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Abstract: Genetics and environmental and lifestyle factors deeply affect cardiovascular diseases, with
atherosclerosis as the etiopathological factor (ACVD) and their early recognition can significantly
contribute to an efficient prevention and treatment of the disease. Due to the vast number of these
factors, only the novel “omic” approaches are surmised. In addition to genomics, which extended
the effective therapeutic potential for complex and rarer diseases, the use of “omics” presents a
step-forward that can be harnessed for more accurate ACVD prediction and risk assessment in
larger populations. The analysis of these data by artificial intelligence (AI)/machine learning (ML)
strategies makes is possible to decipher the large amount of data that derives from such techniques,
in order to provide an unbiased assessment of pathophysiological correlations and to develop a
better understanding of the molecular background of ACVD. The predictive models implementing
data from these “omics”, are based on consolidated Al best practices for classical ML and deep
learning paradigms that employ methods (e.g., Integrative Network Fusion method, using an AI/ML
supervised strategy and cross-validation) to validate the reproducibility of the results. Here, we
highlight the proposed integrated approach for the prediction and diagnosis of ACVD with the
presentation of the key elements of a joint scientific project of the University of Milan and the Almazov
National Medical Research Centre.
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1. The Need of in Depth Cardiovascular Risk Prevention

The most common forms of cardiovascular disease, presenting with atherosclerosis as
the etiopathological factor (ACVD) (e.g., secondary prevention patients complicated by
metabolic alterations, severe heterozygous forms of Familial Hypercholesterolemia (FH)
or, even more severe, homozygous FH) were untreatable using classical lipid lowering
treatments, before the use of genetic information and tremendous the advances in both
biotechnological and pharmaceutical research. These advances, that have occurred in
recent years, both heralded new therapeutic horizons and contributed further knowledge
on the pathophysiological bases of such diseases, making it possible to identify markers at
every stage of a molecular or cellular pattern, that can help to cluster patients who require
the earliest and most aggressive forms of intervention.

The latter is of immediate interest since, persisting through to today, the multitude
of tools currently available in the clinics for risk assessment and the prevention of fatal
and non-fatal cardiovascular events [1] are often inaccurate. When addressing the issue of
secondary cardiovascular prevention, for example, despite numerous attempts, a tool for
a more precise risk assessment in terms of cardiovascular complications has not yet been
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implemented in clinical practice. Within this group of patients there may be the potential
for heterogeneity in the recurrence of cardiovascular events, which represents a particular
concern. This can be viewed as a causative factor for subsequent studies focusing on the
patient’s position in secondary ACVD prevention.

ACVDs, for all degrees of risk and at every stage, are diseases encompassing a mul-
titude of complex, hardwired biological systems. Thus, in attempts to find a solution
for a more accurate risk assessment, numerous factors should be taken into account and
blended together, including not only the clinical phenotype of patients, laboratory and
instrumental findings, but also the impact of external environmental factors that charac-
terizes the daily life of a person. For example, the classical “metabolic-centric” vision of
unhealthy dietary habits in the development of atherosclerosis and the related ACVD risk
has been recently implemented in an immune-inflammatory context and is able to induce
long-lasting changes in the gene expression and activation of entire molecular systems of
the host. In fact, a low quality in dietary habits (e.g., elevated consumption of industrially
processed foods in place of fibers and vegetables), which reflects the environmental and
socioeconomic status of the subjects [2], induces a long-term somatic leukemogenic expan-
sion of the hematopoietic stem cells, and has been associated with ACVD [3]. An analysis
of gut microbiota composition conducted through the use of metagenomic sequencing,
recently revealed that the variety of specific bacterial species, associated and implicated
with subclinical atherosclerosis [4] and its clinical manifestation [5], predisposes individual
metabolic and inflammatory responses to foods [6].

In exome sequencing, epigenomic characterizations are only a part of the larger body of
evidence published during recent years proving that multiple novel biomarkers, detectable
or measurable only by harnessing forefront high throughput techniques, are necessary for
the adoption of a new perspective on ACVD risk assessments. Although on one hand, the
richness of information emerging from such pioneering studies promises future effective
and personalized tools, on the other hand it presents a challenge of establishing a paradigm
for clinicians and translational researchers to improve their perspectives for a broad range
of factors during diagnostic and prognostic phases.

