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ABSTRACT
We develop a model for the redshift-space correlation function, valid for both dark matter
particles and haloes on scales >5 h−1 Mpc. In its simplest formulation, the model requires the
knowledge of the first three moments of the line-of-sight pairwise velocity distribution plus two
well-defined dimensionless parameters. The model is obtained by extending the Gaussian–
Gaussianity prescription for the velocity distribution, developed in a previous paper, to a
more general concept allowing for local skewness, which is required to match simulations.
We compare the model with the well-known Gaussian streaming model and the more recent
Edgeworth streaming model. Using N-body simulations as a reference, we show that our model
gives a precise description of the redshift-space clustering over a wider range of scales. We
do not discuss the theoretical prescription for the evaluation of the velocity moments, leaving
this topic to further investigation.
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1 IN T RO D U C T I O N

The large-scale structure of the universe is the result of a con-
tinuous infall process in which the peculiar velocity flows induced
by gravitational instability drive matter towards denser regions, thus
amplifying primordial density fluctuations. Peculiar velocities leave
a characteristic imprint, known as ‘redshift space distortions’ (RSD;
Kaiser 1987), on the galaxy clustering pattern measured by redshift
surveys (see Hamilton 1998, for a review). If properly modelled,
measurements of RSD provide a powerful way to constrain fun-
damental cosmological parameters in the �CDM paradigm or to
search for evidences of deviations from this standard scenario.

The effects of RSD on the observed galaxy correlation function
can be summarized as follows. On large scales, the dominant con-
tribution is given by the coherent movement of galaxies towards
overdense regions, such as clusters, walls and filaments, and away
from voids. This ‘squashes’ the iso-correlation contours along the
line of sight. As we move to smaller scales, the disordered motion
of galaxies inside those formed structures becomes increasingly im-
portant, resulting in elongated iso-contours along the line of sight,
usually referred to as ‘fingers of God’ (Jackson 1972).

Since the 1987 seminal work by Kaiser, significant efforts have
been made to model the redshift-space large-scale profile of the
correlation function and its Fourier counterpart, the power spectrum
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(e.g. Matsubara 2008; Taruya, Nishimichi & Saito 2010; Reid &
White 2011; Seljak & McDonald 2011; Uhlemann, Kopp & Haugg
2015). The standard approach is to use perturbation theory (PT),
to compute the density and velocity field to higher order (see e.g.
Bernardeau et al. 2002, for a review).

Less explored is the small-scale behaviour of RSD where the den-
sity contrast becomes comparable to unity, causing the breakdown
of any perturbative-expansion scheme. As a way around this issue,
a few alternative approaches have been suggested, spanning from
analytic (e.g. Sheth 1996) to hybrid techniques in which N-body
simulations are used to tune fitting functions (e.g. Tinker 2007;
Kwan, Lewis & Linder 2012) or as a reference realization of the
redshift-space clustering, in which small departures from the as-
sumed �CDM cosmology can be mimicked by varying appropriate
halo occupation distribution (HOD) parameters (Reid et al. 2014).
A good understanding of this small-scale limit is desirable for two
main reasons. (i) It is rich in cosmological information, in particu-
lar if our goal is to discriminate between different gravity models.
Specifically, it has been shown that modified gravity strongly af-
fects the pairwise velocity dispersion on these scales (Fontanot
et al. 2013; Hellwing et al. 2014). (ii) The smaller the separation
the higher the signal-to-noise ratio and the less the cosmic variance,
i.e. smaller statistical error. Thus, understanding this process allows
us to push measurements of the structure growth effects to smaller
scales.

With this work, we provide a framework in which these large-
and small-scale RSD processes can both be included, so that all
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available information can be coherently extracted form redshift sur-
veys. We start from the ‘streaming model’ (Davis & Peebles 1983;
Fisher 1995; Scoccimarro 2004), which describes how the redshift-
space correlation function ξ S(s⊥, s‖) is modified with respect to its
isotropic real-space counterpart ξR(r):

