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Abstract: The quantity and quality of light captured by a plant’s canopy control many of its growth
and development processes. However, light quality-related processes are not very well represented in
most traditional and functional–structural crop models, which has been a major barrier to furthering
crop model improvement and to better capturing the genetic control and environment modification
of plant growth and development. A main challenge is the difficulty in obtaining dynamic data
on plant canopy architectural characteristics. Current approaches on the measurement of 3D traits
often relies on technologies that are either costly, excessively complicated, or impractical for field
use. This study presents a methodology to estimate plant 3D traits using smart mobile app and data
modeling. Leaf architecture data on 16 genotypes of rice were collected during two crop seasons
using the smart-app PocketPlant3D. Quadratic Bézier curves were fitted to leaf lamina for estimation
of insertion angle, elevation angle, and curve height. Leaf azimuth angle distribution, leaf phyllotaxis,
canopy leaf angle distribution, and light extinction coefficients were also analyzed. The results could
be used for breeding line selection or for parameterizing or evaluating rice 3D architectural models.
The methodology opens new opportunities for strengthening the integration of plant 3D architectural
traits in crop modeling, better capturing the genetic control and environment modification of plant
growth and development, and for improving ideotype-based plant breeding.

Keywords: rice; Oryza sativa L.; leaf architectural traits; leaf angle distribution; light extinction coefficient

1. Introduction

The three-dimensional (3D) architecture of a plant affects its ability to compete for
resources, such as light and space aboveground as well as water and nutrients below-
ground [1]. The quantity and quality of light captured by a plant’s canopy control many of
its growth and development processes, such as leaf and stem elongation, bud outgrowth,
branching or tillering, flowering, and leaf senescence [2–5].

Plant responses to light quality changes are coordinated at the individual organ
level [6], and the molecular mechanisms underpinning a plant’s response to changes in
light quality have been well established [3,4]. Plants perceive neighbor-associated changes
in light quality and quantity mainly with phytochromes for red and far-red light and
cryptochromes and phototropins for blue light [3].

Most of the knowledge on plant photomorphogenesis and photobiology have been
gained through experiments in controlled environments. Application of this knowledge
for the precision management and engineering of crops under field conditions requires
characterization of the light quality signal (blue or red and far-red light) perceived by plant
organs within a canopy and quantification of the subsequent responses of plant organs in a

Agronomy 2021, 11, 2428. https://doi.org/10.3390/agronomy11122428 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-0315-2125
https://doi.org/10.3390/agronomy11122428
https://doi.org/10.3390/agronomy11122428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11122428
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11122428?type=check_update&version=2


Agronomy 2021, 11, 2428 2 of 25

stand setting [2,7]. Crop modeling, especially functional–structural modeling, has been
considered an important tool in addressing these challenges [7].

Traditional crop models, such as DSSAT [8,9] and APSIM [10], incorporate major plant
physiological and soil processes to simulate soil–plant–environment interactions. These
models either represent an average plant or plant population over a unit area. They do not
consider plants as individual entities with their own developmental patterns and plastic
responses to their environment [11], and they usually do not have an explicit representation
of the above- and below-ground 3D plant architecture [12].

Functional–structural plant models (FSPMs) integrate a plant’s architecture and pro-
cesses that underlie its growth and development [13]. Earlier formulations of FSPMs
focused on plant 3D architecture but lacked major plant physiological and soil pro-
cesses [14–16], while more recent FSPMs increasingly incorporate plant physiological
and soil processes [17–20]. FSPM modeling provides the possibilities of simulating indi-
vidual plants and their architectural dynamics in space and time in a stand setting. It can
take into account light interception and scattering at the individual leaf level as a function
of leaf size, angle, and optical properties, and it can simulate the dynamic change in light
quality with regard to red, far-red light, and blue light within a canopy [3].

With continued progress in the genomics of major crops, there has also been an
increasing interest in integrating crop modeling across the biological organization from
genomics to individual plants to plant populations to communities [21,22]. Combining the
physiological strength of traditional crop models with the functional–structural strength of
FSPMs offers a great opportunity to better capture the genetic control and environment
modification of plant growth and development, which can lead to a greater capability for
developing new plant ideotypes or designing precision management strategies for target
environments.

A main challenge is the difficulty in obtaining dynamic data on plant canopy architec-
tural characteristics for 3D characterization and for model performance evaluation. Two of
the most important architectural traits for rice crop include leaf angle and leaf curvature,
which change in relation to leaf position, leaf age, and plant density [23–28]. These two
traits, along with leaf area index and several other architectural traits, including tiller
distribution, leaf phyllotaxis, and leaf azimuth distribution, define a genotype’s canopy
structure, affect its canopy light distribution, and play a crucial role in light harvesting and
plant productivity [29–32].

Leaf angle refers to the inclination between the midrib of the leaf blade and the vertical
stem of a plant [33], while leaf angle distribution refers to the probability of a leaf element
of unit size to have its normal within a specified unit solid angle [32]. Assuming the
uniform distribution of leaf azimuth angles, leaf angle distribution becomes the probability
density function of the zenith angle of leaf normal [32]. It is one of the most important
parameters used to describe the structure of horizontally homogeneous vegetation canopies
such as rice. It affects how light is distributed on plant leaves, thus directly affecting plant
productivity [32]. Leaf angle distribution has been identified as a key component in
developing high-yielding varieties of cereal crops, including rice [33].

Many methods have been developed for estimating leaf angle and/or leaf angle distri-
bution, including inclinometers [34], protractors [27], 3D digitizers [35,36], ground-based
digital photography [32,37–45], LiDAR (light detection and ranging laser scanning) [46–55],
aerial photography including drones [56–59], and smartphone photography [43]. Terrestrial
LiDAR scanning is increasingly used to measure the canopy structure using point cloud
data, which can capture detailed 3D structural information of the canopy [54,55,60,61].
Most of the terrestrial LiDAR studies have been focused on tree canopies, including work
by Itakura and Hosoi [51] on isolated tress and Liu et al. [62] on natural beech forest.