The “systems biology” approach, explaining the evolution of ACVD by integrating
the nuclear, cellular components, proteins, enzymes generates large data sets that measure
numerous analytes, requiring an organized and systematic computational support [7]. Fur-
thermore, undistorted data provide a reliable impact assessment of certain factors, hence
making it possible to evaluate the interpretation of each factor and its importance. The inade-
quate selection of estimated parameters may affect the prognosis of the disease and may lead
to an incorrect assessment of the clinical evolution of the atherosclerotic process. It can also
result in a mismatch between the individual risk level of the patient and the corresponding
medical strategy. In order to construct an unbiased scale for the risk assessment of recurrent
ACVD, to using those tools that take into account a great number of external and internal
factors will be convenient. Individual risk evaluation data may lead to improved medical
care in the context of closer observation of patients belonging to the group with an increased
risk of recurrent cardiovascular events. It may also improve the awareness of the patient
in terms of their disease, cardiovascular prognosis and may subsequently increase their
motivation for lifestyle changes and therapy adherence. Clinical outcomes are more likely
to improve if the necessary tools for a risk assessment in a patient population, suitable for
secondary disease prevention or at highest risks associated with ACVD.

Finally, it is important to realize that each individual approach does not provide a
complete coverage of all the mechanisms that are essential to ACVD progression. Due to
the considerably extensive variety and complexity of profiling methods, the choice of the
optimal technique(s) in the clinical settings is difficult. It is advisable to refer the obtained
data for consequent analysis, taking into consideration the specificity of different “omics”
levels. This approach will allow for the confirmation of or for refining test results based
on a single data type with an additional review of the information obtained from the
same sample set.
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2. How to Correctly Identify High ACVD Risk Patients? Lessons from Genetics

The early identification of causal factors and their correction is a crucial part of ACVD
risk prediction and prevention. At least 25 dyslipidaemic forms that are associated with
either elevated LDL-C, elevated triglycerides or reduced HDL-C have been identified as
following the patterns of autosomal dominant or recessive inheritance [8]. Of all of them,
FH is the first clear example for which the identification of the genetic etiology contributes
to effective prevention. FH is a common genetic disease with an autosomal codominant
inheritance pattern, due to the pathogenic mutations in loci encoding for the key factors
in cholesterol metabolism (e.g., LDLR, PCSK9 or APOB, APOE and LDLRAP1 genes) [9].
The clinical diagnosis of FH is often driven by clinical algorithms, such as the DLCN
criteria, based on the personal and family history of high LDL-C and premature ACVD
as well as the detection of premature corneal arcus and tendon xanthomas [9]. In the
presence of a probable or definite FH diagnosis, a genetic analysis is recommended, to
assess the presence of a causative mutation on candidate genes and to identify a monogenic
form, outlining the opportunity for a cascade screening in the family [9,10]. Thus, the
identification of causal genetic variants contributing to elevated LDL-C will actually enable
an early diagnosis and an effective treatment to reduce the LDL-C burden that characterizes
the probands since conception. Besides the already consolidated knowledge on these
monogenic diseases, the clinical practice unmasks a significant variability in LDL-C of
FH patients harboring the same genetic variants, implying that in a good proportion of
patients, the monogenic etiology diagnosis does not completely explain the phenotype of
the patients. A clear example of this concept derives from a complete NGS of FH-associated
genetic loci over 1532 pediatric FH individuals from the Italian LIPIGEN (“LIpid TransPort
disorders Italian GEnetic Network” [11,12]). This experience revealed that FH probands of
the same causative variants on LDLR display an elevated variability in the LDL-C levels
before starting statin treatment. In addition, a significant number of FH probands of LDLR
defective variants (inducing less than 30% of residual LDLR activity, Figure 1A) showed
similar LDL-C levels compared to those of the FH probands carrying LDLR negative
variants (leaving no more than 5% of the residual activity, Figure 1B).

(A)
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untreated LDL-c (mg/dL)

Figure 1. The value of genetic testing in parallel to LDL-C. (A) Pediatric FH subjects
(age < 18 years-old) carrying LDLR negative FH-mutation (c.1646G > A p.Gly549Asp), displaying
median pre-treatment LDL-C level of 249.5 + 54.0 mg/dL; (B) Pediatric FH subjects carrying LDLR
defective FH-mutation (c.1775G > A p.Gly592Glu), displaying median pre-treatment LDL-C level
of 198.2 £ 50.7 mg/dL. In both panels, graphs correlate the LDL-C before starting statin treatment
(x axis) vs. the biological age of the probands at basal clinical diagnosis (coinciding with the entry in
the LIPIGEN registry following genetic analysis by NGS). Representative dashed red lines help to
figure out changes in LDL-C distribution between subjects in both graphs.
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Even though the importance of genetic factors in the development of ACVD has been
proven without reliance on novel fundamental achievements in the study of the human
genome, ACVD is viewed as a multifactorial entity [13]. There are monogenic diseases,
for which the onset is mainly determined by single gene mutation, as well as polygenic
diseases (which include the vast majority of the causes for ACVD), characterized by a
combination of variants of several genes and their individual combination. In genetic
studies, both monogenic defects and the assessment of polygenic risk scores should be
considered. Polygenic risk scores combine the overall influence of several possible genetic
variants in the genome and their use for disease prediction [14].