1 + ξS(s⊥, s‖) =
∫

dr‖ [1 + ξR(r)] P(r‖ − s‖|r), (1)

where we have ignored wide-angle effects. Here r2 = r⊥2 + r‖2 and
r⊥ = s⊥. The effect of the velocity flows on the observed clustering
is encoded in the pairwise line-of-sight velocity distribution func-
tion P(v‖|r) = P(r‖ − s‖|r), which has a non-trivial dependence
on the separation r . Clearly, a proper modelling of this probability
distribution function (PDF) is the key ingredient in the descrip-
tion. Starting from this consideration, in Bianchi, Chiesa & Guzzo
(2015), hereafter Paper I, we modelled the velocity PDF by intro-
ducing the concept of Gaussian Gaussianity (GG), in which the
overall PDF is interpreted as a superposition of local Gaussian dis-
tributions, whose mean and standard deviation are, in turn, jointly
distributed according to a bivariate Gaussian. Here we extend that
line of research by introducing the more general concept of Gaus-
sian quasi-Gaussianity (GQG) and making explicit the dependence
of the velocity PDF on quantities that can be predicted by theory,
namely its first three moments. We do not discuss which theoreti-
cal scheme should be preferred for their evaluation, but rather we
directly measure these quantities from N-body simulations. Our
analysis matches simulations over a large portion of the parame-
ter space, including redshifts from z = 0 to 1, dark matter (DM)
particles, haloes with mass down to 1012 h−1M� and scales down
to 0 h−1 Mpc separation. For all these configurations, we compare
the performance of our model with two different implementations
of the streaming model: the well-known Gaussian streaming model
(GSM), in which a univariate-Gaussian profile is assumed for the
velocity PDF (Reid & White 2011); the more recent Edgeworth
streaming model (ESM; Uhlemann et al. 2015), in which the skew-
ness is added to this simple Gaussian picture by means of an Edge-
worth expansion (see e.g. Blinnikov & Moessner 1998). We show
that, under the GQG assumption, a more precise description of the
redshift-space clustering is obtained.

This paper is organized as follows. In Section 2, we introduce
our model. As this work is the second in a series, the derivation
we present follows the ‘historical process’ that led us to introduce
GQG. In Sections 2.1–2.4, we first review how to build a model
based on GG, introduced in Paper I, and then show the (unex-
pected) limitations of such approach. In the remainder of Section 2,
we show how to overcome this issue. Our final model is based on
a few assumptions, which are referred as ansatze throughout the
manuscript. Given this, the model we are proposing should be con-
sidered a functional form for the velocity PDF that, irregardless of
its derivation, incorporates all the fundamental features observed in
both simulations and galaxy surveys, including exponential tails and
skewness. If required, this GQG distribution can be exactly shaped
into a Gaussian, which means that, by construction, the resulting
streaming model is a generalization of the widely used GSM. Fur-
thermore, we show that this PDF has the non-trivial property of
being expressible as a functions of its first three moments, thus
providing an explicit link to PT. We believe that such a distribution
would have been interesting to be studied even if it were unmoti-
vated from a physical point of view, as sometimes happens in the
literature. This is of course not the case with GQG, which is explic-
itly derived based on considerations on how the overall PDF can
be decomposed in local PDFs, with the spirit of keeping only the

features of these latter that are relevant for RSD. Using N-body sim-
ulations as a reference, in Section 3 we compare the performance of
our model with that of GSM and ESM. The primary purpose of this
comparison is to show that, once the first three moments are given,
the remaining degrees of freedom can be effectively absorbed in
two numbers, the κ parameters (see Section 2.6). Our results are
summarized in Section 4. Details on how we measure physical
quantities from the simulations are reported in the appendices. Also
in the appendices, we discuss ideas for further developments.

2 MO D E L L I N G

2.1 GG distribution

In Paper I, we proposed a functional form for the line-of-sight
pairwise velocity distribution,

P(v‖) =
∫

dμ dσ G(v‖|μ, σ ) B(μ, σ ), (2)

where

G(v‖|μ, σ ) = 1√
2πσ 2

exp

[
− (v‖ − μ)2

2σ 2

]
, (3)

B(μ, σ ) = 1

2π
√

det(C)
exp

[
−1

2
�T C−1�

]
, (4)

� =
(

μ − Mμ

σ − Mσ

)
C =

(
Cμμ Cμσ

Cμσ Cσσ

)
. (5)

