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Abstract

The research activity contained in the present thesis work is devoted to the
development of novel Machine Learning (ML) and Deep Learning (DL) algorithms
for the classification of Cardiac Abnormalities (CA) from Electrocardiogram (ECG)
signals, along with the explanation of classification outputs with explainable
approaches. Automated computer programs for ECG classification have been
developed since 1950s to improve the correct interpretation of the ECG, nowadays
facilitating health care decision-making by reducing costs and human errors. The first
ECG interpretation computer programs were essentially developed by translating
into the machine the domain knowledge provided by expert physicians. However, in
the last years leading research groups proposed to employ standard ML algorithms
(which involve feature extraction, followed by classification), and more recently end-
to-end DL algorithms to build automated ECG classification computer programs
for the detection of CA. Recently, several research works proposed DL algorithms
which even exceeded the performance of board-certified cardiologists in detecting
a wide range of CA from ECGs. As a matter of fact, DL algorithms seem to
represent promising tools for automated ECG classification on the analyzed datasets.
However, the latest research related to ML and DL carries two main drawbacks
that were tackled throughout the doctoral experience. First, to let the standard ML
algorithms to perform at their best, the proper preprocessing, feature engineering,
and classification algorithm (along with its parameters and hyperparameters) must
be selected. Even when end-to-end DL approaches are adopted, and the feature
extraction step is automatically learned from data, the optimal model architecture
is crucial to get the best performance. To address this issue, we exploited the
domain knowledge of electrocardiography to design an ensemble ML classification
algorithm to classify within a wide range of 27 CA. Differently from other works in
the context of ECG classification, which often borrowed ML and DL architectures
from other domains, we designed each model in the ensemble according to the
domain knowledge to specifically classify a subset of the considered CA that alter
the same set of ECG physiological features known by physicians. Furthermore, in a
subsequent work, toward the same aim we experimented three different Automated
ML frameworks to automatically find the optimal ML pipeline in the case of standard
and end-to-end DL algorithms. Second, while several research articles reported



remarkable results for the value of ML and DL in classifying ECGs, only a handful
offer insights into the model’s learning representation of the ECG for the respective
task. Without explaining what these models are sensing on the ECG to perform
their classifications in an explainable way, the developers of such algorithms run
a strong risk of discouraging the physicians to adopt these tools, since they need
to understand how ML and DL work before entrusting it to facilitate their clinical
practice. Methods to open the black-boxes of ML and DL have been applied to
the ECG in a few works, but they often provided only explanations restricted to a
single ECG at time and with limited, or even absent, framing into the knowledge
domain of electrocardiography. To tackle such issues, we developed techniques
to unveil which portions of the ECG were the most relevant to the classification
output of a ML algorithm, by computing average explanations over all the training
samples, and translating them for the physicians’ understanding. In a preliminary
work, we relied on the Local Interpretable Model-agnostic Explanations (LIME)
explainability algorithm to highlight which ECG leads were the most relevant in the
classification of ST-Elevation Myocardial Infarction with a Random Forest classifier.
Then, in a subsequent work, we extended the approach and we designed two model-
specific explainability algorithms for Convolutional Neural Networks to explain
which ECG waves, a concept understood by physicians, were the most relevant in
the classification process of a wide set of 27 CA for a state-of-the-art CNN.



Contents

List of Figures VII

List of Tables IX

1 Introduction 1
1.1 Cardiac Abnormalities . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Automatic Interpretation of Cardiac Abnormalities . . . . . . . . . 4
1.3 Classification of Cardiac Abnormalities with Machine Learning . . . 9
1.4 Drawbacks of Machine Learning: Motivation of the Thesis . . . . . 16
1.5 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 25

2 State of the Art on Electrocardiogram Classification and Machine
Learning Explainability 31
2.1 State of the Art on Electrocardiogram Classification . . . . . . . . . 32

2.1.1 Denoising of the Electrocardiogram . . . . . . . . . . . . . . 32
2.1.2 Clinical Perspective of Electrocardiogram Features . . . . . . 37
2.1.3 Machine Learning within Electrocardiogram Classification . 42

2.2 State of the Art on Machine Learning Explainability . . . . . . . . 53
2.2.1 Preliminary Notions . . . . . . . . . . . . . . . . . . . . . . 54
2.2.2 Global and Local Explainability . . . . . . . . . . . . . . . . 57
2.2.3 Intrinsically Explainable Models . . . . . . . . . . . . . . . . 60
2.2.4 Surrogate Model Explanations . . . . . . . . . . . . . . . . . 62
2.2.5 Local Interpretable Model-agnostic Explanations (LIME) . . 64
2.2.6 Explainability within Electrocardiogram Classification . . . 65

3 Design of Machine Learning Algorithms for Classification of Car-
diac Abnormalities 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Classification of 12-lead Electrocardiograms with an Ensemble Ma-

chine Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 The 2020 PhysioNet/Computing in Cardiology Challenge

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

V



VI Contents

3.2.3 Preprocessing of the Electrocardiograms . . . . . . . . . . . 77
3.2.4 The Ensemble Model . . . . . . . . . . . . . . . . . . . . . . 78
3.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 80
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Classification of 12-lead Electrocardiograms with Different Lead
Systems Using Automated Machine Learning . . . . . . . . . . . . . 83
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.2 The 2021 PhysioNet/Computing in Cardiology Challenge

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.3 Preprocessing of the Electrocardiograms . . . . . . . . . . . 84
3.3.4 The Automated Machine Learning Frameworks . . . . . . . 85
3.3.5 Experiments on the Frameworks . . . . . . . . . . . . . . . . 88
3.3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 89
3.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Explainability of Machine Learning Algorithms for Classification
of Cardiac Abnormalities 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Explainability of Machine Learning Algorithms in the Classification

of ST-Elevation Myocardial Infarction . . . . . . . . . . . . . . . . . 95
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 The Physikalisch-Technische Bundesanstalt Dataset . . . . . 97
4.2.3 Preprocessing of the Electrocardiograms . . . . . . . . . . . 97
4.2.4 Training of the Random Forest Classifier . . . . . . . . . . . 98
4.2.5 Explaining the Random Forest with LIME . . . . . . . . . . 99
4.2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 100
4.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Explainability of Deep Learning Algorithms in the Classification of
27 Cardiac Abnormalities . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Explainability Frameworks . . . . . . . . . . . . . . . . . . . 106
4.3.3 Preprocessing of the Electrocardiograms . . . . . . . . . . . 108
4.3.4 The Experimental Settings . . . . . . . . . . . . . . . . . . . 108
4.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 109
4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.7 Limitations of the Study . . . . . . . . . . . . . . . . . . . . 114

5 Conclusion 117

References 119

List of Publications 135



List of Figures

1.1 Distribution of the leading causes of mortality worldwide per year
according to the World Health Organization . . . . . . . . . . . . . 2

1.2 An example of a clinical 12-lead electrocardiogram . . . . . . . . . . 5

2.1 Common types of noise signals in electrocardiograms . . . . . . . . 33
2.2 Most important waves, intervals and segments on a schematic elec-

trocardiogram, along with the illustration of the heart’s anatomy . . 39

3.1 Available electrocardiograms for each scored label in the publicly
available subset of the 2020 PhysioNet/Computing in Cardiology
challenge dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 An example of average template for two electrocardiogram signals . 77
3.3 A scheme of the ensemble machine learning classification model

employed in Bodini et al. [109] . . . . . . . . . . . . . . . . . . . . . 78
3.4 Architectures of the convolutional neural networks introduced in

Bodini et al. [109] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5 Classification results of the automated machine learning frameworks

employed in Bodini et al. [110] . . . . . . . . . . . . . . . . . . . . . 90

4.1 Machine learning explanations provided for the classification of
myocardial infarction in Bodini et al. [98] . . . . . . . . . . . . . . . 102

4.2 An example of machine learning explanation provided by the explain-
ability frameworks designed in Bodini et al. [111] . . . . . . . . . . 107

4.3 Relevance values computed by the explainability frameworks intro-
duced in Bodini et al. [111], along with their computed agreement. 110

VII





List of Tables

2.1 The most important electrocardiogram waves, intervals, and segments
along with normal values for a healthy male adult. . . . . . . . . . . 40

3.1 Statistics which describe the publicly available subset of the 2020
PhysioNet/Computing in Cardiology challenge dataset . . . . . . . 75

3.2 Classification confusion matrices of the convolutional neural networks
introduced in Bodini et al. [109] . . . . . . . . . . . . . . . . . . . . 81

3.3 Performance of the final automated machine learning model reported
in Bodini et al. [110] . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Classification performance of the random forest model employed in
Bodini et al. [98] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

IX





Credits: xkcd, Creative Commons Attribution-NonCommercial 2.5 License,
available at https://xkcd.com/1838.

1
Introduction

Contents
1.1 Cardiac Abnormalities . . . . . . . . . . . . . . . . . . . 1
1.2 Automatic Interpretation of Cardiac Abnormalities . . 4
1.3 Classification of Cardiac Abnormalities with Machine
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1.4 Drawbacks of Machine Learning: Motivation of the

Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1.1 Cardiac Abnormalities

Cardiac Abnormalities (CA) fall under the umbrella of Cardiovascular Diseases

(CVD) which include disorders that affect the heart muscle, the brain, and blood

vessels [1]. CVD stand as the leading cause of mortality worldwide according to

the statistics of the World Health Organization (WHO) [2]: more than 17.3 million

of deaths per year are caused by CVD, which corresponds to more than 30% of

global deaths, as reported in Figure 1.1(a) which shows the yearly distribution

of leading causes of mortality worldwide.

The Figures 1.1(b) and 1.1(c) which report the yearly percentage of CVD deaths

caused by different kinds of CVD, respectively for males and females, show that

1



2 1.1. Cardiac Abnormalities

Figure 1.1: (a) Distribution of the leading causes of mortality worldwide per year. The
acronym NCD stands for “noncommunicable diseases”. The yearly distribution of CVD
deaths caused by several types of CVD are respectively reported in panel (b) and (c) for
males and females. Statistics collected from the WHO [2].
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more than a half of the yearly total deaths caused by CVD is related to CA. Different

kinds of CA may be caused by several conditions mainly including atherosclerosis,

congenital malformations, rheumatic fever, disorders of the heart muscles, and

disorders of the electrical conduction system of the heart [1, 2].

Atherosclerosis is a pathological condition of blood vessels that may results in

ischemic heart diseases or coronary artery diseases, usually known as heart attacks

(while in the case of cerebrovascular diseases it may cause what is usually known as

stroke) [3]. During atherosclerosis, fatty material and cholesterol are deposited inside
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blood vessels, and such deposits1 may cause the interior surface of the blood vessels

to become irregular and their lumens2 to become narrow, making it more difficult for

the blood to flow through. Blood vessels also become less flexible as a direct result.

Eventually, plaques may rupture, thus leading to the formation of a blood clot, and

if such event happens in a coronary artery it may lead to a heart attack (while if it

happens in the brain, it may lead to a stroke). Atherosclerosis is responsible for a

large percentage of CVD: for instance, in 2008 heart attacks were responsible for

7.3 million deaths and strokes were responsible for 6.2 million deaths, out of the

17.3 million total CVD deaths [2]. Nowadays, there is strong scientific evidence that

several risk factors promote the condition of atherosclerosis, including behavioral

risk factors (tobacco smoking, an unhealthy diet, harmful use of alcohol, etc.),

metabolic risk factors (hypertension, diabetes, obesity, etc.), and other risk factors

(advancing age, genetic disposition, and psychological factors such as stress) [3].

Malformations of the structure of the heart muscle immediately noticeable at

birth are known as congenital heart malformations. Common examples include

holes in the heart septum, abnormal valves, deformations in heart chambers, etc. [5].

The arising of congenital heart malformations may be caused by a consanguinity

relation between parents, maternal infections (e.g. the well-known Rubella, an

infection caused by the Rubella virus [6]), maternal harmful use of alcohol or/and

drugs, and poor maternal nutrition (e.g. lack of folic acid in the diet of people

which live in less developed countries) [7].

Rheumatic heart disease is caused by damages to the heart muscle and heart

valves caused by rheumatic fever, an inflammatory disease that can affect several

connective tissues especially in the heart, joints, skin, or in the brain, following a

streptococcal pharyngitis or tonsillitis [8]. The heart valves can be inflamed, thus

becoming scarred over time, and their narrowing or leaking makes it harder for the

heart to function normally. Such condition may take years to develop and it may
1Deposits composed of fatty material are usually referred as plaques [3].
2The term “lumen” here refers to the interior part of a vessel, i.e. the central space in an

artery, vein, or capillary through which the blood flows [4].
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eventually result in heart failure. Rheumatic fever can occur at any age, but usually

it happens in children ages and it is uncommon in the most developed countries [2, 8].

Disorders of the heart muscle, i.e. cardiomyopathies, and disorders of the

electrical conduction system of the heart, i.e. cardiac arrhythmias, represent

relevant CA even if they are less common than heart attacks and strokes, as shown

in Figures 1.1(b) and 1.1(c). Cardiomyopathy is a wide term for CA related to

the heart muscle where the walls of the heart chambers have become stretched,

thickened or stiff [9]. As a direct result, the heart muscle weakens and becomes

unable to pump blood to the rest of the body. Several kinds of cardiomyopathy

are inherited and they can be noticed in children and younger people. Cardiac

arrhythmias are a set of diseases in which the heartbeat rhythm is irregular, i.e.

excessively fast, slow, or chaotic and unpredictable [10]. Usually, the normal heart

beating rhythm in a resting subject is within 60 and 100 beats per minute (bpm)

[11]. For instance, sinus tachycardia is a kind of arrhythmia that happens when the

heart rate is superior to 100 bpm in adults. On the other hand, bradycardia happens

when the heart rate is inferior to 60 bpm [10]. While several kinds of arrhythmia

are not life-threatening, some of them may cause complications such as stroke or

heart failure, and eventually sudden death. A well-known example is ventricular

fibrillation in which heart ventricles suddenly stop pumping normally, due to sudden

chaotic electrical activity. Ventricular fibrillation results in cardiac arrest with loss

of consciousness and heart pulse, and it causes the majority of sudden deaths [12].

1.2 Automatic Interpretation of Cardiac Abnor-
malities

In Section 1.1 we pointed out that CA represent more than a half of the total

number of deaths caused by CVD worldwide. Thus, physicians are making a big

effort toward the early diagnosis and prompt treatment of CA [13, 14], which

are of paramount importance for people who are at high cardiovascular risk [15].

Several invasive and non-invasive clinical tests are usually performed to diagnose the
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Figure 1.2: An example of clinical 12-lead ECG recorded on an anonymized patient.
Common clinical measures, e.g. bpm rate and degrees of cardiac axes, along with
an automatic suggestion for the final diagnosis are provided by the ECG recording
machine. Credits: MoodyGroove, Public domain, via Wikimedia Commons available at
https://commons.wikimedia.org/wiki/File:12leadECG.jpg.

presence of CA, including blood tests, electrocardiogram, echocardiogram, coronary

angiogram, and magnetic resonance imaging [15].

The Electrocardiogram (ECG) is considered as one of the most important clinical

tools for the detection and diagnosis of CA [15, 16]. When performing an ECG, the

heart electrical activity is recorded to assess weather the heart is beating under a

normal condition. Several electrodes and wire leads are put on chest, arms, and legs.

Then, the leads are connected to an ECG machine which is capable of recording

the electrical impulses generated by the heart and printing them out on paper [17,

18]. Often, along with the recordings, the ECG machine provides common clinical

measures, and automatic suggestions to help physicians in the final diagnosis of

the possible CA. The standard clinical practice usually employs the 12-lead ECG,

which is recorded through 10 electrodes (an example of a clinical 12-lead ECG

is reported in Figure 1.2). One of the great advantages of the ECG is that it is

widely available, giving physicians around the world an easy, rapid, non-invasive,

reproducible, patient-friendly, and last, but not least, inexpensive way of obtaining

a wealth of information about cardiac health [19].

Usually, a physician provides an interpretation of the ECG, where with the term

“interpretation” here we specifically refer to the assessment process of the morphology
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of the ECG waves and common time intervals to understand if one or multiple CA

are present. However, the interpretation process is time-consuming and it requires

a high degree of training [20]. It is then not surprising that the first attempts to

build computer programs for the automatic interpretation of ECGs are dated back

at the end of the 1950s, when it was soon expected that computers would have

a crucial role in the process of ECG interpretation [21–23]. The traditional ECG

interpretation programs were built translating into the machine the interpretation

rules developed within the standard practice of physicians [21, 23], and their use

has spread since the 1980s, when real-time analysis and direct print on paper of

the results along with ECGs were introduced [24].

Despite the huge initial technical efforts, the clinical employment of computer

programs to interpret ECG remained initially limited because of the lack of

agreement on waves definitions, common measurements, and standardized criteria

for interpretation [25]. To address such problems, efforts to propose standards

and recommendations for the interpretation of ECG were developed worldwide to

establish an international standard for the computerized interpretation of the ECG

[26]. The aim was to reduce the wide variation in wave measurements and in the

diagnostic interpretation of ECG, so that similar or at least comparable results

could be obtained independently of the employed computer program [16, 25].

Even considering all the efforts and advances in the field of automatic interpre-

tation of ECG, worldwide accepted standards for its interpretation are still missing

[21]. However, yet in 1988, a survey report showed that over 50% of the 100 million

ECGs recorded in the United States were interpreted by computer programs [26].

In the next decade such number doubled and by 2006 it was reported that 100

million ECGs were being interpreted by computers annually in the United States,

and a similar number in Europe [26]. Nowadays, all the modern clinical ECG

acquisition devices are equipped with automatic interpretation programs, which

offer diagnostic proposals to assist the physicians’ decision-making process while

improving their diagnostic accuracy [27], and reducing the required time to get

ECG interpretations [26]. For instance, in Hongo et al. it was estimated that
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computer-assisted ECG interpretation decreased the required interpretation time

by up to 24% to 28% for experienced physicians [26].

An example of ECG interpretation computer program is represented by the

University of Glasgow (Uni-G) ECG analysis program that has been in continuous

development for over 30 years [28]. Several other examples of automatic interpreta-

tion programs nowadays employed in the standard clinical practice are reported in

De Bie et al. [24]. As a final remark, we notice the improvements lead by such ECG

interpretation programs have shifted their role from saving the time of cardiologists,

and improving their diagnostic accuracy, to even supporting the diagnostic process

when access to a specialist is not possible. Such possibility was recently made

available by the latest advancements of telemedicine, which involves the employment

of reliable communication systems for remotely delivering biomedical signals over

long distances to physicians, and to return back the diagnosis to the patients [29, 30].

It is clear that computer programs for ECG interpretation has had a huge impact

on electrocardiography by assuming a large role in the diagnostic interpretation,

where their most important advantages include the improved percentage of correct

interpretation of ECGs [27], and the reduction of physicians reading time [26].

The computerized interpretation of ECG has evolved into a necessary tool for the

modern medical practice, but the preliminary diagnostic interpretations offered by

automated computer programs still come with several drawbacks [16].

The automated interpretations of ECGs are often wrong, where the most common

errors involve for instance the interpretation of atrial fibrillation, pacemaker rhythms,

and myocardial infarction [31, 32]. Shah et al. [33] assessed the interpretation

performance of the General Electric GE-Marquette analysis program, which is a

top-level ECG interpretation computer program provided by the GE Healthcare

company (Milwaukee, WI, USA) [34]. The authors compared automatic ECG

interpretations to that of two expert over-readers in assessing 2112 randomly selected

standard 12-lead ECGs. The normal sinus rhythm3 was correctly interpreted by

computer programs in 95% of the ECGs with this rhythm. However, non-sinus
3The terminology “normal sinus rhythm” is often employed to denote a specific kind of rhythm

where all common clinical measurements of the ECG fall within designated normal limits [18].
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rhythms were correctly interpreted with an accuracy of only 54%. The automatic

computer program interpreted sinus rhythm with a sensitivity of 95%, specificity

of 66%, and positive predictive value of 93%. However, the automatic program

interpreted non-sinus rhythms with a sensitivity of 72%, a specificity of 93%, and a

positive predictive value of 59%. Several other recent studies which report related

findings are presented in Estes [31] and De Bie et al. [24]. Thus, physicians must

be aware of the hazards of relying on preliminary diagnostic interpretations, and

automated interpretation of ECG must be often over-read by trained physicians

to offer accurate diagnoses of CA. As a direct result, the automatic interpretation

of ECGs must be be regarded as supplement, but not as a substitute of the

interpretation provided by expert physicians [31].

Besides the potential interpretation errors, the accuracy of interpretation pro-

grams may even significantly vary according to both the manufacturer’s program

and the level of the ECGs over-readers [21]. Computer programs are usually

tested in comparison with interpretations provided by several expert physicians,

considered to be the gold standard. Indeed, the quality of interpretations provided

by computer programs has been deeply questioned [24, 26]. Further, the ECG

datasets employed for testing computer programs often poorly represent the overall

population with respect to age, gender, and possible clinical diagnoses usually

faced in the daily medical practice [21, 26]. Advanced comparative assessments

of the accuracy of commercially available computer interpretation programs were

rarely performed, mainly due to the reluctance of the manufacturers [26]. To the

best of our knowledge, only recently a study from De Bie et al. [24] compared

the most currently employed ECG interpretation programs on a wide dataset by

assessing their accuracy in detecting CA, including for instance atrial fibrillation

and flutter. The study not only confirmed that automatic interpretations could be

often wrong, but they can even significantly differ between the analyzed computer

programs. Thus healthcare institutions and physicians should not rely only on a

selected interpretation program to decide the treatment of CA.
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As a remarkable drawback, it must be noted that the majority of the commonly

employed ECG interpretation programs come with proprietary licenses with high

cost for hospitals and medical institutions that cannot meet the needs of remote areas

for proper management of CA, in particular of low and middle-income countries [35].

Several less expensive novel ECG interpretation tools were developed, including

for instance portable ECG monitors and wearable devices. Such tools come with

different interfaces and functionalities that can potentially affect their accuracy,

size, reliability, and power consumption. However, despite the huge efforts geared

towards the development of less expensive ECG interpretation tools, their diagnostic

accuracy, and reliability are still sacrificed, thus representing major issues [35].

Finally, as a consequence of their proprietary license, the computer programs for

ECG interpretation are often partially or completely opaque to the final user, in the

sense their source code is not accessible and they cannot be queried to understand

the reasons behind the provided interpretations. Nevertheless, although not wanted

by manufacturers, with the growth of automated ECG analysis the ECGs have

become widely interpreted by less experienced physicians who nowadays often

rely more and more heavily on opaque computer interpretation programs [24, 36].

Regarding this aspect, we still stress the fact that computerized interpretations come

with several drawbacks, thus they should not be considered as a full replacement

of the experienced cardiac physician [31].

1.3 Classification of Cardiac Abnormalities with
Machine Learning

Machine Learning (ML) algorithms were applied in electrocardiography in the

last decades to automatic interpret ECGs [37–41]. ML is a subfield of the well-

known Artificial Intelligence (AI), where AI is a broader term which describes any

computational program that mimics certain capabilities of the human intelligence,

such as problem solving skills, by modeling them with explicit rules designed for the

problem at hand [39, 42]. Even if AI and ML have been often used interchangeably

in the context of electrocardiography, they represent different ways to automatically
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address tasks with the use of computers [37, 39]. ML automatically learns how

to address a specific task by discovering useful patterns from data, without using

explicit instructions provided by domain experts [39, 43]. On the other hand,

AI methods address tasks according to preset rules that are designed relying on

the human knowledge [39, 43].

In the context of electrocardiography, researchers often modeled the task of

ECG interpretation as a supervised classification ML problem [44, 45], i.e. they

identified CA by training ML algorithms to learn a proper classification model from

a set of labeled training ECG data, where the ground truth was provided by expert

physicians [37, 39, 41]. In particular, the availability of public datasets, mainly

shared by the Physionet project, allowed researchers to design and train promising

algorithms to classify CA [46]. Several ML algorithms are available to learn a

classification model from data with associated information on the outcome. The

most typical supervised ML classification algorithms leveraged for ECG classification

include support vector machine, k-Nearest Neighbors (k-NN), decision tree, random

forest, and artificial neural networks [47–49].

The approach of the ECG interpretation computer programs introduced in

Section 1.2 resembles to the one of AI and may result far from ML, which seek to

exploit patterns within the available data to identify CA rather than relying on a

fully empirical set of human-designed rules [23, 41, 43]. To stress the differences

within the two approaches, let us consider a deeply simplified version of the ECG

interpretation task where, for the sake of simplicity, we are required to interpret

single-lead ECGs that show normal sinus rhythm or bradycardia4. The interpretation

computer programs presented in Section 1.2, which rely on the clinical domain

knowledge, usually take as input the ECG signal, apply a certain preprocessing

to the signal, compute the bpm rate, and provide an interpretation relying on

the 60 bpm threshold [23, 38, 41].
4Bradycardia is a condition wherein the resting heart rate is under 60 bpm in adults [10].

Nowadays, several models of smartwatch showed that it is possible to detect normal sinus rhythm
and bradycardia from single-lead ECGs with remarkable performance [50].



