
Quantum Science and Technology

PAPER

Qibo: a framework for quantum simulation with
hardware acceleration
To cite this article: Stavros Efthymiou et al 2022 Quantum Sci. Technol. 7 015018

View the article online for updates and enhancements.

You may also like
High Performance SiGe HBT Performance
Variability Learning by Utilizing Neural
Networks and Technology Computer
Aided Design
Henry Lee Aldridge, Jeffrey B Johnson,
Rajendran Krishnasamy et al.

-

Efficient Hardware Implementation for
Quantum key Distribution Protocol using
FPGA
Yasir Amer Abbas and Alharith A.
Abdullah

-

FITPix — fast interface for Timepix pixel
detectors
V Kraus, M Holik, J Jakubek et al.

-

This content was downloaded from IP address 159.149.207.220 on 20/12/2021 at 10:38

https://doi.org/10.1088/2058-9565/ac39f5
/article/10.1149/MA2020-02241699mtgabs
/article/10.1149/MA2020-02241699mtgabs
/article/10.1149/MA2020-02241699mtgabs
/article/10.1149/MA2020-02241699mtgabs
/article/10.1088/1757-899X/1076/1/012043
/article/10.1088/1757-899X/1076/1/012043
/article/10.1088/1757-899X/1076/1/012043
/article/10.1088/1748-0221/6/01/C01079
/article/10.1088/1748-0221/6/01/C01079
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstAhGLekbFBTm4OXIrIuJWUrIeUspqAU9bzNDwPCGDd7dtA0mRtuNeS0f0mgQiqtCfCdRwmJGJ2A7lq0njvqYbmeOPSPTyabKa1fdxHCcYLApJMQrbhM4q5I8YDIX0nx0hDdsGn0_E1ZBDzYTYwnYim_L7F5AU9jeVWCHiJVXfmSKRj_SyvMwzB8ow6iK3TpwZW4wciPoa_j2Twy0Y04OPpigfefTg_LE4aCiiTJOqyVE5rEUXFn7-ghvyXGx0xgZ3HXPXrUtduToQjYkIajsPw4o67-m7hldE&sig=Cg0ArKJSzIOzHeHY6WuZ&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

Quantum Sci. Technol. 7 (2022) 015018 https://doi.org/10.1088/2058-9565/ac39f5

RECEIVED

18 June 2021

REVISED

12 October 2021

ACCEPTED FOR PUBLICATION

15 November 2021

PUBLISHED

16 December 2021

PAPER

Qibo: a framework for quantum simulation with hardware
acceleration

Stavros Efthymiou1, Sergi Ramos-Calderer1,2, Carlos Bravo-Prieto2,3,
Adrián Pérez-Salinas2,3, Diego García-Martín2,3,4 , Artur Garcia-Saez3,5,
José Ignacio Latorre1,2,6 and Stefano Carrazza1,7,∗

1 Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
2 Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona,

Spain
3 Barcelona Supercomputing Center, Barcelona, Spain
4 Instituto de Física Teórica, UAM-CSIC, Madrid, Spain
5 Qilimanjaro Quantum Tech, Barcelona, Spain
6 Centre for Quantum Technologies, National University of Singapore, Singapore
7 TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: stefano.carrazza@unimi.it

Keywords: quantum-simulation, parallel computing, quantum algorithms, GPU simulation

Abstract
We present Qibo, a new open-source software for fast evaluation of quantum circuits and
adiabatic evolution which takes full advantage of hardware accelerators. The growing interest in
quantum computing and the recent developments of quantum hardware devices motivates the
development of new advanced computational tools focused on performance and usage simplicity.
In this work we introduce a new quantum simulation framework that enables developers to
delegate all complicated aspects of hardware or platform implementation to the library so they can
focus on the problem and quantum algorithms at hand. This software is designed from scratch
with simulation performance, code simplicity and user friendly interface as target goals. It takes
advantage of hardware acceleration such as multi-threading Central Processing Unit (CPU), single
Graphics Processing Unit (GPU) and multi-GPU devices.

1. Introduction and motivation

During the last decade, we have observed an impressive fast development of quantum computing hardware.
Nowadays, quantum processing units are based on two approaches, the quantum circuit and quantum logic
gate-based model processors as implemented by Google [1], IBM [2], Rigetti [3] or Intel [4], and the
annealing quantum processors such as D-Wave [5, 6]. The development of these devices and the
achievement of quantum advantage [7] are clear indicators that a technological revolution in computing
will occur in the coming years.

The quantum computing paradigm is based on the hardware implementation of qubits, the quantum
analogue to bits, which are used as the representation of quantum states. Currently, quantum computer
manufacturers provide systems containing up to dozens of qubits for circuit-based quantum processors,
while annealing quantum processors can reach thousands of qubits. Thanks to the qubits representation it is
possible to implement quantum algorithms based on different approaches such as the quantum Fourier
transform (QFT) [8], amplitude amplification and estimation [9], search for elements in unstructured
databases [10, 11], BQP-complete problems [12], and hybrid quantum–classical models [13]. These
algorithms are the possible key solution for different types of problems such as optimization [14] and prime
factorization [15]. However, in several cases, an algorithm’s implementation may require systems with large
number of qubits, thus even if in principle we can simulate the behavior of quantum hardware devices

© 2021 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ac39f5
https://orcid.org/0000-0002-0693-1952
https://orcid.org/0000-0002-0079-6753
mailto:stefano.carrazza@unimi.it

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Table 1. Modules supported by Qibo 0.1.0.

Module Description

Models Qibo models (details in table 2)
Gates Quantum gates that can be added to Qibo circuit
Callbacks Calculation of physical quantities during circuit simulation
Hamiltonians Hamiltonian objects supporting matrix operations and Trotter decomposition
Solvers Integration methods used for time evolution

Table 2. qibo.models implemented in Qibo 0.1.0.

Qibo model Description

Circuit Basic circuit model containing gates and/or measurements
DistributedCircuit Circuit that can be executed on multiple devices
QFT Circuit implementing the quantum Fourier transform

VQE
Variational quantum eigensolver

Supports optimization of the variational parameters

QAOA
Quantum approximate optimization algorithm

Supports optimization of the variational parameters
StateEvolution Unitary time evolution of quantum states under a Hamiltonian

AdiabaticEvolution
Adiabatic time evolution of quantum states

Supports optimization of the scheduling function

using quantum mechanics on classical computers, the computational performance becomes quickly
unpractical due to the exponential scaling of memory and time.

The quantum computer simulation on classical hardware is still quite relevant in the current research
stage, because thanks to simulation, researchers can prototype and study a priori the behavior of new
algorithms on quantum hardware. In terms of simulation techniques, there are at least three common
approaches such as the linear algebra implementation of the quantum-mechanical wave-function
propagation, the Feynman path-integral formulation of quantum mechanics [16, 17] and tensor
networks [18].

The simulation of circuit-based quantum processors is already implemented by several research
collaborations and companies. Some notable examples of simulation software which are based on linear
algebra approach are Cirq [19] and TensorFlow quantum (TFQ) [20] from Google, Qiskit from IBM Q
[21], PyQuil from Rigetti [22], Intel-QS (qHipster) from Intel [23], QCGPU [24] and Qulacs
[25], among others [26–45]. While the simulation techniques and hardware-specific configurations are well
defined for each simulation software, despite the availability of recent implementations based on field
programmable gate arrays [46, 47], there are no simulation tools that can take full advantage of hardware
acceleration in single and double precision computations, through a simple interface which allows the user
to switch from multithreading CPU, single GPU, and distributed multi-GPU/CPU setups. On the other
hand, from the point of view of quantum annealing computation, in particular adiabatic quantum
computation, there are several examples of applications in the literature [48–50]. However, classical
simulation of adiabatic evolution algorithms used by this computational paradigm are not systematically
implemented in public libraries.