The interpretation of equation (2) is straightforward: at any given
separation (r⊥, r‖), the overall velocity distribution can be approx-
imated by a superposition of univariate Gaussians whose mean
μ and standard deviation σ are, in turn, jointly distributed as a
bivariate Gaussian. Mμ and Mσ represent the mean of μ and σ ,
respectively, whereas C is their covariance matrix. We showed in
Paper I that the simple picture in which these univariate Gaussians
represent local velocity distributions gives a good match to N-body
simulations. Note that hereafter we write P(v‖) = P(v‖|r), where
the dependence on the separation is omitted for brevity, but still
present in our model. Specifically, it is encoded in how the pa-
rameters Mμ = Mμ(r), Mσ = Mσ (r) and C = C(r) vary with the
separation.

Strictly speaking, the above modelling is physically meaningful
only if Mσ � 3

√
Cσσ , i.e. only if the whole power of the bivari-

ate Gaussian is limited to the positive σ plane. To ensure that the
expression is well behaved for Mσ → 0, we adopt for G the normal-
ization factor

√
2πσ 2 rather than

√
2πσ , equation (3), and we no

longer have to deal with negative local distributions, independently
of the width of the bivariate Gaussian Cσσ . We can write

P(v‖) =
∫ +∞

−∞
dμ

(∫ 0

−∞
dσ G B +

∫ +∞

0
dσ G B

)

=
∫

dμ dσ G(v‖|μ, σ ) B±(μ, σ ), (6)

where we have defined

B±(μ, σ ) ≡
{
B(μ, −σ ) + B(μ, σ ) σ ≥ 0

0 σ < 0
. (7)

Equation (6) generalizes equation (2) in a natural way, such that
all the fundamental properties of P are conserved. In particular, the
relation between moments of P and B, presented in the first column
of Table 2, remains valid in this more general formulation. Still, it
is appropriate to note that the moments of B± differ from those of
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Table 1. Definitions and notation adopted to describe the moments of the probability distribution functions considered in this work: P ,
B and B±. n is the order of the moment and k ∈ {0, 1}. Not to overcomplicate the notation, for B we only define the first non-central
and second central moments.

PDF Moments Central moments

P m(n) ≡ ∫
dv‖ v‖n P(v‖) c(n) ≡ ∫

dv‖
[
v‖ − m(1)

]n P(v‖)
B Mμ ≡ ∫

dμdσ μ B(μ, σ ) Cμμ ≡ ∫
dμdσ (μ − Mμ)2 B(μ, σ )

Mσ ≡ ∫
dμdσ σ B(μ, σ ) Cσσ ≡ ∫

dμdσ (σ − Mσ )2 B(μ, σ )
Cμσ ≡ ∫

dμdσ (μ − Mμ)(σ − Mσ ) B(μ, σ )

B± M
(n)
k1,...,kn

≡ ∫
dμdσ μn−∑ i ki σ

∑
i ki B(μ, σ ) C

(n)
k1,...,kn

≡ ∫
dμdσ

[
μ − M

(1)
0

]n−∑ i ki
[
σ − M

(1)
1

]∑
i ki B±(μ, σ )

Figure 1. Cuts of B (dashed) versus cuts of B± (solid) along the μ axis
for different values of mean and variance (of σ ), Mσ and Cσσ , respectively.
For simplicity, we only report the case Mμ = Cμμ = Cμσ = 0, but this
behaviour is general.

B, and they coincide in the limiting case in which Mσ � 3
√

Cσσ .1

See Table 1 for the definitions of the moments. In Fig. 1, we show
the comparison between B and B± for a few selected cuts in μ.

Although the physical meaning of the GG distribution is well
described by equation (6), it is important to note that μ can be
integrated analytically. The integration gives

P(v‖) =
∫

dσ
1

2πA exp

[
−
∑2

n=0 Kn (v‖ − Mμ)n

2A2

]
, (8)

where

A2 = Cσσ σ 2 + CμμCσσ − Cμσ
2 (9)

K2 = Cσσ (10)

1 Following the notation introduced in Table 1, when Mσ � 3
√

Cσσ , for the
first non-central moments it holds that

M
(1)
0 = Mμ M

(1)
1 �= Mσ ,

whilst for the second central moments,

C
(2)
00 = Cμμ C

(2)
11 �= Cσσ C

(2)
01 �= Cμσ .