1. Introduction 11

An alternative to the usage of the domain knowledge of physiology in interpreting

ECGs is represented by ML [37, 39–41]: the above mentioned simplified version

of the ECG interpretation task can be modeled as a supervised classification ML

problem, for instance by employing the logistic regression function to classify within

the two considered CA. The logistic regression function is a common parametric ML

classification model, borrowed from statistical learning [44, 45], which maps a real-

valued input vector5 x, our sampled single-lead ECG, to a scalar prediction ŷ

in the range [0, 1] as

ŷ = σ(wTx+ b), (1.1)

where w is a set of parameters, also called weights, b is an additive bias, and σ(·)

is the logistic function with the following functional form:

σ(z) = 1
1 + e−z

. (1.2)

If we map the normal sinus rhythm to the value of 0 and bradycardia to the value

of 1, the logistic regression function is a simple model which offers the computer a

way to classify within the two considered CA. Since the logistic regression outputs a

value between 0 and 1, we may think of it as a probability: a zero input (with b = 0)

gives a value of 0.5, thus we could predict bradycardia whenever the probability

is greater than 0.5, and normal sinus rhythm whenever the probability is less

than 0.5. To properly calibrate the logistic regression model, a starting guess

is set for the unknown parameters w, usually by randomly sampling them [44,

45]. Then, the model is supplied with pairs of ECGs, usually called features, and

corresponding diagnosis, usually referred as labels (in this case, zero or one values).

A set of instructions is provided to fit the data to the underlying equation as an

optimization problem by minimizing the prediction error, usually referred as loss

or cost function. Finally the instruction set is continually executed to update

the parameters to fit this data to the underlying equation with lower an lower
5If not differently stated, we hereinafter refer only to column vectors.



12 1.3. Classification of Cardiac Abnormalities with Machine Learning

prediction error, and such is usually called as training process6. Even if simplistically

represented, each emphasized term above identifies the basic building blocks of any

parametric ML algorithm [44, 45], and if such blocks are tuned properly they allow

for the development of novel techniques to classify ECGs [37, 39, 41]. Furthermore,

we mention that even non-parametric ML algorithms exist, which act similarly to

the parametric ones, but they do not involve the step of the calculation of the

optimal parameters. A well-known example of non-parametric ML algorithm is

represented by the k-NN algorithm where the class of a new sample is computed

through the majority voting of the classes associated to the k samples with the

closest distance to the new one (relying on some definition of distance) [44, 45].

Most of the supervised ML algorithms are not directly fed with raw ECGs, as

we described in the above example. Instead, ML algorithms are usually fed with

handcrafted feature vectors for the classification task to accomplish, computed

relying on the domain knowledge of electrocardiography [37, 39–41]. For instance,

peak amplitudes and time windows computed over most important ECG waves,

frequency domain features, and statistical features computed on the ECG are

among the most common ones [47, 48]. However, in the last decade we saw the

development of a completely new approach called Deep Learning (DL), a research

field belonging to the ML domain, where computers efficiently learn how to make

automatic classifications in a fully data-driven way [51, 52]. With the advent of

DL, the approach for tackling automatic classification problems moved from the

calculation of handcrafted features to an innovative end-to-end learning strategy,

where the classification model automatically learns the relevant features for the

task to accomplish directly from the raw data (or slightly preprocessed).

The most common DL algorithms are represented by Deep Neural Networks

(DNN) [44, 51, 52]. DNN are a kind of artificial neural network that consist of

multiple simple non-linear models, usually called neurons, which compute a weighted

sum of the inputs and threshold the resulting sum by setting it as input of non-linear

functions. Neurons are usually arranged in series where each one is named layer [44,
6Stochastic gradient descent and binary cross-entropy are often employed in this case,

respectively as training algorithm and loss function [44, 45].
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45]. The more is the number of layers and non-linear neurons in each layer, the more

the DNN are capable of catching complex information from data [51, 52]. By far,

Convolutional Neural Networks (CNN) are within the most common kind of DNN

used to classify ECGs7, in which convolutional filters and subsampling operations

are applied in cascade [38, 49, 54, 55]. The convolution operation considers a small

pattern, usually referred as convolutional kernel, and it locates where such pattern

arises in the input signal by multiplying the kernel itself with the input through a

sliding window. The optimal pattern to search for properly classifying within the

classes of the problem at hand is automatically learned from data during the training

process [44, 51, 52]. Even by means of the subsampling layers, the convolution

operation is capable of retaining useful information through successive layers by

removing artifacts deemed unnecessary by the neural network during the training

process [51, 52]. Usually, serial combinations in parallel and series of convolution

and subsampling layers allow the CNN to learn simple concepts at each layer, that

finally build up to learn more and more complex concepts. For instance, in the most

intuitive example of CNN used in image recognition tasks, convolutional layers are

capable of learning simple entities in the first layers, e.g. lines, circles, that finally

build up into more sophisticated representations, e.g. beaks, feathers, eyes [51].

DL has seen a dramatic rise in the past decade due to the availability of large

databases and new high-performance computing methods [51, 52]. Groundbreaking

performance were delivered by DL in several research fields, such as speech recogni-

tion, image classification, and language translation, some of them at human-level

performance [51]. For instance, in the context of computer vision CNN often showed

recognition accuracy better than, or at least comparable, to humans in several visual

recognition tasks [56], including recognizing traffic signs [57], faces [58], hand-written

digits [59], facial landmarks [60], and on more generic image recognition tasks. For

instance, He et al. [61] surpassed the human-level recognition performance reported

by Russakovsky et al. [62] on a more generic and challenging recognition task

involving the classification of images within 1, 000 different classes. The large
7Nevertheless, it must be noticed that a wide range of DL models do exist [53], even if they

were less applied on the ECG classification task [48, 49, 54].



14 1.3. Classification of Cardiac Abnormalities with Machine Learning

impact that DL had in several research fields has motivated the investigation of

such methodologies for the automatic classification of ECGs [38, 49, 54, 55]. Indeed,

private institutions have recently begun in collecting massive ECG databases that

are orders of magnitude larger than the public ones previously proposed, and then

they trained DNN (especially CNN) onto them [49, 54, 55].

Zheng et al. [63] collected a publicly available database consisting of 10, 646

ECGs, including 5, 956 males and 4, 690 females. Among those patients, 17%

had normal sinus rhythm and 83% had at least one CA, including for instance

sinus bradycardia, atrial fibrillation, and supraventricular tachycardia. Wagner

et al. [64] proposed the PTB-XL8 dataset composed of 21, 837 clinical 12-lead

ECGs from 18, 885 patients of 10s length. The ECGs are publicly available and

they were labeled with 19 classes, including for instance bundle branch blocks,

myocardial infarction, and atrio-ventricular blocks. Hannun et al. [67] collected

a private database of single-lead ECGs consisting of 91, 232 ECG records from

53, 549 patients which showed normal sinus rhythm and other 11 CA, including for

instance atrial fibrillation, atrial flutter, and ventricular tachycardia. Recently, the

PhysioNet project proposed two challenges within the Computing in Cardiology

conference which asked participants to classify CA from 12-lead ECGs in 2020

[68], and from varying set of leads including 12-lead, 6-lead, 4-lead, 3-lead, and

2-lead ECGs in 2021 [69]. In both the editions, the challenge data was composed of

annotated ECGs from six sources in four countries and across three continents. The

second year challenge database included over than 130, 000 12-lead ECG recordings

with more than 88, 000 ECGs shared publicly as training data, while the remaining

ones were retained as validation and test data. The available ECGs were annotated

with multiple labels at the same time considering 133 possible CA, including for

instance the ones we previously mentioned for the previous introduced databases.

Zhu et al. [70] collected a dataset composed of 180, 112 12-lead ECGs from 70, 692

patients and they labeled signals with 20 possible CA. Similarly to the 2020 and
8The acronym “PTB” stands for the Physikalisch-Technische Bundesanstalt, the national

metrology institute of Germany which made available the first version of the database in 1995 for
research, algorithmic benchmarking, or teaching purposes [65, 66].
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2021 PhysioNet challenge databases, a portion the ECGs were annotated with

multiple labels at the same time. Finally, Ribeiro et al. [30, 71] collected a massive

and private ECG database composed of 2, 470, 424 ECGs, recorded on 1, 773, 689

patients. The database was collected starting from 2010 by the Telehealth Network

of the state of Minas Gerais, Brazil [72], and ECGs were labeled with several

common CA including atrio-ventricular block of first kind, bundle branch blocks,

sinus tachycardia, bradycardia, and atrial fibrillation.

DNN may learn the optimal features for a specific classification task, thus

likely outperforming ML algorithms that are fed with handcrafted ones9, indeed

they delivered promising performance on the above presented datasets [48, 49, 54].

For instance, Hannun et al. [67] implemented a CNN with residual connections

inspired from He et al. [73], and the authors assessed the model’s performance by

asking to a board of expert cardiologists to manually annotate 328 test ECGs. The

expert physicians performed worse if compared to the CNN in detecting all the

12 considered CA, except junctional rhythm and ventricular tachycardia. Ribeiro

et al. [30, 71] implemented a residual CNN comparable to the one of Hannun et

al. [67], but with fewer layers, with the same aim of classifying CA, but among 6

classes. At a larger scale with respect to Hannun et al. [67], the authors trained a

CNN with residual connections in an end-to-end fashion to diagnose various CA on

one of the largest available ECG databases (to the best of our knowledge), that we

introduced in the previous paragraph. Similarly to the case of Hannun et al. [67], the

classification performance of the trained model, assessed by its positive predictive

value, sensitivity, specificity, and area under the receiver operating characteristic

curve, was slightly better if compared with a cohort of medical trainees (thus,

including even students). Finally, Zhu et al. [70] proposed a comparable study to

Hannun et al. [67] and Ribeiro et al. [30, 71] by relying on a CNN with residual

connections, but the authors widened the CNN approach to classify 20 CA from

12-lead ECGs with multiple labels at the same time. The proposed CNN was
9Even if it happened in other research fields, such as Computer Vision [56], it is worth noting

that, to the best of our knowledge, the superiority of DL with respect to ML algorithms has not
been proved yet on the ECG classification task.
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validated on an independent test dataset composed of 828 patients’ ECGs that

had been annotated by a panel of three cardiologists, and the 24% of the ECGs

in such dataset was labeled with more than one abnormality. The CNN correctly

classified all the CA in 80% of the ECGs available in the test dataset, which it was

also interpreted by 53 physicians, divided in three groups based on their experience.

The average accuracy showed by the groups of physicians was 70%, thus worse

than the one showed by the CNN, and even the physicians with more than 12

years of experience of ECG interpretation were less accurate than the CNN (they

correctly interpreted 75% of the test ECGs).

1.4 Drawbacks of Machine Learning: Motivation
of the Thesis

The main advantage of DNN is represented by the optimal feature representation

achieved after the training phase [51, 52]. Their capability of automatically learning

relevant features is due to the large amount of parameters that these models contain,

which usually is in the order of tens of millions [74]. However, with such a large

amount of parameters, the classification outputs provided by DNN become difficult

to explain (or even impossible) [75–77]. These models are composed of multiple

layers with several interconnected neurons, and each neuron is associated to different

weights, with the aim of automatically extracting the relationship between the

input and the respective output. With a huge number of weights it is practically

unfeasible to understand how the neurons interact to determine why a certain

output was provided. Thus, the price of this luxury in capturing complex data

representations, which often lead to remarkable classification performance, is the

aforementioned loss of model understandability which smears the reputation of

DNN as black-boxes [75–77]. The perception of dealing with opaque models is

mostly associated with the final users of DNN: even if computer scientists and

engineers could potentially understand the architecture of DNN10, the process by
10Always by considering that the state-of-the-art DL architectures are often composed of tens of

millions of weights and non-linear operations [74], thus making it difficult to analyze their interior
data flow.
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which such models perform the classification can be inscrutable to humans, limiting

the trust in them, and thus hindering their acceptance [75, 78, 79]. Finally, it

must be noted that the above-mentioned concerns about missed understandability

even hold for the majority of other ML models, which include the DL ones. The

number of involved parameters, and the underlying complex architecture of most

ML models makes it difficult to understand the reasons behind their classifications,

likely to what happens with the DL ones [75–77].

In order to open ML black-boxes and understand why they provide their

classification outputs, researchers introduced several approaches to explain models’

outcomes, thus creating a new line of scientific research usually called “eXplainable

AI” (XAI) [75–77]. Methods for reaching explainability were mostly developed in

the computer vision domain, where researchers wanted to understand which portions

of the input image were the most relevant to DL models for getting classification

outputs [75, 77]. Another term that is frequently used to frame the XAI research

is “interpretable ML”, but it is worth mentioning that there is still no agreement

within the ML community on the definition of the terms “interpretability” and

“explainability” [75, 79]. Even if several authors attempted to distinguish between

them, most use such two terms interchangeably. Thus, although a clear universal

definition is still not available, for the sake of convenience in the following we will

refer to the term “explainability” of ML algorithms when we refer to the development

of techniques to explain the rationale behind the classification outputs of black-box

models. In such way we conveniently avoid the possible confusion that could arise

from the usage of terms linked to “interpretation”, employed in the previous Sections

1.1-1.3 to consider the well defined task of ECG interpretation.

The scientific research of XAI is nowadays perceived as required since black-box

models are currently being employed for taking high-stakes decisions throughout

society, potentially causing critical problems in healthcare, criminal justice, and

other domains [75, 79]. ML is currently leveraged for high-stakes applications that

deeply impact human lives, and several of them are black-boxes that do not explain

their outputs in a way that humans can understand. The lack of transparency
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and accountability of predictive models can have (and has already had) severe

life-threatening and ethical consequences [75, 79]; and generally poor use of limited

valuable resources in criminal justice, medicine, energy reliability, finance, and in

other domains [80]. Concrete examples where black-boxes negatively impacted

human lives, even leading to life-threatening consequences, are reported in Guidotti

et al. [75] and in Rudin [79]. A well-known case in which a black-box ML model

was fatal for a person is represented by the case of the death of Elaine Herzberg [81].

Elaine was the first recorded case of a pedestrian fatality involving a self-driving

car, after a collision that occurred in 2018. She was pushing a bicycle across a

four-lane road in Tempe, AZ, USA, when she was fatally struck by an Uber test

vehicle, which was operating in self-drive mode with a human safety backup driver

sitting in the driving seat. The full reasons of why the autonomous car did not

stop are still not completely understood, but Michael Ramsey, a self-driving car

expert with the Gartner company (Stamford, CT, USA), characterized the fatality

episode as “a complete failure of the system to recognize an obviously seen person

who is visible for quite some distance in the frame.” [82].

Regarding the context of electrocardiography, and even the broader context

of healthcare, ML is more and more being conceived as a technology with a

real potential to transform such fields, by allowing to be leveraged for high-

stakes applications [23, 83–85]. ML could potentially enhance the decision-making

capabilities of the individual clinicians by improving the accuracy of their diagnoses,

and by reducing the required time for obtaining them, thus to promptly apply

proper treatments. At the institutional level of healthcare, ML could improve its

inefficiencies in the workflow, potential waste of resources, inequities, and exploding

costs [83–85]. However, even if we accept the premises of this exciting narrative,

the enhancement of clinicians and healthcare institutions by means of ML is less

straightforward than it might appear. The employment of ML in healthcare goes

hand in hand with several trade-offs on the epistemic and ethical level. Even if there

is plenty of evidence of ML algorithms outsmarting their human counterparts11, their
11Examples in the context of electrocardiography are represented by several works we introduced

in Section 1.3, e.g. Hannun et al. [67], Ribeiro et al. [30, 71], and Zhu et al. [70].
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deployment comes at the costs of high degrees of uncertainty. Even if employing

ML might improve the accuracy of medical diagnosis and the time required to

obtain it, it comes at the expense of opacity when assessing the reliability of the

provided diagnosis itself, thus leading to an impoverished outcome. From an ethical

point of view, deferring to ML blurs the attribution of accountability, and thus

exposes patients to severe health risks [83].

In our view, none of the presented concern presents a definitive knockout

argument against the employment of ML within ECG classification, and even

healthcare. On the contrary, we are convinced that ML provides several opportunities

to enhance the reliability and the time required for decision-making in such contexts,

if ML models could be turned into glass-boxes. In this respect, the involvement of

ML in healthcare decision-making might yield more valuable outcomes, along with

a better epistemic, and consequent ethical, reflection. However, even if for several

research fields the desire of a deep understanding of ML applications is crucial and

obvious [76], the demand of explainability is not perceived as always required in

the context of healthcare [78, 83, 86]. Physicians cannot always provide a complete

explanation of why they arrived at a particular diagnosis. Several effective drugs

including aspirin, acetaminophen, and penicillin, were in widespread use for decades

before their mechanism of action was understood [86], thus opaque decisions are

more common in medicine than the most realize [78]. Indeed, even if our knowledge

about the mechanisms of the human body is not completely known, physicians will

not stop in treating people: even Aristotle noted over two millennia ago that when

our knowledge of a causal systems is incomplete — as it often is in the medical

practice — the ability to explain how results are obtained could be less relevant than

the ability to produce such results and empirically verify their accuracy [87, 88].

Thus, should this thesis work raise ML to higher explanatory standards than

physicians? An effort in the direction of developing explainability methodologies

relies on the fact that we believe necessary that future advancement in automatic

classification of ECG progresses together with our capability of understanding the

classification outputs of ML models. Even if we pointed out that opaque decisions
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are frequent in the context of medicine, this is not the case of ECG interpretation.

The physical phenomena that generate the electrical activity which make the heart

continuously beat have been well established during the last century [89], and the

same holds for the standard way of measure it from the body surface using the

12-lead ECG, that the American Heart Association standardized at the beginning

of the 1950s [14]. Finally, well established guidelines to interpret ECGs are available

[17, 19], and physicians are nowadays pursuing more and more the challenge for

their further standardization [16]. As a consequence, we think that researchers

should investigate how to demystify black-boxes to properly employ them for high-

stakes decisions in the context of electrocardiography. The rationale behind their

classification outputs must be questioned, similarly to what happens with physicians

which are able to provide the reasons behind the interpretation of certain CA. Only

in this manner we can attempt to foster the trust in ML and its acceptance in the

community of electrocardiography, by even facing the related ethical issues [54, 86].

In case a ML model shows high classification performance, we may expect that

it classifies ECGs by exploiting patterns which are meaningful in the underlying

domain, or at least correlated with the typical ECG markers that physicians usually

assess on ECGs to provide their interpretations. However, there is no guarantee

that ML models learn such meaningful patterns to consequently achieve the desired

classification output [90]. Indeed, ML is only highly capable of catching regularities

from data to optimally perform its classifications, regardless of the knowledge

domain. As a consequence, ML decision-makers cannot be trusted only relying on

their predictive performance which are evaluated on the available dataset. Moved

by analogous motivations to the ones we reported, several researchers investigated

explainability within ECG classification, and they assessed the characteristics of

the ECG that were significant in the final classification output of ML models [54].

For instance, Strodthoff et al. [91] and Baalman et al. [92] highlighted the samples

belonging to a single ECG beat that mostly contributed to the final classification

output, respectively for CNN and DNN models. Mousavi et al. [93] showed how to

highlight which ECG waves, beats, or combination of beats were important for the
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classification output provided by deep recurrent neural network. Finally, Zhang et

al. [94] highlighted the contribution of each ECG lead for the final classification

output of a CNN with residual connections.

Despite several works addressed the problem of explainability in ECG classifica-

tion, they are often focused on DL models, thus considering less other kind of ML

algorithms. Furthermore, most of the introduced explainability approaches provide

explanations limited to a few test ECGs, and they do not provide explanations

framed into the domain knowledge of electrocardiography, i.e. by comparing them

to the standard physiological guidelines for diagnosing CA. For instance, Strodthoff

et al. [91] and Baalman et al. [92] limited to provide the time samples belonging to

a single ECG beat that mostly contributed to the final classification output, without

framing such explanations into the physicians’ knowledge. On the other hand,

Mousavi et al. [93] framed the explanations into the knowledge domain by pointing

out which ECG waves, beats, or combination of beats were important for the final

classification output. However the computed explanations were still limited to a

single ECG at a time, thus lacking the possibility of systematically evaluating the

average performance of a DL model against the domain knowledge, over the entire

training dataset. Zhang et al. [94] provided interesting lead-level explanations, but

such explanations are not linked to the physicians’ domain knowledge for most

of the CA considered in the mentioned article. For instance, knowing that an

ECG was classified as atrial fibrillation because the underlying CNN relied more

on certain leads than on others would not be so relevant in the standard clinical

practice: a chaotic and unpredictable rhythm, typical of atrial fibrillation, may

be observed on any of the 12 ECG leads [50, 95]. Finally, it must be noticed

that all the mentioned articles explained DL classifications relying on a reduced

set of CA. Baalman et al. [92] and Mousavi et al. [93] classified within normal

sinus rhythm and atrial fibrillation, Strodthoff et al. [91] classified within normal

sinus rhythm and myocardial infarction, and Zhang et al. [94] classified within

normal sinus rhythm and other eight CA.
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Even if a few methods have been introduced to gain more insight into the

parameters learned by DL models, another major issue is represented by the

underfitting and overfitting phenomena [44, 45]. Underfitting happens in the case a

trained ML model obtains poor classification performance both on training data and

on unseen data. On the other hand, overfitting happens when the ML model shows

good performance on the training data, while poor performance on unseen data. To

prevent such issues, the proper ML/DL pipeline composed of preprocessing, feature

engineering (only in case of ML algorithms), and classification algorithm, along with

its parameters and hyperparameters, must be tuned relying on the experience of

the computer scientist or engineer [45]. Bad fitting could potentially arise in several

frequent situations [44, 45]. For instance, underfitting may be observed when a ML

model with too few parameters is not capable of catching patterns in data showing

high complexity [44, 45]. On the other hand, overfitting may happen when ML

models with a huge number of parameters are trained on datasets with limited

size, thus failing in learning general patterns to classify data [96, 97]. Further,

the overfitting phenomenon may also happen in the presence of a wide range of

biases potentially hidden in the dataset [51, 97]. Regarding the latter concern, for

instance in one of our previous studies (which we will present in Section 4.2) we

found that even with a standard ML model, a Random Forest (RF), it was possible

to achieve high classification accuracy for the automatic classification of myocardial

infarction, even though we discovered that the RF was not relying its classification

outputs on the ECG segments reported in the international guidelines for ECG

interpretation [98]. Such behavior was probably caused by a bias present in the

available dataset in which the ECGs associated with myocardial infarction were

sampled from an elder population, with respect to the younger one from which

normal sinus rhythm was sampled. Similar results come from a few other recent

studies that we introduced in the previous paragraph [91–94].

To avoid the arising of bad fitting models it is thus essential to consider the

quality of the dataset, which, if poor enough, may never be overcompensated by

any degree of ML models adjustments [44, 97]. Within the ECG classification task,
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with poor quality we refer to: 1) The classes imbalance that is usually present

in the latest presented datasets [68, 69], and in the previous ones introduced by

the PhysioNet project [46], due to several limitations during acquisition time (e.g.

difficulty in collecting rare CA, or unavailability of patients showing the desired

CA) [99]; 2) The limited acquisition of such datasets from a single site or relying on

a single device manufacturer [68, 69]; 3) The limited significance of such datasets

in representing the overall population with respect to age, gender, and ethnicities

[100]; 4) Last, but not least, the CA associated to the ECGs shared with the latest

presented datasets are usually validated by expert physicians, but in certain cases

there is still no objective gold standard for ECG interpretation [100]. Further, the

level of experience of the involved physicians has often being questioned and, to

the best of our knowledge, the problem of the assessment of the expertise level of

employed human annotators has not been deeply faced yet. However, it must be

noted that, if not tackled, it might expose us to a concrete risk of overoptimistic

rating ML and DL accuracy due to a low expertise of the human ECG readers,

as even pointed out by Sinnecker [100].

Several of the state-of-the-art datasets we introduced in the previous paragraphs

come with some of the presented issues. In Zhu et al. [70], the number of ECGs

within different classes of the dataset significantly differs of orders of magnitude. The

ECGs were collected relying only on GE-Marquette ECG machines (manufactured

by GE Healthcare, Milwaukee, WI, USA), and on a Holter machine manufactured by

the DMS Holter Company (Stateline, NV, USA). Further, the collected ECGs were

only recorded in Wuhan (China), which makes it difficult to predict the accuracy of

the network in interpreting ECGs from patients of different ethnicities [100]. Finally,

it is difficult to assess the level of experience of the 53 physicians who labeled the

ECGs in the test dataset, and on which the authors relied for the performance

assessment of the introduced model. Similar concerns hold for the work of Hannun

et al. [67] where the employed dataset was not class-balanced. ECGs were recorded

by uniquely relying on the Zio monitor, which is a Food and Drug Administration

(FDA)-cleared, single-lead, and patch-based ambulatory ECG monitor [101]. No
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details were provided on the ethnicity of the involved patients, however their average

age and sex were limited to 69 ± 16 years on the training set, 43% women, and

70± 17 years on the test dataset, 38% women. Finally, nine expert physicians were

split into three panels, and each panel annotated one-third of the test dataset to

generate the gold standard. It is difficult to assess if each of the panels was composed

of physicians with comparable experience, thus if the entire dataset was labeled with

homogenous fidelity. In Ribeiro et al. [71], the used dataset is unbalanced even if it

is within the largest available ones to the best of our knowledge. The acquisition

was limited to 811 counties in the state of Minas Gerais, Brazil and ECGs were

recorded relying only on two tele-electrocardiograph devices manufactured in Brazil.