A main drawback of terrestrial LiDAR systems is its high cost, making it prohibitive
for small budget field campaigns [58]. Photogrammetric methods are limited to outside
layers and/or unoccluded objects [58]. Most of the image- and laser-based approaches
work poorly in situations where high plant densities are common, such as in rice fields
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due to excessive object occlusion. PocketPlant3D [63] is a smartphone application that
records leaf angles with respect to zenith as the device is moved along the leaf lamina.
It has been successfully tested for plant 3D trait estimation in maize [63], rice [64], and
common bean [65]. However, detailed methodology and analysis on 3D trait estimation in
rice is still lacking. The objectives of this study are to (1) estimate key rice leaf 3D traits
using measurements from PocketPlant3D, (2) quantify the effect of genotype, plant density,
leaf position, and leaf age on leaf 3D traits, and (3) assess the impact of leaf 3D traits
on rice canopy characteristics, including leaf azimuth angle distribution, leaf phyllotaxis,
canopy leaf angle distribution, and light extinction coefficients. Existing studies on rice 3D
architectural traits have been mainly based on data collected from either protractors [27]
or 3D digitizers [28,36,66], representing one or two rice genotypes. This study represents
a first comprehensive quantification of the dynamic change in leaf architectural traits of
16 rice genotypes through the rice growing season, based on a smart mobile app and data
modeling. The results could be used for breeding line selection or for parameterizing or
evaluating rice 3D architectural models. The methodology presented in this paper could
also be adapted to 3D architectural research for other Poaceae crops.

2. Materials and Methods
2.1. Experiment Design and Data Collection

A two-year field experiment (16 rice genotypes × two plant densities × three trans-
planting dates) was conducted at the Texas A&M AgriLife Research Center in Beaumont,
Texas (30.0603◦ N and 94.2934◦ W) from 2018 to 2019. In 2018, rice was seeded in the
greenhouse on 3, 10, and 17 July and the seedlings were transplanted to field plots on 24
July, 31 July, and 7 August, respectively. In 2019, rice was seeded in the greenhouse on
25 April, 9 May, and 23 May and transplanted to field plots on 13 May, 28 May, and 11
June, respectively. Recommended rice production practices were followed to manage the
experiment plots (Way et al., 2014). Pesticides were not applied in 2018, but Mustang Maxx
was applied to control rice water weevil (Lissorhoptrus oryzophilus) in 2019.

Sixteen rice genotypes were grown each year, consisting of 2 thermogenic male sterile
(TGMS) lines, 2 cytoplasmic male sterile (CMS) lines, 2 near-isogenic maintainer (B) lines,
2 restorers (R) lines, 4 TGMS × R hybrids, and 4 CMS × R hybrids (Table 1). A randomized
complete block design was used for this study [67]. A field 35 m wide × 42 m long
was divided into 3 equal blocks. Each block was randomly assigned to one of the three
transplanting dates. Each block was subdivided into 32 subplots, each randomly assigned
to one of the 16 genotypes × two plant densities (5 or 10 plants per meter row with a 20 cm
row spacing) combinations. Each subplot had a planting area of 1.0 m × 1.5 m.

Table 1. Rice genotypes used in the study.

Thermogenic Male Sterile Cytoplasmic Male Sterile

Restorer 212S 279S 119A 339A

170R 212s × 170R 279s × 170R 119A × 170R 339A × 170R

173R 212s × 173R 279s × 173R 119A × 173R 339A × 173R

Maintainers - - 119B 339B

In 2018, the three upper most fully expanded leaves from each of 3 tagged main
tillers in each subplot were sampled using PocketPlant3D, beginning two weeks after
transplanting. Sampling was repeated every 1–2 weeks until flag leaf emergence. In
2019, all fully expanded leaves on 5 tagged main tillers were measured two weeks after
transplanting, with leaf length and nodal position recorded with respect to the coleoptile
node (node zero). The PocketPlant3D records leaf angle (◦) with respect to the zenith and
azimuth angles every 200 milliseconds as the device is moved along the leaf lamina. Similar
water and fertilizer management were used in both years, and we assumed the same flag
leaf nodal position for a genotype in both years.
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Four weeks after transplanting in 2019, the uppermost 3–6 fully expanded leaves
from a randomly selected tiller in an internal row in each subplot were sampled using
PocketPlant3D and then clipped from the insertion point. The clipped leaf blades were
placed inside clear plastic bags in a cooler and taken to the lab. The area of each leaf blade
was measured with a LI-COR LI 3100 (LI-COR Biosciences, Lincoln, NE, USA), and the
length and width of each leaf were measured with a ruler. Individual leaf samples were
oven-dried for 3 days at 75 ◦C, weighed (DL-204, Denver Instrument Company, Arvada,
CO, USA), and specific leaf weight (SLW) was calculated as the leaf dry weight (g) divided
by the leaf area (cm2). The leaf morphological data (leaf length, width, area, and specific
leaf weight) were used to analyze their effect on rice 3D architectural traits.

Temperature data were obtained from the Beaumont Center’s weather station located
about 0.8 km from the research field. In 2018, temperatures for rice seedlings while
growing inside the greenhouse were estimated by adding a 3 ◦C adjustment to the outside
temperature based on data from Beuzelin et al. [68]. In 2019, temperatures inside the
greenhouse were measured with an EM50 data logger and sensors (METER Group, Inc.,
Pullman, WA, USA). Plant age was calculated as the cumulative degree-days from sowing
above a base temperature of 10 C. Leaf age was calculated as the cumulative degree-days
from estimated leaf emergence. To facilitate the graphical comparison of leaf 3D traits
among genotypes, leaf node positions were normalized as the current leaf node divided
by the flag leaf node position for a genotype, resulting in a value of 1.0 for the flag leaf
node position.