The use of genetic information to stratify monogenic or polygenic causes of FH and the
existence of different management care-pathways, is an example of the utility of genetics in
precision medicine [15]. As NGS becomes easier to access and as bioinformatics analyses
have further developed, this may expand to whole genome sequencing to provide an
individual with a more complete picture of their future risk of disease. The achievement
and the combination of different genomic techniques can forecast the tissue expression
of the key metabolic player (LDLR in this case) for which the phenotype may help to
identify genetic relationships between disparate disease. Notwithstanding other models of
genomic data have been developed to explore “peripheral genes” in which the up or down-
regulation, although not biologically involved in the pathway of the disease, contributes to
an increased risk of the diseases, because of perturbations in regulatory gene networks that
are co-segregated during inception [7]. The identification of such networks is of particular
interest for the identification of the most severe forms of FH or in the identification of
subjects that, beyond both LDL-C and a well-characterized monogenic form causal of the
disease, harbor an additional genetic contribution of a higher risk of ACVD.

Hence, the possibility to build a “Polygenic Risk Score” that combines both rarer
monogenic mutations and more common SNPs causing an LDL-C and ACVD risk score
(or both of them separately) represents a valuable process through which to support the
therapeutic management of a polygenic etiology in mutation-negative patients with a
clinical diagnosis of FH.

In contrast to FH, which represent rare genetic conditions, the association between
a specific risk factor and disease onset and progression in large populations does not
demonstrate its causal implication for the disease course and prognosis.

The MR approach is a genetic tool that assesses the relation between a genetic variant
(or a set of genetic variants with significant probability of linkage disequilibrium) and
verifies whether this association significantly predicts the risk of the disease. Through an
analogous design to that of randomized clinical trials (Figure 2), the MR thus establishes and
assesses the observed relationship between factor influence and a causal relationship [16],
demonstrating the ability to assess the impact of genetically determined exposures through-
out human life trajectory, excluding the “reverse causality” or the pressures contributed by
other risk factors or confounders [17,18].

The example shown here is related to ACVD risk. Numerous genetic variants are
associated with lower plasma LDL-C. Each of these variants is allocated randomly at
the time of conception in a process referred to as Mendelian randomization. Therefore,
inheriting an allele associated with lower LDL-C is analogous to being randomly allocated
to LDL-C lowering therapy at birth, while inheriting the other allele is analogous to being
randomly allocated to usual care. Because allocation is random, the only difference between
the two groups should be their LDL level. As a result, this study design provides a naturally
randomized estimate of the benefit of lowering LDL-C early in life analogous to a long-term
randomized trial.

MR have shown that long-term exposure to lower LDL-C is associated with a much
greater reduction in the risk of cardiovascular events as compared to the same reduction in
LDL-C achieved with medications started much later in life as evaluated in randomized
trials. This finding implies that the causal effect of LDL-C accumulates over time. Thus,
targeting the causes of disease whose effects accumulate over time has the potential to
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produce much greater reductions in the lifetime risk of ACVD as compared to initiating
therapies later in life [16]. Despite its significant relevance to imply causality between a risk
factor and the outcome, the interpretation of such genetic techniques needs to be integrated
with the clinical experience. A striking example of a distinct relationship between car-
diovascular risk factors and outcome was demonstrated in the large UK Biobank registry
(438,952 participants; replicated in the Coronary Artery Disease Genome-Wide Replication
and Meta-analysis (CARDIOGRAM) plus the Coronary Artery Disease (C4D) genetics
consortium (CARDIoGRAMplusC4D)), where both the genetic reduction of systolic blood
pressure (SBP) and of LDL-C provided a proportional, linear association with a reduction
in the ACVD risk [17]. After calculating two independent scores summing the effect of
multiple genetic variants on either SBP or LDL-C, it could be demonstrated that a lifetime
exposure to the combination of both lower SBP and lower LDL-C increases the level of the
individual ACVD risk.

Analogy between Mendelian randomization and randomized trials

Mendelian Randomization Randomized Controlled Trial
Eligible Population Eligible Population
SNP associated with LDL-C LDL-C Lowering Therapy
(Naturally Random Allocation of Alleles) (Random Allecation of Treatment)

v
Lower LDL-C Allele Other Allele Treat ‘A Usual Care A
(Treatment Arm) {Usual Care Arm) LEE T sual Care Arm

ALDL-C ALDL-C

{Incident Major Cardiovascular Euents} [ Incident Major Cardiovascular Events

Figure 2. A Mendelian randomization study is analogous to a randomized trial.

