especially on 
the mutual interactions of these two organs in post-MI con-
ditions, should be performed. Indeed, the same EV-miRNA 
may affect different signaling pathways in the heart or in the 
brain, or exert different effects depending on the stage of 
heart disease after MI, with opposite effects on disease out-
comes. An example of this possible dual effect is provided 
by miR-1. In the early phases after MI, when the circulating 
level of miR-1 is increased, the antagonism of miR-1 with a 
specific antagomir exerted a significant protective effect on 
heart function, decreasing cardiomyocyte apoptosis and alle-
viating myocardial fibrosis and remodeling. The enhanced 
expression of miR-1 by a lentiviral vector exerted instead 
opposite effects [155]. In line, in an animal model of I/R 
injury using transgenic mice over-expressing miR-1, it was 
observed an increase of infarct size, apoptosis, and caspase-3 
expression [156]. On the contrary, miR-1 expression was 
decreased in failing hearts [157]. The restoring of miR-1 
expression was associated with normalized sodium–calcium 
exchanger (NCX)-1 expression and improved cardiac func-
tion in a chronic post-MI rat model of heart failure [157]. In 
mice with ligation of LAD, transplantation of MSCs over-
expressing miR-1 was more effective for cardiac repair and 
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for improved cardiac function, by enhancing cell survival 
and cardiomyocyte differentiation, compared to the MSCs 
without miR-1 over-expression [158]. In rat with MI, the 
upregulation of miR-1 expression partially contributed to 
the post-transcriptional repression of hyperpolarization-
activated cyclic nucleotide-gated channel (HNC) protein 
expression, which may contribute to the effect of spironol-
actone to reduce the incidence of MI-associated ventricular 
arrhythmias [159].

Altogether, these data suggest a dual role of miR-1 in the 
phases of heart disease post-MI. In the early phase of MI, 
miR-1 may regulate cell death and oxidative stress, while 
in the later phase may contribute to post-MI remodeling or 
function as compensatory mechanisms.

However, the neuroprotective effects of the antagonism 
of miR-1 in post-MI conditions were provided by solid evi-
dence (see “Mechanisms of heart–brain interaction after 
MI”) [81, 82, 87, 88]. To note, the heart-specific miR-1 over-
expression was shown to directly mediate brain dysfunction 
[81]. Indeed, the transgenic mouse model of cardiac-specific 
over-expression of miR-1–2 showed increased miR-1 levels 
not only in the heart, but also in the blood and hippocampus, 
and cognitive impairment. It is reasonable to assume that, 
after crossing the BBB, the circulating heart-derived EVs 
release miR-1 to cerebral resident cells, which in turn inhibit 
the expression of BDNF, leading to the impairment of cogni-
tion [81]. Similarly, the increased miR-1 level observed in 
the hippocampus of MI mice [82, 89], in spite of unchanged 
endogenous biogenesis [82], suggests that this increase 
might arise directly from the infarcted heart through EV-
mediated transfer. Indeed, the inhibition of EVs biogenesis 
prevented the MI-induced elevation of miR-1 levels in the 
blood and hippocampus, and the subsequent hippocampal 
microtubule damage [82]. In all these three studies, the 
knockdown of miR-1 reversed the cerebral dysfunctions, 
restoring the BDNF levels or the neuronal microtubules in 
the hippocampus.

In summary, due to the promising results obtained in 
experimental studies, an application of EVs in the manage-
ment of brain complications in MI patients is of great inter-
est from the clinical point of view. Although, no clinical trial 
of EVs transplantation has been performed to evaluate cer-
ebral outcome in MI patients; these results will promote the 
development of protocols for the use of EVs in clinical trials.

Conclusion

Recent evidence has led to consider myocardial infarction 
not only a mere disease of the heart, but a more complex dis-
ease mediating pathological response of many distant organs, 
including the brain. Myocardial infarction has a short- and 
long-term deleterious impact on brain homeostasis, which 

plays a causative role in occurrence in anxiety, depression 
cognitive deficits, and stroke in MI patients. In addition 
to the increased coagulation and thrombosis, other factors 
may favor brain damage after MI. In particular, enhanced 
systemic inflammation and changes in EVs and circulating 
miRNAs pattern released from heart and blood cells could 
also play a role in increase the risk of stroke in patients with 
MI. It is conceivable that these different pathways, likely 
interact closely with each other, could contribute to neuro-
inflammation and subsequent alteration of neuronal func-
tion, including apoptosis and neurogenesis, and oxidative 
stress. However, since the data are obtained from limited 
experiments studies, future research is required to precisely 
identify the further possible cardiac-specific mechanisms 
involved in facilitating the onset, or in affecting, the evolu-
tion of stroke in patient with MI. A better understanding 
of interactions within the heart–brain axis will improve the 
strategies, including novel neuroprotective approaches, to 
prevent or treat the brain dysfunctions of MI patients.
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