2.2. Calculation of Leaf Insertion Angle, Elevation Angle, and Curve Height

The leaf angles (θL) recorded by PocketPlant3D were converted to a point trace by
assuming the phone was moved at a constant speed (Figure 1A) and the total distance
traced equal to the leaf length. The length of a leaf segment between two consecutive traced
data points (LengthSegment) was calculated as the leaf length divided by the total number of
leaf segments for the leaf. The x- and y-coordinate of a segment were calculated as

xSegment = cos(θL ∗ π/180) ∗ LengthSegment

ySegment = sin(θL ∗ π/180) ∗ LengthSegment

where θL refers to the leaf angle recorded by PocketPlant3D with respect to zenith. Then,

the coordinates of the leaf are (0, 0) for the leaf base and (
n
∑
1

xSegment,
n
∑
1

ySegment) for the leaf

tip (Figure 1B). This approach assumes the phone was moved in a 2D plane. The leaf shape
traced in the 2D plane in combination with the leaf azimuth distribution (see Section 2.3)
characterizes the 3D distribution of leaves around the rice culms.

A quadratic Bézier function was used to represent leaf blade shape [69–71], and it is
defined by an insertion point P0(x0, y0), which is the leaf base, a control point P1(x1, y1),
and an endpoint P2(x2, y2), which is the leaf tip (Figure 1C) as described by Equations (1)
and (2).

X(t) = (1− t)2x0 + 2t(1− t)x1 + t2x2 t ∈ [0, 1] (1)

Y(t) = (1− t)2y0 + 2t(1− t)y1 + t2y2 t ∈ [0, 1] (2)

where t is the normalized distance from the base of the leaf to the end of the leaf, following
the outline of the leaf. Each leaf was fitted to the quadratic Bézier function with a starting
point of P0(x0 = 0, y0 = 0) at the leaf base and an endpoint of P2(x2, y2) at the leaf tip

where x2 =
n
∑
1

xSegment and y2 =
n
∑
1

ySegment, with n being the number of segments. The

control point P1(x1, y1) is estimated through curve fitting. The leaf insertion angle refers to
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the angle formed between the leaf blade at the insertion point and the vertical culm [63].
The leaf insertion angle was calculated as

AngleInsertion = 90− arctan
(

y1

x1

)
∗ 180

π
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(open circle) and fitted leaf curve (red line); (D) Bezier curve control point, observed (open circle) and fitted leaf curve (red 
line) after axis rotation and normalization. 
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Curve height is defined as the maximum perpendicular distance from a leaf surface 
to the line formed between leaf base and leaf tip. The elevation angle and curve height 
characterize the curvature of a rice leaf. A greater elevation angle indicates greater curva-
ture near the leaf base, and a greater curve height indicates greater leaf bending (Figure 
1D). The three leaf 3D traits (leaf insertion angle, leaf elevation angle, and curve height) 
provide a concise characterization of the 3D architecture of rice leaves. 

2.3. Leaf Azimuth Distribution and Leaf Phyllotaxis 
The average azimuth angle of the first 3 recorded data points were used to estimate 

the azimuth angle for the leaf. The frequency distribution of leaves in octants (i.e., 45° 
angular sections around the plant culm) was calculated to summarize the results. Leaf 

Figure 1. PocketPlant3D rice leaf angle readings and Bezier curve fitting. (A) PocketPlant3D leaf angle reading; (B) Leaf
angle reading mapped to leaf x and y coordinates based on measured leaf length; (C) Bezier curve control point, observed
(open circle) and fitted leaf curve (red line); (D) Bezier curve control point, observed (open circle) and fitted leaf curve (red
line) after axis rotation and normalization.

The leaf insertion angle characterizes how a leaf is attached to the rice stem, with the
control point depending on the leaf curvature, leaf length, and insertion angle. To isolate
the leaf curvature characteristics, the axes were rotated and normalized so that the x-axis
overlaps with the line formed between leaf base and leaf tip. We have P0(x0 = 0, y0 = 0)
and P2(x2 = 1, y2 = 0) after the rotation (Figure 1D), and the Bézier function is simplified to

X(t) = 2t(1− t)x1 + t2 t ∈ [0, 1] (3)

Y(t) = (1− t)2y0 + 2t(1− t)y1 t ∈ [0, 1]. (4)
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The leaf elevation angle is typically defined as the angle between the leaf rachis
at its insertion point to the stem and the horizontal plane [31]. In the present study, it
is defined as the angle formed between the leaf blade at its insertion point to the
stem and the horizontal plane after the axis rotation (i.e., the horizontal line be-
tween leaf base and leaf tip after the rotation) (Figure 1D) and was calculated as

AngleElevation = arctan

(
y1 (rotated and normalizd)

x1 (rotated and normalizd)

)
180
π .

Curve height is defined as the maximum perpendicular distance from a leaf surface to
the line formed between leaf base and leaf tip. The elevation angle and curve height char-
acterize the curvature of a rice leaf. A greater elevation angle indicates greater curvature
near the leaf base, and a greater curve height indicates greater leaf bending (Figure 1D).
The three leaf 3D traits (leaf insertion angle, leaf elevation angle, and curve height) provide
a concise characterization of the 3D architecture of rice leaves.