In this work, we present the Qibo framework [51] for quantum simulation with hardware acceleration
(code available at [52]). Qibo is designed with three target goals: a simple application programming
interface (API) for quantum circuit design and adiabatic quantum computation, a high-performance
simulation engine based on hardware acceleration tools, with particular emphasis on multithreading CPU,
single GPU and multi-GPU setups, and finally, a clean design pattern to include classical/quantum hybrid
algorithms. In general the inclusion of hardware acceleration support requires a good knowledge of
multiple programming languages such as C/C++ and Python, and hardware specific frameworks such as
CUDA [53], OpenCL [54] and OpenMP [55]. However, given that the knowledge of each of these tools
could be a strong technical barrier for users interested in custom circuit designs, and subsequently, the
simulation of new quantum and hybrid algorithms, Qibo proposes a framework build on top of the
TensorFlow [56] library which reduces the effort required by the user. Tables 1 and 2 provide an overview of
the basic modules and models that are implemented in the current version of Qibo 0.1.0.

The Qibo framework will become the entry point in terms of API and simulation engine for the
middleware of a new quantum experimental research collaboration coordinated by [57, 58].

The paper is organized as follows. In section 2 we present the technical aspects of the Qibo framework,
highlighting the code structure, algorithms, and features. In section 3, we show benchmarking results

2

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 1. Schematic view of the Qibo structure design.

comparing the Qibo simulation performance with other popular libraries. The section 4 is dedicated to
applications provided by Qibo as examples. Finally, in section 5 we present our conclusion and future
development direction.

2. Technical implementation

In this section we present the technical structure of Qibo, an open-source library for quantum circuit
definition and simulation which takes advantage of hardware accelerators such as GPUs.

2.1. Acceleration paradigm
Hardware acceleration combines the flexibility of general-purpose processors, such as CPUs, with the
efficiency of fully customized hardware, such as GPUs, increasing efficiency by orders of magnitude.

In particular, hardware accelerators such as GPUs with a large number of cores and memory are getting
popular thanks to their great efficiency in deep learning applications. Open-source frameworks such as
TensorFlow simplify the development strategy by reducing the required hardware knowledge from the
developer’s point of view.

In this context, Qibo implements quantum circuit simulation using TensorFlow primitives and custom
operators together with job scheduling for multi-GPU synchronization. The choice of TensorFlow as the
backend development framework for Qibo is motivated by its simple mechanism to write efficient
Python code which can be distributed to hardware accelerators without complicated installation
procedures.

2.2. Code structure
In figure 1 we show a schematic representation of the code structure. The ground layer represents the base
abstraction layer, where the circuit structure and gates are defined. On top of the abstraction layer, we
specialize the simulation system using TensorFlow and numpy [59] primitives. The backend layers are
required in order to build quantum algorithms such as the variation quantum eigensolver (VQE) [60],
perform measurement shots, etc. These algorithms are implemented in such a way that there is no direct
dependency on the backend specialization. Furthermore, several models delivered by Qibo, such as VQE,
quantum approximate optimization algorithm (QAOA) and adiabatic evolution, require minimization
techniques provided by external libraries, in particular TensorFlow for stochastic gradient descent, Scipy
[61] for quasi-Newton methods and CMA-ES [62] for evolutionary optimization. Finally, we provide the
entry point for code usage through a simple high-level API in Python.

2.3. Backends and algorithms
Qibo simulates the behavior of quantum circuits using dense complex state vectors ψ(σ1,σ2, . . . ,σN) ∈ C

in the computational basis where σi ∈ {0, 1} and N is the total number of qubits in the circuit. The main
usage scheme is the following:

3

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

where qibo.models.Circuit is the core Qibo object and holds a queue of quantum gates. Each gate
corresponds to a matrix G(τ , τ ′) = G(τ1, . . . , τNtargets , τ

′
1, . . . , τ ′Ntargets

) and acts on the state vector via the
matrix multiplication

ψ′(σ1, . . . ,σN) =
∑
τ ′

G(τ , τ ′)ψ(σ1, . . . , τ ′, . . . ,σN) (1)

where the sum runs over qubits targeted by the gate.
When a circuit is executed, the state vector is transformed by applying matrix multiplications for every

gate in the queue. By default, the result of circuit execution is the final state vector ψ′ after all gates have
been applied. If measurement gates are used then the returned result contains measurement samples
following the distribution corresponding to the final state vector. The computational difficulty in this
calculation is that the dimension of ψ increases exponentially with the number of qubits N in the circuit.

Qibo provides three different backends for implementing the matrix multiplication of equation (1), all
based on TensorFlow 2. There are two backends (defaulteinsum and matmuleinsum) based on
TensorFlow native operations and the custom backend that uses custom C++ operators. Table 3 provides
a feature comparison between the different backends. The default backend is custom, however the user
can easily switch to a different backend using the qibo.set_backend() method.

In the two TensorFlow backends the state vector ψ is stored as a rank-N TensorFlow tensor
(tf.Tensor) and gate matrices as rank-2Ntargets tensors. In the defaulteinsum backend, matrix
multiplication is implemented using the tf.einsum method, while in the matmuleinsum backend
using tf.matmul. In the latter case, the state has to be transposed and reshaped to (2Ntargets , 2N−Ntargets)
shape using the tf.transpose and tf.reshape operations, as tf.matmul by definition supports
only matrix (rank-2 tensor) multiplication. The motivation to have both implementations is justified by
performance: the defaulteinsum backend is faster on GPUs while the matmuleinsum is more
efficient on CPU. The main advantage of using backends based on native TensorFlow primitives is that
support for backpropagation is inherited automatically. This may be useful when gradient-descent-based
minimization schemes are used to optimize variational quantum circuits. On the other hand, TensorFlow
operations create multiple state vector copies, increasing execution time and memory usage, particularly for
large qubit numbers.

In order to increase simulation performance and reduce memory usage, we implemented custom
TensorFlow operators that perform equation (1). The state is stored as a vector with 2N components, and
the indices of its components that should be updated during the matrix multiplication are calculated by the
custom operators during each gate application. This allows all gate applications to happen in-place without
requiring any copies of the state vector, thus reducing memory requirements to the minimum (2N complex
numbers for N qubits). Furthermore, the sparsity of some common quantum gates is exploited to increase
performance. For example, the Z gate is applied by flipping the sign of only half of the state components
while the rest remain unaffected. Custom operators are coded using C++ and support multi-threading via
TensorFlow’s thread pool implementation. An additional CUDA implementation is provided for all
operators to allow execution on GPU.

2.4. Circuit simulation features
Qibo provides several features aiming to make the simulation of quantum circuits for research purposes
easier. In this section, we describe some of these features.

2.4.1. Controlled gates
All Qibo gates can be controlled by an arbitrary number of qubits. Both in the native TensorFlow and
custom backends, these gates are applied using the proper indexing of the state vector, avoiding the creation
of large gate matrices.

4

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Table 3. Features support for each calculation backend.

Backend names

Native Custom
defaulteinsum

custommatmuleinsum

GPU support � �
Distributed computation �
In-place state updates �
Measurements � �
Controlled gates � �
Density matrices/noise �
Callbacks � �
Gate fusion � �
Backpropagation �

2.4.2. Measurements

Qibo’s measuring mechanism works by sampling the final state vector once all gates of a circuit are
applied. Sampling is handled by the tf.random.categoricalmethod. A flexible measurement API is
provided, which allows the user to view measurement results in binary or decimal format and as raw
measurement samples or frequency dictionaries. It is also possible to group multiple qubits in the same
register and perform collective measurements. Note that no density matrix is computed at this step. The
final result is a trace-out of the outcome probability in unmeasured qubits.

2.4.3. Density matrices and noise

Native TensorFlow backends can simulate density matrices in addition to state vectors. This allows the
simulation of noisy circuits using the channels that are provided as qibo.gates. By default Qibo uses
state vectors for simulation. However, it switches automatically to density matrices if a channel is found in
the circuit or if the user uses a density matrix as the initial state of a circuit execution. Density matrices are
not yet implemented in the custom backend but will be included in future releases.