3. Multi-Omics Tools for Cardiovascular Risk Prediction Tools: Transcriptomic and
Epigenetic Markers

Multi-omics techniques, that are able to generate large, multidimensional data and to
overcome a mono-compartmental approach that provides a unilateral view of an outcome,
represent an appealing key strategy to disentangle the highly complex pathophysiology
of ACVD [7]. There is a compelling and evident necessity of such techniques since the
current approaches to find causality between a marker and ACVD risk, despite providing
solid evidence, are affected by important a priori limitations. For example, genetic studies
and MR approaches shed light on a large number of genes and loci that are associated
with, or are supposedly causal for, the risk of the disease. However, the mechanisms
by which these genes influence the risk of cardiovascular disease cannot be properly
addressed by these approaches, as most of the risk variants associated with CAD or other
atherosclerotic ACVD [19-24] identified by GWAS and MRs, are often located in noncoding
regions of the genome (either intronic or intergenic). In particular cases of such variants,
it is clear that they might affect cis or trans regulatory elements that bind transcription
factors, enhancers or promoters regulating the expression of specific genes [25]. In response
to such limitations, valuable multi-omics connecting genetics to downstream proteomic
or metabolomics cellular landscapes might provide further insights on the relation of
causality. For example, a GWAS and TWAS on tissue samples from healthy subjects and
CAD patients and patients affected by other metabolic diseases enrolled in the multi-ethnic
Million Veteran Program study in 2018 investigated the relation between genomic data and
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lipoprotein levels and lipidomic profiles. In this study, specific variants in genetic regions
coding from proteins that could be targeted by forefront biotechnological drugs (PCSK9
and ANGPLT4, for example) were identified and used in a phenome-wide association
study (PhWAS) of electronic health record data to identify the lifelong effect of each SNPs
on other diseases [26]. This multi-omic approach identified, for example, that the genetic
modulation of PCSK9 might have an effect on the transcriptomic profile of the vasculature,
representing a valuable example of how integrative omics analyses can develop hypotheses
for new potential therapeutic strategies or for drug repurposing. Also, in a different
study, an integration of genomics, transcriptomic, nuclear magnetic resonance (NMR)
metabolomics and lipidomics from blood samples of subjects in the Dietary, Lifestyle,
and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) identified core
genetic granulocytes and a mastocytes-lipid network for which the expression correlated
with up to 83 metabolites and markers of systemic inflammation [27], contributing further
knowledge to new potential areas of investigation.

Additional “multi-omic” studies for CAD, integrated these findings with data from
global available tissue transcriptomic, harnessing the analysis of eQTL (genomic loci that
explain variation in expression levels of the messenger RNA (mRNA) [28]). Using this
tool, different genetic markers have been identified as possible indicators of increased
susceptibility to atherosclerosis. For example, BCAR1 has been demonstrated to be causal
gene for the faster progression of ultrasound-based Intima-Media Thickness (IMT) in two
independent epidemiological studies. In fact, In the the multi-Centre “IMT-Progression
as Predictors of Vascular Events” (IMPROVE) cohort and the Italian “Progressione delle
Lesioni Intimali Carotidee” (“PLIC”) [29] a hit SNP at the BCAR1-CFDP1-TMEM170A
locus emerged via GWAS in both cohorts and increased the BCAR1 eQTL expression in
vascular tissues [30]. In a different study evaluating up to 987 public available genomics
and transcriptomic datasets, a defined gene network responding to interleukin 1-beta stim-
ulation was found in human smooth muscle cells [31], indicating that such “multi-omics”
approaches can provide functional insights into the critical processes of atherosclerotic
plaque stability.

High-throughput technologies have been further developed to integrate omics data for
the identification of causal genes and molecular mechanisms involved in the development
of cardiovascular events. These techniques were applied both in mice, enhancing our
understanding about the differential cell function across tissues [32-34], and in humans,
taking advantage of the large consortia, autopsy evidence and imaging techniques [35-38].