Further, CA labels were not only validated relying on expert physicians, but even

relying on a cohort of medical trainees (thus, including even students).

We must notice that the limitations related to having at disposal a single

acquisition site, a limited kind of acquisition device, a restricted set of patients that

could be not fully representative of the entire population (in terms of age, gender,

ethnicity, etc.), and difficulties in the assessment of the experience of employed

physicians are challenging problems that are not straightforward to tackle, due to

potential limited funding and/or strict government regulations. However, in the

context of ECG classification, researchers tried to mitigate the mentioned drawbacks

by artificially altering the employed dataset or by modifying the architecture

of the employed ML model. For instance, researchers improved classification

performance by applying standard oversampling, which randomly duplicates samples

of the minority classes [67, 102]. On the other hand, several articles made use of

the undersampling technique, to undersample the over represented classes, where

one of them is usually represented by the normal sinus rhythm [103]. Finally,

researchers attempted to tackle the problem of class imbalance by modifying the

loss of employed DL models [104, 105].

Despite the efforts made to address the classes imbalance problem, to the best

of our knowledge there is neither a universal agreement nor a thorough study on

the most effective algorithms to be employed to address this issue in the task
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of ECG classification, and only preliminary comparisons of those methods are

available for restricted sets of CA [102]. Further, even if several techniques are

available to address the problem of data imbalance [99, 106], most of them were

poorly explored probably due to their difficult fitting to the ECG classification

task. For instance, an interesting method is represented by cost-sensitive learning,

which assigns different cost to misclassification of samples from different classes

[107], and it can be implemented in various ways depending on the underlying

ML or DL algorithm. For instance, a common way to implement it is to train a

DNN to minimize a certain misclassification cost, instead of the common employed

loss functions [107]. Even if cost-sensitive learning could significantly improve

the classification performance, the application of this method is only feasible to

the cases where misclassification costs are known [106]. Unfortunately, it is quite

challenging and sometimes impossible to determine misclassification costs in certain

domains, including the ECG classification [99]. Properly setting misclassification

costs may be not straightforward since in most of the cases they are unknown,

and/or they cannot be given by domain experts [108]. Finally, it must be noted

than in certain cases no rebalancing technique could address the biases that are

present in most of the available dataset. For instance, let us refer again to our

previous mentioned work where we noticed that a RF was capable of achieving high

classification accuracy for the automatic classification of myocardial infarction, even

though it was not relying on ECG segments reported in the international guidelines

for ECG interpretation [98]. We recall that such behavior was probably caused by a

bias present in the available dataset in which the ECGs associated with myocardial

infarction were sampled from an elder population, with respect to the younger one

from which normal sinus rhythm was sampled. In this case no rebalancing technique

could address the problem, since any of them would carry around the bias itself.

1.5 Contributions of the Thesis

ML and DL seem to represent promising tools for automated ECG classification

on the analyzed datasets. However, the latest research works which leveraged
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them carry several drawbacks that were presented in Section 1.4, and some of

them were tackled throughout the doctoral experience. First, we discussed that

to let ML algorithms to perform at their best, the proper ML pipeline, composed

of preprocessing, feature engineering, and classification algorithm, along with its

parameters and hyperparameters, must be selected. Even when end-to-end DL

algorithms are adopted, and the feature engineering step is learned from data, the

optimal model architecture is crucial to get the best performance, and it must be

determined relying on the experience of the ML expert. Furthermore, most of the

ECG datasets provided to train ML and DL models come with a limited number

of unbalanced classes, which could potentially lead to bad fitting phenomena,

including overfitting and underfitting.

To address the above-mentioned issues, in Bodini et al. [109] we designed an

ensemble ML classification algorithm to classify 27 CA. We employed a dataset

that was not only multi-label, but it even widened the number of classes with

respect to the previous datasets we presented in Section 1.3. Differently from

most of the previous studies which leveraged DL, that often simply borrowed DL

architectures from other domains, each ML model in the ensemble was designed

according to the domain knowledge of electrocardiography. In particular, each

model classified a subset of the considered CA that alter the same set of ECG

physiological features, known by physicians. Finally, the classification outputs of

each model were concatenated to provide the requested output for the full set of CA.

In Bodini et al. [110] we experimented three different Automated ML (AutoML)

frameworks to automatically find the optimal ML pipeline in the case of standard

and end-to-end DL algorithms to classify within 30 CA. The classes distribution

of the used dataset was not balanced since several classes were provided with few

training ECGs. To address this issue, cost-sensitive learning was leveraged: we run

the AutoML frameworks to train the underlying ML and DL models by minimizing

a custom misclassification score, instead of the commonly employed ML and DL

loss functions. The misclassification cost was defined for each of the considered

CA by expert physicians in the work of Perez Alday et al. [68].
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Even if we saw in Section 1.3 that several research articles offer remarkable results

for the value of ML and DL in classifying ECGs, we realized that only a handful

of them offer insights into the models’ learning representations of ECGs. Methods

for opening black-boxes have been applied to the ECG in a few works and they

were mostly limited to DL models. Furthermore, the presented methods provided

explanations limited to a single ECG at time, they explained a few CA classes, and

they came with limited framing in the knowledge domain of electrocardiography. To

tackle the presented issues, in Bodini et al. [98, 111] we developed two frameworks to

unveil which portions of the input ECGs were the most relevant to the classification

output for both standard ML and end-to-end DL algorithms. With respect to

most of the works that addressed the issue of explainability in ECG classification,

presented in Section 1.4, we computed average explanations over all the training

samples, and we translated them for the physicians’ understanding. Furthermore,

in Bodini et al. [111] we significantly widened the number of explained classes

with respect of the analyzed works.

In particular, in Bodini et al. [98] we relied on the Local Interpretable Model-

agnostic Explanations (LIME) algorithm to highlight which ECG leads were the

most relevant for a RF algorithm in the classification of several kinds of ST-Elevation

Myocardial Infarction (STEMI), depending on their anatomical localization. In

the work we even showed how to overcome the overfitting problem caused by an

inherent bias that was present in the dataset: we designed a ML classifier which

relied on the domain knowledge of electrocardiography by setting as input of the RF

model the proper ST-segment, which international guidelines for STEMI diagnosis

suggest to focus on when interpreting it [112]. Furthermore, differently from the

majority of other works presented in Section 1.4 which addressed the problem of

explainability in ECG classification, we did not limit to provide the ECG time

samples that were important for the classification of a single ECG at a time. We

properly framed the explanations in the domain knowledge of electrocardiography

by designing a custom metric which allowed us to highlight the importance of each

lead in the final classification output, and we averaged the explanations over all the
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training ECGs. Differently from the other works presented in 1.4, such as Zhang et

al. [94], a meaningful framing for ML explanations was selected depending on the

considered CA: a lead-level analysis was adopted in this case since it is suggested

for the correct diagnosis of STEMI and its anatomical localization [112].

In Bodini et al. [111] we designed two explainability frameworks relying on two

explainability algorithms for CNN to understand which ECG waves (the P wave,

QRS complex, and T wave) were the most relevant in the classification of 27 CA

for a state-of-the-art CNN. The introduced frameworks could be useful from the

perspective of the ML expert, since they allow to inspect if the trained network

correctly relies on the same ECG segments which physicians are expected to look

at in the usual diagnosis of CA. If not, the ML expert can be aware of it and he

can address the issue by guiding the architecture towards the domain knowledge of

electrocardiography. From the perspective of physicians, the proposed frameworks

allow them to understand whether the classification output provided by the network

relied on their domain knowledge, by highlighting the expected ECG waves assessed

during diagnosis, and thus fostering the trust in the employment of DL. To the

best of our knowledge, with the mentioned work we were the first, at the same

time with Zhang et al. [94], to systematically evaluate the performance of a CNN

against the domain knowledge of ECG interpretation. Furthermore, with respect

to the other introduced approaches in which were considered a limited amount of

classes, the evaluation was performed on a wide set of 27 different CA.

The thesis work is composed of other three chapters that are organized as follows:

in Chapter 2 we will provide a review of the state-of-the-art methods for ECG

classification and ML explainability. Regarding methods for ECG classification, we

will report the most common noise reduction techniques for ECGs, the common

extracted features from ECGs, and a wider review, with respect to Section 1.3,

containing further works which focused on CA classification from ECG and made

use of ML and DL algorithms. Regarding methods for ML explainability, we will

present a categorization useful both to conveniently introduce some of the most

common explainability approaches, including the ones we employed in Bodini et al.
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[98, 111], and to understand similarities and differences between them. In Chapter

3 we will introduce the contributions of the works of Bodini et al. [109, 110] which

focused on the design of ML and DL algorithms for classification of CA from ECGs.

In Chapter 4 we will show the contributions of the works of Bodini et al. [98, 111]

which addressed the problem of explainability of ML and DL algorithms in the

same context of CA classification from ECGs. After the mentioned chapters, we

will finally report the employed bibliographic references and the list of personal

publications referred to the context of the present thesis.
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2.1 State of the Art on Electrocardiogram Clas-
sification

In Section 1.1 we pointed out that CA are within the leading causes of mortality

worldwide, and their early diagnosis and prompt treatment significantly contribute

to preserve people health and life. The ECG records the electrical impulses generated

by the heart, which may show regular or irregular beating activity. As we reported

in Section 1.2, computer programs provide fast and accurate tools for identifying

CA through the ECG analysis and they have achieved more and more great success

in supporting physicians. Then, in Section 1.3 we described that several of the latest

computational diagnostic techniques which analyze ECGs for estimating the presence

of CA are based on ML and DL. In the present Section 2.1 we will focus on them, and

we will present the standard procedures carried when applying such methods, which

usually include ECG denoising and feature engineering. Finally, further relevant

ML and DL classification algorithms along with research works that classified ECGs

relying on them will be presented, in addition to the ones introduced in Section 1.3.

2.1.1 Denoising of the Electrocardiogram
Predominant Noises in the Electrocardiogram

Healthy ECGs are time-varying signals with associated low amplitudes in the range

10µV − 5mV [48]. Their usual value is around 1mV , and their frequency bands

are in the range 0.05 − 100Hz [113], where the majority of them are within the

range 0.05 ∼ 35Hz [48]. To obtain accurate and trustable classification outputs, the

majority of ECG classification algorithms need relatively noise free ECGs [48, 114,

115]. Nevertheless, ECGs are frequently corrupted by noise signals and artifacts,

such as baseline wander caused by patients movements, Power-Line Interference

(PLI), Electromyographic (EMG) noise, and many others, that may cause the

deformation of ECGs, thus affecting the final classification process [18, 114].

Baseline wander and unexpected drift noise signals are caused by patient

movements, respiration, inadequate electrode positioning, and variations in their

skin impedance [18, 114]. For instance, baseline wander is a considerable source
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Figure 2.1: Common kinds of noise signals which corrupt ECGs. (a) Baseline wander,
(b) PLI with 50Hz frequency, and (c) EMG noise. Credits: Maggio et al. [116], Creative
Commons Attribution 3.0 Unported License, via IntechOpen available at the following
url https://www.intechopen.com/chapters/27012.

of noise in several situations including Holter monitoring and ECG analysis in

a moving ambulance, as well as during physical workout [48]. An example of

ECG with baseline wander is reported in Figure 2.1(a). The amplitude of baseline

wander noise ranges by ∼ 15% of the peak-to-peak ECG amplitude [48] and its

spectral content is usually confined to an interval well below 1Hz, but it may

contain higher frequencies during strenuous exercise [18]. Intense baseline wanders

or movement artifacts may corrupt several low frequency elements of ECGs [48,

115]. For instance, baseline wander usually alters the ST-segment of the ECG,

which may result in an incorrect classification of myocardial infarction and several

other ST-segment associated CA [117, 118].

The PLI noise shows a bandwidth usually within 50/60±0.2Hz, and an amplitude
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of about the half of the peak-to-peak ECG signal amplitude [115]. The PLI noise is

primarily caused by the pervasive electric lines in ECG machines’ sampling circuits,

by improper grounding of such machines, and interference caused from nearby

equipment [18]. An example of ECG corrupted with PLI noise is reported in Figure

2.1(b). The PLI noise components overlap with the ECG frequency content, thus

often distorting the morphological properties of its low-amplitude components [48,

115]. For instance, PLI noise may cause aberrations of the P wave in ECGs which

lead to an incorrect diagnosis of several atrial-related CA, such as atrial enlargement

and atrial fibrillation [115]. The PLI noise can be partially reduced by employing

adaptive filters [115], by using proper electrical insulation, by preventing loose wire

connections, and by properly placing electrodes [48].

The electrical activity generated during muscles contractions gives rise to the

EMG noise [18, 48, 115]. The EMG noise has a frequency bandwidth that ranges

within 0.01− 100Hz, and an amplitude of around 10% of the peak-to-peak ECG

signal amplitude [115]. An example of ECG corrupted with EMG noise is reported in

Figure 2.1(c). The EMG noise can either be intermittent, e.g. due to a sudden body

movement, or have more stationary noise properties [18]. Past research works found

that artifacts lead by the EMG noise substantially corrupt the morphology of most of

the ECG waves because the EMG noise frequency band is significantly overlapped to

the ECG one [48, 115]. Therefore, removing artifacts lead by the EMG noise without

corrupting relevant clinical features of ECGs is often a challenging task [48, 115].

Methods for Denoising the Electrocardiogram

We reported that the frequency content of ECGs is within the 0.05 − 100Hz

bandwidth [113]. Several noise signals whose frequency content falls within the

same band may significantly corrupt the relevant features of ECGs useful to classify

CA [48, 114, 115]. As a result, ECG classification algorithms strongly need the

reduction of noise without missing the key clinical features of ECGs. Reducing

the corruption caused both by high frequency and low frequency noise signals on

the ECGs, and thus enhancing the signal-to-noise ratio, is a critical step in any
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algorithm designed for automatic classification of CA [18, 48]. Indeed, an important

reason behind the success of computerized ECG analysis was the capability of

improving the signal quality of ECGs by leveraging signal processing algorithms to

denoise them [18]. It is not surprising that most of the currently available ECG

acquisition devices employ hardware filters to reduce the noise in sampled ECGs

[48]. However, adjusting the filtering parameters is not always straightforward,

and it may lead to poor noise reduction or even to deformation of signals if not

properly done. Thus, ECG denoising algorithms have been more and more widely

developed to effectively reduce undesired noises from ECGs [115].

Digital filters are broadly employed to remove unwanted signals in the ECGs

[48, 114], and they are uniquely identified by the discrete-time Fourier transform

of the time response in the frequency domain [119]. Digital filters are classified

as Finite-duration Impulse Response (FIR) filters and Infinite-duration Impulse

Response (IIR) filters. If compared to FIR filters, the coefficients of IIR filters

are set using a feedback difference equation. If the appropriate coefficients are

selected, a wide family of low-pass, pass-band, and high-pass digital filters can

reduce several noise signals. However, because of the wide frequency band and

different amplitudes of corrupted ECGs, the noise removal effect of filters with

fixed cutoff frequencies resulted often limited [48, 115].

The Wavelet Transform (WT) is commonly employed in the process of ECG

noise reduction because of their remarkable time frequency properties [115, 120].

WT addresses a major disadvantage of the Fourier Transform, which is only capable

of capturing global frequency information [119]. On the other hand, WT decomposes

a function into a set of wavelets, i.e wave-like oscillations that are localized in time,

along with a scale. WT convolves a signal with a set of wavelets at a variety of

scales to compute their presence at a particular scale and location. In such way

WT can locally extract spectral and temporal information at the same time [119].

Thus, WT is capable of decomposing signals into high frequency detail coefficients

and approximation low frequency coefficients [119]. Since noise components are

commonly present in the detail coefficients, the effects of noise corruption can
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be reduced by applying threshold quantization on the detail coefficients. Then,

ECGs can be recovered via wavelet reconstruction of the low frequency and high

frequency coefficients [48, 119].

Selecting the proper threshold functions is essential for obtaining the required

noise filtering effect when leveraging WT [119]. In particular, the effectiveness of

a threshold strategy is mainly determined by the kind of threshold method and

threshold criteria designed for the considered scenario [121]. Hard and soft threshold

functions are commonly employed for ECG noise reduction [115]. The recovered

ECGs with hard threshold approaches usually show better approximation properties,

but such approach may cause the reconstructed ECGs to visibly oscillate, whereas

the recovered ECGs with soft threshold methods usually show better smoothness,

while coming with higher reconstruction error. To address this issue, several effective

techniques were introduced to reduce the noise from ECGs relying on stochastic

parameters adjustment [115]. For instance, the β-hill climbing approach is an

optimization method able to generate search trajectories in an hypothesis space

until a local optima is reached [122]. Alyasseri et al. [123] coupled the β−hill

climbing algorithm with the WT to denoise ECGs, by exploiting it to obtain the

optimal wavelet parameters that resulted in the smallest mean square error between

the original and the resulting denoised ECGs. The introduced technique performed

well in particular for ECGs corrupted with low frequency noise, and it was able

to provide denoised ECGs with overall good quality.

To exploit the advantages of both hard and soft thresholds, Han et al. [124]

introduced an enhanced wavelet denoising method, namely the Sigmoid function-

based thresholding method, that is a compromise between the two approaches.

To some extent, the introduced threshold method perform well in preserving the

amplitudes of the principal distinctive ECG peaks. Üstündağ et al. [125] introduced

a technique for denoising ECGs using a fuzzy based threshold scheme and wavelet

analysis. The authors employed a loop-based approach to set the optimal parameters

of the fuzzy membership function, and they identified the right threshold and

variance parameters for obtaining optimal denoising performance. If compared
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to soft and hard based thresholding strategies, the proposed one was capable of

outperforming both of them by showing better denoising performance.

The Discrete Wavelet Transform (DWT) offers remarkable noise reduction

performance for high frequency noise signals, but it often leads to the loss of

crucial information at low frequencies [48, 119]. Singh et al. [126] designed an

ECG denoising strategy based on DWT and non-local mean (NLM) estimation.

ECGs corrupted by noise were decomposed into low and high frequency detail and

approximation coefficients by using a two-level DWT decomposition. A threshold

was applied to the two-level detail coefficients to reduce the high frequency noise.

Because the second-level low frequency coefficients included the majority of the

ECGs, the NLM estimation for the second-level approximation coefficients was

computed independently to reduce low frequency noise. The authors showed that the

introduced approach could reduce noise in low-frequencies more effectively and faster

on the MIT-BIH arrhythmia dataset [127], with respect to the previous approaches.

A wide range of further filtering methods is available in the literature which

allow to reduce the noise in ECGs, such as the Empirical Mode Decomposition

method, which is a common alternative to the wavelet analysis [128]. To delve

further into the literature related to ECG noise filtering, a complete reference is

provided by Chatterjee et al. [115].

2.1.2 Clinical Perspective of Electrocardiogram Features

Since the ECG directly reports the electrical impulses induced by cardiac muscles,

it displays the regular (or potentially irregular) beating function of the heart. Thus,

it is critical to retrieve as much clinically relevant knowledge as possible from ECGs

after the proper noise reduction step, introduced in Subsection 2.1.1. The ECGs

are composed of a large number of time samples on which it can be computed a

wide range of features that reflect their characteristics. Amplitude and durations

computed over the P wave, QRS complex, and T wave are within the most considered

features in the context of automatic ECG classification [47, 48, 114].
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Normal ECGs include P waves, QRS complexes, and T waves [18, 114], where

an ECG complex is composed of multiple ECG waves, i.e. the QRS complex is

composed of the Q, R, and S wave. Usual morphological ECGs features comprise

different waves and complexes, that come with different peak amplitudes and

time lengths [48, 114]. Furthermore, ECG intervals and segments are among

the commonly analyzed morphological features: a segment is the region between

two waves, while an interval is a duration of time that includes one segment and

one or more waves [18]. The most important waves, intervals, and segments are

reported on a schematic ECG in Figure 2.2(a). The Table 2.1 summarizes the usual

morphological features computed over ECGs with their physiological description

and normal values for a healthy male adult, which were reported from Xie et al. [48].

In the following paragraphs we will describe the most important events related

to the cardiac cycle, i.e. the beating activity of the heart from the beginning of one

heartbeat to the beginning of the next, since each of the mentioned features is gener-

ated by specific cardiac events [18]. Thus, we anticipate a schematic representation

of the heart in the Figure 2.2(b) for better understanding of the reader.

The depolarization of the Sinoatrial node (SA) occurs before depolarization

of atrial myocytes1, thus it anticipates the formation of the P wave. The SA

node is located within the right atrium, thus its electrical impulses are difficult

to be measured on the body skin surface. The stimulation of SA is conveyed to

the right atrium and next to the left atrium, resulting in the generation of the P

wave, that reflects the stimulation of the two atria. The P wave has a circular

shape, an amplitude around 0.25mV , and a length within 0.08 − 0.11s. When

the atrium enlarges, the conduction between the atria becomes aberrant, leading

to P-mitrale or P-pulmonale waves [18].

The QRS complex depicts the propagation of an electrical stimulus across the

ventricles. An entire QRS complex is composed of Q, R, and S waves. The R wave

has wide amplitude, it has narrow length, and it represents the depolarization of

the left ventricle. The average amplitude of a QRS complex is below 1.6mV at
1The muscle cells, including the cardiac ones, are also known as “myocytes” [4].
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(a)

(b)

Figure 2.2: (a) Wave definitions and most important wave intervals and segments
on a schematic ECG. Credits: OpenStax College, Creative Commons Attribution
3.0 Unported License, via Wikimedia Commons at https://commons.wikimedia.org/
wiki/File:2022_Electrocardiogram.jpg. (b) A schematic illustration of the heart’s
anatomy. Credits: OpenStax College, Creative Commons Attribution 3.0 Unported
License, via Wikimedia Commons at https://commons.wikimedia.org/wiki/File:
2018_Conduction_System_of_Heart.jpg.
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Table 2.1: The most important electrocardiogram waves, intervals, and segments along
with normal values for a healthy male adult.
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the R peak, and its average duration is within 0.06 − 0.1s. The count of QRS

complexes occurred in a minute is typically used to calculate the heart rate. If the

conduction between the left and right bundle branches of the heart is blocked, it

may happen ventricular enlargement either hypertrophy, in which the QRS complex

becomes wider, deformed, and prolonged in time [18].

The T wave can be observed after the QRS complex and it is generated by the

repolarization process of ventricular myocytes. The T wave comes next to the QRS

complex and it has an amplitude within 0.1−0.8mV , and a duration of 0.05−0.25s.

A healthy T wave is positive and its assessment can be leveraged to diagnose several

CA. For instance, it is frequent to see inverted T waves on patients with myocardial

infarction or patient affected by pulmonary embolism [18].

The U wave is the final wave that can appear in the ECG which shows a circular

upward deflection, with an amplitude lower than 0.1mV . Typically, the polarity of

a U wave is the same as the T wave, and because of their low amplitudes, U waves

are not always visible and their generation processes are still not clear. Nowadays,

U waves are assumed to represent the repolarization process of Purkinje fibers [129],

which allow the heart’s conduction system to create synchronized contractions of

its ventricles, and they are essential for maintaining a consistent heart rhythm [4].

U wave inversions can be induced by myocardial ischemia or hypertension [129].

ECGs segments and intervals represent each stage of the cardiac cycle, that

should be performed in a certain time frame under healthy conditions. An irregular

cycle implies the presence of one or more CA [18].

The P-R interval represents the time between the onset of the P wave and the

starting of the QRS complex. The P-R interval time length in normal ECGs is

within 0.12 − 0.2s, and it represents the diffusion of electrical conduction at the

atrioventricular junction. A prolonged P-R indicates delayed conduction of the SA

impulse to the ventricles, and it is usually referred as first-degree atrioventricular

block. On the other hand, a short P-R interval can be seen when the atrioventricular

node delay is bypassed, such as in the Wolff-Parkinson-White syndrome [18].
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The ST segment represents the time elapsed from the end of the QRS and the

beginning of the T wave. Since the myocytes of left and right ventricles are activated

during ST segment, the contribution of the electric field vector generated by them

is minimal in surface ECGs, and the ECG amplitude in the ST segment is slightly

above the usual baseline level. Its typical duration is within 0.05− 0.15s, and the

most common disorder related to the ST segment is Myocardial Infarction. This CA

usually happens in the presence of prolonged ischemia which leads to the necrosis of

part of the myocardium. Such event makes the difference of potential at ventricles

still persist after depolarization, resulting in an ST segment drift on the ECG [18].

The R-R interval is the time passed between two successive R waves, and it

is widely used to estimate the ventricular rate. Its usual values in healthy people

are within 0.6− 1.2s. For instance, patients with atrial fibrillation show decreased

average R-R, and increased R-R variability during sinus rhythm [18].