2.4.4. Callbacks
The callback functions allow the user to perform calculations on intermediate state vectors during a circuit
execution. A callback example which is implemented in Qibo is entanglement entropy. This allows the user
to track how entanglement changes as the state is propagated through the circuit’s gates. Other callbacks
implemented in Qibo include the callbacks.Energy which calculates the energy (expectation value
of a Hamiltonian) of a state or callbacks.Gap which calculates the gap of the adiabatic evolution
Hamiltonian (we refer to section 2.6 for more details).

2.4.5. Gate fusion
In some cases, particularly for large qubit numbers, it is more efficient to fuse several gates by multiplying
their respective unitary matrices and multiply the resulting matrix to the state vector, instead of applying
the original gates one-by-one. Qibo provides a simple method (circuit.fuse()) to fuse circuit gates
up to a two-qubit 4 × 4 matrix. Additionally, the VariationalLayer gate is provided for efficient
simulation of variational circuits that consist of alternating layers between one-qubit rotations and
two-qubit entangling gates. For more details on this we refer to section 3.2.

2.5. Distributed computation
Qibo allows execution of circuits on multiple devices with focus on systems with multiple GPU
configurations. As demonstrated in section 3, GPUs are much faster than a typical CPU for circuit
simulation, however, they are limited by their internal memory. A typical high-end GPU nowadays has
12–16 GB of memory, allowing simulation of up to 29 qubits (30 qubits with single precision numbers)
using Qibo’s custom backend. For larger qubits, the user has to use a CPU with sufficient random-access
memory (RAM) size or rely on distributed configurations.

Qibo provides a simple API to distribute large circuits to multiple devices. For example, a circuit can be
executed on multiple GPUs by passing an accelerators dictionary when creating the corresponding
qibo.models.Circuit object, as:

5

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Dictionary keys define which devices will be used and the values the number of times each device will be
used. Note that a single device can be used more than once to increase the number of ‘logical’ devices. For
example, a single GPU can be reused multiple times to exceed the limit of 29 qubits, making the distributed
implementation useful even for systems with a single GPU.

Device re-usability is allowed by exploiting the system’s RAM. The full state vector is stored in RAM
while parts of it are transferred to the available GPUs to perform the matrix multiplications. This state
partition to pieces is inspired by techniques used in multi-node quantum circuit simulation [63, 64]. More
specifically, if Ndevices are available, the state is partitioned by selecting log2 Ndevices qubits (called global
qubits [65]) and indexing according to their binary values. For example, if Ndevices = 2 and the first qubit is
selected as the global qubit, the state of size 2N is partitioned to two pieces ψ(0,σ2, . . . ,σN) and
ψ(1,σ2, . . . ,σN) of size 2N−1. Gates targeting local (non-global) qubits are directly applied by performing
the corresponding matrix multiplication on all logical devices. Gates targeting global qubits cannot be
applied without communication between devices. The scheme that we currently follow to apply such gates
is to move their targets to local qubits by adding SWAP gates between global and local qubits. These SWAP
gates are applied on CPU, where the full state vector is available. All gates between SWAPs target local qubits
and are grouped and applied together to minimize the CPU–GPU communication.

If logical devices correspond to distinct physical devices, the matrix multiplications are parallelized
among physical devices using joblib [66].

In terms of memory, the distributed implementation described above is restricted only by the total
amount of RAM available for the system’s CPU and not the GPU memory. The main bottleneck is related
to CPU–GPU communication, and therefore the performance depends on the number of SWAP gates
required to move all gates’ targets to local qubits. This number depends on the circuit structure. As
presented in the practical examples of section 3, a multi-GPU configuration can provide significant
speed-up compared to using only the CPU.

2.6. Time evolution
In addition to the circuit simulation presented in the previous sections, Qibo can be used to simulate a
unitary time evolution of quantum states. Given an initial state vector |ψ0〉 and an evolution Hamiltonian
H, the goal is to find the state |ψ(T)〉 after time T, so that the time-dependent Schrödinger equation

i∂t |ψ(t)〉 = H |ψ(t)〉 (2)

is satisfied. Note that the Hamiltonian may have explicit time dependence.
An application of time evolution relevant to quantum computation is the simulation of adiabatic

quantum computation [48]. In this case the evolution Hamiltonian takes the form

H(t) = (1 − s(t))H0 + s(t)H1 (3)

where H0 is a Hamiltonian whose ground state is easy to prepare and is used as the initial condition, H1 is a
Hamiltonian whose ground state is hard to prepare and s(t) is a scheduling function. According to the
adiabatic theorem, for proper choice of s(t) and total evolution time T, the final state |ψ(T)〉 will
approximate the ground state of the ‘hard’ Hamiltonian H1.

The code below shows how Qibo can be used to simulate adiabatic evolution for the case where the
‘hard’ Hamiltonian is the critical transverse field Ising model, mathematically:

H0 = −
N∑

i=0

Xi (4)

and

H1 = −
N∑

i=0

(ZiZi+1 + hXi) (5)

where Xi and Zi represent the matrices acting on the ith qubit and h = 1.

6

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Note that a list of callbacks may be passed to the definition of the models.AdiabaticEvolution
object, which allows the user to track various quantities during the evolution.

In terms of implementation, Qibo uses two different methods to simulate time evolution. The first
method requires constructing the full 2N × 2N matrix of H and uses an ordinary differential equation solver
to integrate the time-dependent Schrödinger equation. The default solver (‘exp’) is using standard matrix
exponentiation to calculate the evolution operator e−iHδt for a single time step δt and applies it to the state
vector via the matrix multiplication

|ψ(t + δt)〉 = e−iHδt |ψ(t)〉 . (6)

This is repeated until the specified final time T is reached. In addition, Qibo provides two Runge–Kutta
integrators [67, 68], of fourth-order (‘rk4’) and fifth-order (‘rk45’). Using one of these solvers the
matrix exponentiation step however such approach is less accurate when compared to the default ‘exp’
solver. The operations used in this method are based on TensorFlow primitives and particularly the
tf.matmul and tf.linalg.expm.

The second time evolution method is based on the Trotter decomposition, as presented in section
4.1 of [69]. For local Hamiltonians that contain up to k-body interactions, the evolution operator
e−iHδt can be decomposed to 2k × 2k unitary matrices and therefore time evolution can be mapped
to a quantum circuit consisting of k-qubit gates. Qibo provides an additional Hamiltonian object
(qibo.hamiltonians.TrotterHamiltonian) which can be used to generate the corresponding
circuit. Time evolution is then implemented by applying this circuit to the initial condition. Since time
evolution is essentially mapped to a circuit model, all Qibo circuit functionality such as custom operators
(for up to two-qubit gates) and distributed execution (section 2.5) may be used with this evolution method.
Furthermore, this allows the direct simulation of an adiabatic evolution by a circuit-based quantum
computer.

3. Benchmarks

In this section we benchmark Qibo and compare its performance with other publicly available libraries for
quantum circuit simulation. In addition, we provide results from running circuit simulations on different
hardware configurations supported by Qibo and we compare performance between using single or double
complex precision. Finally, we benchmark Qibo for the simulation of adiabatic time evolution, and we
compare the performance of different solvers.

The libraries used in the benchmarks are shown in table 4. The default precision and hardware
configuration was used for all libraries and was compared to the equivalent Qibo configuration.
Single-thread Qibo numbers were obtained using taskset utility to restrict the number of threads
because, when running on CPU, Qibo utilizes all available threads by default. For Qiskit we have used
the default Qiskit-Aer simulator.

All results presented in this section are produced with an NVIDIA DGX Station [70]. The machine
specification includes 4× NVIDIA Tesla V100 with 32 GB of GPU memory each, and an Intel Xeon E5-2698
v4 with 2.2 GHz (20-core/40-threads) with 256 GB of RAM. The operating system of this machine is the
default Ubuntu 18.04-LTS with CUDA/nvcc 10.1, TensorFlow 2.2.0 and g++ 7.5. The source code of the
benchmark exercise presented in this section is available in [71].

3.1. Quantum Fourier transform
The first circuit we used for benchmarks is the QFT [8]. This circuit is used as a subroutine in many
quantum algorithms and thus constitutes an example with great practical importance. The gates used in this

7

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Table 4. Quantum libraries used in the benchmarks with their
supported simulation precisions and hardware configurations.