There is an extensive body of literature linking genetic variations with gene expression
and environmental factors that lead to changes in gene expression (“epigenetics”) which
contribute to an = understanding of the potential mechanisms of the identified DNA vari-
ants in disease manifestation. A clear example is the 9p21 locus, that contains several genes
including CDKN2A (encoding cyclin p14, p16), CDKN2B (encoding cyclin p15), MTAP
(encoding methylthioadenosine phosphorylase), and the long non-coding RNA enhancer
ANRIL. Among these markers, ANRIL in particular showed to be the leading candidate
contributing to the relationship between 9p21 regions and CAD, since a transcriptomic
analysis of circulating leukocytes demonstrated that the expression of short variants of
ANRIL increased by 2.2 fold whereas the expression of the long ANRIL variants decreased
by 1.2 fold in healthy subjects homozygous for the risk allele. This finding appeared to be of
particular relevance for atherogenesis since the genome-wide expression profiling demon-
strated the upregulation of up to 97 genes in carriers of the risk allele; these genes were
related the vascular endothelial growth factor for signaling, TNF/MAP kinase pathway
signaling in effector T cells, and the interferon response, suggesting that such epigenetic
activations promote immune cell trafficking towards inflamed tissues and cellular prolif-
eration [39]. Subsequent in vitro and functional studies supported these predictions, as
alleles at the 9p21 locus determining linear transcripts of ANRIL were associated with
atherosclerosis while circular transcripts resulted in the protection against atherosclero-
sis [40]. Furthermore, ANRIL was also demonstrated to be involved in endothelial cell
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functions, because its expression was downregulated in coronary arteries of CAD patients
and promoted the adhesion and trans-migratory potential of monocytes on endothelial cell
layers as compared to that which was observed in subjects without CAD [41].

From this perspective, the paradigm of gene-transcript-protein(s) provided by the Hu-
man Genome Project must now be transformed into a more “holistic” vision, that includes
environmental interactions that affect genomic expression. This change of perspective
paves the road towards the understanding of a variety of epigenetics pathways, to unveil
how changes in the individual lifelong trajectory of ACVD risk can be either modulated
by the environment or can be prevented through the identification of targeted sets of
measurable biomarkers.

Aside from non-coding RNAs, other epigenetics modifications have been indicated
as potent markers of an enhanced ACVD risk, principally including changes in the DNA
histones structural modifications (e.g., methylations/acetylations, consisting of a transfer
of a methyl- or acetyl-group to carbon 5 of the cytosine residues [5-methylcytosine (5mC)]
in CpG dinucleotides sites). In fact, emerging evidence supports the idea that epigenetic
modifications are involved in the initiation and progression of atherosclerosis [42]. Dif-
ferent epigenetic targets have been observed in experimental models of atherosclerosis.
For example, the hyper-methylation of the aldehyde dehydrogenase 2 gene (ALDH2) pro-
moter, by downregulating the activity of ALDH, promotes myocardial injuries in rats [43].
Similarly, further epigenetic markers have been underscored in humans. A genome-wide
DNA methylation and gene ontology analysis of leukocytes identified four differentially
methylated sites in individuals who had a previous MI as compared to the rest of a pop-
ulation without ML in the same study, a significant correlation between differences in
DNA methylation in blood cells and the myocardial expression of Growth Differentiation
Factor 15 (GDEF-15) (a cytokine involved in regulating apoptosis, cell repair and cell growth)
was discovered in MI patients [44].

The exposure to ACVD risk factors has also been prominently associated with al-
terations in hematopoiesis [45] and damages in the chromosome ends, leading to supra-
physiological DNA telomere length shortening (Figure 3).
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Figure 3. Applicability of “-omics” to prevent the elevated LDL-C burden and the hematopoietic
expansion associated with elevated ACVD risk. Green box indicates the tissues, the cells and/or the
molecular markers that can be characterized by different -omic approaches. “BM” = Bone Marrow;
“CHD” = Coronary Artery Disease; “CVRFs” = Cardiovascular Risk Factors; “HSCs” = Hematopoietic
Stem Cells; “LDL” = Low Density Lipoprotein.

Telomeres are DNA-protein complexes that protect chromosome ends from degra-
dation and fusion, thereby regulating the cellular lifespan. In humans, the TL of blood
leukocytes (LTL) is inversely associated with ACVD risk factors [46], the onset and pro-
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gression of several chronic conditions associated with elevated ACVD risk (including
diabetes, metabolic syndrome [46]) as well as with risk CHD [47,48] and pre-clinical carotid
atherosclerosis [49]. Telomerase, a holoenzyme that adds new telomeric sequences at the
end of chromosomes to preserve the telomere length, is very active in high-turnover cells
and contributes to the telomere length (TL) maintenance in germ and in progenitor stem
cells of leukocytes. Telomere length dynamics thus mirrors the stem cell turnover and
hematopoiesis simultaneously [50] and it is therefore plausible that accelerated LTL might
reflect an aberrant clonal somatic hematopoietic expansion in atherosclerosis [51]. This
lifelong elevated LDL-C burden, causative for elevated ACVD risk since inception and due
to somatic mutations in LDLR analyzed by NGS (FH patients), results in an accelerated
LTL shortening and reduced blood hematopoietic precursors, even in early life [52]. In
addition, transcriptomic profiling of the hematopoietic stem and progenitor cells from bone
marrow specimens of FH patients displays an elevated activation of genes involved in
pro-inflammatory responses and tissue migrations. All together, these findings suggest
possible future translational approaches for the treatment of high ACVD risk patients, such
as the FH in this case. Such approaches, by harnessing “-omic”, will have the intent to both
efficiently treat classical cardiovascular risk factors, using ongoing therapeutic approaches
with more specificity for the patient, and to improve prevention by inviting further research
perspectives on novel molecular and cellular markers (Figure 3).