2.3. Leaf Azimuth Distribution and Leaf Phyllotaxis

The average azimuth angle of the first 3 recorded data points were used to estimate
the azimuth angle for the leaf. The frequency distribution of leaves in octants (i.e., 45◦

angular sections around the plant culm) was calculated to summarize the results. Leaf
phyllotaxis was calculated as the difference in the azimuth angles of two consecutive leaves
progressing from an older or lower leaf to the next younger or higher leaf.

2.4. Canopy Leaf Angle Distribution and Light Extinction Coefficient

Leaf angles were used to estimate the parameter χ (unitless) of the ellipsoidal leaf
angle distribution as described in Equation (5) [72]

χ = −3 +
(

MTA
9.65

)−0.6061
(5)

where the mean leaf tilt angle (MTA) represents the angle in radians between the normal
(i.e., perpendicular plane) to the phone screen and the zenith, and it is the complement
of θL. Parameter χ is the ratio of vertical to horizontal projections of leaves in the canopy.
It provides a synthetic representation of the degree of erectness of the leaves [72,73]. The
lower the value of χ, the higher the tendency of the distribution to approximate a prolate
spheroid (erectophile canopy). The extinction coefficient for solar radiation (k, unitless)
was estimated using Equation (6) [63,73]:

k =

√
χ2 + tan2 θL

A
(6)

where A was estimated using Equation (7) [72]:

A ≈ χ + 1.774(χ + 1.182)−0.733. (7)

2.5. Curve Fitting and Statistical Analysis

Bézier curve fitting was carried out using a customized version of C# code from
GitHub (2019). The agreement between the observed and fitted leaf curves was evaluated
using Nash–Sutcliffe efficiency (NSE) [74] and relative root mean square error (RRMSE).
Analysis of variance (ANOVA) was conducted using SAS Proc GLM [75], with genotype,
density, transplanting time, leaf position, leaf age, and plant age as factors. Leaf and
plant ages were converted into categorical variables by grouping data in increments of
200 degree-days, with the mid-point values (e.g., 100, 300, and 500) used as levels.
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3. Results
3.1. Analysis of Variance on Leaf Insertion Angle and Leaf Curvature (Elevation Angle and
Curve Height)

The shapes of the rice leaves were captured quite well by Bézier curves with mean
NSEs of 0.994 and 0.995 and mean RRMSEs of 3.3% and 1.0% for 2018 and 2019, respectively
(Figure 2). Figure 3 shows the insertion angle and curvature distribution of leaves at
different growth stages for hybrid genotype 212s/173r, which were captured by tracing
leaves using PocketPlant3D. Insertion angle decreased at higher leaf positions (lighter-color
circles) and curvature increased (more convex) with increasing plant age. Most upper
leaves on older plants had smaller insertion angles and much less curvature.
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RRMSE: Relative root mean square error.
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Figure 3. Rice leaf insertion and curvature in relation to plant age and leaf position for hybrid genotype 212s/173r in 2018 
(leaves of three plants at the density of five plants per meter row), which were captured by tracing leaves using Pocket-
Plant3D. Plant age DD was calculated as cumulative degree-days from sowing above a base temperature of 10 °C. 

Figure 3. Rice leaf insertion and curvature in relation to plant age and leaf position for hybrid genotype 212s/173r in
2018 (leaves of three plants at the density of five plants per meter row), which were captured by tracing leaves using
PocketPlant3D. Plant age DD was calculated as cumulative degree-days from sowing above a base temperature of 10 ◦C.
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In 2018, each of the five independent variables significantly impacted insertion angle,
elevation angle, and curve height (Table 2). Leaf order (i.e., relative node position) explained
the most variability, which is followed by leaf age for insertion angle and planting date
for elevation angle and curve height. In 2019, leaf age had the greatest impact on insertion
angle and leaf order had the greatest impact on elevation angle and curve height. The
impact of planting date on all 3D traits decreased greatly in 2019, while plant density had a
marginal but significant impact in both years except for insertion angle in 2019 (Table 2).

Table 2. Analysis of variance and percentage of variance explained by main and nested effects for insertion angle, elevation
angle, and curve height (field-scanned leaves from tagged plants in 2018 and 2019).

Year Plant 3D Traits

Variance Explained (%)

Planting
Date

Genotype
(PD) 1

Density
(PD) 1

Leaf Order
(PD G D) 1

Leaf Age
(PD G D LO) 1 Total

2018 Insertion angle 8.1 ** 7.1 ** 0.2 ** 25.9 ** 22.4 ** 63.7

Elevation angle 13.5 3.8 ** 0.1 * 28.6 ** 8.9 ** 54.9

Curve height 11.6 ** 5.6 ** 0.3 ** 31.4 8.0 * 56.8

2019 Insertion angle 0.1 ** 5.2 ** 0.1 8.8 ** 18.4 ** 32.6

Elevation angle 1.7 ** 1.9 ** 0.2 ** 12.9 ** 7.2 ** 23.8

Curve height 2.0 ** 2.6 ** 0.4 ** 15.5 ** 6.3 ** 26.9
1 PD: Planting Date; G: Genotype; D: Density; LO: Leaf order as normalized leaf position; Leaf age as leaf age class; (): Nested ANOVA
notation as in SAS. * Significant at p = 0.05; ** significant at p = 0.01. Model and error degrees of freedom for the ANOVA analysis were 763
and 3154, respectively.

Analysis based on measurements from clipped leaves in 2019 indicated that each of
the four leaf morphological traits (leaf length, width, area, and specific leaf weight) had
a significant impact on elevation angle and curve height except for leaf area, while leaf
length was the only morphological trait that significantly impacted insertion angle (Table 3).
Similar to field-scanned leaves (Table 2), the leaf order and leaf age had the greatest impact
on leaf 3D traits for the clipped leaves (Table 3), which was followed by genotype and
planting date. Density had no significant impact on any of the leaf 3D traits. Together with
the four leaf morphological traits, these factors explained over 94% of the variability in
insertion angle, elevation angle, and curve height (Table 3).