Library Precision Hardware

Qibo 0.1.0 [51] Single Multi-thread CPU

Double
GPU

Multi-GPU
Cirq 0.8.1 [19] Single Single-thread CPU
TFQ 0.3.0 [20] Single Single-thread CPU
Qiskit 0.16.1 [21] Double Single-thread CPU
PyQuil 2.20.0 [22] Double Single-thread CPU
IntelQS 2.0.0 [23] Double Multi-thread CPU

QCGPU 0.1.1 [24] Single
Multi-thread CPU

GPU

Qulacs 0.1.10.1 [25] Double
Multi-thread CPU

GPU

Figure 2. QFT simulation performance comparison in single precision (left) and double precision (right). Large plots show total
simulation time as a function of qubit number. Smaller plots show the ratio of this time for each library to the corresponding
Qibo run for GPU (left) and CPU (right).

circuit are H, CZPow, and SWAP, all of which are available in Qibo and other used libraries, except QCGPU
where SWAP was implemented using three controlled-NOT (CNOT) gates.

Results for the QFT circuit are shown in figure 2. It is natural to discuss two regimes separately, the
small circuit regime consisting of up to 20 qubits and the large circuit regime for more than 20 qubits. We
observe that most libraries offer similar performance in the first regime. Qulacs is the fastest as it is based
on compiled C++ and avoids the Python overhead that exists in all other libraries. Furthermore, we
observe that simpler hardware configurations (single-thread CPU) perform better for small circuits than
more complex ones (multi-threading or GPU). In the large circuit regime Qibo offers a better scaling than
other libraries in both CPU and GPU. It is also clear that GPU accelerated libraries offer about an order of
magnitude improvement compared to CPU implementations. We note the exact agreement between TFQ
and single-thread Qibo as both libraries use TensorFlow as their computation engine.

In terms of memory, Qibo can simulate the highest number of qubits (33 in complex128/34 in
complex64) possible for the memory available in the DGX station (256 GB). A single 32 GB GPU can
simulate up to 30 qubits (31 in complex64), however this number can be extended up to 33 (34 in single
precision) using the distributed scheme described in section 2.5 to re-use the same GPU device on multiple
state vector partitions. The switch from single to distributed GPU configuration explains the change of
scaling in the last three points of ‘Qibo (GPU)’ data. The distributed scheme can achieve an even better
scaling if all four available DGX GPUs are used [‘Qibo (multi-GPU)’ line]. For more details on the
performance of different hardware configurations supported by Qibo, we refer to section 3.6.

8

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 3. Structure of the variational circuit used in the benchmarks. All gates shown in this figure are repeated five times to give
the full circuit and an additional layer of RY gates is used in the end.

Figure 4. Variational circuit simulation performance comparison in single precision (left) and double precision (right). Large
plots show total simulation time as a function of number of qubits. Smaller plots show the ratio of this time for each library to
the corresponding Qibo run for GPU (left) and CPU (right).

3.2. Variational circuit
The second circuit used in the benchmarks is inspired by the structure of variational circuits used in
quantum machine learning and similar applications [13, 14]. Such circuits constitute a good candidate for
applications of near-term quantum computers due to their short depth and are of great interest to the
research community. The circuit used in the benchmark consists of a layer of RY rotations followed by a
layer of CZ gates that entangle neighboring qubits, as shown in figure 3. The configuration is repeated for
five layers and the variational parameters are chosen randomly from [0, 2π] in all benchmarks.

In figure 4 we plot the results of the variational circuit benchmark. We observe similar behavior to the
QFT benchmarks with all libraries performing similarly for small qubit numbers and Qibo offering
superior scaling for large qubit numbers. The variational circuit is an example where the gate fusion
described in section 2.4 is useful. In our Qibo implementation we exploit this by using the
VariationalLayer gate, which fuses four RY gates with the CZ gate between them and applies them as
a single two-qubit gate. TFQ uses a similar fusion algorithm [20], and unlike the QFT benchmark, it is now
noticeably faster than Cirq. All other libraries use the traditional form of the circuit, with each gate being
applied separately.

3.3. Measurement simulation
Qibo simulates quantum measurements using its standard dense state vector simulator, followed by
sampling from the distribution corresponding to the final state vector. Since the dense state vector is used
instead of repeated circuit executions, measurement time does not have a strong dependence on the number
of shots. This is demonstrated for different qubit numbers N in figure 5. The plots contain only the time
required for sampling as the state vector simulation time (time required to apply gates) has been subtracted

9

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 5. Example of measurement shots simulation on CPU (left) and GPU (right).

from the total execution time. The circuit used in this benchmark consists of a layer of H gates applied to
every qubit followed by a measurement of all qubits.

When a GPU is used for a circuit that contains measurements, it will likely run out of memory during
the sampling procedure if the number of shots is sufficiently high. In such a case, Qibo will automatically
fall back to CPU to complete the execution. This is not particularly costly in terms of performance as the
computationally heavy part is the evolution of the state vector, which happens on GPU, and not the
sampling procedure. The oscillations that appear in the GPU part of figure 5 are due to this fallback
mechanism. This is implemented using an exception on TensorFlow’s out-of-memory error, and as a result,
the procedure of falling back to CPU is slower than explicitly executing sampling on CPU.

3.4. Simulation precision
Qibo allows the user to easily switch between single (complex64) and double (complex128) precision
with the qibo.set_precision()method. In this section we compare the performance of both
precisions. The results are plotted in figure 6. We find that as the number of qubits grows using single
precision is ∼2 times faster on GPU and ∼1.5 faster on CPU.

3.5. Adiabatic time evolution
We use Qibo to simulate the adiabatic evolution with the Hamiltonians defined in equation (5) and linear
scaling s(t) = t. We simulate for a total time of T = 1 using double precision.

The total simulation time is shown as a function of the number of qubits in figure 7 for execution on
CPU (40 threads) and GPU. As expected, using the Trotter decomposition is several orders of magnitude
faster than methods that use the full 2N × 2N Hamiltonian matrix. It also requires less memory allowing the
simulation of larger qubit numbers. Note that using Runge–Kutta methods with a Trotter Hamiltonian
requires less memory because it calculates the dot products between the Hamiltonian and the state term by
term, instead of constructing the full matrix.

Similar to circuit simulation, GPU is typically faster than CPU for all solvers. Note that similarly to the
QFT benchmarks shown in figure 2 the last few points of the ‘Trotter (GPU)’ line correspond to re-using
the same device using the distributed scheme leading to a different scaling in the execution time.
Runge–Kutta solvers exploit parallelization techniques less than other methods and, as a result, have the
smallest speed-up from using a GPU. In all cases, the time direction has to be treated sequentially, while the
matrix multiplications at a given time step can be computed in parallel, making the GPU more useful as the
number of qubits increases.

In figure 8 we plot the total execution time as a function of the time step δt used to discretize time. The
exponential solver is used with and without Trotter decomposition. In figure 9 we calculate the underlying
errors of the Trotter decomposition. The error is quantified using the overlap between the final state
obtained using the Trotter decomposition and the full exponential time evolution operator, with the latter
considered to be exact. We find that as we decrease the time step δt the overlap approaches unity as δt4, but
execution time increases as expected. The δtn lines for n ∈ {3, 4, 5} in figure 9 correspond to curves defined

by y = y0

(
x
x0

)n
where (x0, y0) is the rightmost point (for δt = 0.1) in the ‘evolution’ curve. These are

plotted to demonstrate the scaling of evolution error as δt → 0.

3.6. Hardware device selection
A core point in Qibo is the support of different hardware configurations despite its simple installation
procedure. The user can easily switch between CPU and GPU using the qibo.set_device() method.
A question that arises is how to determine the optimal device configuration for the circuit one would like to

10

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 6. Comparison of simulation time when using single (complex64) and double (complex128) precision on GPU and
multi-threading (40 threads) CPU.

simulate. While the answer to this question depends both on the circuit specifics (number of qubits,
number of gates, number of re-executions) and the exact hardware specifications (CPU or GPU model and
available memory), in this section we provide a basic comparison using the DGX station. The circuit used is
the QFT in double precision, and the results of this section are summarized in table 5, which provides some
heuristic rules for optimal device selection according to the number of qubits.