4. Multi-Omics Tools for Cardiovascular Risk Prediction Tools: Proteomics

Further large-scale “omics” technologies, covering additional scientific areas other
than genomics, allow for the conduction of investigation of susceptibility to faster disease
progression and a worse prognosis in the general population. In fact, the positive experi-
ence of omics technologies used in the study of ACVD has been demonstrated [7] using
genomics [53], but also using transcriptomics [54], on an integrated targeted or non-targeted
approach of large proteomic [55], metabolomic [56,57] or lipidomic [58,59] panels (Figure 3).
Far beyond the classical analyses of single markers in small-sized cohorts, such approaches
have significant implications for ACVD risk prediction leveraging on large multi-Centre
consortia where the associations between sets of proteins and the ACVD outcomes that are
discovered in a cohort can be validated in others. For example, by using novel technologies,
a simultaneous assessment of a large number of biomarkers allowed for the identification of
a significant set of up to fifty circulating immune-inflammatory proteins, that were superior,
to predict atherosclerotic CV events in the primary prevention setting of the European
Prospective Investigation (EPIC)-Norfolk study and to predict the progression of subclinical
carotid atherosclerosis in the Italian PLIC study, when considered alongside traditional risk
factors [60]. Proteomic sets can therefore represent comprehensive atlases to both improve
the understanding of disease pathogenesis and to assist with the identification of patients
with a lifelong ACVD risk. In addition, findings from proteomic multi-Centre consortia
speculate that a pathway analysis of the proteomic signature may also allow for the guid-
ance of the most appropriate medication to use in specific patient categories [7,55], a concept
that has been adequately explored by the experience of the CANTOS study, where, predom-
inantly CRP responders demonstrated the CV benefit of anti-interleukin 1 beta-antibody
administration (Canakinumab) [61] and in the LoDoCo2 Study, where colchicine treatment
promoted the potent reduction of the innate immune-inflammatory response [62].

5. Cardiovascular Risk Prediction Tools: The Opportunity to Use Artificial
Intelligence/Machine Learning Approaches

Once -omics are obtained from experimental platforms, the large amount of data
requires a predefined and coordinated analysis that should rely on the specificity of applied
approaches. A targeted approach allows for the creation of distinct metabolite profiles with
defined chemical and biochemical characteristics. However, the principal disadvantage of
this method is the limited availability of detectable markers, which may not include other
more predictive markers. This can only be solved using an interdisciplinary approach,
including the collaboration of clinicians, biochemists and bioinformaticians, with the
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development of a dedicated, convenient and clear software in the real-world clinical
practice. Processing a large amount of data with traditional software can be overwhelming
due to both the volume and the variety of data types. High-tech big data analysis tools
such as Al software and ML can be viewed as key in the determination of a significant
correlation between variables. The use of Al and ML systems can act as a valuable resource
for medical professionals, allowing them to study complex and nonlinear hierarchical
models in the interpretation of phenotype-genotype relationships, thereby providing a
more complete understanding of the course of the pathophysiological processes. Such a set
of tools can serve as a “bridge” to new biomedical discoveries and advances in personalized
medicine. Combining data from a multi-omics approach with a genetic analysis in ACVD
research [63—65] can thus provide a more precise risk assessment compared to the use
of standard clinical risk factors, promoting the way to disease learning—from genotype
to phenotype. Each platform provides measurements of various factors influencing the
course of the disease, thereby providing an additional gusset to improve the approach to
the prediction of ACVD and subsequent disease prognosis.

However, several critical challenges are to be considered in the management of such
an approach. Firstly, non-targeted identification is used to simultaneously measure a
large number of potential markers in biological samples. It should, however, be noted
that many activity “signals” may not derive from the metabolite, but instead an analysis
interference. The incremental implementation of a non-targeted approach followed by
the usage of a more precise and targeted analysis can provide a preferable biomarker
identification strategy. The combined use of current diagnostic and predictive tools can
lead to an understanding of how the gene expression profile affects phenotype and protein
expression, including post-translational modifications, as well as the way in which it
influences final metabolite profiles. Causal relationships derived from the data set analysis
can provide researchers with an opportunity to gain new insights into the mechanisms
underlying ACVD pathophysiology. It can present more precise and reliable information
about the course of the disease, which is key for a more accurate and effective strategy in
individual patient management.