Table 3. Analysis of variance and percentage of variance explained by main and nested effects for insertion angle, elevation
angle, and curve height (field-scanned and then destructively clipped leaves from randomly selected plants in 2019).

Plant 3D
Traits

Variance Explained (%)

Planting
Date

Genotype
(PD) 1

Density
(PD) 1

Leaf Order
(PD G D) 1

Leaf
Age 2

Leaf
Length 2

Leaf
Width 2

Leaf
Area 2

Specific
Leaf

Weight 2
Total

Insertion
angle 0.1 9.9 ** 0.2 25.3 ** 36.9 ** 11.1 ** 5.3 4.8 2.6 96.2

Elevation
angle 2.2 ** 4.8 ** 0.0 25.8 ** 22.7 * 14.0 ** 11.1 ** 9.4 ** 5.4 ** 95.4

Curve height 1.6 ** 7.4 ** 0.0 29.9 ** 16.8 13.6 * 12.7 ** 6.6 6.1 * 94.7
1 PD: Planting Date; G: Genotype; D: Density; Leaf age as leaf age class; (): Nested ANOVA notation as in SAS.; 2 Nested ANOVA
(PD G D); * Significant at p = 0.05; ** significant at p = 0.01. Model and error degrees of freedom for the ANOVA analysis were 1355 and
121, respectively.
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3.2. Dynamics of Leaf Insertion Angle

Leaf insertion angle differed significantly across the three planting dates in 2018 but
not between the first and second planting dates in 2019 (Figure 4A,B). The average insertion
angle in 2018 was 5.6◦ less than for 2019, which was probably due to the higher relative leaf
order in 2018 (0.71) than in 2019 (0.57), with higher-order leaves being more erect. Average
insertion angles were less at the high transplanting density of 10 plants per meter-row
in both years, indicating more erect leaves at the higher density, but the difference was
significant only in 2018 (Figure 4C,D). There was a strong trend of decreasing insertion
angles with increasing leaf order (i.e., for leaves in higher nodal positions) (Figure 4E,F) and
a strong trend of increasing insertion angle with increasing leaf age (Figure 4G,H). In 2018,
there was a general trend of decreasing insertion angle with increasing plant age (Figure 4I).
The insertion angle tended to increase early in 2019 and then slightly decreased for the
oldest plant sample (Figure 4J). Average insertion angles among the genotypes ranged
from 14.3 to 25.0◦ in 2018 and 18.3 to 28.5◦ in 2019, indicating relatively small variation in
insertion angles among the genotypes (Figure 4K,L). Insertion angles for the genotypes
formed two general groups consistent for both years: (1) small insertion angles (more erect)
for 119A-B and 339A-B parents and hybrids developed from crosses with 119A or 339A
male sterile parents, and (2) large insertion angles (less erect) for 173R, 212S, and 279S male
sterile parents, and hybrids developed from crosses with 212S or 279S parents.

3.3. Dynamics of Leaf Elevation Angle

Elevation angle tended to increase with later planting in both years (Figure 5A,B). The
higher elevation angle for later planting dates was due to the inclusion of lower-position
leaves. Average leaf orders were 0.71, 0.73, and 0.6 in 2018 and 0.62, 0.61, and 0.51 in
2019 for the first, second, and third plantings, respectively, with a value of 1.0 indicating
the flag leaf. Plant density had a small but significant effect on elevation angle in both
years (Figure 5C,D), with less elevation angle at the higher density. There were strong
trends of decreasing elevation angle with increasing leaf order (Figure 5E,F), increasing
elevation angle with increasing leaf age (Figure 5G,H), and decreasing elevation angle with
increasing plant age (Figure 5I,J). The trend in elevation angle change in relation to leaf
and plant ages was more pronounced in 2018 than in 2019. The elevation angle among
genotypes ranged from 7.7 to 13.6◦ in 2018 and from 11.1 to 15.3 in 2019 (Figure 5K,L), with
212s/173r having the lowest elevation angle.

3.4. Dynamics of Curve Height

Increased curve height was observed for later planting (Figure 6A,B), which was due
to a greater number of lower-position leaves being present at sampling. Density had a small
but significant effect on curve height in both years, with less curve height at the higher
density. (Figure 6C,D). There were strong trends of decreasing curve height with increasing
leaf order (Figure 6E,F), increasing curve height with increasing leaf age (Figure 6G,H),
and decreasing curve height with increasing plant age (Figure 6I,J). The trend in curve
height change in relation to leaf and plant ages was more pronounced in 2018 than in 2019.
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Figure 4. Leaf insertion angle in relation to planting date (A): 2018 and (B): 2019, density (C): 2018 and (D): 2019, leaf order 
I: 2018 and (F): 2019, leaf age (G): 2018 and (H): 2019, plant age (I): 2018 and (J): 2019, and genotypes (K): 2018 and (L): 
2019. For each plot, categories having the same lowercase letter are not significantly different from each other at 0.05 with 
Tukey’s HSD multiple comparison test. 