In figure 10 we plot the total simulation time using four different CPU thread configurations and two
GPU configurations. The number of threads in the CPU runs was selected using taskset. For large
numbers of qubits we observe that using multiple threads reduces simulation time by an order of
magnitude compared to single-thread. However, performance plateaus are reached at 20-threads. Switching
to a GPU whenever the full state vector fits in its memory provides an additional 10× speed-up making it
the optimal device choice for circuits containing 15 to 30 qubits.

The situation is less clear for circuits with more than 30 qubits, when the full state vector does not fit in
a single GPU memory. Qibo provides three alternative solutions for such situation: multi-threading CPU,
re-using a single GPU for multiple state pieces (mimicking distributed computation) or using multiple
GPUs if available. In terms of memory, all these approaches are limited by the total memory available for
the system’s CPU. Using multiple GPUs is always more efficient than re-using a single GPU as it allows us to
parallelize the calculations on different state pieces.

The comparison between multi-GPU and CPU generally depends on the structure of the circuit. QFT is
an example of a circuit that does not require any additional SWAP gates between global and local qubits,
making it a good case for a distributed run. This property is not true for all circuits, and therefore we would
see a smaller difference between CPU and multi-GPU configurations for other circuits. Regardless,
multi-GPU configurations or even re-using a single GPU are expected to be useful for the regime of qubit
numbers between 30 and 35.

11

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 7. Adiabatic time evolution simulation performance comparison in double precision. Large plots show total simulation
time as a function of qubit number. Smaller plots show the ratio of this time to the corresponding Trotter evolution run for GPU
(left) and CPU (right).

Figure 8. Total execution time for the adiabatic evolution of N = 10 for total time T = 1 as a function of the time step δt.

12

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 9. Overlap between the final state obtained using the Trotter decomposition and the full exponentiation of the
Hamiltonian. The problem considered is the adiabatic evolution of the Transverse Field Ising Model (TFIM) Hamiltonian
(equation (5)) for total time T = 1, linear scheduling and N = 10 qubits.

Table 5. Heuristic rules for optimal device selection depending
on the number of qubits in the circuit. More stars means a shorter
execution time is expected. We stress that these general rules may
not be valid on every case as the optimal configuration depends
on many factors such as the exact circuit structure and hardware
specifications (CPU and GPU speed and memory).

Number of qubits 0–15 15–30 >30

CPU single thread � � � � �
CPU multi-threading � �� ��
Single GPU � � � � ��
Multi-GPU — — � � �

Figure 10. Comparison of Qibo performance for QFT on multiple hardware configurations. For the multi-GPU setup we
include a label on top of each histogram bar summarizing the effective number of NVIDIA V100 cards used during the
benchmark.

In figure 11 we repeat the hardware comparison for smaller qubit numbers. We find that single thread
CPU is the optimal choice for up to 15 qubits, while the GPU will start giving an advantage beyond this
point.

4. Applications

The current Qibo 0.1.0 contains pre-coded examples of quantum algorithms applied to specific
problems. The subsections that follow provide an outline of these applications. For more details on each
application we refer to our documentation [72] and we note that all the code is available at the Qibo
repository.

13

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 11. Comparison of Qibo performance for small QFT circuits on single thread CPU, multi-threading CPU and GPU.
Single thread CPU is the optimal choice for up to 15 qubits.

It is worth emphasizing that, apart from the application examples that follow, Qibo provides several
application-specific models, in addition to the standard models.Circuit that can be used for circuit
simulation. These models are outlined in table 2 and some are used in the applications that follow.

4.1. Variational quantum eigensolver
The variational quantum eigensolver (VQE) [60] is a common technique for finding ground states of
Hamiltonians in the context of quantum computation. As noted in table 2, Qibo provides a VQE model
that allows optimization of the variational parameters.

In this example, we provide an extension of the VQE algorithm that may be used to improve
optimization and is known as the adiabatically assisted VQE (AAVQE) [73]. Qibo provides a pre-coded
implementation of the AAVQE for finding the ground state of the transverse field Ising Hamiltonian defined
in equation (5) and can be executed for any number of qubits, variational circuit layers and number of
adiabatic steps specified by the user. Particularly, the example may be used to explore how the accuracy of
the VQE ansatz scales with the underlying circuit depth, as presented in [74].

The code below demonstrates how the AAVQE can be implemented in Qibo.

where h0 and h1 are hamiltonians.Hamiltonian objects representing the easy and hard
Hamiltonian respectively, circuit is a models.Circuit that implements the VQE ansatz,
initial_params (np.ndarray) is the initial guess for the variational parameters, T_max (int)
the number of adiabatic steps and maxsteps (int) the maximum number of optimization steps.

4.2. Grover’s search for 3SAT
Grover’s algorithm [10] is a quantum algorithm for searching databases and an example where a quantum
computer provides a quadratic advantage

√
2N , where N is the number of qubits, over a classical one for the

14

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

same problem. In this example, Grover’s algorithm is used to solve exact cover instances of a 3SAT problem,
which is classified as NP-complete [75].

In terms of implementation, Grover’s algorithm can be simulated by defining a Qibo circuit that
contains the required gates, which implement the oracle and the diffusion transformation. The pre-coded
example comes with several instances of the exact cover problem from 4 up to 30 bits, where the solution is
known, so that the user can verify that the algorithm has been successful, and that the solution is indeed the
measured bitstring. Moreover, the user may execute the algorithm to newly created instances, with a known
or unknown solution.

4.3. Grover’s search for hash functions
A second application of Grover’s algorithm [10] implemented in Qibo is on the task of finding the
preimages of a hash function based on the ChaCha permutation [76]. The example is based on reference
[77].

In this case, the example takes as input a hash integer of eight or fewer bits and finds the corresponding
preimage, that is the number that maps to the given hash when applying the permutation. If the number
of collisions is known for the given hash then the algorithm finds all the possible solutions. Here
collisions refers to the number of solutions. If the number of collisions is not given then the
algorithm finds one solution using an iterative procedure [78].

4.4. Quantum classifier
This example provides a variational quantum algorithm for classifying classical data [79]. The optimal
values for the variational parameters are found via supervised training, minimizing a local loss given by the
quadratic deviation of the classifier’s predictions from the actual labels of the examples in the training set.

The pre-coded Qibo example applies the classifier on the iris data set [80]. The user has the option to
train the circuit from scratch or use several pre-trained configurations to make predictions and calculate the
classification accuracy. The user can also select the number of qubits and the circuit depth.

4.5. Quantum classifier using data reuploading
Similarly to the previous section, this example provides a variational algorithm for classifying classical data
using only one qubit and is based on reference [81]. The main idea is reuploading, that is creating a single
qubit circuit where several different unitary gates are applied and each gate depends on the point that is
classified and a set of variational parameters that are optimized through a learning procedure.

The pre-coded Qibo example applies such classifier on various two-dimensional classical datasets. The
user can choose between training the classifier from scratch (optimizing the variational parameters) or
using the provided pre-trained models. The code can be used to measure the accuracy of the classifier in
each classification task and also provides plots with labeled points, using different colors for each class. Plots
are provided in the two-dimensional plane but also on the Bloch sphere.

4.6. Quantum autoencoder for data compression
The task of an autoencoder is to map an input density matrix x to a lower-dimensional Hilbert space y,
such that x can be recovered from y. The quantum autoencoder that is implemented in Qibo is based on
[82] and is used to encode the ground states of the transverse field Ising model (equation (5)) for various
h-field values.

The code below demonstrates how the autoencoder optimization can be simulated using Qibo

where circuit is a Qibo circuit that implements the variational ansatz, ising_groundstates is a
list of the states to be encoded and encoder is a Hamiltonian object for −

∑N
i=1 Zi properly rescaled.