Secondly, the variable selection method presents an issue that might not be completely
addressed by the deep learning algorithms, in the quest to categorize representative multi-
dimensional data integration studies [66]. Therefore, integrative analyses performed in
the supervised, semi-supervised and unsupervised manner, within both parallel and
hierarchical integration studies are warranted to test the efficiency of the final AI/ML tool.
Finally, the disease traits in complex disease, including ACVD are generally heterogeneous
with outlying observations and heavy tailed distributions [67], posing challenges to the
reproducibility of the findings. All these criticisms might affect, in different ways, the use of
multi-omics integration for ACVD risk prediction in the population or the identification of
the rarest forms of dyslipidemia. Rather, multiple predictive algorithms and omics markers
might be less appropriate for the estimation of the ACVD risk on a large, population-
based scale because of the co-presence of different factors related to the host or to its
environmental exposure. Conversely, in rarer forms, fewer signals from the multi-omics
integration might appear less likely to be affected by one or few factors that are genetically
determined, and that predominate the phenotype.

6. Cardiovascular Risk Prediction Tools: A Joint Research Project

In accordance with an agreement on international cooperation between the University
of Milan and the Almazov National Medical Research Centre, a joint research project is
underway to use up-to-date methods in the molecular assessment of potential biomarkers
for recurrent cardiovascular event predictions in patients with ACS in real-world clinical
practice (Figure 4).
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Clinical Registry
- Debut of the disease
(ACS or stable CAD)
- Different clinical phenotypes of
patients
- Time period from onset of pain to
hospital admission
- Duration and character of the pain
syndrome
- Intervention (CABG or PCI)

Biobanking of blood samples

- Three times
(before CAG, 3-d day, 3 months)

- Omics analysis

- Troponin, CPK-MB, lipid profile,
d-dimer, fibrinogen, CRP, AST, ALT,
total bilirubin, potassium, sodium,

INR, prothrombin time, APTT,
glucose, HbAc, creatinine, GFR

Visualization Registry

- Archive of video images of coronary

angiography
- Cumulation of detailed data of

Past medical history
- Hereditary history
- Smoking, level of physical activity
- Comorbidity
- History of myocardial

revascularization with indication of
arteries

@

@

Pharmacological Treatment
Registry

- before hospitalization
- during inpatient treatment
- outpatient

Antiplatelet drugs, lipid-lowering
agents, ACE inhibitors, sartans, beta
blockers, diuretics, calcium channel

blocker, oral hypoglycemic drugs, PPIs

electrocardiograms and echocardiography

Figure 4. Characterization of the key parameters collected within the Registry. Design of the joint research project

between University of Milan and the Almazov National Medical Research Centre. “ACS” = Acute Coronary Syndrome;

“APTT” = activated partial thromboplastin time; “AST” = aspartate transaminase; “ALT” = alanine aminotransferase;
“CABG” = coronary artery bypass graft; “CAD” = Coronary Artery Disease; “CPK-MB” = Creatine Phosphokinase-MB;
“CAG” = Coronary Angiogram; “CRP” = C-Reactive Protein; “GFR” = Glomerular Filtration Rate; “HB1Ac” = Glycated
hemoglobin; “INR” = International Normalized Ratio; “MACE” = Major Cardiovascular Event; “PCI” = Percutaneous
Coronary Intervention; “PPIs” = Proton-pump inhibitors.

The study will include men and women over 18 years old with an established diagnosis
of ACS. Prior to their inclusion, all participants will sign an informed consent form. The
study will not include pregnant women, patients with known oncological or mental
illnesses and patients with end-stage disease. Given the fact that ACS is a heterogeneous
group of diseases, patients are divided into three groups: patients with unstable angina
pectoris, patients with STEMI and patients with a non-STEMI diagnosis. In each group
of patients, information on the onset of the disease will be collected and the disease
vintage over time will be calculated. Upon enrolment, if a patient is likely to belong to a
group with a long-term history of coronary artery disease, information will be collected
regarding the form of CAD and previous myocardial revascularization with a specific
emphasis on the affected artery. Personal anamnesis data will also be collected (e.g.,
nutritional habits, alcohol intake, physical activity, smoking, family history, concomitant
diseases and medications, etc.). Venous blood sampling is performed in several steps. The
first blood sampling point is performed initially within the first hour prior to CAG. The
second sampling point is performed on the third day after inpatient treatment. The third
sampling point is three months after the discharge from the hospital. The heart rhythm,
conduction abnormalities, Q wave and ST segment morphology are assessed using ECG.
Echocardiography helps to assess all routinely measured parameters with an emphasis
on the altered local myocardial contractility. According to a CAG data analysis, the type
of coronary circulation and the levels of coronary artery lesions are taken into account.
Information concerning a patients” drug therapy prior to hospitalization, during inpatient
treatment and on an outpatient basis is also recorded.
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This project will include a complete genetic analysis of the dominant variants associ-
ated with hypercholesterolemia with an increased ACVD risk. In addition, a complete set
of proteomic, metabolomics and lipidomic markers will be also quantitated in samples of
circulating plasma. This data may be beneficial as a tool for predicting the recurrence of
cardiovascular events. The archive of patient data will be implemented (i.e., complaints,
history of the disease, physical examination findings, laboratory parameters, CAG videos)
and detailed electrocardiography and the echocardiography results will be collected with
the aim of identifying various phenotypic patient profiles and to concomitantly interpret
the data obtained using omics technologies. The impact of lipid-lowering therapy on
the biomarker levels will also be assessed, taking into account the drug- and especially
statin-naivety of the patients.