The Q-T interval is the time elapsed between the starting of the QRS and

the conclusion of the T wave, reflecting the entire time necessary in ventricular

depolarization and repolarization. The usual values of the Q-T interval are within

0.35− 0.45s. A prolongation of the QT interval has been observed in several CA

associated with increased risk of sudden death [18].

2.1.3 Machine Learning within Electrocardiogram Classi-
fication

The first automatic interpretation computer programs were designed to classify CA

from ECGs by setting thresholds and logic rules to replicate the physicians’ reasoning

process relying on the features we reported in Subsection 2.1.2 (and several others

depending on the problem at hand) [23, 37, 47]. Next, researches experimented ML

classification algorithms, in which the proper classification thresholds and rules were

automatically learned from a set of training data [48, 114]. ML algorithms designed

for classification return an output class relying on several handcrafted features

which are provided as their input [44, 45]. We will refer to the above-mentioned

ML methods as standard ML algorithms, since they follow the standard workflow
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of ML, composed of feature calculation, followed by classification. Even if ML

algorithms proved their effectiveness in classifying CA from ECGs, the process of

feature engineering is sometimes difficult, time-consuming, and it heavily depends

on human expertise [37, 38, 47].

In the last years researchers experimented end-to-end DL classifiers, even inspired

by their success in other fields in classifying images, speech, texts, and several

other kind of data [38, 51]. The end-to-end DL algorithms are a subset of ML

algorithms that provide classification outputs relying on raw training data (or

slightly preprocessed), without the need of designing handcrafted features, since

they properly learn them directly from the input data [51]. Such algorithms gained

more and more popularity in the context of ECG classification, and nowadays they

represent one of the major research trends for addressing such task [38, 49, 54, 55].

In the next two subsections we will introduce some of the most employed standard

ML and end-to-end DL algorithms in the context of ECG classification, along with

the analysis of some of the wide number of research works that employed them.

Standard Machine Learning Algorithms

Among the most employed standard ML algorithms to classify CA from ECGs

we report k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Random

Forests (RF), and DNN [48, 114]. The mentioned ML algorithms rely on the standard

workflow of ML, usually composed of noise reduction (Subsection 2.1.1), feature

engineering (Subsection 2.1.2), and final training of the employed ML algorithm.

The k-NN algorithm is one of the most simple ML classification algorithms, that

we mentioned in the Section 1.3 [44]. The k-NN algorithm represents input features

as vectors in a multi-dimensional real valued space, along with a distance metric

(e.g. the Euclidean distance, or any kind of Lp-norm). To classify a new input

data, its computed features are reported onto the multi-dimensional space, and the

output class is determined through majority voting on the classes of the k-closest

feature points. Despite being easy to implement, the computational complexity
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of k-NN rapidly grows when the dimensionality of features increases, due to the

need of computing distances in high-dimensional feature spaces [44].

In the context of CA classification from ECGs, Park et al. [130] located

heartbeats on ECGs through the detection of QRS complexes, by leveraging the

Pan-Tompkins algorithm [131]. Then, the authors computed R-R time related

features in the time-domain, and they classified CA from ECGs by employing k-NN

as classifier. The algorithm was tested on the MIT-BIH dataset [127], and it achieved

a classification sensitivity of 97% and specificity of 97%. Jung et al. [132] computed

features using WT, and then they reduced their dimensionality through either PCA

or LDA. Then, CA were classified from ECGs relying on k-NN, obtaining remarkable

performance with sensitivity and specificity ≥ 95% on the MIT-BIH dataset [127].

Venkataramanaiah et al. [133] classified ECGs into normal and abnormal beats.

The authors detected heartbeats on ECGs by properly squaring and thresholding

the signals, and they computed heart rate variability features. Then, the authors

employed the k-NN algorithm to identify abnormalities in ECG beats, by obtaining

a final classification accuracy of 99% on the MIT-BIH dataset [127].

SVM classifies feature points in a potentially high-dimensional linear feature

space by building an hyperplane which separates them depending on their associated

class [44, 45]. The hyperplane that allows for optimal separation within classes is

the one that shows the maximum distance to the nearest training data point of

each class (which is usually referred as functional margin). The larger is the margin,

the lower will be the expected classification error of the trained SVM classifier on

unseen data. Even if features may be represented in a linear space, it often happens

that classes are not linearly separable in such space. Hence, the original features

are often mapped onto a higher-dimensional space relying on kernel functions, with

the assumption that their separation could be easier in such space [44]. It must be

finally noted that SVM was originally designed for binary classification problems.

However, in the case of multi-class classification the underlying problem is divided

into multiple binary classification problems, where binary SVM classifiers are trained
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per each pair of classes (thus obtaining n(n− 1)/2 classifiers), or for a single class

versus all the remaining ones (thus obtaining n classifiers) [44, 45].

Within the context of CA classification from ECGs, Yang et al. [134] computed

features from ECGs by employing a custom DL architecture, namely the PCA

Network, in which PCA is executed in cascaded stages to learn multi-stage filter

banks. Finally, the authors classified CA from ECGs by setting features as input of

a linear SVM classifier. The authors determined the effectiveness of the proposed

technique on the MIT-BIH dataset [127], and they obtained an accuracy of 98%.

Gliner et al. [135] classified ECGs into four categories: normal rhythm, atrial

fibrillation, noisy segment, or other rhythm disturbances. The authors identified

heartbeats by locating the R peaks through a custom detector presented by the

same authors. Then, the authors computed time-frequency domain features, the

average variability of the intra-beat temporal intervals, and the average morphology

of heartbeats. The computed features were set as input of a SVM, and the authors

obtained a F1-Score of 80% on the hidden subset of the 2017 PhysioNet Challenge

dataset [136]. The introduced algorithm resulted in the top 25 positions in the final

challenge leaderboard. Jha et al. [137] computed features from ECGs relying on

the tunable Q-wavelet transform. Each ECG was decomposed up to the sixth level

of the tunable Q-wavelet transform, and approximate coefficients at the sixth level

were selected as features. Then, the authors classified CA relying on a kernel SVM

with a radial Gaussian basis function as kernel. The average accuracy, sensitivity,

and specificity offered by the proposed classifier on eight different classes contained

in the MIT-BIH dataset [127] were respectively 99%, 96%, and 99%.

The RF are ML algorithms that build an ensemble of decision trees at training

time, and then provide an output class that is the mode of the classes returned by the

decision trees in the ensemble [44, 45]. Within RF, features with high discriminative

capability are retained by the nodes of the trees in the process of the generation of

the ensemble. Such ML algorithms come with several advantages, including low

computational complexity, reduced overfitting with respect to a single decision tree,

and unneeded data normalization prior to the ML training steps [44, 45].
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In the context of classification of CA from ECGs, Vimal et al. [138] computed

heart rate variability and DWT related features, and performed CA classification

relying on a RF classifier, obtaining a classification accuracy ≥ 98% on the MIT-

BIT dataset [127]. Kung et al. [139] extracted a few important features from

ECGs, including for instance the R-T interval and P-R interval, in order to design

real-time classifiers to classify CA from ECGs. The authors employed RF classifiers

to recognize Supraventricular Ectopic Beats (SEB) and Ventricular Ectopic Beats

(VEB). The performance of the trained ML models reached F1-Score values of

81% for SVEB and 97% for VEB on the MIT-BIH dataset [127]. Rahul et al.

[140] located heartbeats on ECGs by locating the QRS complex with a detection

technique proposed by the same authors. Then, the authors extracted R-R interval

features and statistical features from the heartbeats to classify ECGs within Normal,

Premature Ventricular Contraction (PVC), and Premature Atrial Contraction (PAC)

classes. CA were classified from ECGs by leveraging a wide set of standard ML

algorithms, including RF which obtained an overall accuracy of 99% on the MIT-

BIH dataset [127]. Yang et al. [141] computed a wide range of features on ECGs,

including R-R intervals related features, WT features, HOS features (the authors

divided the heartbeats into five intervals, and they computed skewness and kurtosis),

and 1-dimensional local binary patterns (LBP)2. Then, the authors classified CA

from ECGs by constructing an ensemble multi-class classifier composed of RF.

The proposed method was trained and then evaluated on the MIT-BIH dataset

[127], and the author obtained overall accuracy and average positive predictive

value of respectively 98% and 94%.

DNN, or even referred as Deep Neural Networks, were already briefly introduced

in Section 1.3, and they are ML classification algorithms vaguely inspired by

the biological neural networks that compose the human brain [44, 51]. DNN

are composed of an ensemble of connected nodes, usually called neurons, where
2LBP are features usually computed over 2-dimensional grayscale images [142], that the authors

adapted to 1-dimensional ECGs. To compute LBP, an ECG window of size w is selected, then
each sample point p in the window is compared with the central point of the window pc. The
value of p is then set to 1 in the LBP if p > pc, otherwise, it is set to 0.
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each connection, usually referred as edge, transmits a weighted signal to another

neuron, similarly to what happens with the synapses into the human brain [44].

The magnitude of a specific weight increases or decreases the strength of the

signal flowing through the respective edge. A neuron receives several signals and

it processes them to submit to the other connected neurons. Such signals are

represented by real numbers, and the output of each neuron is computed as the

weighted sum of the input signals that come from other connected neurons. Finally,

the computed sum is usually tresholded with a certain non-linear function to

properly catch non-linearities from data (e.g. Sigmoid, hyperbolic tangent, or

Rectified Linear Unit (ReLU) functions are usually employed) [44]. The weights

are adjusted to fit to the problem at hand through the gradient descent algorithm,

which requires the calculation of derivatives that are numerically computed through

the backpropagation algorithm [143]. Neurons are typically aggregated into an

input layer, an output layer which provides classification outputs, and a hidden

layer between such two. When DNN are composed of multiple hidden layers,

researchers usually refer to them in the literature with the terminology of DNN,

instead of “artificial neural networks” [51]. Similarly to other fields, within the

context of ECG classification DNN with more than one hidden layer are by far

the most commonly employed [49, 55].

Sannino et al. [144] proposed a DNN composed of seven hidden layers and ReLU

activation functions to classify CA from ECGs. The authors employed respectively

5, 10, 30, 50, 30, 10, and 5 neurons in each of the employed seven layers, and the

employed loss function was the categorical cross-entropy. The ECGs were segmented

into single heartbeats and set as input of the DNN, along with R-R interval related

features computed in the time-domain. The authors obtained 99% of accuracy on

the MIT–BIH dataset [127]. Bouaziz et al. [145] computed several features on ECGs,

including ECG wave amplitudes, ECG intervals, WT related features, and standard

statistical features. Then, the authors designed a DNN to classify CA from ECGs,

and they applied a particle swarm optimization algorithm to optimize its weight,

instead of the standard gradient descent algorithm. During the training step of the
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DNN, particles were defined to be the matrices of weights that connected layers.

The proposed model obtained an accuracy, sensitivity, and specificity ≥ 99% when

trained on the MIT-BIH dataset [127]. The experimental results suggested that the

particle swarm optimization method was a valuable alternative to the usual gradient

descent training algorithm for DNN that come with several drawbacks, including

slow convergence and thus the possibility of being easily trapped in local minima

[146]. Jothiramalingam et al. [147] detected Left Ventricular Hypertrophy (LVH)3

from ECGs. The authors computed the location of R waves, S waves, inversion of

the QRS complex, and variations in the ST segment by means of WT. A wide range

of ML algorithm was employed to classify LVH from ECGs, including DNN. The

accuracy in detecting LVH on the St. Petersburg INCART 12-Lead Arrhythmia

Database [46] in the case the DNN was used was 98%.

Apart from the above-mentioned ML methods, there are even more ML classifiers

that have been employed for ECG classification, such as fuzzy logic based classifiers

[149], Gaussian mixture model based classifiers [150], ensemble models (including

Bagging and AdaBoost) [151], and Bootstrap aggregating ensemble methods [152].

To deepen the wide range of employed ML algorithms in the context of classification

of CA from ECGs the reader may check several recent survey papers, including for

instance Berkaya et al. [114], Minchol et al. [47], and Xie et al. [48].

End-to-end Machine Learning Algorithms

A wide range of end-to-end algorithms based on DL has been used to classify CA

from ECGs [49, 54, 55]. Within the most employed end-to-end DL algorithms we

report Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),

Long-Short Term Memory (LSTM), and auto-encoders. Unlike the standard ML

algorithms, the mentioned end-to-end algorithms do not rely on the standard

workflow of ML, but they classify ECG by directly leveraging raw ECG training

data without the need of designing handcrafted features.
3LVH is a CA in which the left ventricle walls become thick due to prolonged hypertension,

which may result in failing to pump blood effectively [148].
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The CNN was briefly introduced in Section 1.3 where we presented three state-

of-the-art works that classified CA from ECGs by leveraging it, i.e Hannun et al.

[67], Ribeiro et al. [71], and Zhu et al. [70]. The CNN architecture is a kind of

DNN that is capable of learning filters that applies convolutional operations to

each sub-region of the input [44, 45]. In terms of structure, a CNN is typically

composed of convolutional layers, pooling layers and fully connected layers. In

convolutional layers, it is calculated a convolution of each sub-region of the input

with a filter (which is a real-valued matrix of weights) to compute features from

the input of the previous layer. Pooling layers are usually set behind convolutional

layers and they allow for down-sampling of computed features, while selecting the

most representative ones. After the convolutional and pooling layers, the computed

features of each sub-region are flattened into a one-dimensional vector, which is

set as input of a fully connected layer (which is usually a DNN), where input data

are mapped into different classes. Then, the backpropagation algorithm along with

the gradient descent algorithm [143] are leveraged to learn the optimal weights

relying on a loss function, which in multi-class classification problems is usually

selected as the categorical cross-entropy [44, 45].

Lai et al. [153] collected a dataset from 55 patients which were monitored for

atrial fibrillation in around 24 hours by patch-based ECG machines positioned

on upper-left chest, and standard 12-lead Holter devices. Two expert physicians

annotated the dataset for atrial fibrillation and normal sinus rhythm, which the

authors classified by means of four different CNN architectures. The authors set the

raw ECG signal as input of one of the CNN models, which was composed of two

convolutional layers, two pooling layers, and a final fully connected classification

layer. Promising classification performance were obtained in terms of 93% accuracy,

sensitivity, and specificity. Romdhane et al. [154] segmented heartbeats from ECGs

contained in the MIT-BIH [127] and St. Petersburg INCART 12-Lead datasets [46],

by defining an heartbeat to start at an R-peak and end after 1.2 times the median

R-R time interval in a 10s window. Then, the authors trained a CNN to classify CA

from ECGs by optimizing the focal loss to address the problem of classes imbalance.
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The focal loss is a dynamically scaled cross-entropy where the scaling factor decays

to zero as the confidence of the classification increases [105]. Intuitively, this scaling

factor can automatically downweight the contribution of the frequent samples

during training, thus allowing the DL model to focus more on hard samples. The

CNN architecture consisted of two distinct convolutional blocks, composed of three

convolutional operations which employed 256 filters. After each block, dropout [96]

and batch normalization [155] were employed to regularize the training process, and

a fully connected layer composed of 128 neurons was employed to achieve the final

classification. The proposed CNN achieved overall performance of 98.41% accuracy,

98.38% F1-score, 98.37% precision, and 98.41% recall. Degirmenci et al. [156]

segmented ECGs contained in the MIT-BIH dataset [127] into heartbeats relying

on the WFDB Toolbox [157]. Then, the authors transformed the heartbeats into

2-dimensional grayscale images by directly plotting their time-amplitude waveform.

Such images were set as input of a CNN architecture to classify CA, which was

inspired by the LeNet architecture of LeCun et al. [158]. The CNN was composed

of three convolutional layers respectively containing 64, 32, and 16 convolutional

filters, followed by the same number of pooling layers. A final fully connected layer

was leveraged to classify within 4 CA and normal sinus rhythm. The experimental

results show that the classification performance of the proposed CNN reached 99.7%

accuracy, 99.7% sensitivity, and 99.22% specificity.

The RNN is a kind of DNN that allows for recursion in the evolution direction

of the input sequence, in which all the neurons are connected in a chain [159].

Each neuron in a RNN takes the input of the previous one and passes its output

to the next neuron, thus making RNN able to obtain an output dependent only

on its previous computation. This DNN architecture was shown to be effective in

processing time series data [159]. However, the advantages of the traditional RNN

often weakens when facing long-term dependencies [159]. Hence, to address this

drawback LSTM networks were proposed by Hochreiter et al. [160], where each

neuron of the traditional RNN networks is replaced with a memory unit. The core

idea of LSTM networks is to update memory units continuously, allowing to store
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relevant information while removing the redundant ones. According to the recent

survey works of Ebrahimi et al. [55], and Liu et al. [49], the LSTM is the most

popular kind of RNN architecture used within ECG classification so far.

Le Sun et al. [161] classified atrial fibrillation from ECGs by means of a stacked

DL architecture composed of two hidden LSTM layers, with 55 memory units in

each layer. The DL architecture received an input ECG composed of 100 time

samples, and the authors trained it jointly onto the Long-term AF dataset [162]

and the AF termination challenge database [163]. The dataset were composed

of 84 long-term ECGs from subjects showing paroxysmal or sustained AF. Each

ECG contained two simultaneously recorded signals sampled at 128Hz. After

training the LSTM architectures onto such datasets, the authors obtained 92%

accuracy and 92% F1-Score in classifying atrial fibrillation versus normal sinus

rhythm. Petmezas et al. [164] classified four ECG rhythms, namely normal sinus

rythm, atrial fibrillation, atrial flutter, and atrioventricular junctional rhythm. The

authors extracted features from raw ECGs by means of a CNN composed of three

convolutional layers, each one followed by a pooling layer. Then, they performed

the classification step by setting the extracted features as input of a LSTM model

composed of 64 memory units, which was trained by optimizing the focal loss to deal

with training data imbalance. The entire DL model was trained on the MIT-BIH

Atrial Fibrillation dataset [165], and it achieved a sensitivity of 98%, and specificity

of 99%, relying on a ten-fold cross-validation strategy. Chen et al. [166] classified

CA from ECGs by combining two CNN architectures and a LSTM. The authors

considered 10s ECG segments as input of the first CNN, and the computed R-R

intervals on the same ECG segments as input of the second CNN. The outputs of the

two CNN networks were merged to form a new input for a two-layer LSTM network,

composed of 32 and 64 memory units respectively. The final DL model achieved

99% accuracy, under a five-fold cross-validation strategy on the MIT-BIH dataset

[127]. Furthermore, the full DL architecture was validated relying on two additional

independent datasets (The MIT-BIH Normal Sinus Rhythm Database [46], and the
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MIT-BIH Atrial Fibrillation Database [165]), and it achieved an average accuracy

of 97% when classifying normal sinus rhythm and atrial fibrillation.

Auto-encoders are DNN usually composed of an input layer, a hidden layer,

and an output layer. The aim of auto-encoders is to encode the input to a lower

dimensional representation in the hidden layer, and then decode it to recover the

original input with the highest possible fidelity [167, 168]. An auto-encoder is thus

trained to minimize the reconstruction error between the input and the recovered

output. Usually, multiple auto-encoders are disposed in several layers in order to

be capable of reconstructing complex input data, and they are usually referred

in the literature as stacked auto-encoders [55, 168]. Usually, auto-encoders are

employed as feature extractors for ECGs: the lower representations of the input

signal that they store in hidden layers are used as input features of standard ML

algorithms, such as a SVM or a DNN [49, 55].

Within the context of ECG classification, Hou et al. [169] designed an auto-

encoder composed of two LSTM networks. The auto-encoder model was trained

to reconstruct the considered ECGs in a first stage. After training, the weights

associated with the neurons which composed the hidden layer of the auto-encoder

architecture were used as features to classify CA from ECGs, by leveraging a SVM.

The proposed method achieved average accuracy, sensitivity, and specificity of

respectively 99.74%, 99.35%, and 99.84%, in a beat-based cross-validation approach,

and respectively 85%, 63%, and 91%, in a record-based cross-validation approach,

when trained on the MIT-BIH dataset [127]. Nurmaini et al. [170] leveraged

auto-encoders by training them to reconstruct ECGs, similarly to the work of Hou

et al. [169]. Then, the lower ECG representation of the hidden layer was set as input

of a DNN which was employed as a classifier. The DNN classifier was composed

of five layers, respectively composed of 32, 63, 126, and 5 nodes. The introduced

classification model achieved an accuracy, sensitivity, specificity, precision, and

F1-Score of respectively 99.34%, 93.83%, 99.57%, 90%, and 91% when trained on

the MIT-BIH dataset [127]. Siouda et al. [171] classified CA from ECGs relying on

an auto-encoder as feature extractor, and an ensemble of multiple neural networks
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as a classifier. The original multi-class classification problem was decomposed into

simpler binary classification sub-problems which were independently addressed by

multiple DNN classifiers. To overcome the problem of imbalanced data, the authors

applied the SMOTE algorithm [172] to add synthetic samples, according to the

number of training instances in each sub-problem. The experiments performed on

the MIT-BIH dataset [127] reported > 99% accuracy and showed that solving each

sub-problem independently could enhance the accuracy, sensitivity, and specificity.

Apart from the above-mentioned DL based methods, there are even more DL

classifiers that have been employed for ECG classification. To deepen the wide

range of other employed DL algorithms in the context of classification of CA from

ECGs the reader may check several recent survey research papers, including for

instance Ebrahimi et al. [55], Liu et al. [49], and Somani et al. [54].

2.2 State of the Art on Machine Learning Ex-
plainability

In Section 2.1 we pointed out that the outcomes obtained by ML and DL models

could potentially provide high performance in the task of supervised classification

of CA from ECGs. However, as we already realized in Chapter 1, it is frequent

to perceive such models as black-boxes, since insights about their functioning

are mostly opaque for humans.

In this Section 2.2, we will first provide the essential definitions needed to

introduce ML explainability for supervised classification ML models. Then, we will

present a categorization useful to frame the available methodologies designed to

explain supervised ML models, that we derived relying on both the survey works of

Burkart et al. [76] and Guidotti et al. [75]. For each of the presented explainability

categories, a few methodologies will be introduced with particular focus to some

of the ones that will be employed in the next chapters. Finally, we will illustrate

several research works that addressed the problem of ML explainability in the

context of classification of CA from ECGs.
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2.2.1 Preliminary Notions

In the present subsection, we provide a set of preliminary notions that will

allow us to categorize the available techniques designed to explain supervised

classification ML models.

A Supervised ML (SML) classification algorithm is trained to create a model

h(x) = y which maps a real-valued input feature vector x ∈ X ⊆ Rd to a target

class y ∈ Y ⊆ R. To lean a proper classification model, the SLM classification

algorithm must be fed with a training dataset D = {(x1, y1), . . . , (xn, yn)}, where

n is equivalent to the amount of available training data [44, 45]. SML algorithms

are usually categorized depending on the underlying task they are employed to

address, that usually are classification or regression [44, 45]. In the former, the

target values Y are discrete, and they are usually referred as classes or labels.

For instance, in the case of binary classification we have two target classes and

usually Y = {0, 1} or Y = {−1, 1}, while in the case of multi-class classification

Y = {0, . . . , C}, where C is equivalent to the number of possible labels. The

regression task aims to predict a real-valued target value y ∈ R, which we will not

consider since the vast majority of available ECG classification methods considers

CA which are naturally mapped into discrete labels [47–49, 114].

A classification model provided after executing a SML algorithm can be a

black-box b : X → Y, b(x) = y where b ∈ B, and B ⊂ H, which is the hypothesis

space of all the black-boxes [76]. The hypothesis space H is the space of all

the possible hypotheses for mapping inputs to outputs within SML algorithms

are capable of searching. Usually, a specific SML algorithm is limited to search

within a subset of H, due to the characteristics of the problem at hand, and

structure of the SML algorithm itself. For instance, in the case of black-boxes

B could be equivalent to the set of artificial neural networks with two hidden

layers. On the other hand, we can have an intrinsically explainable white-box model

w : X → Y, w(x) = y where w ∈ I, and I ⊂ H, which is the hypothesis space

of intrinsically explainable models for which we can immediately understand the
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reasons behind their classification outputs [76]. For instance, in the latter case I

could be equivalent to the decision trees of depth five.

To assess the classification performance of SML models after training them,

it is leveraged an error measure, even referred as loss, or score S : Y × Y → R

which is computed between the classification outputs and the ground truth labels.

A simple example of error measure within binary classification is represented by

the hinge loss S(h(x), y) = max{0, 1− h(x) · y}. In the case Y = {−1, 1}, the loss

is equal to zero if the ground truth label y and the classification output h(x) are

equivalent [44, 45]. After selecting a specific error measure S, a SML algorithm

can be defined as an optimization problem: given a training dataset D, a SML

algorithm attempts to solve the following equation

h∗ = argmin
h∈H

1
n

n∑
i=1

S(h(xi), yi), (2.1)

in which the error measure S is averaged across all the training data and then

minimized, and h∗ is the optimal output SML model [44, 45]. Furthermore, several

SML classification algorithms train parametric models h(x; θ), in which θ is a vector

of parameters. In such case, Equation (2.1) is adapted as follows [44, 45]:

h∗ = argmin
θ

1
n

n∑
i=1

S(h(xi; θ), yi). (2.2)

In most of the cases, the optimization problems related to Equations 2.1 and

2.2 cannot be analytically solved due to their underlying structure. For instance, a

common (and rare) example where an optimum solution can be computed is the

case of linear regression [44, 45]. Thus, we usually obtain sub-optimal solutions

found by means of numerical approximations, e.g. in the case of neural networks

the parameters θ are computed relying on the gradient descent algorithm [44, 45].