15

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

4.7. Quantum singular value decomposer
The quantum singular value decomposer [83] refers to a circuit that produces the Schmidt coefficients of a
pure bipartite quantum state. This is implemented as follows: two Qibo variational circuits are defined and
measured, one acting on each part of the bipartite measurements. The variational parameters are tuned to
minimize a loss that depends on the Hamming distance of the two measured bitstrings. The user may
attempt this optimization using the pre-coded example for random initial bipartite states with an arbitrary
number of qubits and partition sizes.

4.8. Tangle of three-qubit states
This example provides a variational strategy to compute the tangle of an unknown three-qubit state, given
many copies of it. It is based on the result that local unitary operations cannot affect the entanglement of
any quantum state and follows references [84, 85]. An unknown three-qubit state is received, and one
unitary gate is applied on every qubit. The exact gates are obtained such that they minimize the number of
outcomes of the states |001〉, |010〉 and |011〉. The code can be used to simulate both noiseless and noisy
circuits.

4.9. Unary approach to option pricing
This is an example application of quantum computing in finance and provides a new strategy to compute
the expected payoff of a (European) option, based on reference [86]. The main feature of this procedure is
to use the unary encoding of prices, that is, to work in the subspace of the Hilbert space spanned by
computational-basis states where only one qubit is in the |1〉 state. This allows for a simplification of the
circuit and resilience against errors, making the algorithm more suitable for Noisy Intermediate-Scale
Quantum (NISQ) era devices.

The pre-coded example takes as input the asset parameters (initial price, strike price, volatility, interest
rate and maturity date) and the quantum simulation parameters [number of qubits, number of
measurement shots and number of applications of the amplitude estimation algorithm (see [86])] and
calculates the expected payoff using the quantum algorithm. The result is compared with the exact value of
the expected payoff. Furthermore, the code plots a histogram of the quantum estimation for the option
price probability distribution and a plot of the amplitude estimation measurement results as a function of
iterations.

4.10. Adiabatic evolution
As noted in table 2, Qibo provides models for simulating the unitary time evolution of quantum states,
with a specific application on adiabatic evolution. As examples, we provide scripts that apply these models
in various physics applications.

The first example simulates the adiabatic evolution of an Ising Hamiltonian (equation (5)) for h = 1
using a linear scaling function s(t) = t/T, where T is the total evolution time. Executing this example shows
plots with the dynamics of energy (expectation value of the Ising Hamiltonian) and the overlap between the
evolved state and the exact Ising ground state. Using these plots, we verify that the evolution converges to
the exact ground state if sufficient evolution time T is used.

In addition, we provide the possibility to optimize the scheduling function s(t) and final time T so that
the actual ground state is reached in a shorter time. The free parameters of s(t) and T are optimized so that
the energy of the final state of the evolution is minimized. In our example, we use a polynomial ansatz for
s(t) where the coefficients are the free parameters that are optimized.

4.11. Adiabatic evolution for 3SAT
Adiabatic evolution can also be applied to optimization problems outside physics. In this example, we
provide an application for solving exact cover instances of a 3SAT problem, which is classified as an
NP-complete problem [75]. The same problem was solved in section 4.2 using Grover’s algorithm in the
circuit based paradigm of quantum computation, while in this example we demonstrate that a quantum
annealing approach is also possible [87].

Similarly to section 4.2, the user may use one of the provided instances of the exact cover problem or
add a custom one. The pre-coded example accepts the instance and the evolution parameters (total time T,
discretization time step δt, and method of integration) and computes the solution and the probability that
this is measured. The Trotter decomposition may be used for a more efficient evolution simulation.
Additionally, for sufficiently small systems (due to memory constraints), it is possible to calculate and plot
the gap of the adiabatic Hamiltonian as a function of time.

This example uses a linear scaling function by default. It is possible to switch to a polynomial scaling
function and also optimize the underlying coefficient so that the solution is found in smaller total time T.

16

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Figure 12. Schematic view of the Qibo middleware design.

Performing such optimization, we find that a scaling function that is ‘slower’ at times where the gap is small
is preferred over the default linear scheduling.

5. Outlook

Qibo provides a new interface for quantum simulation research by granting users and researchers the
ability to implement quantum algorithms with simplicity. The user is allowed to simulate circuits and
adiabatic evolution on different hardware platforms without having to know about the technicalities or the
difficulties of their implementation on data placement, multi-threading systems and memory management
that GPU and multi-GPUs computing require.

In this first release, Qibo includes a high-performance framework for quantum circuit simulations and
adiabatic evolution using linear algebra techniques in combination with hardware acceleration strategies.
For the time being, the code is targeted to run on single node devices with single or multiple GPU cards and
sufficient RAM in order to perform simulations with an acceptable number of qubits and computational
time.

The roadmap for future releases is organized in two directions. The first direction is focused on physics
and new algorithms for specific applications, in order to extend the code base set of algorithms for quantum
calculations. Some imminent examples are the implementation of noise density matrices for custom
operators and noise simulation without density matrices. The second direction is based on the technical
perspective. We plan to extend the current distributed computation model to support multi-node devices
through the OpenMPI [88, 89] interface.

Furthermore, in figure 12 we show schematically how the Qibo framework will be integrated with the
middleware of the new quantum hardware developed by [57, 58]. The middleware infrastructure will
provide the possibility to submit quantum calculations, defined with the Qibo API, to the quantum
hardware through a server scheduling and queue service that provide the possibility to submit and retrieve
results from the quantum computer laboratory. This development is particularly important in order to
achieve the evaluation of quantum circuits, adiabatic evolution, and hybrid computations on the real
quantum hardware.

Acknowledgments

The Qibo framework is supported by the Quantum Research Centre at the Technology Innovation Institute
in the United Arab Emirates [57] and the Qilimanjaro Quantum Tech in Spain [58]. This work is supported
by project QuantumCAT (ref. 001-P-001644), co-funded by the Generalitat de Catalunya and the European
Union Regional Development Fund within the ERDF Operational Program of Catalunya, and the European
Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 951911
(AI4Media).

17

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Diego García-Martín https://orcid.org/0000-0002-0693-1952
Stefano Carrazza https://orcid.org/0000-0002-0079-6753

References

[1] Google Research 2017 Google AI quantum https://research.google/teams/applied-science/quantum/
[2] IBM Research 2016 IBM quantum experience https://ibm.com/quantum-computing/
[3] Rigetti 2017 Rigetti computing https://rigetti.com/
[4] Intel Corporation 2017 Intel quantum computing https://intel.com/content/www/us/en/research/quantum-computing.html
[5] D-Wave Systems 2011 The quantum computing company https://dwavesys.com/
[6] D-Wave Systems 2018 D-wave neal https://github.com/dwavesystems/dwave-neal
[7] Arute F et al 2019 Quantum supremacy using a programmable superconducting processor Nature 574 505–10
[8] Coppersmith D 2002 An approximate Fourier transform useful in quantum factoring (arXiv:quant-ph/0201067)
[9] Brassard G, Hoyer P, Mosca M and Tapp A 2000 Quantum amplitude amplification and estimation (arXiv:quant-ph/0005055)

[10] Grover L K 1996 A fast quantum mechanical algorithm for database search (arXiv:quant-ph/9605043)
[11] Grover L K 1998 Quantum computers can search rapidly by using almost any transformation Phys. Rev. Lett. 80 4329–32
[12] Nielsen M A et al 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[13] Moll N et al 2018 Quantum optimization using variational algorithms on near-term quantum devices Quantum Sci. Technol. 3

030503
[14] Farhi E, Goldstone J and Gutmann S 2014 A quantum approximate optimization algorithm (arXiv:1411.4028)
[15] Shor P W 1999 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM Rev.