Figure 4. Leaf insertion angle in relation to planting date (A): 2018 and (B): 2019, density (C): 2018 and (D): 2019, leaf order
(E): 2018 and (F): 2019, leaf age (G): 2018 and (H): 2019, plant age (I): 2018 and (J): 2019, and genotypes (K): 2018 and (L):
2019. For each plot, categories having the same lowercase letter are not significantly different from each other at 0.05 with
Tukey’s HSD multiple comparison test.
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with Tukey’s HSD multiple comparison test.
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order (E): 2018 and (F): 2019, leaf age (G): 2018 and (H): 2019, plant age (I): 2018 and (J): 2019, and genotypes (K): 2018 and
(L): 2019. For each plot, categories having the same lowercase letter are not significantly different from each other at 0.05
with Tukey’s HSD multiple comparison test.
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Curve height varied significantly with genotypes (Figure 6K,L), with 279s and 212s/173r
having the lowest curve height in both years. The genotypes with the highest elevation
angles varied between years, but the general patterns remained similar between the two
years. Elevation angle and curve height for the genotypes formed two groups consistent for
both years: (1) higher elevation angle and greater curve height (more curved) for 119A-B
and 339A-B parents and hybrids developed from crosses with 119A or 339A male sterile
parents, and (2) lower elevation angle and less curve height curve height (less curved) for
173R, 212S, and 279S male sterile parents, and hybrids developed from crosses with 212S
or 279S parents. This grouping among genotypes is consistent with what was observed
for the insertion angle: Genotypes with more erect leaves at the insertion point tended to
be more curved, which was probably due to the combined impact of leaf length, width,
specific leaf weight, and gravity.

3.5. Leaf Azimuth Distribution and Leaf Phyllotaxis

The distribution of leaf azimuth angles was most significantly impacted by its octant
position, which was followed by genotypes, with density and planting date having no
significant effect (Table 4 and Figure 7). The uneven distribution was probably due to tiller
arrangement within a rice plant and its spatial relationship with adjacent plants. On the
other hand, leaf phyllotaxis was not significantly impacted by planting date, genotype,
density, and leaf order (Table 4). These four factors explained only 6.2% and 1.3% of
the observed variability in leaf phyllotaxis in 2018 and 2019, respectively. The frequency
distribution of leaf phyllotaxis had an approximately normal distribution for all genotypes
with an average phyllotaxis of 180◦ for pooled data across years, planting dates, genotypes,
and densities (Figure 8); however, the distribution curves were relatively flat, indicating
large variation in leaf phyllotaxis.

Table 4. Analysis of variance for leaf azimuth angle and phyllotaxis as affected by planting date, genotype, density, and
octant or leaf order.

Plant 3D Traits Year

Variance Explained (%)

Planting
Date

Genotype
(PD) 1

Density
(PD) 1

Octant
(PD G D) 1

Leaf Order
(PD G D LO) 1 Total

Azimuth angle 2018 0.2 3.9 ** 0.1 41.6 ** - 45.8

2019 0.4 2.48 ** 0.1 30.7 ** - 33.7

Phyllotaxis 2018 0.1 1.9 0.1 - 4.2 6.2

2019 0.0 0.3 0.0 - 1.0 1.3
1 PD: Planting Date; G: Genotype; D: Density; LO: Leaf order as normalized leaf position; (): Nested ANOVA notation as in SAS.
** significant at p = 0.01. Model and error degrees of freedom for ANOVA analysis on leaf azimuth angles were 713 and 1331 in 2018 and
767 and 3832 in 2019, respectively. Model and error degrees of freedom for ANOVA analysis on leaf phyllotaxis were 144 and 2481 in 2018
and 146 and 10968 in 2019,respectively.

3.6. Canopy Leaf Angle Distribution and Light Extinction Coefficient

Analysis of variance showed significant effects on canopy leaf angle distribution
and light extinction coefficient by planting date, genotype, and density, indicating the
dynamic nature of canopy structure (Table 5). The average leaf angle distribution values
(χ) among the genotypes ranged from 0.37 to 1.18 in 2018 and from 0.66 to 1.39 in 2019
(Figure 9). The corresponding light extinction coefficients ranged from 0.26 to 0.64 in 2018
and from 0.44 to 0.70 in 2019 (Figure 10). Ranking in light extinction coefficient among
genotypes varied among different planting dates. Genotype 170R consistently had the
lowest average light extinction coefficient, while 119B, 212S, and 279S were among the
top three genotypes with the largest light extinction coefficients in three out of the four
planting dates in 2 years (Figure 10).



Agronomy 2021, 11, 2428 15 of 25Agronomy 2021, 11, 2428 16 of 27 
 

 

 
Figure 7. Relative frequency distribution of leaf azimuth angles around stems for different rice genotypes (based on field-
scanned data from 2019). 
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field-scanned data from 2019).
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Figure 8. Frequency distribution of leaf phyllotaxis for different rice genotypes (the dashed vertical blue line represents 
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Figure 8. Frequency distribution of leaf phyllotaxis for different rice genotypes (the dashed vertical blue line represents
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Figure 9. Leaf angle distribution and multiple comparisons for different rice genotypes: (A) Planting date 7/3/2018; (B) 
Planting date 7/10/2018; (C) Planting date 7/17/2018; (D) Planting date 4/25/2019; (E) Planting date 5/9/2019; (F) Planting 
date 5/23/2019. Genotypes with the same color in a plot are not significantly different from each other at 0.05 with Tukey’s 
HSD multiple comparison test. 

Figure 9. Leaf angle distribution and multiple comparisons for different rice genotypes: (A) Planting date 7/3/2018;
(B) Planting date 7/10/2018; (C) Planting date 7/17/2018; (D) Planting date 4/25/2019; (E) Planting date 5/9/2019;
(F) Planting date 5/23/2019. Genotypes with the same color in a plot are not significantly different from each other at 0.05
with Tukey’s HSD multiple comparison test.
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Figure 10. Light extinction coefficients and multiple comparisons for different rice genotypes: (A) Planting date 7/3/2018; 
(B) Planting date 7/10/2018; (C) Planting date 7/17/2018; (D) Planting date 4/25/2019; (E) Planting date 5/9/2019; (F) Planting 
date 5/23/2019. Genotypes with the same color in a plot are not significantly different from each other at 0.05 with Tukey’s 
HSD multiple comparison test. 