Furthermore, the optimization problems defined in Equations 2.1 and 2.2 often

lead to opaque black-box models for which it is required further inspection in

order to explain the reasons behind their classification outputs. Indeed, researchers

designed several ways to obtain explanations from black-box models which can

be categorized as follows [75, 76]:
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• Global vs Local explanations: at the highest level, approaches to gain expla-

nations can be categorized into model explanation and instance explanation

approaches [76]. The former methods provide insights about the internal

functioning of the entire trained SML model, while the latter methods limit

to explain the model output class y for a single input sample x, or at most for

its neighborhood. Model and instance explanation methods are often referred

in the literature respectively as global or local explanation methods [75], and

we will employ such latter terminology in the following sections for the sake

of simplicity.

• Intrinsically explainable SML models: the most simple way to reach explain-

ability is to employ SML models that can be explained on their own, since they

have an intrinsically simple structure or they come with a limited number of

parameters, thus being comprehensible to humans [75, 76]. By employing SML

methods explainable by design there is no need of designing explainability

approaches, since the employed SML model may be directly questioned to

understand the reasons behind its classification outputs.

• Surrogate model explanations: an explanation for an outcome provided by

a SML black-box may be provided by leveraging a surrogate intrinsically

explainable SML model to globally or locally approximate the underlying

black-box [75, 76]. The surrogate SML model may approximate the global

functioning of the considered black-box model, or it may limit to proxy its

behavior in the neighborhood of the sample of interest. Then, the explanation

may be obtained by questioning the surrogate model, which is possible since

it is intrinsically explainable by design.

Furthermore, explainability methods can be distinguished into ante-hoc and

post-hoc explainability methods. In the former, the explanations are built-in in

the SML model creation, while in the latter the explanations are provided only

after the trained SML model is available [75, 76]. Explainability approaches can

be either model-agnostic or model-specific, i.e. an explainability method can be
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respectively suitable for all the kinds of SML models or it may be limited in

explaining a specific one, or a specific class [75, 76].

In the following sections, global and local explanations, intrinsically explainable

SML models, and surrogate model explanations will be further deepened. We will

even introduce some well-known examples for each of the mentioned categories to

highlight their principal aspects. To deepen more explainability approaches, we

remark that literature review works which report far more further explainability

methods are provided by Burkart et al. [76], Guidotti et al. [75], and Molnar [77].

2.2.2 Global and Local Explainability

A global or local explanation method e can be defined as a function

e : (X → Y)× (X × Y)→ E , (2.3)

which considers a black-box SML model and a dataset as input, and it provides an

explanation as an output, which belongs to the set of all the possible explanations E

[76]. The explanation methods can be categorized into global and local methods [76].

Global explanation methods extract a global explanation for a black-box SML

model b that is representative for a certain dataset D, i.e. they compute e(b,D).

Usually, these approaches do not require the output class of the considered SML

model to compute explanations and they only rely on the learned black-box model

and the training data. In certain cases, the dataset is not even required to

compute explanations [76].

The partial depencency plots (PDP) are an example of global explainability

method which allow for post-hoc and model-agnostic explanations [77, 173, 174].

PDP show the average classification outcome of a SML black-box when a single

feature (or a limited set) is varied over a certain range. The underlying idea of PDP

is thus reporting how a certain set of features affect the final classification outcome

of the considered SML model. To compute PDP, let x = {x1, x2, . . . , xp} represent

the set of input features for a black-box SML model whose classification function
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is b(x). If we partition x into an interest set of features zs, and its compliment

zc = x \ zs, the partial dependence of the response on zs can be calculated as

fs(zs) = Ezc [b(zs, zc)] =
∫
b(zs, zc)pc(zc)dzc, (2.4)

where pc(zc) is the marginal density of probability of zc: pc(zc) =
∫
p(x)dzs.

Equation 2.4 can be estimared relying on a training dataset as

f̄s(zs) = 1
n

n∑
i=1

e(zs, zi,c), (2.5)

in which zi,c (i = 1, 2, . . . , n) are the values of zc available in the training dataset.

Computing a PDP relying on Equation 2.5 is rather immediate for the most

of the black-box SML models [175]. For instance, let us limit zs = x1 to be the

unique feature of interest with associated the values {x11, x12, . . . x1k}. The PDP

of the response on the feature x1 can be computed as follows:

• For i ∈ {1, 2, . . . , k}:

– Make a copy of the training dataset and replace the original values of x1

with the constant value x1i.

– Compute the outcomes relying on the modified copy of the training

dataset.

– Compute the average estimate f̄1(x1i).

• Plot the pairs {x1i, f̄1(x1i)} for i ∈ {1, 2, . . . , k}.

The calculation of PDP is rather intuitive, since the partial dependence for a

particular feature value represents the average prediction in the case we force all the

training samples to assume that value. Furthermore, computing PDP is often not

computationally intensive since we do not require to train the underlying black-box,

and we may compute PDP for a wide range of black-boxes since the method is not

dependend on the structure of the selected SML model. However PDP come with

two main drawbacks, where the first one is represented by the fact that the realistic

maximum number of features which is possible to plot is three, being limited by
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our inability to proper visualize more than 3 dimensions [77, 173, 174]. Finally,

within PDP it is assumed that the features for which the partial dependence is

calculated are not correlated with other features. In the case it happens, during

the estimation process we may consider a wide set of points within the feature

distribution for which their actual probability is very low [77, 173, 174].

Local explanation approaches provide explanations limited to a single input

sample x and its respective output class y, and they cannot be generalized for

understanding the entire working of a SML black-box model [76]. A simple example

of model-specific, post-hoc, and local explanation method is represented by the

process of looking at the decision paths when classifying an input sample x with

a decision tree [76]. Other more complex approaches are represented for instance

by counterfactual explanations [75, 76].

Counterfactuals are described by the Cambridge Dictionary of Psychology as:

“thinking about what did not happen but could have happened” [176] and they can

be formally expressed as follows: if x had been x′, y would have been y′. Thus, a

counterfactual refers to a different reality in which some other facts would have

lead to different outcomes. The factual x comes with the associated consequence

y, but if x changes to its counterfactual x′, the consequence thus changes to y′.

Counterfactuals have been employed as a kind of model-agnostic or model-specific,

post-hoc, and local explanation method for SML black-boxes, depending on their

specific implementation [75–77]. In the ML domain, x and x′ are considered as

inputs for a black-box, and y or y′ are the respective classification outputs provided

by it. In this case, the problem of exhibiting a counterfactual explanation becomes

a search problem in the feature space where the aim is to find a counterfactual

sample that leads to output a different class. Once the counterfactual is found, it

may be presented either by itself or by highlighting the differences from its factual,

to understand the variations responsible for the different classification outcome.

Several implementations of counterfactual explanations were proposed in the

context of ML [75–77]. The most simple way for obtaining counterfactuals is

by trial and error, i.e. by randomly changing the feature values of a considered
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sample and stopping when the desired output gets classified [77]. Wachter et al.

[177] computed counterfactual explanations by searching counterfactual samples as

close as possible to the original ones so that a new output class is selected. The

authors measured the distance in terms of the Manhattan distance [178], weighted

by the inverse median absolute deviation. The Optimal Action Extraction (OAE)

method can be leveraged in the case of RF classifiers, AdaBoost, and gradient

boosted trees. The OAE approach tries to build a feature vector so that the desired

output is obtained at minimum cost [179]. Finally, The Feasible and Actionable

Counterfactual Explanations (FACE) method aims to find counterfactuals relying on

the concept of shortest path distance defined trough density-weighted metrics [180].

The counterfactuals come with several advantages [75]. The understanding of a

counterfactual explanation is relatively straightforward: if a certain feature value

of a test sample is changed as it happens in the counterfactual, the classification

outcome changes as expected. The counterfactuals are post-hoc methods and they

do not usually require any access to the internals of the considered SML black-box.

Futhermore, they can be adapted to a wide range of SML models due to their

frequent model-agnostic property. However, a main drawback of counterfactuals is

represented by the fact that for each instance we may find several counterfactual

explanations, sometimes even contradicting within each other, and thus increasing

the complexity of understanding them [77].

2.2.3 Intrinsically Explainable Models

A few SML models are not black-boxes, thus they belong to the hypothesis space I,

and they are explainable on their own due to their simple design or their limited

number of trainable parameters [75, 76]. As a consequence, we can gain explanations

by modifying Equation 2.1 and employing a white-box model as

w∗ = argmin
w∈I

1
n

n∑
i=1

S(w(xi), yi), (2.6)

with (xi, yi) ∈ D. By solving Equation 2.6, we may learn a white-box model

from the hypothesis space of the white-box models I, where justifications about

classification outputs can be easily derived by querying the model itself.
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The intrinsically explainable models provide ante-hoc explainability, since

the explanations are built-in in the model training process. Furthermore, they

are model-specific by design since the explanations are derived relying on the

specific functioning of the underlying SML model. Among the most known

approaches for obtaining intrinsically explainability we may find linear models,

and decision trees [75, 76].

SML linear models are parametric models composed of input features and weights

(the parameters) associated to each of them [44]. A certain weight immediately

highlight the contribution of the respective feature to the final classification outcome.

SML linear models are also often leveraged to yield continuous values instead of

categorical class labels, thus being often employed in regression tasks. Potentially,

it holds that for any parametric SML model we can analyze its parameters to

determine their contribution in the final output, however it is unfeasible for several

kinds of SML algorithms which produce highly parametric models, e.g. huge DNN.

Usually, the more the model is parametric, the more the perspective of gaining

this kind of explainability tends to vanish [75, 76].

Decision trees are SML models composed of tree nodes and leaf nodes [44].

The former are responsible to split features relying on a certain threshold value,

while the latter output a class label. The classification process for an instance

x starts at the top of the decision tree, and it proceeds downwards until a leaf

node is reached. At every intermediate node, a certain feature is compared to the

splitting threshold, and relying on the outcome of this comparison, the traversing

process proceeds toward the left or the right part of the three. Decision trees are

usually build following a greedy top-down approach, such that once a feature and a

threshold are selected as a splitting criterion, they cannot be switched by another

splitting feature and associated threshold [44].

The main advantage of relying on white-box models is to have explainability

by design, that is desirable for fields in which understanding the reasons behind

ML decisions is of paramount importance [75]. However, even if intrinsically

explainable models could be highly required in several fields, they usually come
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at the cost of performance, which is usually superior for black-box SML models

[75, 77]. Thus, the main drawback of white-box models is represented by their

simplicity in terms of limited number of parameters, which does not often allow

to catch complex relationships from training data [76]. Intrinsically explainable

models are then often not leveraged in the case high classification performance is

required, or when the demand of explainability is not deemed as strictly necessary

in the considered domain [75].

2.2.4 Surrogate Model Explanations

A common way of getting explanations from a black-box SML model is to use a

white-box surrogate model to proxy the behavior of the black-box, thus allowing

to understand its global or local functioning [75–77]. Formally, the process of

surrogate model fitting is executed by approximating a black-box SML model with

a white-box by solving the following equation

w∗ = argmin
w∈I

1
| X |

∑
x∈X

S(w(x), b(x)), (2.7)

in which the error measure S is a fidelity score, i.e. it measures how well the

surrogate white-box SML model w is capable of approximating the underlying

black-box SML model b.

Surrogate models are designed under a post-hoc fashion and they are agnostic

with respect to the kind of SML model to be explained [75–77]. Furthermore, they

can be divided into global and local surrogate models depending on their level of

approximation of the underlying black-box SML model [75–77].

A global surrogate model w proxies the black-box b on the entire training dataset

D, i.e. X = {x1, . . . ,xn}. If the dataset far exceeds the computational resources

at hand, the set X is sampled from the original training dataset to represent it

sufficiently well. Thus, global surrogate models mimic the classification outputs of

a certain black-box with comparable accuracy (when possible). Decision trees are

usually employed to proxy the behavior of black-box models [75–77]. For instance,

several research works designed global surrogate explanation models by training



2. State of the Art on Electrocardiogram Classification and Machine Learning
Explainability 63

a decision tree on a specific dataset D′ = {(x1, b(x1)), . . . , (xn, b(xn))}, i.e. the

surrogate model is trained to mimic the predictions b(xi) of the black-box SML

model [76]. Hinton et al. [181] followed this approached and they introduced

a decision tree that was trained with stochastic gradient descent relying on the

predictions of a DNN. The decision tree surrogate model employed the learned

filters to provide hierarchical decisions relying on input samples. Yang et al. [182]

introduced a binary decision tree that was capable of catching the most relevant

decision rules that were implicitly contained in a DNN black-box. The tree was

trained on an input matrix built relying on the contributions of input features to

predicted scores for each single prediction. For training the surrogate tree, the

input feature space was recursively partitioned by maximizing the difference in the

average contribution of the split feature between the divided spaces.

The fact that surrogate models are designed under a post-hoc fashion represent

a great advantage since it is not required to train the underlying black-box to

obtain explanations. Furthermore, the model-agnostic property allows to apply a

wide range of surrogates to a black-box SML model depending on the problem at

hand, without any major concern related to its structure [75, 76]. However, when

using surrogate models researchers must be aware that the obtained explanations

are often focused only on the considered black-box, and they do not account for

the ground truth associated to the training data, since the surrogate model never

sees the real outcome (as it happens in Hinton et al. [181]). Furthermore, even

we can measure how close the surrogate model is to the black-box SML model, it

could happen that the white-box model is very close for one subset of the dataset,

but widely divergent for another one [77].

A local surrogate model w proxies the black-box b in the neighborhood of a sample

x, defined as X = {x′ | x′ ∈ N(x)}, where N is a certain function that defines

the neighborhood of x [75–77]. Local surrogate models are only accurate in the

neighborhood of the current prediction, and they allow only for a local understanding

of black-box SML models. A widely known example of local surrogate method is
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represented by the Local Interpretable Model-agnostic Explanations (LIME) [183],

which will be presented in the details in the next subsection.

2.2.5 Local Interpretable Model-agnostic Explanations (LIME)

In the present subsection we introduce the LIME explanation algorithm [183], which

is a model-agnostic, post-hoc, and local surrogate explanation algorithm which

falls in the class of Local Linear Explanations (LLE) [184], that is also referred

in the literature as feature importance models [75].

To define LLE let us consider a sample x ⊆ RF that is set as input of a black-box

b. The black-box model b does not come with any kind of assumption on the LLE

structure. A LLE function g explains the prediction of the black-box b(x) by training

a white-box classifier that mimics the black-box b in the neighborhood of the input

sample x, and it is defined as a linear function which takes the input sample x as

g(x) = w0 +
F∑
i=1

wi · x(i). (2.8)

The LLE g multiplies each feature x(i) for a weight wi to proxy the behavior of

the black-box b in the local neighborhood of x. The absolute value of the weight

wi provides the importance each feature x(i).

The LIME algorithm build an LLE model g relying on an artificial neighborhood

N(x) built in the close vicinity of the input sample x for which it is required

an explanation. A neighborhood N(x) composed of H points around the input

sample x is defined as

N(x) = {xj = x+ εj, εj ∼ N (0,σX ) | j = 1, . . . H} (2.9)

where the vectors εj locally perturb the input sample x and they are sampled by

a Gaussian distribution with zero mean and σX standard deviation, composed by

the standard deviations of features in the training dataset4. To find the LLE g,
4In the case features are categorical, they can be uniformly sampled relying on their frequency

in the dataset X .
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the LIME algorithm trains a Ridge regression model on the neighborhood N(x)

relying on the following linear least squares loss function

L(b, g, πx) =
∑

z∈N(x)
πx(z)(b(z)− g(η(z)))2, (2.10)

where the predefined kernel distance is set to πx(z) = exp
(
−d(x,z)2

γ2

)
with kernel

width γ = 3
4F , and d(·, ·) is the standard Euclidean distance. The explanations can

be provided in a space X ′ that could be different with respect to X if it is provided

a proper mapping function η : X → X ′. The function η is set to the identity

function in the case X = X ′. The model complexity Ω(g) of the explanation

model g can be added to Equation 2.10, which represents the number of features

used by the explanation model g. The latter term can be not considered in the

case the model g exploits the full set of features.

Intuitively, the LLE model g is a local explanation for the instance x because

it classifies the set N(x), which is an artificial dataset sampled around x. The

provided explanation is linear since it provides a single real-valued weight for each

feature of the input sample x. Finally, we notice that different kernels can be

selected, but they potentially alter the provided explanations.

2.2.6 Explainability within Electrocardiogram Classification

In the previous sections we provided the required definitions for introducing the

concept of ML explainability for SML black-box models, along with a categorization

useful to frame the available explainability methodologies. Being aware of the

concepts we introduced in the previous sections, we now illustrate the recent

research works that addressed the problem of ML explainability in the context

of classification of CA from ECGs.

Goodfellow et al. [185] developed a CNN to classify single-lead ECGs within

normal sinus rhythm, atrial fibrillation, or other kind of CA. The proposed CNN was

composed of 13 layers, including convolutional and pooling layers, ReLU activation

functions [45], batch normalization [155], dropout [96], Global Average Pooling

(GAP) [186], and a last fully connected classification layer. The GAP layer turns
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a set of feature maps into scalar values by computing the average of the values

contained in the maps, and after GAP is performed scalars are fed into the final fully

connected layer. The authors trained the model on the 2017 Physionet Challenge

dataset, which was composed of of 12,186 labeled ECGs [136], and they obtained

average scores of 84% precision, 85% recall, 84% F1-Score, and 88% accuracy. Then,

Class Activation Mapping (CAM) [186] was leveraged to understand which areas

of the input ECGs the model was focusing on when performing a classification.

CAM is a model-specific, post-hoc, and local explainabily method which takes the

weights computed after the GAP layer, and the class for which we want to obtain

explanations. Then, CAM considers the feature maps that pass through the GAP

layer, it multiplies them with their respective weights, and it finally adds them

together. The final weighted sum returns a heatmap for a specific class, which has

the same size of the feature map, and provides hints about where the CNN paid

attention when performing classifications. The authors finally observed that for

normal sinus rhythm the general CAM pattern showed roughly constant attention,

while in the case of atrial fibrillation the general CAM pattern showed random

attention to several fluctuations within the ECGs. Finally the CAM related to other

CA showed attention spikes mostly associated with the presence of premature beats.

Hicks et al. [187] introduced an approach called ECG Gradient Class Activation

Map (ECGradCAM), which the authors leveraged to build explainable attention

maps. The presented approach is similar to the one of Goodfellow et al. [185],

since the authors relied on a modified version of the CAM explainability method,

which is Grad-CAM [188]. In CAM, feature maps are weighted by multiplying them

by the weights taken out of the GAP layer. On the other hand, in Grad-CAM,

feature maps are weighted by computing “alpha values” which are calculated only

relying on gradients, without the need of the GAP layer. Hence, the advantage of

Grad-CAM is represented by the fact that the method does not require a specific DL

architecture, because gradients can be obtained regardless the presence of the GAP

layer. The authors slightly modified the GradCAM approach to compute heatmaps

for each lead of the ECG, and they designed a CNN with residual connections
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inspired by He et al. [73], with eight residual connections. The authors employed

the designed CNN architecture for two different ML tasks: 1) to predict common

intervals and waves amplitudes from ECGs in a supervised regression strategy,

e.g. the QT interval, QRS duration and T wave amplitude. 2) To classify the

sex of the patient from which the ECG was sampled. The authors trained the

CNN in both the tasks under a five-fold cross-validation relying on the GESUS

dataset [189], in which 7,152 samples were employed for training set and 1,787 for

validation set. In the first case, the results provided by the authors in terms of

mean absolute error suggested that the model was capable of predicting interval

widths and wave amplitudes. Furthermore, explainability results suggested that

the CNN properly inspected the right waves and intervals that were related to the

predicted variable. In the second case, the authors obtained an accuracy of ∼ 88%,

and the explainability results suggested that the QRS complex and the downslope

of the R wave were the most relevant part of ECGs when distinguishing between

a male and female patients. However, we must notice that 7 and 8 test samples

were respectively analyzed to draw the presented conclusions in the regression

and classification tasks, and a systematic assessment of the CNN model on the

entire training dataset was not provided. As a remark, we notice that the work

from Hicks et al. [187] it is not strictly related to the context of CA classification

from ECGs. However, we reported the work for completeness of the literature

review proposed in this section, since part of the research work was focused on a

classification task whose technical background was analogous to the one employed

within CA classification. Finally, we mention that a few other works employed

GradCAM to explain the classification outcomes of a CNN when classifying CA

from ECGs, and an example is reported by Vijayarangan et al. [190], which work

is analogous to the one of Goodfellow et al. [185].

Several researchers explained the outcomes of black-boxes which classify CA

from ECGs by means of attention based models [76], which are model-specific,

ante-hoc, and local explainability methods. The attention mechanisms can be

leveraged to highlight the most relevant parts of the input signal that lead to a
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specific classification output. Yao et al. [191] introduced a CNN along with an

explanation method based on an attention mechanism with the aim of adding

explainability to the black-box CNN model. The attention mechanism provided the

signal segment of interest along with classification result, and it was implemented

as a DNN. The authors trained the CNN model on the China Physiological Signal

Challenge dataset [192], which was composed of 6,877 12-lead ECGs from 6s to 60s,

labeled with a total of 8 kinds of CA and normal sinus rhythm. The final reported

overall classification results obtained by the CNN model were 83% precision, 80%

recall, and 81% F1-Score. Finally, only three ECG samples with PAC, PVC, and

atrial fibrillation were drawn to analyze explainability results. Even if a systematic

assessment of the CNN model on the entire training dataset was not provided, the

few analyzed ECGs suggested that for PAC and PVC, larger weights were clearly

assigned for segments showing premature beats. In the ECG showing AF, weights

were more uniformly assigned since the distortions in ECG rhythm consistently

appeared during the entire recording.

Mousavi et al. [93] proposed a hierarchical model to classify atrial fibrillation

from normal sinus rhythm. The model was composed of three sub-networks in which

each network was composed of a stacked bidirectional recurrent neural network

[193]. Each sub-network was followed by an attention model capable of providing

multi-level explainability, by considering segments within heartbeats, the whole

heartbeat and the combination of all the heartbeats. The method was trained on a

combination of the MIT-BIH Atrial Fibrillation Database [165] and the PhysioNet

Challenge 2017 dataset [136], and it achieved average performance of 99.08%

sensitivity, 98.78% specificity, and 98.83% accuracy. Regarding explainability, a few

ECGs containing AF and non-AF categories were analyzed, suggesting that the

proposed method paid attention to the irregularity of R-R intervals and the absence

of P-waves, which are relevant clinical traits when diagnosing atrial fibrillation.

Similar explainability works relying on attention mechanisms were proposed by

Baalman et al. [92] and Hong et al. [194] et al.. The first authors built a DNN

to classify ECGs within atrial fibrillation and normal sinus rhythm, along with an
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DL based attention mechanism to allow for explainability. Through the attention

mechanism the authors computed a heat map on the input signal to show the areas

of the ECG that were mostly employed by the DL classifier to come to the correct

classification. Finally, Hong et al. [194] developed a multi-level attention model

by deepening the previous approach in extracting multilevel domain knowledge

features, in terms of beat, rhythm and frequency domain level features.

Strodthoff et al. [91] investigated both CNN as well as RNN architectures to

classify within normal sinus rhythm, anterior, and posterior myocardial infarction.

The proposed CNN architecture was inspired by Long et al. [195] and it was

composed by six convolutional layers, while the RNN was inspired by the ResNet

architecture [73], and it was designed with three residual blocks. The authors trained

both the DL models on the PTB database which is composed of 549 labeled ECGs

from 290 subjects [46, 65]. In the case of the CNN, the authors obtained overall

93% sensitivity, 90% specificity, and 94% positive predictive value, while in the

case of the RNN they obtained 92.5% sensitivity, 90% specificity, and 94% positive

predictive value. The authors applied a model-specific, post-hoc, local explainability

method named “gradient × input” [196] to identify which part of the input ECGs

was the most relevant to the final classification. The gradient × input method

computes a heatmap by calculating the signed partial derivatives of the output

with respect to the input, and it multiplies them with the input itself. Different

from what usually happens in computer vision, where the attributions of all color

channels are added up together, the authors retained the different attributions of

each channel to be able to highlight channel-specific effects. Regarding explainability,

the authors assessed a few test ECGs and they observed that the ECG areas which

most contributed to the final classification outcomes did not always align with the

ones that physicians would have identified as important.