41 303–32
[16] Boixo S, Isakov S V, Smelyanskiy V N and Neven H 2017 Simulation of low-depth quantum circuits as complex undirected

graphical models (arXiv:1712.05384)
[17] Chen J, Zhang F, Huang C, Newman M and Shi Y 2018 Classical simulation of intermediate-size quantum circuits

(arXiv:1805.01450)
[18] Markov I L and Shi Y 2008 Simulating quantum computation by contracting tensor networks SIAM J. Comput. 38 963–81
[19] Google quantumlib Cirq, a Python framework for creating, editing, and invoking noisy intermediate scale quantum (NISQ)

circuits https://github.com/quantumlib/Cirq
[20] Broughton M et al 2020 TensorFlow quantum: a software framework for quantum machine learning (arXiv:2003.02989)
[21] Abraham H et al 2019 Qiskit: An Open-Source Framework for Quantum Computing https://doi.org/10.5281/zenodo.2562110
[22] Smith R S, Curtis M J and Zeng W J 2016 A practical quantum instruction set architecture (arXiv:1608.03355)
[23] Guerreschi G G, Hogaboam J, Baruffa F and Sawaya N P D 2020 Intel quantum simulator: a cloud-ready high-performance

simulator of quantum circuits Quantum Sci. Technol. 5 034007
[24] Kelly A 2018 Simulating quantum computers using OpenCL (arXiv:1805.00988)
[25] Suzuki Y (The Qulacs Developers) 2020 Qulacs https://doi.org/10.22331/q-2021-10-06-559 https://github.com/qulacs/qulacs
[26] Jones T, Brown A, Bush I and Benjamin S C 2019 Quest and high performance simulation of quantum computers Sci. Rep. 9

10736
[27] Zhang P, Yuan J and Lu X 2015 Quantum computer simulation on multi-GPU incorporating data locality Algorithms and

Architectures for Parallel Processing ed G Wang, A Zomaya, G Martinez and K Li (Berlin: Springer) pp 241–56
[28] Steiger D S, Häner T and Troyer M 2018 ProjectQ: an open source software framework for quantum computing Quantum 2 49
[29] Microsoft Company The Q# programming language

https://docs.microsoft.com/en-us/quantum/user-guide/?view=qsharp-preview
[30] Zulehner A and Wille R 2017 Advanced simulation of quantum computations (arXiv:1707.00865)
[31] Pednault E et al 2017 Pareto-efficient quantum circuit simulation using tensor contraction deferral (arXiv:1710.05867)
[32] Bravyi S and Gosset D 2016 Improved classical simulation of quantum circuits dominated by Clifford gates Phys. Rev. Lett. 116

250501
[33] De Raedt K, Michielsen K, De Raedt H, Trieu B, Arnold G, Richter M, Lippert T, Watanabe H and Ito N 2007 Massively parallel

quantum computer simulator Comput. Phys. Commun. 176 121–36
[34] Fried E S, Sawaya N P D, Cao Y, Kivlichan I D, Romero J and Aspuru-Guzik A 2018 qTorch: the quantum tensor contraction

handler PLoS One 13 e0208510
[35] Villalonga B et al 2019 A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on

real hardware npj Quantum Inf. 5 8
[36] Luo X-Z, Liu J-G, Zhang P and Wang L 2019 Yao.jl: extensible, efficient framework for quantum algorithm design

(arXiv:1912.10877)
[37] Bergholm V et al 2018 PennyLane: automatic differentiation of hybrid quantum–classical computations (arXiv:1811.04968)
[38] Doi J et al 2019 Quantum computing simulator on a heterogenous HPC system Proc. 16th ACM Int. Conf. Computing Frontiers,

CF ’19 (New York: Association for Computing Machinery) pp 85–93
[39] Möller M and Schalkers M 2020 A cross-platform programming framework for quantum-accelerated scientific computing

Computational Science—ICCS 2020 ed V V Krzhizhanovskaya, G Závodszky, M H Lees, J J Dongarra, P M A Sloot, S Brissos and J
Teixeira (Berlin: Springer) pp 451–64

[40] Jones T and Benjamin S 2020 QuESTlink—mathematica embiggened by a hardware-optimised quantum emulator Quantum Sci.
Technol. 5 034012

[41] Chen Z-Y, Zhou Q, Xue C, Yang X, Guo G-C and Guo G-P 2018 64-qubit quantum circuit simulation Sci. Bull. 63 964–71

18

https://orcid.org/0000-0002-0693-1952
https://orcid.org/0000-0002-0693-1952
https://orcid.org/0000-0002-0079-6753
https://orcid.org/0000-0002-0079-6753
https://research.google/teams/applied-science/quantum/
https://www.ibm.com/quantum-computing/
https://www.rigetti.com/
https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://www.dwavesys.com/
https://github.com/dwavesystems/dwave-neal
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/quant-ph/0201067
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://arxiv.org/abs/1411.4028
https://doi.org/10.1137/s0036144598347011
https://doi.org/10.1137/s0036144598347011
https://doi.org/10.1137/s0036144598347011
https://doi.org/10.1137/s0036144598347011
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1805.01450
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://github.com/quantumlib/Cirq
https://arxiv.org/abs/2003.02989
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1608.03355
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://arxiv.org/abs/1805.00988
https://doi.org/10.22331/q-2021-10-06-559
https://github.com/qulacs/qulacs
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://docs.microsoft.com/en-us/quantum/user-guide/?view=qsharp-preview
https://arxiv.org/abs/1707.00865
https://arxiv.org/abs/1710.05867
https://doi.org/10.1103/physrevlett.116.250501
https://doi.org/10.1103/physrevlett.116.250501
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1
https://arxiv.org/abs/1912.10877
https://arxiv.org/abs/1811.04968
https://doi.org/10.1088/2058-9565/ab8506
https://doi.org/10.1088/2058-9565/ab8506
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007

Quantum Sci. Technol. 7 (2022) 015018 S Efthymiou et al

[42] Bian H et al 2020 HpQC: a new efficient quantum computing simulator EasyChair EasyChair preprint no. 4050
[43] Meyerov I, Liniov A, Ivanchenko M and Denisov S 2020 Simulating quantum dynamics: evolution of algorithms in the HPC

context (arXiv:2005.04681)
[44] Moueddene A A, Khammassi N, Bertels K and Almudever C G 2020 Realistic simulation of quantum computation using unitary

and measurement channels (arXiv:2005.06337)
[45] Wang Z, Chen Z, Wang S, Li W, Gu Y, Guo G and Wei Z 2020 A quantum circuit simulator and its applications on Sunway

TaihuLight supercomputer (arXiv:2008.07140)
[46] Pilch J and Długopolski J 2019 An FPGA-based real quantum computer emulator J. Comput. Electron. 18 329–42
[47] Rodríguez-Borbón J M, Kalantar A, Yamijala S S R K C, Oviedo M B, Najjar W and Wong B M 2020 Field programmable gate

arrays for enhancing the speed and energy efficiency of quantum dynamics simulations J. Chem. Theory Comput. 16 2085–98
[48] Farhi E, Goldstone J, Gutmann S and Sipser M 2000 Quantum computation by adiabatic evolution (arXiv:quant-ph/0001106)
[49] Kadowaki T and Nishimori H 1998 Quantum annealing in the transverse Ising model Phys. Rev. E 58 5355–63
[50] Crosson E and Harrow A W 2016 Simulated quantum annealing can be exponentially faster than classical simulated annealing

IEEE 57th Annual Symp. Foundations of Computer Science (FOCS) Foundations of Computer Science (FOCS) (New Brunswick,
NJ, USA, 9-11 October 2016)

[51] Efthymiou S et al 2020 Qiboteam/Qibo: Qibo https://doi.org/10.5281/zenodo.3997195
[52] Efthymiou S et al 2020 Qibo github source code https://github.com/qiboteam/qibo
[53] Nickolls J, Buck I, Garland M and Skadron K 2008 Scalable parallel programming with CUDA Queue 6 40–53
[54] Stone J E, Gohara D and Shi G 2010 OpenCL: a parallel programming standard for heterogeneous computing systems Comput.