More in general, B and B± share by construction all the even non-central
moments M

(2n)
k1,...,k2n

.

K1 = −2Cμσ (σ − Mσ ) (11)

K0 = (
σ 2 + Cμμ

)
(σ − Mσ )2. (12)

This result is particularly useful from a numerical point of view
since, for any given set of parameters {Mμ, Mσ , Cμμ, Cσσ , Cμσ},
it allows us to compute P via a simple, i.e. fast, one-dimensional
integration.

Following standard practice, we define the moment generating
function (MGF) as

M(t) = 〈etv‖ 〉 =
∫

dv‖ etv‖ P(v‖). (13)

One important property of the MGF is that it allows us to compute
the moments iteratively at any order,

m(n) = dnM
dtn

∣∣∣∣∣
t=0

. (14)

For the GG distribution we get

M(t) = 1√
1 − t2Cσσ

exp

[
tMμ + 1

2
t2Mσ

2 + �(t)

]
, (15)

where

�(t) = 1/2

1 − t2Cσσ

[
t2Cμμ + 2t3Cμσ Mσ

+ t4
(
Mσ

2Cσσ − det C
)]

. (16)

Similarly, we can define the cumulant generating function, C(t) =
log〈etv‖ 〉, which, for the GG distribution, takes the form

C(t) = tMμ + 1

2
t2Mσ

2 + �(t) − 1

2
ln
(
1 − t2Cσσ

)
. (17)

In the following, we briefly discuss a few cases of interest corre-
sponding to particular combinations of the parameters of the bivari-
ate Gaussian.

(i) If Cσσ = Cμσ = 0 we get

M(t) = exp

[
tMμ + 1

2
t2
(
Mσ

2 + Cμμ

)]
, (18)

which is the MGF of a Gaussian with mean Mμ and variance
Mσ

2 + Cμμ. In other words, the superposition of fixed-variance
Gaussians (i.e. Cσσ = 0) is, in turn, a Gaussian. We now consider
the two limiting cases, Cμμ = 0 and Mσ = 0. From a physical point
of view, Cμμ = 0 corresponds to a scenario in which at any posi-
tion in the Universe we measure the same pairwise velocity PDF,
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Table 2. Moments of the line-of-sight velocity distribution P as a function of the moments of the bivariate Gaussian B (left-hand
column) and vice versa (right-hand column).

P versus B B versus P
m(1) = Mμ Mμ = m(1)

c(2) = Mσ
2 + Cμμ + Cσσ Cσσ = 1

20
c(5)

c(3) − 1
2 c(2)

c(3) = 6Mσ Cμσ Mσ
2 =

c(4)−3c(2)2−6Cσσ
2+

√[
c(4)−3c(2)2−6Cσσ

2
]2−16Cσσ c(3)2

24Cσσ

c(4) = 3(Mσ
2 + Cμμ)2 Cμμ = c(2) − Mσ

2 − Cσσ

+ 6
[
Cσσ

(
3Mσ

2 + Cμμ

) + 2Cμσ
2
] + 9Cσσ

2

c(5) = 60Mσ Cμσ (Mσ
2 + Cμμ + 3Cσσ ) Cμσ = 1

6
c(3)

Mσ

which is clearly what we expect in the large-scale limit.2 On the
other hand, the limit Mσ = 0 represents a superposition of Dirac
deltas whose mean is Gaussian distributed. Such a scenario is not
compatible with any reasonable pairwise velocity PDF, although
it might be useful for different applications, e.g. when describing
the time evolution of the 1-particle velocity PDF. More explicitly,
in the phase-space formalism, it is commonly assumed that, at any
position, the 1-particle velocity density (more precisely the momen-
tum density) is well approximated by a Dirac delta (the so-called
single-flow approximation). After shell crossing this assumption is
no longer valid and we have to resort to distributions with a broader
profile, e.g. Gaussians. Whether the evolution of these distributions
can be captured by a bivariate Gaussian description of their mean
and variance, or, in other words whether the statistics of a fluid can
be described by a GG distribution is an interesting question that we
will try to answer in a further work.