Zhang et al. [94] classified CA within 9 different classes (including atrial

fibrillation and myocardial infarction) in addition to normal sinus rhythm. The

authors designed a CNN with residual connections inspired by He et al. [197], and

they employed four residual blocks. The introduced CNN accepted as input raw
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12-lead ECGs, with a duration of 30s and sampling rate of 500Hz, and it was trained

on the China Physiological Signal Challenge dataset [192]. The final model achieved

an average F1-Score of 81%, and its classification outputs were explained relying

on the SHapley Additive exPlanations (SHAP) method [198] to interpret the CNN

behavior at both the single ECG level and at the whole dataset level. The SHAP

method is a LLE method which is model-agnostic, and post-hoc and it builds local

and linear explanations relying on the concept of Shapley values [199]. Such values

are computed relying on the coalitional game theory, by assuming that each feature

value of the considered input instance is a player in a game where the classification

output is the payoff [200]. The more a player is important in obtaining the output,

the more it finally deserves the payoff, and Shapley values illustrate how to dispense

such payoff among the players. The proposed work is interesting since it is the only

one, to the best of our knowledge, which computed explanations by taking into

account the entire dataset, and thus not limiting to a single ECG at a time. However,

the dataset level explanations are sometimes difficult to analyze by the point of view

of physicians since several of the considered CA may be observed on each of the 12

leads. For instance, classifying atrial fibrillation and atrioventricular block requires

to even visualize P waves and P-R intervals and these findings can be assessed

on all the 12 leads [50, 95], but for some reason the network focused its attention

only on II, V1, and V2 leads. The same holds for myocardial infarction which can

be observed on a wide range of leads, depending on its anatomical localization

[112]. Finally, Shapley values were even employed by Ibrahim et al. [201] which

highlighted the features that mostly contributed to the classification of myocardial

infarction for an Extreme Gradient Boosting (XGBoost) model [45], demonstrating

the high impact of age, sex, and QRS duration. The authors only explained two

sample ECGs, however the reported results suggested that the network was often

relying on not clinically relevant features when classifying myocardial infarction.
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3.1 Introduction

In the present Chapter 3 we will introduce our research works which were focused

on the design of ML algorithms in the classification of CA from ECG signals.

In Section 3.2 we will present our research work where we designed an ensemble

ML classification algorithm to classify 27 CA from ECGs [109]. Each classification

model in the ensemble was trained on the 2020 PhysioNet/Computing in Cardiology

challenge dataset [68]. Differently from most of the previous studies which employed

DL, and often simply borrowed DL architectures from other domains, we designed

an ensemble approach where each model in the ensemble was designed to specifically

classify a subset of CA that altered the same set of ECG physiological features.

In Section 3.3 we will present our research work where we experimented three

different Automated ML (AutoML) frameworks to address the time-consuming

problem of automatically finding optimal ML and DL pipelines, to classify within

30 CA from ECGs [110]. The AutoML frameworks were trained on the 2021

PhysioNet/Computing in Cardiology challenge dataset [69], which is an extension

of the previous year challenge dataset [68]. Cost-sensitive learning was leveraged

to address imbalanced classes within the available dataset: we run the AutoML

frameworks to train the underlying ML and DL models by minimizing a custom

misclassification score, instead of the commonly employed ML and DL loss functions.

3.2 Classification of 12-lead Electrocardiograms
with an Ensemble Machine Learning Approach

3.2.1 Introduction

In the context of Bodini et al. [109] we took part to the 2020 PhysioNet/Computing

in Cardiology challenge, which asked participants to perform the automatic classi-

fication of 27 CA from 12-lead ECGs. We investigated on a hybrid classification

approach, combining average-template-based algorithms with Convolutional Neural

Network (CNN) models, to build an ensemble classification model. We calibrated
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the model on the available 43,000+ ECGs, while organizers tested the model on

private validation and test sets.

Standard ECG preprocessing was fist applied. For ECGs related to CA altering

the ECG morphology, multi-lead average P wave, QRS complex, and T wave were

computed. For signals associated with irregular rhythms, time dependent features

were computed on the inter-beat time interval series (R-R). The ensemble model

comprised of: 1) three CNN models to classify morphology-related CA. 2) a fully

connected neural network to classify rhythm-related CA. 3) A threshold-based

classifier for premature ventricular beat detection. The final classification output

was obtained by combining the outputs of the classifiers.

On our validation set (derived from public training data), the ensemble model

obtained class-wise recall values ranging between 71% and 93%. The highest and

lowest recall values were respectively achieved by CA affecting the QRS complex,

and rhythm. The organizers designed a score for ranking the models, and the

ensemble model proposed by our team “BiSP Lab” reached the 40th position when

tested on the private test set, suggesting that our model showed potential for

classification of CAs from ECGs.

3.2.2 The 2020 PhysioNet/Computing in Cardiology Chal-
lenge Dataset

We employed the publicly available subset of the dataset prepared for the 2020

PhysioNet/Computing in Cardiology challenge [68]. The entire challenge dataset

was composed of a public subset shared for training algorithms, and a private

subset which organizers employed to assess the instances which competed to win

the challenge. The organizers divided the private data into validation and test sets.

The entire dataset was composed of a total of 66,361 12-lead ECGs multi-labeled

with one or more CA among 111 possible ones, while the classification results were

scored by the challenge committee relying only on a subset of 27 CA. The publicly

available subset of the dataset was provided with 43,101 recordings and the same

set of 111 possible labels. We relied on such public subset and we did not consider
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the labels not scored by the challenge organizers. When training the designed

classification algorithms, we merged the classes complete right bundle branch block,

premature atrial contraction, and premature ventricular contractions respectively

with right bundle branch block, supraventricular premature beats, and ventricular

premature beats since they were scored as the same diagnosis by the challenge

committee. Thus, our ensemble model provides 24 output CA classes.

The publicly available dataset was sourced by merging six datasets obtained

from several institutions located in four countries, across three continents:

• CPSC2018 and CPSC-Extra. The first source is the China Physiological

Signal Challenge 2018, held during the 7th International Conference on

Biomedical Engineering and Biotechnology in Nanjing, China [192]. This

source provided the public training dataset employed during the challenge

(CPSC2018), and a further dataset that was disclosed after its conclusion

(CPSC-Extra). Both the datasets were acquired from 9,458 patients.

• INCART. The second source is the St. Petersburg INstitute of CARdiological

Technics (INCART), St. Petersburg, Russian Federation [46], which provided

the INCART 12-lead Arrhythmia Database. The database was acquired from

32 patients, and it is available online on the website of the PhysioNet project.

• PTB and PTB-XL. The third source is the Physikalisch-Technische Bunde-

sanstalt (PTB), the national metrology institute of Germany which is located

in Brunswick, Germany. This source provided two publicly available datasets

acquired on 19,175 patients: the PTB Diagnostic ECG Database [65, 66] and

the PTB-XL Database [64]. A wider introduction of the PTB-XL dataset was

previously provided in the Section 1.3.

• G12EC. The fourth source is the Emory University, Atlanta, Georgia, United

States, which provided the Georgia 12-lead ECG Challenge (G12EC) dataset

[68]. The latter is a novel dataset that was disclosed during the 2020

PhysioNet/Computing in Cardiology challenge, and it represents a large

population from the southeastern United States, composed of 15,742 patients.
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A summary of the ECG datasets provided by the sources we reported in the above

list, which are contained in the public subset of the challenge dataset, is available

in Table 3.1. In the table we reported the number of available ECG recordings,

average ECGs duration in seconds, average age of patients in years, sex distribution

of patients, and employed sample frequency, for each of the listed datasets.

Table 3.1: Number of recordings (# of ECGs), average duration of recordings in seconds
(Avg. duration (s)), average age of patients in years (Avg. age (years)), distribution of the
sex of patients (Sex (M% / F%)), and sample frequency of recordings (FS (Hz)) for each
dataset that is contained in the publicly available subset of the 2020 PhysioNet/Computing
in Cardiology Challenge dataset.

Dataset # of
ECGs

Avg.
duration (s)

Avg. age
(years)

Sex
(M%/F%)

FS
(Hz)

CPSC2018 6,877 15.9 60.2 54% / 46% 500
CPSC-Extra 3,453 15.9 63.7 54% / 46% 500
INCART 72 1800.0 56.0 54% / 46% 257
PTB 516 110.8 56.3 73% / 27% 1000
PTB-XL 21,837 10.0 59.8 52% / 48% 500
G12EC 10,344 10.0 60.5 54% / 46% 500

In Figure 3.1 we report the available ECGs for each scored label and dataset.

The CA reported in the figure are listed as follows: I-degree AtrioVentricular

Block (IAVB), Atrial Fibrillation (AF), Atrial FLutter (AFL), Bradycardia (Brady),

Complete Right Bundle Branch Block (CRBBB), Incomplete Right Bundle Branch

Block (IRBBB), Left Anterior Fascicular Block (LAnFB), Left Axis Deviation

(LAD), Left Bundle Branch Block (LBBB), Low QRS Voltages (LQRSV), Non-

Specific IntraVentricular Conduction Disorder (NSIVCB), Pacing Rhythm (PR),

Premature Atrial Contraction (PAC), Premature Ventricular Contractions (PVC),

Prolonged PR interval (LPR), Prolonged QT interval (LQT), Q wave abnormal

(QAb), Right Axis Deviation (RAD), Right Bundle Branch Block (RBBB), Sinus

Arrhythmia (SA), Sinus Bradycardia (SB), Normal Sinus Rhythm (NSR), Sinus

Tachycardia (STach), SupraVentricular Premature Beats (SVPB), T wave Abnormal

(TAb), T wave Inversion (TInv), and Ventricular Premature Beats (VPB).
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Figure 3.1: The available ECGs for each scored label, and for each of the presented
datasets. The displayed colors were normalized by the total number of recordings
available in each dataset. Within the parenthesis we report the total numbers of ECGs
with associated a given label when merging the datasets (rows), and the total numbers of
ECGs including the ones without scored labels in each dataset (columns). Credits: Perez
Alday et al. [68], Creative Commons Attribution 4.0 International License, via medRxiv
available at https://doi.org/10.1101/2020.08.11.20172601.
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3.2.3 Preprocessing of the Electrocardiograms

ECGs were downsampled or upsampled to 500Hz according to their actual sampling

rate and filtered with a bandpass Butterworth filter (3rd order, zero phase, and

pass-band: 0.67− 30Hz) to reduce powerline interference, baseline wandering and

high frequency noise. Only the first 1 minute segment of each ECG was processed.

Beats were detected on the vector magnitude1 (VM) signal by employing the gqrs

algorithm [46], and beat positions were refined using the Woody algorithm applied

to the VM [202]. ECG quality was assessed computing the average crosscorrelation

between each QRS complex and an average QRS template. ECGs were further

considered only when the signal quality was higher than 0.9 for each lead. After

quality check, 4,752 signals were detected as bad quality and discarded.

Depending on the CA to detect, we processed the ECG signals differently. First,

given the fact that CA altering the ECG morphology were not transient, we created

an average PQRST template, i.e. from R peak −260ms to R+370ms, for each

lead that were concatenated afterwards. Figure 3.2 reports two examples of such

concatenated vector. Second, for the rhythm-related CA, we extracted the following

features from the R-R: R-R median, R-R standard deviation, R-R minimum distance,

R-R maximum distance, and root mean square of successive differences of R-R.

Third, for detecting PVC, we computed the maximum amplitude on the VM signal.
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Figure 3.2: Example of average 12-lead PQRST template for normal sinus rhythm (blue
line) and left bundle branch block (red line).

1The vector magnitude is computed as the square root of the sum of the squared ECG leads.
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3.2.4 The Ensemble Model

We designed an ensemble model comprising of four CNN and a threshold-based

classifier. Figure 3.3 reports the complete scheme of the ensemble model.

0/1

0

112-lead	ECG

Preprocessing

Rhythm
features

PVC
detection

0

1

0

1

0

1

0

1

P-CNN

QRS-CNN

T-CNN

Rhythm-NN

Figure 3.3: A scheme of the proposed ensemble classification model which is composed
of: 1) three CNN models to classify morphology-related CA. 2) A fully connected neural
network to classify rhythm-related CA. 3) A threshold-based classifier for premature
ventricular beat detection. The final classification output is obtained by combining the
outputs of the five classifiers.

Three CNN architectures, i.e. P-CNN, QRS-CNN and T-CNN, were designed

to classify CA altering the morphology of the P, QRS and T segments, respectively.

Each network classified within different classes:

• P-CNN classified I-AVB and LPR;

• QRS-CNN classified RBBB, IRBBB, LAnFB, LAD, LBBB, LQRSV, NSIVCB,

QAb, and RAD;
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• T-CNN classified LQT, TAb, and TInv.

The input features of the three CNNs were the respective concatenated P, QRS,

and T average segments taken from each lead of the average beat. Specifically, P

segments spanned in the range (R−260ms, R−150ms), QRS complexes were taken

in the range (R−50ms, R+50ms) and T segments ranged in (R+100ms, R+370ms).

Each CNN was composed of one or more convolutional layers, a dense fully connected

layer and an output layer whose dimension depended on the number of classes to

classify. The structure of the three CNN architectures is shown in Figure 3.4.

Convolution
1x25 - stride 2

32@600x1
16@300x1

16@150x1
1x128

1x64
1x32

1x9

Convolution
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QRS-CNN
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32@1620x1 16@810x1
16@405x1

1x8
1x16

1x3

Convolution
1x10 - stride 2
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T-CNN

Convolution
1x4 - stride 6

4@660x1

4@110x1
1x16

1x32
1x2

Dense

P-CNN

Figure 3.4: The network structure of the three CNN architectures which compose part
of the the full ensemble ML model. The shapes of the convolutional kernels are reported
as # of filters @ dimension1 × dimension2.

A deep feed-forward neural network was designed to classify the CA related to

irregular rhythms (hereafter, named as Rhythm−NN). The classes were AF, AFL,

Brady, PR, PAC, SA, SB, and STach. The input features were those extracted

from the RR series (see Section 3.2.3). The network had two hidden layers with

64 and 32 neurons, respectively, and an output layer with 8 neurons, equivalent

to the number of rhythm classes.

ECG containing PVCs were classified using a threshold calibrated by means

of a Receiving Operating Curve analysis performed on the maximum value of

the VM signal. The optimal cut-off was selected as that one balancing the true

positive and negative rates.

For all the networks, the ReLU activation function was used for the fully

connected layers, and the Sigmoid activation function in the output layer [45]. No

activation functions were set after the convolutional layers. Batch normalization



80
3.2. Classification of 12-lead Electrocardiograms with an Ensemble Machine

Learning Approach

[155] and dropout [96] (with a rate starting at 0.1 in the first layer and with a

0.1 increase each further layer) were used in all the layers, except the last one,

as regularization techniques. The Adam algorithm [203] was used as optimizer

(ε = 10−8, β1 = 0.9 and β2 = 0.999) and the average binary cross-entropy across

classes was set as loss function [45]. The batch size was set to 64 samples.

For training the ensemble model, four datasets were built containing only

the input features within to the considered subset of CA. Then, each dataset was

randomly sampled with stratification using a 70/30 training/validation split. Models

were trained separately for 1000 epochs on their respective training set. Metrics were

computed on the validation set to assess the performance. The model submitted

for the evaluation on the private test set was trained using all the available data

without splitting and using the same configuration.

Given the fact that the output of the CNN architectures and the feed-forward

neural network were computed by means of Sigmoid functions, resembling then the

conditional probability of observing a given class, the final decision was taken by

setting a 0.5 threshold for such probabilities. The output vector was obtained by

concatenating all the decisions obtained by the CNN architetures, the feed-forward

neural network, and the threshold-based classifier. Regarding the decision related

with the detection of NSR, ECGs were classified as NSR only if no other CA was

detected, i.e. when the concatenated output vector was equal to the zero vector.

3.2.5 Experimental Results

Given the multi-label classification problem, the confusion matrices for the four

neural networks composing the ensemble model were computed on our validation

sets in class-wise manner, and results are reported in Table 3.2. Positive classes

contained CA specific to the neural network under evaluation, while the negative

classes contained all the others. Confusion matrices were normalized by row, i.e.

dividing by the total number of samples for each class.

We computed the recall values for all the 24 scored classes provided with the

dataset on our validation sets. The three highest recall values were obtained by
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Table 3.2: Confusion matrices for the networks composing the ensemble model, computed
on internal validation sets. The values of each matrix were normalized by the row.

P−CNN QRS−CNN
Pred+ Pred− Pred+ Pred−

Act+ 0.71 0.29 0.87 0.13
Act− 0.12 0.88 0.19 0.81

T−CNN Rhythm−NN
Pred+ Pred− Pred+ Pred−

Act+ 0.76 0.24 0.74 0.26
Act− 0.15 0.85 0.15 0.85

the QRS-CNN for RBBB and LBBB (0.93 and 0.85, respectively) and by P-CNN

for I-AVB (0.88). The worst values were achieved by the Rhythm-CNN for Pacing

(0.71) and Flutter (0.74), and for the normal ECG detection (0.74). The area under

the ROC curve for the PVC detection was 0.82, obtaining true positive and negative

rates of 0.72. The identified threshold was 1.44mV .

The challenge scoring system made use of a metric depending on the recognition

performance of each class in a weighted manner. The employed misclassification

cost was defined for each of the considered CA by expert physicians in Perez Alday

et al. [68]. Organizers made available the scoring system: we obtained a score of

0.241 on the private validation set and a score of −0.179 on the private test set.

3.2.6 Discussion

The ensemble model reached intermediate classification performance. The QRS-

CNN was the best among the four NN models and it reached the top highest

recall values (up to 0.93 for RBBB) computed over all the 24 classes. The other

three networks and the PVC detector showed moderate performance, reporting the

worst recall values. We noticed that the worst performance were still correlated

with classes having a low number of samples. For instance, the P-CNN model

was trained using only the available 340 samples for prolonged PR, achieving one

of the lowest recall values (0.74).

Several are the improvements that can be implemented. First, the Rhythm-NN

and PVC detector can be substituted with more efficient models. In fact, Hannun
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et al. [67] and Zhou et al. [204] recently demonstrated that DNN can achieve high

recall values for both rhythm and PVC detection. Second, the low recall values

of the T-CNN might be due to the preprocessing step implemented. Indeed, the

average PQRST template did not account for changes in the heart rate within the

considered 1-minute segment, while it is well known the heart-rate dependency

of the T wave morphology and duration. R-R binning can be used to improve

this aspect instead of averaging beats within the entire segment [205]. Third, the

recall value for normal ECG detection was among the lowest ones. The detection

by elimination, i.e. when the final output was the zero vector, was sensitive to

misclassification of any of the other classes. For example, if misclassifications were

statistical independent between the classes and the error rate was just random

at 1% (but we are still far from this value for many classes), the misclassification

of normal ECG would be approximately 23%, leading to an extremely high false

negative rate. A possible solution might be designing and adding another CNN

in the ensemble model, whose input is the average PQRST template and several

rhythm-related features, capable of recognizing normal sinus rhythm ECGs.

Differently from previous studies on DNN where DL architectures were often

borrowed from other domains, we designed a hybrid approach merging average-

template-based algorithms, known to be effective, with the state-of-the-art for

classification in deep learning, by using an ensemble model. The approach seemed

suitable to deal efficiently with the challenging multi-class problem of ECG clas-

sification, and the limited sample size available. Future works are towards the

testing of further DL algorithms. For instance, we expect that recurrent neural

networks would lead to better performance in the classification of rhythm-related

CA with respect to the employed feed-forward neural network, since they already

showed to be effective for their classification [48, 49, 55].
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3.3 Classification of 12-lead Electrocardiograms
with Different Lead Systems Using Automated
Machine Learning

3.3.1 Introduction

In the context of Bodini et al. [110] we took part to the 2021 PhysioNet/Computing

in Cardiology challenge [69], which asked participants to perform the automatic

classification of 30 CA from both 12-lead ECGs and reduced-lead settings. We inves-

tigated on the feasibility of applying AutoML approaches to build ECG classifiers.

Standard ECG preprocessing was applied beforehand to the ECG (filtering and

resampling). Three different AutoML frameworks were executed on the 88,000+

ECGs made available by the challenge organizers. The optimal combination of

preprocessing and ML algorithms were found by the AutoML frameworks. We

finally assessed the frameworks’ classification performance, the effect of the number

of employed leads, and the effect of extending the frameworks training time.

The classifiers proposed by our team “BiSP_Lab” received scores of 0.30, 0.29,

0.28, 0.26, 0.23 (ranked 27th, 29th, 28th, 29th, 28th out of 39 teams) for the 12-lead,

6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set with the challenge

evaluation metric. The AutoML frameworks showed comparable performance, and

the worst score was obtained on the 12-lead system, while the best on the 6-lead one.

Significantly extending the training time seemed to not improve the test score. The

obtained results showed that AutoML frameworks obtained promising performance

on the private test set, suggesting their potential for classification of CA.

3.3.2 The 2021 PhysioNet/Computing in Cardiology Chal-
lenge Dataset

The dataset made available for the challenge was composed of 12-lead, 6-lead, 4-lead,

3-lead, and 2-lead ECGs, labeled with one or more CA, among 133 possible ones

[69]. The provided dataset by the organizers was created by extending the 2020

Physionet/Computing in Cardiology challenge dataset [68], which we presented

in Section 3.2.2. Regarding the publicly available dataset, it was integrated with
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respect to the previous year challenge by merging two further sources: 1) The

Chapman-Shaoxing database, which contains 10,247 recordings from the Chapman

University (Orange, California, United States) and Shaoxing People’s Hospital

(Shaoxing, China) [63]. We yet presented the latter database in Section 1.3. 2)

The Ningbo dataset which contains 34,905 recordings from Ningbo First Hospital

(Ningbo, China) [206]. A total number of 88,253 ECG signals was made publicly

available. Like the previous year challenge, the performance of the submitted

classifiers were assessed using an expert-based scoring metric provided by the

challenge organizers which assessed the classifiers’ performance only relying on

a subset of 30 selected CA [68]. A hidden validation and test sets, respectively

composed of 6,630 and 36,272 recordings, handled by the challenge organizers,

were used for evaluating the proposed algorithms. A maximum of 72h was allowed

for training time and 24h for testing.

3.3.3 Preprocessing of the Electrocardiograms

Similarly to the previous year challenge [109], we only relied on the public dataset

provided for the challenge, and on signals labeled with the CA considered in the

challenge scoring metric defined by the organizers. Furthermore, we merged the

classes which the committee scored as the same diagnosis. Standard ECG prepro-

cessing was applied beforehand to raw ECGs, including filtering and resampling.

ECGs were downsampled or upsampled to 125Hz according to their actual sampling

rate and filtered with a bandpass Butterworth filter (3rd order, zero phase, and

pass-band: 0.67 − 30Hz) to reduce powerline interference, baseline wandering

and high frequency noise. For each lead system, only the first 10s of ECG were

considered. In case the length was inferior to 10s, zero padding was performed.

The available ECGs were randomly split into training and validation sets with

70/30 ratio for each lead system, with stratification (i.e. the class distribution of

the training set matched the one of the validation set).
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3.3.4 The Automated Machine Learning Frameworks

We adopted three different AutoML frameworks to build the required ECG classifiers,

i.e. auto-sklearn, AutoKeras, and the Tree-Based Pipeline Optimization Tool

(TPOT). The AutoML frameworks are capable of automatically selecting the

optimal ML pipeline to solve the problem at hand. With the term “pipeline”, we

hereinafter refer to the process of rebalancing the distribution of classes, feature

engineering, dimensionality reduction, and training of the selected ML/DL classifier,

along with its parameters and hyperparameters [207, 208].

Class rebalance methods applied by AutoML frameworks address the classes

imbalance problem that we briefly introduced in Section 1.4. Datasets with

imbalanced classes are frequent in several real-world applications, including ECG

classification where the classes distribution is often not balanced since it is sometimes

hard to collect ECGs related to certain CA for several circumstances (e.g. in the

case of rare CA, and unavailability of patients showing certain CA at acquisition

time) [99]. Several methods were introduced to address such problem and they are

usually divided into data level rebalance methods, and algorithm level rebalance

methods [99, 106]. The data level rebalance methods change the distribution of

the dataset by oversampling or undersampling [102, 106]. The algorithm level

rebalance methods adjust the underlying ML algorithm without altering the original

distribution of training data. Examples of the latter methods include thresholding,

cost-sensitive learning, and one-class classification [106]. Threshold methods are

applied once the ML model is learned (hence, during the test phase) to adjust

its decision threshold by changing the output class probabilities. Cost-sensitive

learning assigns different costs to the misclassification errors for training samples

from different classes [107], and it can be implemented in several ways depending on

the underlying ML or DL algorithm. For instance, if considering DNN, a possible

approach is to train a DNN to minimize a specifically defined misclassification

cost, instead of the commonly employed loss functions such as cross-entropy [107].

One-class classification is usually called novelty or anomaly detection in the context

of DNN [168, 209]: to handle the classification issues related to the minority lass, a
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DNN could learn to recognize the samples associated to the majority class, rather

than discriminating between the two classes [168, 209].

The AutoML frameworks can potentially generate a huge amount of features.