Figure 10. Light extinction coefficients and multiple comparisons for different rice genotypes: (A) Planting date 7/3/2018;
(B) Planting date 7/10/2018; (C) Planting date 7/17/2018; (D) Planting date 4/25/2019; (E) Planting date 5/9/2019;
(F) Planting date 5/23/2019. Genotypes with the same color in a plot are not significantly different from each other at 0.05
with Tukey’s HSD multiple comparison test.
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Table 5. Analysis of variance for canopy leaf angle distribution and light extinction coefficient as
affected by planting date, genotype, and density.

Plant 3D Traits Year

Variance Explained (%)

Planting
Date

Genotype
(PD) 1 Density (PD) 1 Total

Leaf angle distribution 2018 24.0 ** 4.4 ** 0.3 * 28.7

2019 0.5 ** 14.4 ** 0.9 ** 15.7

Light extinction coefficient 2018 27.5 ** 6.7 ** 0.5 ** 34.6

2019 0.6 ** 15.3 ** 0.8 ** 16.7
1 PD: Planting Date; (): Nested ANOVA notation as in SAS. * Significant at p = 0.05; ** significant at p = 0.01.
Model and error degrees of freedom for ANOVA analysis were 50 and 2167 in 2018 and 50 and 4394 in 2019,
respectively, for leaf angle distribution as well as for light extinction coefficient.

4. Discussion

This study provided a comprehensive analysis on the impact of plant density, plant
age, leaf age, leaf position, genotype, and leaf morphological characteristics on leaf 3D ar-
chitectural traits. The results could serve as a foundation for building functional–structural
plant models critical to analyzing and designing plant types that optimize light harvesting
and productivity.

4.1. Rice Leaf Curvature Modeling

Rice leaf curvatures have been described by a number of functions, including Bézier
and quadratic curves [69], Bézier surface [76], and Hermite curves [36]. Watanabe, Hanan,
Room, Hasegawa, Nakagawa, and Takahashi [36] described rice leaf blade curvatures using
three axial angles, with the first axial angle representing leaf insertion angle. Shi, Zhu, and
W.X. [66] developed a model for rice leaf curvature characteristics, taking into consideration
leaf angle, length, width, specific leaf weight, and deformation coefficient. The model
dynamically simulates curvatures of leaves with different leaf angles and specific leaf
weights. Yang et al. [69] used a quadratic function to describe leaf mid-vein curvature
in 3D space and further expanded the function to account for leaf twisting around the
midvein. Liu et al. [77] developed a parabolic leaf vein curve model, considering the
vein curve as an arbitrary particle trajectory, involving three parameters that define the
leaf vein shape [78]. Dornbusch et al. [79] developed a dynamic leaf curvature model for
spring barley, involving eight parameters, which was then adopted by Zhang et al. [28]
to develop a dynamic rice curvature model in 3D space, using normalized thermal time.
Confalonieri et al. [63] used the mean coefficient of variation of the angles measured by
PocketPlant3D for each leaf as a synthetic indicator of leaf curvature.

In this study, we used a quadratic Bézier function to describe rice leaf blade shape and
derived three leaf 3D traits, including leaf insertion angle, leaf elevation angle, and curve
height. Then, we conducted a comprehensive analysis on how the 3D traits are impacted
by genotype, density, leaf age, plant age, and leaf position. These 3D leaf traits provide a
concise characterization of the 3D architecture of rice leaves. They could be used to select
the best plant types for breeding and cultivation [80] and to strengthen physiologically
based functional–structural plant modeling through a detailed characterization of leaf
3D architecture.

4.2. Leaf Angle Dynamics and Distribution Pattern

Leaf angle is determined by the shape of the lamina joint connecting the leaf blade and
sheath [81]. Zhou et al. [82] reported that successive cell division and expansion, cell wall
thickening, and programmed cell death at the adaxial or abaxial sides form the cytological
basis of the lamina joint, and an increased leaf angle results from the asymmetric cell
proliferation and elongation. Based on an analysis of 60 maize hybrids released over a span
of 65 years, Perez et al. [83] showed that maize leaf erectness tended to decrease with days
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after sowing for all hybrids. They also reported that the average vertical plane of plants
tends to orient toward a direction perpendicular to plant rows, but a high plant-to-plant
variability was observed with very low heritability.

Based on the ideotype concept [84], upright leaves were introduced to new rice vari-
eties to increase the penetration of sunlight to lower leaves, to optimize light distribution
throughout the canopy, and to enhance the net photosynthesis, total biomass, and grain
yield [85]. In a study on field-grown rice, Murchie et al. [86] reported that the flag leaves of
two rice cultivars changed from an upright to a more horizontal orientation as they aged.
Moreover, they observed that as the canopy matures and the grain-filling stage progresses,
more than 50% of new plant type flag leaves have a more horizontal orientation.

Zheng et al. [87] compared leaf inclination angle, which is complementary to the leaf
insertion angle, of contrasting rice hybrids in the reproductive stage. The inclination angles
were 70–90◦ (i.e., 20–10◦ in insertion angle) in the upper canopy and 30–60◦ (i.e., 60–30◦ in
insertion angle) in the lower canopy, which is comparable to what was observed in our
study. The authors also reported that leaf azimuth distributions did not significantly differ
from a uniform distribution, which differed from our results. The difference was probably
due to their measurements of leaf azimuth only at the reproductive stage as compared to
our measurements of leaf azimuth from vegetative to flowering stage. Hopkins et al. [88]
reported that ecotypes of Arabidopsis thaliana from lower latitudes had more erect leaves,
which was selected to maximize photosynthesis; no information is available on how leaf
angles change for rice varieties grown in different latitudes.