Collectively, these data will help to improve the efficiency of therapy in patients who
have suffered from ACS and to identify a group of patients with a higher risk of recurrence
of cardiovascular events. Presenting a new perspective, this strategy will provide progress
in the development of a personalized secondary prevention approach.

Beyond the majority of single-time cross-sectional approaches in this field, the longitu-
dinal design of this investigation will highlight the dynamics of expression data and may
uncover other additional factors influencing the time course of the disease.

Moreover, regarding the subjects in secondary prevention, this time dependent evalua-
tion will underscore changes that are directly or indirectly initiated by acute cardiovascular
events. A prospective approach recording expression profiles at different time cut-offs will
provide a more accurate and comprehensive analysis in the context of the cardiovascular
disease prolongation.

The predictive in silico models for data analysis of the elevated amount of -omic data
will be based on consolidated Al best practices for classical ML and deep learning paradigms
to avoid the previously cited criticisms (variable selection method [66] and furthermore,
cross-validation can warrant reproducibility [67]). The model will employ methods (e.g.,
cross-validation) to validate the reproducibility of the results. With this regard, the data
sample will be split into training and test sets (usually 80% and 20% respectively). In regard
to the training set, we will set up the algorithm and build a powerset of the feature set.
Each element of the powerset will be used for training a logistic regression model (fitting
the parameters). Then, we will calculate the area under the Receiver Operating Curve
(ROC) using the trained regression model and the vector of binary variables. We repeat
this procedure for each element in the powerset. The model will use a subset of factors and
the vector of their coefficients for a calculation of the test sample. The features from the
different omics layers will be integrated in an ML model based on the Integrative Network
Fusion method. Both AI/ML supervised and unsupervised strategies will be developed
to derive a classification algorithm from the derivation cohort, which will be applied to
subsequent validation cohorts to construct an intervention model to identify the greatest
number of discriminant biomarkers for response prediction. The algorithm will be refined
using an ML-based iteration with additional datasets collected within the project.

A multitude of publicly available clinical datasets and a tissue expression atlas from
diverse experimental models have been produced in the recent years which represent an
almost fulfilled scientific request. The next objective is the leveraging of informatics and
the understanding of systems biology [7] to both estimate the individual risk among large
communities and to identify the rarer forms of highest and premature ACVD risk. This
appears a feasible aim, that can be achieved by blending multi-omics, genetic approaches
and clinical features. At the same time, however, this comprehensive approach should
take into account the clinical perspective of and sensitivity to the disease. This joint
scientific project actually responds to this request, by connecting translational scientists,
who are involved in a well-established Italian network for genetic dyslipidemias, and
different clinical entities, lipidologists and cardiologists. By establishing this multi-omic
approach, the research joint group aims to export and exchange, on a global basis, this
research, providing a paradigm for a new and more accurate level of in vivo staging of
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the atherosclerotic process. In addition, to provide further translational knowledge in
atherosclerosis, this scientific endeavor will act as a proof-of-concept to surmise future
clinical tools of personalized medicine to be applied at any stage of ACVD risk.
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GWAS Genome-Wide Association Studies
HDL-C High-Density Lipoprotein cholesterol content
LDLR Low-Density Lipoprotein Receptor
LDL-C Low-Density Lipoprotein cholesterol content
LDLRAP1 Low Density Lipoprotein Receptor Adaptor Protein 1
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ML Machine Learning
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NGS Next-Generation Sequencing
PCSK9 Proprotein Convertase Subtilisin/Kexin type 9
PhWAS Phenome-wide association study
SNPs Single Nucleotides Polymorphisms
STEMI ST-elevation myocardial infarction (STEMI)
TWAS Transcriptome Wide Association Study
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