The higher is the number of considered features, the higher will be the computational

cost for obtaining them, and the impact on the training time of ML algorithms

[210]. Furthermore, it happens that several computed features may be not relevant

to distinguish within the classes of the problem at hand, or they may be correlated,

thus leading in both the cases to a huge number of irrelevant inputs. The presence

of correlated features negatively affect the performance of several ML models in

different ways and to varying extents [211, 212]. As a consequence, it is often

critical to decrease the dimensionality of the computed features by discarding not

discriminative, and correlated features for both improving computational efficiency

and classification performance [211, 212]. Typically, the process of reducing the

dimensionality of the involved features is referred in the literature as dimensionality

reduction [211, 212], and it is achieved prior to the training step of ML algorithms

through feature selection or feature extraction methods [48, 114]. Feature selection

methods attempt to determine a subset of the initial feature space by evaluating

the impact of the computed features on the final classification performance. The

selected subset should be capable of both properly representing the input data, and

of providing adequate or even improved classification performance, while allowing

to reduce the computational training time of the employed ML algorithm [211,

212]. The available techniques to perform feature selection can be mainly divided

in filter methods, wrapper methods, and embedded feature selection methods [211,

212]. Filter-based feature selection methods employ a certain metric to identify and

remove less relevant features. The selecting procedure of the less useful features is

separated from the training step of the employed ML algorithm. In Wrapper-based

feature selection methods the process of feature selection is executed during the

training phase, and the model’s classification performance metric is employed as a

feature selection criterion. The Sequential Forward Selection (SFS) and Sequential

Backward Selection (SBS) methods [213] are within the most employed wrapper
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methods [211, 212]. In embedded feature selection approaches, the selection of

the optimal features subset is implemented into the classifier design process, thus

it is conducted automatically during training phases. Regularization constraints

in the form of Lp norms were applied to several ML classification algorithms as

embedded feature selection methods [211, 212].

The feature selection approaches discard the not selected features relying on a

certain strategy. On the other hand, the process of feature extraction maps the full

set of features on a space with lower dimensionality, by keeping the most relevant

information of the original space to the maximum possible extent [48, 114]. We

notice that the aim of both feature selection and feature extraction methods is to

reduce the dimension of the original feature space, hence these two terminologies

are often used interchangeably by researchers, but they are not equivalent [114].

Among the most common feature extraction techniques we may find Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Independent

Component Analysis (ICA), and several other ones [48, 114].

The auto-sklearn framework is an AutoML system based on the Python scikit-

learn library [214]. It relies on 15 ML classifiers, 4 data preprocessing methods, and

14 feature preprocessing methods, which give rise to a high-dimensional hypothesis

space. Onto such space, auto-sklearn defines a Combined Algorithm Selection

and Hyperparameter optimization (CASH) problem and it relies on Bayesian

Optimization to optimize such problem for discovering a top-performing ML pipeline.

The AutoKeras framework is an AutoML tool specific for DL architectures,

based on the Python Keras library [215]. It exploits the concept of network

morphism, which retains the functionality of a DL network while changing its

underlying architecture. Bayesian optimization is leveraged by AutoKeras to guide

the network morphism in searching of the optimal DL architecture for the considered

problem and dataset. To efficiently explore the search space, the authors of the

AutoKeras framework developed a custom neural network kernel along with a

tree-structured optimization algorithm.
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The TPOT framework automatically constructs and optimizes ML pipelines

relying on the well-known evolutionary computation technique of genetic program-

ming (GP) [216]. At the beginning of every TPOT run, a fixed number of pipelines

is generated to constitute what is usually called in GP as population. GP is used

to evolve the set of pipelines that acted on the dataset, and a portion of those is

retained relying on their classification performance. The top-performing pipeline is

retained when TPOT reaches convergence or after a user-defined number of runs.

3.3.5 Experiments on the Frameworks

The AutoML frameworks were trained on the available dataset with the aim

of 1) comparing the performance among the three considered frameworks; 2)

assessing the effect of the number of employed leads on the final classification

performance; 3) assessing the effect of extending the training time at disposal

of the AutoML frameworks.

The input features were set as the reduced 10s ECGs for each lead system,

and the respective validation sets were employed by the frameworks to select

the optimal ML pipeline. By default, AutoML frameworks use the validation

loss of the employed ML/DL algorithm as a score for selecting the best pipeline.

For each AutoML framework, we followed a cost-sensitive learning approach by

setting the challenge score defined by organizers as scoring function to measure

the performance of the created pipelines. Each AutoML instance comes with a

parenthesized name to easily refer to it.

Auto-sklearn was tested by setting 2.5h of training time for each lead system

(auto-sklearn #1), and setting a proportional training time to the number of

leads of (2.5h × #leads) for each lead configuration (auto-sklearn #2). The

whole set of classifiers, feature preprocessing methods, and data preprocessing

methods was considered.

AutoKeras was tested relying on a training time of (2.5h×#leads) for each lead

configuration and using the full set of pipeline elements at disposal (AutoKeras #1).

Next, the hypothesis space was reduced to consider only DL architectures composed
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of Convolutional, Dense, ResNet, and Xception layers, and by mantaining the same

training time of the previous configuration (AutoKeras #2).

TPOT was tested under two configurations with a training time of 2.5h×#leads.

The TPOT Default configuration was used to search over a broad range of pipeline

elements, where some of them may take a long time to run, especially on large

datasets (TPOT #1). Then, the TPOT Light configuration was tested, in which

TPOT searched over a restricted range of simple and fast-running pipeline element

to find quick and simple ML pipelines (TPOT #2).

To assess the effect of extending the training time at disposal of the AutoML

frameworks, as a final test we considered only the 3-lead system and we trained

each AutoML framework for 70h onto such system (while we used pre-trained ML

models for the remaining lead systems in the instance submission phase). For each

AutoML system, the settings of the top performance instance were selected.

3.3.6 Experimental Results

To compare the performance among the considered AutoML frameworks, we

computed in the Figure 3.5a the cumulative sum of challenge scores obtained

by the AutoML instances on each lead configuration, on the hidden validation set.

The sub-bars report the score obtained by an AutoML instance on a specific lead

system. To assess the overall variability of all the AutoML instances over lead

systems, we reported in the Figure 3.5b the box-plots of challenge scores computed

over each lead system on the hidden validation set.

To quantify the effect of the number of employed leads on the final classification

performance, similarly to Figure 3.5a, we computed in the Figure 3.5c the cumulative

sum of the challenge scores obtained over each lead system by the AutoML instances

on the hidden validation set. For each lead system, the sub-bars report the score

obtained by an AutoML instance. To assess the variability of a specific AutoML

instance over lead systems, we reported in the Figure 3.5d the box-plots of challenge

scores computed over each lead system on the hidden validation set.
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Figure 3.5: (a) The cumulative sum of challenge scores of AutoML instances on each
lead system. (b) The box-plots of the challenge scores computed over each lead system.
(c) The cumulative sum of challenge scores obtained over each lead system by the AutoML
instances. (d) The box-plots of challenge scores computed over each AutoML instance.

After training for 70h the top-performing instances on the 3-lead system for each

AutoML framework, i.e. auto-sklearn #2, AutoKeras #1, and TPOT #2, we respec-

tively obtained 0.32, 0.33, and 0.35 challenge scores on the hidden validation set.

Table 3.3 reports the challenge score on the hidden validation and test sets,

achieved by the final selected entry (auto-sklearn #2).

Leads Validation Test Ranking
12 0.35 0.30 27th
6 0.34 0.29 29th
4 0.30 0.28 28th
3 0.32 0.26 29th
2 0.31 0.23 28th

Table 3.3: Challenge scores for our final selected entry (auto-sklearn #2) on the hidden
validation and test sets, as well as the ranking on the hidden test set.
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3.3.7 Discussion

As shown in Figure 3.5a, TPOT #2 was the best among the six instances in terms

of cumulated score, and it reached the highest score values in three out of five

lead systems (up to 0.35 with 4-leads). The worst performance were provided by

TPOT #1, since it reached the lowest challenge score values in four out of five

lead systems. The Figure 3.5d shows that TPOT #2 and TPOT #1 were the ones

with the highest and lowest median challenge score value computed across lead

systems, respectively of 0.34 and 0.21. The instance TPOT #2 showed the lowest

interquartile range (IQR) of 0.01, while the highest IQR of 0.14 was reached by

TPOT #1. The highest IQR obtained by TPOT #1, associated with the lowest

median score value, suggests that in this case the used AutoML configuration may

be weak in classifying CA, since it searched into a limited hypothesis space.

The Figure 3.5c shows that the 12-lead configuration is the one where instances

obtained the lowest performance. On the other hand, the 6-lead system showed the

highest cumulated score. The Figure 3.5b shows that the 6-lead and the 12-lead

systems were the ones that showed respectively the highest and lowest median

score value computed across AutoML instances, respectively of 0.33 and 0.20. The

6-lead system obtained the lowest IQR of 0.04, while the highest IQR of 0.24 was

obtained by the 12-lead system. The results on the 3-lead are comparable the

to 6-lead system, as it is reasonable to expect since the second system is a linear

combination of former [18]. The highest IQR obtained by the 12-lead system,

associated with the lowest median score value, suggests that in this case AutoML

frameworks might need further training time to match the performance obtained

in the case of less numerous lead systems.

The experimented AutoML frameworks obtained intermediate classification

performance with respect to other teams. Since the class distribution of the

available dataset was not balanced, a cost-sensitive learning approach was leveraged

to face the class imbalance problem: we executed the AutoML frameworks to find

optimal pipelines relying on the challenge score function, instead of the standard

loss functions of the employed ML/DL algorithms. The misclassification costs
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defined for CA by expert physicians helped in learning the few represented class,

by considering their misclassification cost within the knowledge domain.

Further aspects of AutoML frameworks may be explored in the future. A wide

number of AutoML tools is arising in the recent literature and more AutoML

frameworks may be tested to address ECG classification, even if recent works

suggest that their performance is relatively similar [207]. Next, even if the impact

of increasing the training time did not significantly improve the performance in the

case of the 3-lead system (not more than 0.03 of the challenge score), a systematic

assessment of performance against training time may be investigated even for other

lead configurations. A full analysis was not performed due to the limited number

of instance submissions available, that was 10, and limited time for training (72h).

However, the missed improvement in performance may be in line with results of

recent works, which showed that most of AutoML frameworks tend to converge

to similar performance in a few hundreds of iterations [207].

Differently from previous works where ML algorithms where often applied

without a deep exploration of ML pipelines, and designs of DL architectures were

inspired from other domains, we tested AutoML approaches to manage the proper

choice of the optimal ML pipeline, and at the same time to face the class imbalance

problem with the aim of cost-sensitive learning. The approach seemed suitable

to deal efficiently with the challenging problem of ECG classification and the

unbalanced dataset available.
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4.1 Introduction

In the present Chapter 4 we introduce our research works which were focused on

explainability of ML algorithms in the classification of CA from ECG signals.

In Section 4.2 we will present our research work where we relied on the Local

Interpretable Model-agnostic Explanations (LIME) [183] explainability algorithm to

highlight which ECG leads were the most relevant for a random forest algorithm in

the classification of several kinds of ST-Elevation Myocardial Infarction, depending

on their anatomical localization [98]. In the work we showed how to overcome

the overfitting problem caused by an inherent bias that we found in the employed

dataset. Furthermore, differently from the majority of other works presented in

Section 1.4 which addressed the problem of explainability in ECG classification, we

properly framed the explanations in the domain knowledge of electrocardiography

by designing a custom metric which allowed us to highlight the importance of

each lead in the final classification output, and we averaged the explanations

over all the training ECGs.

In Section 4.3 we will present our research work where we designed two explain-

ability frameworks relying on two model-specific, post-hoc, and local explainability

algorithms for Convolutional Neural Network (CNN) architectures to explain which

ECG waves were the most relevant in the classification of CA for a state-of-the-art

CNN [111]. The introduced frameworks could be useful from the perspective of

the ML expert, since they allow to inspect if a trained CNN correctly relies on the

same ECG segments which physicians are expected to look at in the usual diagnosis

of CA. From the perspective of physicians, the proposed frameworks allow them

to understand whether the classification output provided by the CNN relied on

their domain knowledge, by highlighting the expected ECG waves assessed during

diagnosis, and thus fostering the trust in the employment of DL. To the best of

our knowledge, with the mentioned work we were the first, at the same time with
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Zhang et al. [94], to systematically evaluate the performance of a CNN against the

domain knowledge of ECG interpretation on a wide set of 27 different CA.

4.2 Explainability of Machine Learning Algorithms
in the Classification of ST-Elevation Myocar-
dial Infarction

4.2.1 Introduction

ST-Elevation Myocardial Infarction (STEMI) is a common cardiovascular disease

that is caused by the occlusion of one or more coronary arteries [112]. A severe

occlusion of coronary arteries leads to ischemia, i.e. a significant reduction of

blood flow to the myocardium. In the presence of a prolonged ischemia, the

oxygen supply becomes insufficient and it occurs a necrosis of the surrounding

cardiac tissues, causing an acute heart attack [112]. STEMI is one of the leading

causes of death for humans: as we saw in Section 1.1, according to World Health

Organization an estimate of 7.3 million people die annually due to cardiovascular

diseases, representing 31% of all global deaths, and of these deaths roughly the

half are caused by heart attacks [2]. Therefore, an accurate and early detection of

STEMI is fundamental to increase life expectancy and to improve life quality.

The ECG analysis is a crucial step in the diagnostic triage of patients with

suspected STEMI. Physicians acquire the 12-leads ECG and usually assess the ST-

segment Elevation (STE), which is the most commonly linked marker to coronary

occlusion. The STE persists on the ECG for several weeks after an acute infarct [19].

The location of STEMI can be derived recalling the anatomical area that pertains to

the involved leads which present a STE [112]. Furthermore, it must be noticed that

the diagnosis of STEMI must be confirmed with differential diagnosis (advanced

cardiac ischemia usually may cause chest pain [217]), and with the presence of

specific biomarkers (for instance, high cardiac Troponin values [112]). However, the

ECG is regarded as the most effective tool for the prompt diagnosis of STEMI, as

it is inexpensive, quickly performed, and rapidly available [19].
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Several years of training are required for a physician to become expert in ECG-

based CA interpretation, and even for expert physicians the manual interpretation

of multiple ECG traces is a time consuming task [20]. Furthermore, several studies

highlighted that many regions of the world have a low doctor-patient ratio that makes

the access to health care difficult [29, 30, 35]. As we saw in Section 1.2, being the

ECG one the most effective tool for the prompt diagnosis of STEMI, to complement

the role of physicians computer-aided diagnosis programs have been widely developed

and have been gaining high attention worldwide [21, 24]. Several computerized

diagnosis programs are nowadays used by physicians with high consensus [24], for

instance the University of Glasgow (Uni-G) ECG analysis program [28].

Focusing on STEMI, researchers proposed several ECG classification systems

based on ML algorithms [48, 49, 55, 114]. For instance, standard ML algorithms

were leveraged relying on features extracted according to the medical expertise [218,

219]. Furthermore, since in other fields avoiding the step of feature engineering

provided remarkable results, black-box DL algorithms that automatically learn

useful features from the ECG have been recently introduced [220–222].

Despite latest ML and DL models for ECG classification reached remarkable

classification performance, they often lack of explainability. Thus, we investigated

on an explainability method capable of providing explanations of their classification

outputs. We specifically employed the Local Interpretable Model-agnostic Explana-

tions (LIME), a model-agnostic, post-hoc, and local explainability method which

explains the classification outputs of a ML classifier revealing which part of the input

most contributed to the classification [183]. LIME let us to understand whether

ML classifiers consider significant features for STEMI, and hence to correct their

functioning if it is the case, thus likely increasing the performance and fostering

the trust in their outcomes. In order to validate the explanations provided by

LIME, we compared them with the anatomical position of the infarct, known as

part of the diagnostic report of the patient.
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4.2.2 The Physikalisch-Technische Bundesanstalt Dataset

ECGs were taken from the Physikalisch-Technische Bundesanstalt (PTB) dataset

[46, 65, 66]. The ECGs available in the dataset were collected from healthy subjects

and patients with several heart diseases by Prof. Michael Oeff, at the Department

of Cardiology of University Clinic Benjamin Franklin (Berlin, Germany).

The database contains 549 acquisitions from 290 subjects (aged 17 to 87, mean

57.2; 81 women). Each subject is represented by one to five records. Each record

includes 15 simultaneously measured signals: the conventional 12 leads (I, II, III,

aVR, aVL, aVF, V1, V2, V3, V4, V5, V6) together with the 3 Frank leads ECGs

(Vx, Vy, Vz). ECGs were sampled at 1kHz, 16 bit resolution, and have variable

length (the typical duration is around two minutes). We considered only the 12

standard leads. For each ECG a detailed clinical summary is available, including

age, gender, diagnosis, and where applicable, data on medical history, medication

and interventions, coronary artery pathology, ventriculography, echocardiography,

hemodynamics, and anatomical position of eventual STEMI. The clinical summary

is not reported for 22 subjects.

The PTB database contained 368 traces for 148 STEMI patients and 80 traces

for 52 Healthy Control (HC) subjects. For STEMI, we selected only the 341 traces

whose anatomical infarct location was annotated.

4.2.3 Preprocessing of the Electrocardiograms

Selected ECGs were filtered with a bandpass Butterworth filter (3rd order, zero

phase, and pass-band: 0.67 − 30Hz) to reduce powerline interference, baseline

wandering and high frequency noise. The baseline of ECGs was adjusted: for

each lead, the mode of the ECG’s samples distribution (with a bin size of 75µV )

was computed. Then, the average of the samples belonging to the modal bin

was subtracted from the signal [223].

Beats were detected on the vector magnitude signal using the gqrs algorithm

[46]. Beat positions were aligned on the R peak using the Woody algorithm applied

to the vector magnitude [202]. Quality of signals was assessed computing the mean
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crosscorrelation with an average QRS template. An ECG trace was considered of

good quality when such crosscorrelation was higher than 0.9 for each lead. After

quality assessment, we obtained 44 HC traces, and for STEMI: 18 anterior, 15 antero-

lateral, 34 antero-septal, 54 inferior, and 29 infero-lateral infarct traces. Other

infarct locations were not considered since less than 10 traces were of good quality.

For each ECG, the average beat was computed for any lead. Then, two

configurations were considered. First, we concatenated the average QRST segment

of each lead in a single vector. The considered QRST segment spanned from 50ms

before the R peak to 150ms after it, obtaining a feature vector of 2400 elements.

Second, we concatenated the average ST segments only. Specifically, we considered

segments from 50ms after the R peak up to 150ms after it, with a resulting feature

vector of 1200 elements. We used the concatenation of average beats, and the

concatenation of average ST-segments as features.

4.2.4 Training of the Random Forest Classifier

We considered the Random Forest (RF) algorithm for our proof of concept. A

different RF was trained for each of the two feature vectors (the concatenations

of average beats or of average ST-segments) and for each of five specific infarct

positions. The binary classification approach distinguished HC from STEMI subjects.

For each RF, a dataset with features from HC and STEMI subjects was built.

Then, a 70/30 training/test split was sampled with stratification (i.e. the same

proportion of classes was preserved).

The hyperparameters of the models (i.e. number of estimators, maximum number

of leafs, maximum depth, minimum number of samples required to split nodes, and

minimum number of samples required to be at a leaf) were tuned relying on a 10-fold

cross validation applied to the training set. Specifically, we performed a random

search by uniformly sampling 103 combinations in the range from 1 to 50, with a step

of 10, for each parameter. In addition, Gini and Shannon entropy measures were

tested as splitting criterion. The combination of hyperparameters that maximized
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the validation accuracy was then retained for the final training of the RF on the entire

training set. Accuracy, precision and recall were finally evaluated on the test set.

4.2.5 Explaining the Random Forest with LIME

We employed LIME, which was introduced in the details in Section 2.2.5, to

explain the classification outcomes of the five RF models. Here we briefly recall

that LIME is a model-agnostic, post-hoc, and local surrogate explanation model,

i.e. it approximates the classification output of an instance by using a simpler

linear model. The simplified model is fitted on an artificial dataset created by

probing the considered black-box model locally on the considered instance. LIME

defines the explanation model as

explanation(x) = argmin
g∈G

L(f, g, π), (4.1)

where x is the instance, g is a model within the family of possible explanation

models G, and L is the mean square error loss function, which measures how close

the explanation is to the classification output of the original model f . The simpler

model g is fitted by minimizing the loss L using an artificial dataset created by

sampling in a neighbourhood of the instance x. A kernel function π defines the

weight of each instance of the artificial dataset based on the distance with x (higher

weights are associated to lower distances).

For each of the trained RF f , we ran LIME as follows: given an instance x

belonging to the training set used to train f , we generated an artificial dataset

by adding to x a white Gaussian noise, with zero mean and a standard deviation

of 0.5mV , to obtain b103/training set sizec “artificial” samples (b·c is the floor

function). Such artificial samples were weighted according to their distance to the

instance x using an isotropic Gaussian kernel π with 0.5 width. A linear model g was

trained on the artificial training set with a loss function L defined as kernel weighted

least square with L1 norm penalizer (Lasso). The λ parameter of the Lasso method

was set to 10−4. We repeated the procedure for each sample of the training set.
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At the end of the procedure, a Lasso weight was available for each ECG sample

in the feature vector. A large weight indicated high relevance of that sample for

the classification of that subject. In order to also have a Relevance measure (RV )

for each lead, we computed the sum of the absolute value of the weights belonging

to that lead, and normalized these 12 values with their sum. Finally, the average

RV across the training set instances was computed.

4.2.6 Experimental Results

In Table 4.1, we report the accuracy, precision, and recall quantified on the test set

for the considered five RF models and the two feature vectors. All metrics ranged

from 0.77 to 0.92, hinting to a robust training of the RFs.

Table 4.1: Values of accuracy (Acc.), precision (Prec.), and recall (Rec.) for each infarct
location: inputs are average QRST template (top), and average ST segment (bottom).
The three highest RV measures are reported along with their respective lead. The table
entries were colored in green or red color respectively in the case they refer to leads
which are, or are not, anatomically related to the considered infarct [112]. The following
acronyms were used: Anterior (AMI), Antero-lateral (ALMI), Antero-septal (ASMI),
Inferior (IMI), Infero-lateral (ILMI).

Average QRST template

Acc. Prec. Rec. 1st lead / RV 2nd lead / RV 3rd lead / RV
AMI 0.85 0.89 0.84 V1 / 0.24 V2 / 0.14 V4 / 0.14
ALMI 0.84 0.81 0.77 V1 / 0.31 I / 0.29 V2 / 0.09
ASMI 0.92 0.89 0.90 I / 0.22 aVF / 0.22 V1 / 0.13
IMI 0.88 0.87 0.85 II / 0.14 V1 / 0.11 V2 / 0.11
ILMI 0.89 0.88 0.79 I / 0.19 II / 0.18 V1 / 0.15

Average ST segment

Acc. Prec. Rec. 1st lead / RV 2nd lead / RV 3rd lead / RV
AMI 0.91 0.82 0.81 V1 / 0.29 V2 / 0.25 V3 / 0.17
ALMI 0.89 0.83 0.79 I / 0.19 V1 / 0.17 V2 / 0.12
ASMI 0.86 0.80 0.90 V3 / 0.29 V1 / 0.21 V2 / 0.14
IMI 0.87 0.81 0.82 II / 0.44 aVF / 0.17 III / 0.11
ILMI 0.85 0.82 0.78 I / 0.28 V1 / 0.24 II / 0.09

Regarding LIME explanations and the relevance measure RV , we noticed that:

1) In the case features are average ST-segments, the highest RV values refer to

the leads that anatomically pertain to the considered infarcts in 4 times out of 5.
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Furthermore, only 6 of the computed RV values are referred to leads which are not

anatomically related to the considered infarct. 2) In the case features are average

beats, the highest RV values mostly refer to leads that are not anatomically linked

to the considered infarcts. Furthermore, only 5 of the computed RV values are

referred to leads which are anatomically related to the considered infarct.

4.2.7 Discussion

Even if the latest ECG-based STEMI ML classification algorithms usually take raw,

or almost raw, ECGs as input, we performed a preprocessing phase and computed

an average template representation. This choice relies on the fact that it has

been observed that ST-segment elevation is the main ECG marker for STEMI

[19, 112]. STE persists over the time on the ECG even for several weeks after

an acute infarct, which is the case for the the patients represented in the PTB

database. This procedure preserved the STE marker, reduced the noise, and proved

to be efficient in terms of performance (as observed in Table 4.1). Furthermore,

we followed the recommendation of the International Guidelines for myocardial

infarction identification [112] by using the standard twelve lead ECG for a proper

STEMI diagnosis and anatomical localization, despite several ML methods applied

in this context did not rely on this standard setting [221].

While the two considered average template representations reached comparable

classification performance, our analysis showed that the RF models which employed

the QRST average template often relied on leads which were not anatomically related

to the considered infarct (as suggested by RV in Table 4.1). On the contrary, in the

case it was employed the ST average template, the RF models relied significantly

more on relevant leads prescribed by the international guidelines [112]. In the

case it was employed the QRST average template, LIME showed that the ECG

samples mostly relevant for the classification were located on the QRS complex

(Figure 4.1a), rather than on the ST segments as recommended by the international

guidelines [112]. This result might be explained by observing the high variability

of the QRS complex between HC and STEMI (V1, V2 and V3 in Figure 4.1b),
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and implicitly suggests a low inter-subject variability in the PTB dataset. We

think that this effect might be due to the age difference between the HC subjects

and STEMI patients (HC: 53 ± 17 vs STEMI: 67 ± 14), as QRS narrows while

ageing [224]. Thus, LIME hinted that the QRST based RF might be unreliable

when used in real scenarios, since it tends to overfit on the QRS surroundings

instead of the ST-segment, despite the high validation accuracy achieved. By

properly relying on the domain knowledge of electrocardiography, we showed how

to overcome the overfitting problem due to the bias we found in the employed

dataset, thus by leveraging the proper ST-segments.