4.3. Canopy Leaf Angle Distribution and Light Capture

Most reports on canopy leaf angle distribution for crops have been based on RGB
imaging and 3D digitizing. Uto et al. [89] developed a method to distinguish different
leaf angle distributions based on the frequency of shading intensity of leaf-scale RGB and
depth images of rice plants with/without silicate fertilizer under sunlight. Zhu et al. [90]
reconstructed the 3D architectures of maize and soybean plants for sole crops and intercrops
based on multi-view images obtained at five growth dates in the field. Through 3D
digitizing and modeling of rice plants grown in paddies, Zheng et al. [87] reported that a
plant type with steeper leaf angles lets light penetrate more deeply with relatively uniform
light distribution into the canopy at higher sun elevation angles, but this did not convert
into differences of light distribution across rice cultivars at lower sun elevation angles.
Similar results were reported by Burgess et al. [91], who also suggest that rice plant type
with steeper leaf angles allows for greater canopy-level photosynthetic potential and higher
maximum quantum yield. The authors also reported that plants containing steep leaf
inclination angles tend to have a decreased light capture when the sun is directly overhead
(i.e., during midday hours or during summer) but increased light capture at lower solar
angles (i.e., start/end of the day or during seasonal changes in the higher latitude regions).
Erect leaves in rice could also potentially enhance yield per unit area through dense
planting and the resulting higher number of panicles [92].

In a study on the leaf angle distributions of four cultivars of sugar beet populations,
Mueller-Linow et al. [93] showed that leaf angle distributions changed during the season
with all cultivars and that leaf azimuth distribution was not uniform and was related to
wind and row orientation.

In our study, we observed significant year and planting date effects on leaf azimuth
angle. In a study on photographic estimation of leaf angle distribution in field crops,
Zou et al. [32] used both leaf length and width data. Using leaf width as a weight factor
for rice could potentially improve estimation of leaf angle distribution and subsequently
light extinction coefficient.

Terrestrial LiDAR scanning is increasingly used to measure canopy structure using
point cloud data, which can capture detailed 3D structural information of the
canopy [54,55,60,61,94]. Most of the terrestrial LiDAR studies have been focused on tree
canopies. Stovall et al. [54] developed an automatic leaf angle estimation algorithm from
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single-scan terrestrial laser scanning. The algorithm can capture leaf curvature by esti-
mating multiple angles per leaf through capturing incidence angle at the pixel level [55],
which provides a more precise representation of leaf angle distribution. Implementing
leaf angle distribution with the full angular distribution of sub-leaf curvature will provide
more realistic estimates of canopy light interception [54]. Its applicability for rice has yet to
be studied.

4.4. Leaf Area Index Estimation through Leaf Curvature Modeling and Leaf Area Integration

Leaf area index refers to the hemi-surface leaf area per unit horizontal ground area [95].
It is another important plant structural parameter because it determines the primary pho-
tosynthetic production, plant evaporation, and plant growth characterization [42]. Leaf
area index and leaf angle distribution are the two most important vegetation parameters
quantifying the structure of a crop canopy. For simple and horizontally relatively homoge-
neous canopies such as field crops, leaf angle distribution and leaf area index are the only
two structure parameters required for the accurate prediction of reflected, transmitted, and
absorbed radiation fluxes [32,96,97]. Many methods have been developed to estimate leaf
area index, including direct and indirect measurement methods [30,98–101], leaf curvature
modeling [102], and area integration.

Hirooka, Homma, and Shiraiwa [101] developed a method to characterize the vertical
distribution of rice leaf area index non-destructively by utilizing a LAI-2200 plant canopy
analyzer in combination with statistical moment equations. Fukuda et al. [103] reported a
novel technique for non-destructive estimation of leaf area index by continuous measure-
ment of near-infrared and photosynthetically active radiation in a rice canopy using optical
sensors inside and outside the rice canopy. Antunes, Walter-Shea, and Mesarch [102] used
quadratic equations to describe straight and curved corn leaf shapes based on horizontal
and vertical leaf coordinates. They described leaf width using a third-order polynomial
equation. A leaf was divided into a number of equal segments along the leaf length. Leaf
area for a particular leaf segment was estimated by integrating the leaf width over the
leaf segment.

Our study mainly focuses on leaf angles and leaf angle distribution. A follow-up
study would be to quantify the dynamic change of leaf area index during the rice crop
season through leaf curvature modeling and area integration of individual leaves in 3D
space and to analyze the effect of leaf angle distribution and leaf area index on light capture,
canopy photosynthesis, and crop productivity.

5. Conclusions

This study presented a new methodology to estimate plant 3D traits using a cost-
effective and easy-to-use smart mobile app and data modeling. Three key leaf architectural
traits (insertion angle, elevation angle, and curve height) and four canopy-level traits (leaf
azimuth angles, phyllotaxis, leaf angle distribution, and light extinction coefficient) were
derived based on leaf architecture data collected using the smart-app PocketPlant3D. Leaf
position had the greatest impact on each of the three leaf 3D traits, which was followed
by leaf age, genotype, and planting density. The insertion angle, elevation angle, and
curve height all decreased with leaf position, indicating increasingly upright and less
curved leaves at higher leaf positions, but they increased with leaf age, indicating less
upright and more curved leaves. Leaf length, width, area, and specific leaf weight had
a greater impact on elevation angle and curve height, and a lesser impact on insertion
angle. Analysis of variance showed significant effects on canopy leaf angle distribution and
light extinction coefficient by planting date, genotype, and density, indicating the dynamic
nature of the canopy structure. The results could be used for breeding line selection or
for parameterizing or evaluating rice 3D architectural models. The methodology opens
new opportunities for strengthening the integration of plant 3D architectural traits with
crop modeling, better capturing systems biology on the genetic control and environment
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modification of plant growth and development as well as for improving ideotype-based
plant breeding.
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