Sci. Eng. 12 66–73
[55] The OpenMP Development Team 1997 OpenMP website https://openmp.org/
[56] Abadi M et al 2015 TensorFlow: large-scale machine learning on heterogeneous systems software available from

http://tensorflow.org/
[57] Quantum Research Center, Technology Innovation Institute, Abu Dhabi and United Arab Emirates 2020 https://tii.ae/
[58] Qilimanjaro Quantum Tech, Barcelona, Spain 2020 http://qilimanjaro.tech/
[59] Oliphant T 2006 Guide to NumPy (US: CreateSpace Independent Publishing)
[60] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 A variational

eigenvalue solver on a photonic quantum processor Nat. Commun. 5 4213
[61] Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261–72
[62] Hansen N 2006 Towards a New Evolutionary Computation (Berlin: Springer) pp 75–102
[63] LaRose R 2018 Distributed memory techniques for classical simulation of quantum circuits (arXiv:1801.01037)
[64] Smelyanskiy M, Sawaya N P D and Aspuru-Guzik A 2016 qHiPSTER: the quantum high performance software testing

environment (arXiv:1601.07195)
[65] Häner T and Steiger D 2017 0.5 petabyte simulation of a 45-qubit quantum circuit SC ’17: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analisys (Denver, 12-17 November) pp 1–10
[66] Joblib Developers 2009 Joblib library https://joblib.readthedocs.io/
[67] Runge C 1895 Ueber die numerische Auflosung von Differentialgleichungen Math. Ann. 46 167–78
[68] Kutta M 1901 Beitrag zur näherungweisen integration totaler Differentialgleichungen PhD Munich
[69] Paeckel S, Köhler T, Swoboda A, Manmana S R, Schollwöck U and Hubig C 2019 Time-evolution methods for matrix-product

states Ann. Phys. 411 167998
[70] NVIDIA Team 2019 NVIDIA DGX station https://nvidia.com/en-us/data-center/dgx-station/
[71] Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Perez-Salinas A, Garcia-Martin D, Garcia-Saez A and Latorre J I 2021

Benchmark code for 2009.01845 https://doi.org/10.5281/zenodo.5565343
[72] Efthymiou S et al 2020 Qibo documentation https://qibo.readthedocs.io/en/latest/tutorials.html
[73] Garcia-Saez A and Latorre J I 2018 Addressing hard classical problems with adiabatically assisted variational quantum

eigensolvers (arXiv:1806.02287)
[74] Bravo-Prieto C, Lumbreras-Zarapico J, Tagliacozzo L and Latorre J I 2020 Scaling of variational quantum circuit depth for

condensed matter systems Quantum 4 272
[75] Karp R M 1975 On the computational complexity of combinatorial problems Networks 5 45–68
[76] Bernstein D 2008 Chacha, a variant of salsa20
[77] Ramos-Calderer S, Bellini E, Latorre J I, Manzano M and Mateu V 2020 Quantum search for scaled hash function preimages

(arXiv:2009.00621)
[78] Boyer M, Brassard G, Hoyer P and Tappa A 1999 Tight Bounds on Quantum Searching vol 46 (Weinheim: Progress of Physics) pp

187–99
[79] Lloyd S, Schuld M, Ijaz A, Izaac J and Killoran N 2020 Quantum embeddings for machine learning (arXiv:2001.03622)
[80] Dua D and Graff C 2017 UCI machine learning repository http://archive.ics.uci.edu/ml
[81] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E and Latorre J I 2020 Data re-uploading for a universal quantum classifier

Quantum 4 226
[82] Romero J, Olson J P and Aspuru-Guzik A 2017 Quantum autoencoders for efficient compression of quantum data Quantum Sci.

Technol. 2 045001
[83] Bravo-Prieto C, García-Martín D and Latorre J I 2020 Quantum singular value decomposer Phys. Rev. A 101 062310
[84] Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Generalized Schmidt decomposition and classification of

three-quantum-bit states Phys. Rev. Lett. 85 1560–3
[85] Pérez-Salinas A, García-Martín D, Bravo-Prieto C and Latorre J 2020 Measuring the tangle of three-qubit states Entropy 22 436
[86] Ramos-Calderer S et al 2019 Quantum unary approach to option pricing (arXiv:1912.01618)
[87] Ramos-Calderer S et al 2021 Adiabatic evolution for 3SAT (in preparation)
[88] Graham R L et al 2006 Open MPI: a high-performance, heterogeneous MPI 2006 IEEE Int. Conf. Cluster Computing pp 1–9
[89] Graham R L, Woodall T S and Squyres J M 2006 Open MPI: a flexible high performance MPI Parallel Processing and Applied

Mathematics ed R Wyrzykowski, J Dongarra, N Meyer and J Wásniewski (Berlin: Springer) pp 228–39

19

https://arxiv.org/abs/2005.04681
https://arxiv.org/abs/2005.06337
https://arxiv.org/abs/2008.07140
https://doi.org/10.1007/s10825-018-1287-5
https://doi.org/10.1007/s10825-018-1287-5
https://doi.org/10.1007/s10825-018-1287-5
https://doi.org/10.1007/s10825-018-1287-5
https://doi.org/10.1021/acs.jctc.9b01284
https://doi.org/10.1021/acs.jctc.9b01284
https://doi.org/10.1021/acs.jctc.9b01284
https://doi.org/10.1021/acs.jctc.9b01284
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.5281/zenodo.3997195
https://github.com/qiboteam/qibo
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.1109/mcse.2010.69
https://www.openmp.org/
http://tensorflow.org/
https://tii.ae/
http://www.qilimanjaro.tech/
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
https://arxiv.org/abs/1801.01037
https://arxiv.org/abs/1601.07195
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://joblib.readthedocs.io/
https://doi.org/10.1007/bf01446807
https://doi.org/10.1007/bf01446807
https://doi.org/10.1007/bf01446807
https://doi.org/10.1007/bf01446807
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://www.nvidia.com/en-us/data-center/dgx-station/
https://doi.org/10.5281/zenodo.5565343
https://qibo.readthedocs.io/en/latest/tutorials.html
https://arxiv.org/abs/1806.02287
https://doi.org/10.22331/q-2020-05-28-272
https://doi.org/10.22331/q-2020-05-28-272
https://doi.org/10.1002/net.1975.5.1.45
https://doi.org/10.1002/net.1975.5.1.45
https://doi.org/10.1002/net.1975.5.1.45
https://doi.org/10.1002/net.1975.5.1.45
https://arxiv.org/abs/2009.00621
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://arxiv.org/abs/2001.03622
http://archive.ics.uci.edu/ml
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/physreva.101.062310
https://doi.org/10.1103/physreva.101.062310
https://doi.org/10.1103/physrevlett.85.1560
https://doi.org/10.1103/physrevlett.85.1560
https://doi.org/10.1103/physrevlett.85.1560
https://doi.org/10.1103/physrevlett.85.1560
https://doi.org/10.3390/e22040436
https://doi.org/10.3390/e22040436
https://arxiv.org/abs/1912.01618

	Qibo: a framework for quantum simulation with hardware acceleration
	1. Introduction and motivation
	2. Technical implementation
	2.1. Acceleration paradigm
	2.2. Code structure
	2.3. Backends and algorithms
	2.4. Circuit simulation features
	2.4.1. Controlled gates
	2.4.2. Measurements
	2.4.3. Density matrices and noise
	2.4.4. Callbacks
	2.4.5. Gate fusion

	2.5. Distributed computation
	2.6. Time evolution

	3. Benchmarks
	3.1. Quantum Fourier transform
	3.2. Variational circuit
	3.3. Measurement simulation
	3.4. Simulation precision
	3.5. Adiabatic time evolution
	3.6. Hardware device selection

	4. Applications
	4.1. Variational quantum eigensolver
	4.2. Grover's search for 3SAT
	4.3. Grover's search for hash functions
	4.4. Quantum classifier
	4.5. Quantum classifier using data reuploading
	4.6. Quantum autoencoder for data compression
	4.7. Quantum singular value decomposer
	4.8. Tangle of three-qubit states
	4.9. Unary approach to option pricing
	4.10. Adiabatic evolution
	4.11. Adiabatic evolution for 3SAT

	5. Outlook
	Acknowledgments
	Data availability statement
	ORCID iDs
	References