(a)

(b)

Figure 4.1: (a) Lasso weights and average QRST template for record patient005/s0025lre.
Red dots point to the 10 largest weights. (b) Population averaged QRST template ±
standard deviation for HC and anterior STEMI, computed over the PTB dataset.
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To the best of our knowledge, a few works presented in Section 2.2.6 faced the

explainability issue in the context of STEMI classification. Strodthoff et al. [91]

explained a CNN classifier relying on the “gradient × input” method [196] and,

in line with our results, the authors noticed that the most relevant segments for

classification were located on the QRS complex. However, the employed method

was designed only for CNN models and it cannot be generalized to other ML

algorithms. Furthermore, the authors did not carry a dataset level analysis and they

provided an explanation only for a few ECG test samples. On the other hand, Zhang

et al. [94] employed SHAP [198] which is a model-agnostic, post-hoc, and local

explainability method, and they performed a dataset level analysis. The authors

explained the ECG leads that were most relevant in the classification of STEMI for

a CNN architecture, by averaging the computed explanations on the entire employed

dataset. However, the authors did not consider the localization of the infarct when

providing explanations, since they employed a unique STEMI classification label

when training the CNN. Hence, as it may be expected, a wide range of leads

resulted equally important in the final classification process, thus blurring the final

explanation. Finally, Ibrahim et al. [201] highlighted the clinical features that

mostly contributed to the classification of myocardial infarction with an eXtreme

Gradient Boosting (XGBoost) model [45] by means of Shapley values [199]. The

authors obtained findings similar to the ones we reached, since they demonstrated

that QRS related features were surprisingly relevant in the classification of STEMI,

along with other not clinically related features (even if the authors did not rely on

the same PTB dataset). However, even if the authors extracted clinical related

features to STEMI, they only explained two sample ECGs and they still did not

provide a dataset level analysis.

We addressed the drawbacks of the previous research works by employing LIME,

which is a model-agnostic method that it capable of explaining the decision of

any ML classifier, using a linear surrogate explanation model. Furthermore, we

properly framed the explanations in the domain knowledge of electrocardiography

by designing a custom metric which allowed us to highlight the importance of each
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lead in the final classification output, and we averaged the explanations over all

the training ECGs to avoid potentially cherry picked explanations. However, LIME

presents some disadvantages that should be considered and tackled: 1) the correct

definition of the kernel can sometimes be difficult, since it must be experimentally

tested. 2) The sampling strategy for the creation of the artificial samples must be

designed relying on domain knowledge. 3) Some works evidenced that explanations

can be unstable, e.g. Alvarez-Melis et al. [225] showed that explanations of very

close instances greatly vary in a simulated setting. To tackle this potential issue, we

introduced an average explanation measure which is based on the entire training set.

To conclude, LIME may be considered a good ally in supporting researchers

aiming to create automatic classifiers. We conclude that RF models can be not

trustable as they can exploit not significant features for STEMI classification. A

way to prevent such behavior is represented by LIME, which allowed us to see which

parts of the input mostly contributed to the final classification. Our experiments

suggests that in the case of small-size databases, a domain-knowledge based feature

engineering and LIME can help in designing trustable classifiers, which rely on

trustable features, such as STE.

4.3 Explainability of Deep Learning Algorithms
in the Classification of 27 Cardiac Abnormal-
ities

4.3.1 Introduction

As we already described in Section 1.3, the main advantage, and thus the reason

of great popularity, of Deep Neural Network (DNN) models is represented by the

optimal feature representation achieved after the training phase. The capability of

automatic learning the relevant features is due to the large amount of parameters

that these models contain (in the order of tens of millions [74]). However, we

reported in Section 1.4 that with such large amount of parameters, the classification

outputs of DNN models become difficult (or even impossible in certain situations)

to understand. Consequently, automatic ECG classifications performed using DNN
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models result difficult to be associated with a physiological interpretation. The

perceived lack of interpretability gives the feeling of dealing with black-boxes:

the process by which the models perform the classification can be inscrutable to

humans, limiting the trust in them, and thus hindering the acceptance in the

healthcare community [78, 79, 86].

In order to understand how DL methods provide classification outcomes, in

Bodini et al. [111] we introduced two explainability frameworks specifically designed

for CNN architectures trained to classify CA from ECGs, that let us to inspect the

decision of a CNN by unveiling which waves of the input ECG were most relevant to

the final classification outcome. In the mentioned work, we refer to the P wave, QRS

complex and T wave composing the ECG beat as simply “waves”. The rationale

behind the development of new explainability frameworks in this context relies

on the fact that the evaluation of the explanation itself results challenging with

most of the currently available methodologies. Indeed, most explainability methods

can highlight the most important samples of the ECG contributing to the final

classification. However, understanding whether such samples result meaningful for

the CA to detect is often not currently handled (see Section 2.2.6). For instance, a

single heartbeat on 1-lead ECG sampled at 1000Hz has approximately 600 samples,

and each sample has a weight on the classification. However, for a given abnormality,

only some ECG samples must result useful for the classification, based on prior

knowledge from electrocardiography.

In order to frame explanations in the knowledge domain, we combined two mod-

ules: the first one provides explainability by using two state-of-the-art techniques.

The second one assesses whether the most important samples are matching those

expected to be affected by the cardiac abnormality, thus including the domain

knowledge. Differently from other domains, like Computer Vision [226], this

approach results feasible because segmenting ECGs is rather easy in the considered

context, with very well-established and validated algorithms already available.
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4.3.2 Explainability Frameworks

We introduce two new frameworks to explain the classification results of CNN

models, trained for the task of multi-label 12-lead ECG classification of CA. Both

the frameworks comprise two modules. The first one relies on two model-specific,

post-hoc, and local explainability algorithms, whose output shows the contribution

of each ECG time sample to the final classification. The second one segments the

ECG relying on validated algorithms (see Section 4.3.3) and it quantifies whether

the ECG samples most relevant for classification belong to the ECG waves which

the domain knowledge links to the CA.

Framework 1: Occlusion Method

The first framework uses an occlusion-based methodology [227]. It is an inspection

technique originally designed to explain CNN for image classification, and we

adapted this technique to ECGs. Given a 12-lead ECG, an occlusion is performed

by setting to zero a specific interval of the signal (e.g. all the samples in the T

wave are set to zero). The CNN classifier is then run to compute the output class

after applying the occlusion. The occlusion of the segments that leads to a relevant

change in the classification output, with respect to the ground truth labels, points

to those segments which are important for the final classification. In particular, in

this work the occlusion was performed by setting to zero, for each beat and lead,

all the samples relative to either the P wave, QRS complex, or T wave.

Then, we calculated the percentage variation in the model output of a given

class after the occlusion of the three waves. Finally, we normalized these three

values for their sum. We termed these three normalized quantities as Relevance

(RV ) measures [98], that we formally defined for each ECG x as

RV F1
c,w(x) = |Pc(zw ◦ x)− Pc(x)|∑

i∈{P,QRS,T} |Pc(zi ◦ x)− Pc(x)| , (4.2)

where zw is a mask vector containing ones in the position of the indices belonging

to the wave w in the ECG (i.e. P, QRS or T wave), ◦ is the element-wise product,

and Pc(x) is the probability estimated by the CNN for the considered class c.
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Framework 2: Saliency Maps

The second framework implements saliency maps in the first module: the CNN

output Pc(x) for the class c and the ECG input x is approximated with a first-order

Taylor expansion in the form Pc(x) ≈mᵀx+ q, where q is a scalar quantity and

m = ∇Pc(x) is the weight vector [228]. The latter stands as the explanation for the

classification of the underlying CNN, since the largest entries of m are associated

to the samples that are the most relevant in the final classification.

The RV value is quantified as follows. For each segmented beat, we computed

the sum of the absolute value of the weights belonging to any of the three ECG

waves. Then, we averaged these three values across the beats of a given signal.

The three values, obtained for any ECG, were normalized on the length of the

ECG waves (190ms, 100ms and 310ms for the P, QRS, and T, respectively) and

to have unit sum. Differently from the first framework, this approach weights the

RV based on value of the entries of the vector m. The formulation of RV for

the input signal x in this second framework is

RV F2
c,w(x) = (zᵀwzw)−1zᵀw|∇Pc(x)|∑

i∈{P,QRS,T}(zᵀi zi)−1zᵀi |∇Pc(x)| , (4.3)

where zw is the same mask vector of Equation 4.2, and |∇Pc(x)| is the absolute

value of the gradient of Pc(x) (column vector). Figure 4.2 reports an example of

explanation provided by this second framework on a single-lead ECG.

(a) (b)

Figure 4.2: Example of explanation for a 5s ECG by means of Framework 2. For a
given ECG (black line), the output of the first module of the framework is reported, for
each ECG sample, in magenta (a). The shaded boxes represent the segmentation of each
ECG wave. Then, the second module computes the RV of the P wave, QRS complex and
T wave (b). In this example, the T wave was linked to the largest RV , as shown in (b).
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4.3.3 Preprocessing of the Electrocardiograms

Before the execution of experiments, the 12-lead ECGs were downsampled or

upsampled to 500Hz according to their actual sampling rate and filtered with a

bandpass Butterworth filter (3rd order, zero phase, and pass-band: 0.67− 30Hz) to

reduce powerline interference, baseline wandering and high frequency noise. Beat

detection was performed on the vector magnitude signal (VM) relying on the gqrs

algorithm [46] and beat positions, i.e. the R-peaks, were refined using the Woody

algorithm applied to the VM [202]. Within each signal, we segmented the P wave,

QRS complex and T wave for all beats. Segments relied on the R peaks previously

identified and were defined as follows: 1) P wave: R−240ms to R−50ms; 2) QRS

complex: R ±50ms; 3) T wave: R+50ms to R+360ms.

4.3.4 The Experimental Settings

The two designed frameworks were tested on a CNN model trained for multi-

class classification of CA from 12-lead ECGs, specifically developed for the 2020

PhysioNet/Computing in Cardiology challenge [68]. We extensively presented the

dataset employed in the context of the challenge in Section 3.2.2.

We selected the CNN model that won the official phase of the challenge, namely

the BUTTeam network [229], which is a residual neural network inspired by He et

al. [73]. The main rationale behind the selection of this model was that the good

performance of the network was certified by the official ranking of all submitted

models, and such ranking was built considering an unseen test set. We did not

retrain the model from scratch, but we instead used the pre-trained model provided

by the authors (available at https://github.com/tomasvicar/BUTTeam).

The performance of the CNN on the entire challenge dataset (see Section 3.2.2)

was quantified using the macro measures AUC, AUPRC, F1 and Accuracy. Macro

measures refer to the average of all values of a given measure determined for each

class. The AUC is computed as the area under the curve defined by true positive

rate (TPR)/sensitivity and true negative rate (TNR)/specificity. Similarly, the

AUPRC is computed as the area under the curve depicted by TPR/sensitivity
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and PPV/precision. F1 is computed as the product of twice PPV/precision and

TPR/sensitivity normalized by their sum. Accuracy is the proportion of correctly

classified ECG over the total number of ECGs. The performance of the model are

0.67, 0.44, 0.50 and 0.42 for AUC, AUPRC, F1, and Accuracy, respectively. We

finally disclose that we merged the classes which the committee scored as the same

diagnosis, thus we finally considered 24 classes instead of 27 (see Section 3.3).

In these experiments, we quantified the average RV across all signals of a given

class and the confidence interval of the mean at 1− α = 0.95 confidence level. It

is worth recalling that, differently from other explainability methodologies, such

quantification was possible because of the beat segmentation performed on the ECG.

In addition, we determined whether the two explainability frameworks were in

agreement between each other by means of the Hellinger distance [230], quantifying

the agreement as follows

ac = 1− 1√
2

 ∑
i∈{P,QRS,T}

(√
RV

F1
c,i −

√
RV

F2
c,i

)2
 1

2

, (4.4)

where RVF1
c,i and RVF2

c,i were the average RV over signals for class c and wave i,

for Framework 1 and 2, respectively. The agreement for the class c is maximum

when the two triplets of RV values are equal, whereas it is minimum when the

frameworks point to different waves with maximum RV . The agreement was

calculated for each class.

4.3.5 Experimental Results

In Figure 4.3(a) and 4.3(b), we report the average RV and their confidence intervals

for each class (CA) considered by the classifier, in Framework 1 panel (a), and 2

panel (b), computed relying on Equation 4.2 and 4.3, respectively. The acronyms

related to the classes were reported in Section 3.2.2. Focusing on the comparison

between the confidence intervals, for Framework 1 classes PR, AF, PAC, Brady,

NSR, LAnFB, IRBBB, and CRBBB displayed average values of maximum RV

which were significantly different between QRS, T and P (hinting that one of

these regions was significantly linked to the classifier’s output). Similarly, PR,
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Figure 4.3: Average and confidence interval of RV , for each class and ECG wave of
both the frameworks, i.e. occlusion (a) and saliency maps (b). Agreement between the
two methodologies and recall for each cardiac abnormality (c).
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LQT, AF, LBBB, LPR, Brady, LAnFB, RAD, IRBBB, and CRBBB if the case

of Framework 2. For eight classes, both frameworks considered the same ECG

wave as the most relevant for the classification.

In Figure 4.3(c), we report the agreement plot between Framework 1 and 2,

which is in general very high. The three classes with the highest agreement are

IAVB, LAD, and Tinv. In such cases, the explainability methods agree that the most

relevant part of the ECG to take into consideration are the P wave (IAVB), QRS

complex (LAD) and T wave (Tinv). The three classes with the lowest agreements

are PR, LBBB and CRBBB. For only 4 out of 24 cardiac abnormalities (classes)

the agreement is below 80%.

4.3.6 Discussion

The main contribution of our study is threefold. First, both the frameworks were

capable to provide a local explanation for a given ECG classified by the CNN, by

suggesting which ECG wave was involved in the decision. Depending on the class-

wise recognition accuracy (recall) achieved and the ECG wave highlighted by the

framework, our understanding of the decision process in place by the network may

change. In fact, when the recall is low and the framework points to the right ECG

wave for the diagnosis of the cardiac abnormality, the network is likely confounding

its decisions with other abnormalities involving the same wave. For example, high

RV values regarding the T wave may mean that the network did not learn the

correct pattern to distinguish between T wave abnormality or T wave inversion, but

understood to focus on the correct wave. On the other hand, when the recall is high

and the RV value is low, the network might be overfitting on the given dataset, or

the cardiac abnormality is not uniquely related to a specific ECG wave (e.g. AF). In

our work [98] presented in Section 4.2, using the LIME methodology [183] we found

that a RF classifier was mostly relying on the QRS peak amplitude for providing

its classification between normal ECG vs myocardial infarction. Such feature is

not related with the considered cardiac abnormality, hence the ML algorithm was

overfitting on the current dataset (which was then confirmed by further analysis).
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For the two remaining cases, i.e. high recall with high RV and low recall with

low RV , the explanations are straightforward: the network has either learned to

properly distinguish the cardiac abnormality from the others, or simply not.

Second, comparing the results of the framework with the domain knowledge.

It became possible to determine whether the DL model selected was, on average,

focusing on the right ECG wave. For example, a case when the ML method agreed

with the cardiology domain knowledge was CRBBB (complete right bundle branch

block) which affects the QRS complex morphology: both frameworks reported a

maximum RV in correspondence with this ECG wave (Fig. 4.3a and 4.3b). On the

contrary, for other classes the agreement with the domain knowledge was minimal.

It is the case of Qab (abnormal Q point), where the Q point of the QRS complex is

not within normality range: the frameworks pointed out that the model did not

focus on any particular portion of the ECG, resulting in similar RV values for QRS,

T and P waves. Similar results were achieved for Tinv (T wave inversion).

Third, the frameworks agreed with each other for most of the classes (Fig. 4.3c),

while differences were found for a few cardiac abnormalities. One may expect that

the differences in the agreement between frameworks may be connected with the

recall of the specific class. In other words, when the recognition of the network is

low, the agreement is also low, and viceversa. However, such expectation seems

not to be supported by our findings (Figure 4.3c). Indeed, we found that the

agreement was unrelated with the class-wise performance of the network (Pearson’s

correlation coefficient between ac and recall for each class was −0.4; p > 0.05).

A similar result was obtained in a recent contribution from the Computer Vision

domain, where several Explainable AI techniques were found to have significantly

different performance (with the occlusion method as ground truth), even with a

state-of-the-art DNN trained on millions of images [231].

Other recent studies proposed algorithms for explaining the decisions of DNN

models for automatic ECG classification, as we saw in Section 2.2.6. Several of the

reported works limited to highlight the samples belonging to a single ECG beat

that mostly contributed to the classification, without framing the explanations into
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the domain knowledge. On the other hand, other methods were able to point which

wave (P, QRS, T), beat, or combination of beats were important for the classification

outcome. There are mainly three differences between the reported works and our

approach. First, to the best of our knowledge, we are the first at the same time with

Zhang et al. [94], to systematically evaluate the performance of a DNN against the

domain knowledge of ECG interpretation. Our frameworks indeed not only provide

the ECG samples important for the classification, but also the importance of each

wave in the final decision by means of the measure RV . Second, the evaluation was

performed on 24 different CA, while most of related works only considered a few

classes. Third, our frameworks are also suitable for models already trained, and

thus they do not necessarily require a dataset to be executed. We finally notice that

the mentioned work of Zhang et al. [94] highlighted the contribution of each lead in

the final classification outcome when explaining a CNN. As we already mentioned

in Section 2.2.6, on the contrary with respect to our work, most of the CA selected

in Zhang et al. [94] can be observed on any of the 12 leads. On the other hand, we

framed the explanations by considering ECG waves which are potentially affected by

certain CA, regardless of the considered lead, in the most of the CA we considered.

Both frameworks can be considered from two different perspectives: the one

of the ML expert (who creates the classifier) and the one of the physician (who

uses the tool in the clinical practice). From the perspective of the ML expert,

the frameworks allow to inspect if the CNN relies on the ECG segments expected

for the classification according to the clinical standard practice. Otherwise, the

user can try to address the issue by understanding the reasons behind it, and thus

guiding the architecture towards the domain knowledge. From the perspective

of the physician, the frameworks allow to understand whether the decision taken

relied on a known domain knowledge by highlighting the corresponding ECG wave,

thus the trust in the DL model can be increased.

Under a supervised classification framework, a ML algorithm take a decision that

is represented by the classification output itself. As a consequence, ML decision-

makers can be trusted relying only on their predictive performance evaluated on
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the dataset available. Our effort in the direction of developing an explainability

methodology relies on the fact that we believe necessary that future advancement

in automatic processing of ECG progresses together with our capability of under-

standing the decisions taken by a ML model. In this way, the large accuracy which

ML algorithms might obtain in the future will also contribute in progressing the

understanding of the underlying physiology.

Similar considerations were already present in the thinking of the ancient Greeks

to obtain what Aristotle defined as τέχνη [téchne]: a real productive science [87].

He noted that the technological advancement can be obtained with different means,

that could be achieved by either scientists or empirics. However, Aristotle set apart

scientists from the empirics: people with a high degree of expertise in a specific

domain, but who lack of any theory to justify their results. The empirics can even

often achieve outstanding results, but what clearly divide science from empiricism

is that it comes with a theory whose domain principles justify why certain decisions

are correct in specific circumstances [78, 87]. ML algorithms are like empirics to

a certain extents, but complemented with means of understanding (explaining)

their decision process may lead to scientific knowledge.

In our opinion, we do not believe that the current state-of-the-art ML algo-

rithms might outperform significantly the human capability of detecting cardiac

abnormalities. In fact, the number of possible confounding factors, co-morbidities,

number of rare conditions, and evolution in time of the diseases may all increase

the amount of data necessary for ML models to be trained. In order to mitigate

such issues, the creation of innovative ML algorithms, capable of incorporating

the domain knowledge, would facilitate the development of these models (e.g. less

data-hungry algorithms, faster training, larger explainability) and the introduction

of such methodologies in the clinical practice, thus fostering trust for their use.

4.3.7 Limitations of the Study

The frameworks presented some limitations. First, rhythm-based cardiac abnormal-

ities were not properly handled by our methodology. Given the fact that an altered
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rhythm may or may not affect the regularity of the occurrence of any waves, it was

not possible to define the one-to-one match between the CA and a specific ECG

wave. For example, Brady, one of the class detected correctly by the CNN (recall of

0.53), refers to a very low heart rate. Typically, heart-rate alterations are quantified

looking at the time intervals between consecutive R peaks because of their ease of

detection. However, the frameworks found the P wave very important for this class

(Figure 4.3a). Given the fact that the P wave does not change during bradycardia,

the assessment of the low heart rate might have been performed by the network

“looking” at the rate of both P wave and QRS complex. Similarly, the frameworks

found the T wave relevant for the detection of AF, which is characterized by the

absence of the P wave, an oscillatory pattern on the ECG baseline and irregular

heart rate. In this case, the frameworks hint that the CNN may use samples between

consecutive beats where the T wave, the isoelectric line, and part of the P wave are

located to detect AF. The same observation is shared by the work of Mousavi et al.

[93], where an attention mechanism was used to show that the network relied on

samples between consecutive beats to detect AF. Third, PVC have a morphology

which is largely different from a normal sinus beat. Therefore, considering portion

of the ECG where the P, QRS and T waves are usually located was not relevant

(the different ECG waves had a similar low RV value).

Even if the algorithms for ECG segmentation have become well-established in the

recent years, it must be noted that the performance of the frameworks is potentially

dependent on the algorithm used. Usually, segmentation is performed after beat

detection which is dependent on the quality of the ECG [232]. We did not focus on

the selection of the most robust segmentation algorithm for the clinical 12-lead ECG.

However, since this type of ECG can be acquired at low cost, physicians usually

recollect measurements in case of low quality. We therefore assumed that the ECG

within the dataset were of sufficient quality (but we leave this investigation for the

future). On the other hand, when the ECG is acquired in different contexts, e.g.

sport activities and Holter acquisitions, the quality could be lower. In such cases, a

careful preprocessing should be applied before running our frameworks.
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Conclusion

Thanks to the high computational resources and growing availability of ECG

datasets, the application of ML and DL algorithms has been more and more widely

investigated in the context of classification of CA from ECGs. However, despite

the promising performance reported in several research works, the development of

ML, and especially DL, algorithms within this context are still in their infancy

stage, and in our view there are still several challenges to be addressed before

its future clinical usage.

The process of ECG standardization is crucial in the context of classification

of CA from ECGs, however there is still no standard ECG input format or data

preprocessing protocol. As we discussed in Section 2.1, despite the clinical ECG lasts

10s, many research works proposed ML and DL models with custom dimensionality

(e.g. single-beat, single-lead, etc.). This poses the problem of comparing the

performance accross studies. Indeed, we feel that the problem of ECG data

standardization is underestimated in the context of classification of CA from ECGs.

Furthermore, non-clinical ECGs (collected from Holter, wearable devices, etc.) still

need further investigation to reliably identify CA that are intrinsically transient,

for which these sensing modalities are meant of.

Reproducibility and generalizability pose another relevant barrier that must be

addressed before applying ML and DL algorithms to the standard clinical practice.

117
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Especially in the context of DL, the classification performance greatly depends

on the amount and quality of ECGs employed to train algorithms, which might

be often inconsistent. However, as we discussed in Section 1.4, most research

works limit to collect ECG training data only from a single center, few acquisition

devices, and limited populations, or they leverage publicly available unbalanced ECG

datasets which were collected for specific clinical purposes, hence possible containing

potential biases (as we discussed in Section 4.2). Even if we attempted to address

the mentioned problems throughout the thesis work, we think that in the following

research it will be necessary to properly assess the classification performance of ML

and DL algorithms by employing more and more wider and validated ECG datasets

to avoid the risk of overestimating the capability of such algorithms.

Explainability still remains one of the crucial problems to be addressed to fully

achieve the trust of physicians and insert ML and DL algorithms into their standard

clinical workflow. However, the current ML algorithms, and especially the DL

ones, are essentially developed to directly output classification outcomes without

providing any reason about the employed process, thus turning such systems into

black-boxes. Despite we tried to address the problem of explainability in Chapter

4, the investigation of explainable ML and DL algorithms for ECG classification

is currently in a preliminary stage, and most of the introduced research works

are still under ongoing investigation.

As a final conclusion, we believe that despite the fast advancements of ML and

DL, there is nowadays no evidence hinting that the role of expert physicians will

ever be removed in ECG interpretation. In our view, ML and DL algorithms must

be designed only to help the process of ECG interpretation carried by physicians,

as adjunct decision support systems, instead of fully replacing their role. As it

must be in any area of expertise, the central role of highly trained physicians in the

context of ECG interpretation will remain immovable in the foreseeable future.
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