(ii) In the very small-scale limit the statistics are dominated by
virialized regions, which implies negligible local infall velocity, i.e.
Mμ = Cμμ = Cμσ = 0. The corresponding MGF is

M(t) = 1√
1 − t2Cσσ

exp

(
1
2 t2Mσ

2

1 − t2Cσσ

)
. (19)

As shown in appendix B, when Mσ
2 = 2Cσσ this latter approximate

the MGF of an exponential distribution. It is well known from sim-
ulations and observations (e.g. Davis & Peebles 1983; Zurek et al.
1994) that the small-scale velocity PDF is nearly exponential and
is therefore important that this limit is included in our description,
although we will not explicitly use it in our modelling (but see
Appendix D).

Finally, it is worth mentioning two potentially relevant applica-
tions of the GG-distribution MGF.

(i) It can be used to compute the velocity PDF via a simple fast
Fourier transform, which is computationally attractive.

(ii) It allows us to directly model the redshift-space power spec-
trum, see e.g. equation (13) in Scoccimarro (2004).

2.2 Strategy

If we assume that the true velocity PDF is well approximated by the
GG distribution, equation (2), or equivalently equation (6), we can

2 In this description, the PDF is Gaussian because we are using local Gaus-
sians as building blocks (in the following this assumption will be slightly
relaxed). As discussed in Section 2.6, even on large scales the true velocity
PDF is never exactly Gaussian. None the less, the Gaussian approximation
becomes more and more accurate as the separation increases. In practice, we
will use this limit as an ‘infinite-scale’ limit, which is never really reached.

think of using this model to extract cosmological information from
galaxy redshift surveys via RSD.

Since the five scale-dependent parameters Mμ, Mσ , Cμμ, Cσσ and
Cμσ on which the distribution depends have a clear interpretation,
we can think of directly predicting them. One intriguing aspect of
such an approach is that it allows us to reason in terms of local dis-
tributions, suggesting the possibility of naturally including a multi-
stream description. In general, such an issue is expected to become
more and more important as we want to describe the small-scale
non-linear regime. Roughly speaking, an extension form single- to
multiflow scenario could be obtained by using Gaussians instead
of Dirac delta distributions for the local 1-particle velocity PDF
(more properly for the momentum part of the phase-space distri-
bution function). The resulting local pairwise velocity distribution
will then be Gaussian as well and, as a consequence, the overall
pairwise velocity PDF will be compatible with the GG prescription.
We leave these considerations to further work.

Instead, we follow the conceptual spirt of the GSM, as imple-
mented by Reid & White (2011). The GSM relies on the assumption
that, at any given separation (r⊥, r‖), the overall line-of-sight pair-
wise velocity PDF is well approximated by an univariate Gaussian,
whose mean and variance were obtained by Reid & White (2011)
via PT. This approach can be extended to include more general and
realistic distributions, with more than two free moments. The nth
moment of the line-of sight pairwise velocity distribution P(v‖) is

m(n) =
〈
(1 + δ1)(1 + δ2) v‖n

〉
〈(1 + δ1)(1 + δ2)〉 , (20)

where δi = δ(xi), with δ being the usual density contrast. Similarly,
the central moments are defined as

c(n) =
〈
(1 + δ1)(1 + δ2)

(
v‖ − m(1)

)n〉
〈(1 + δ1)(1 + δ2)〉 . (21)

In principle, these quantities can be predicted by PT even for n > 2
(e.g. Juszkiewicz, Fisher & Szapudi 1998; Uhlemann et al. 2015,
see also Appendix D for a simple example of how these moments
can be predicted on nonlinear scales). The GG distribution includes
the Gaussian distribution as a limiting case.

By inverting the system in the left-hand column of Table 2 we can
write the bivariate GaussianB as a function of the first five moments
of P(v‖), namely m(1), c(2), c(3), c(4) and c(5). Explicit expressions
for the resulting Mμ, Mσ , Cμμ, Cσσ and Cμσ are reported in the
right-hand column of Table 2. The inversion is well defined as long
as c(3) �= 0. Formally, if c(3) = 0 (which implies that all the odd
central moments disappear as well), in order to have a one-to-one
correspondence between P and B we need to include the sixth
moment in the analysis. We will see that this is not relevant in our
modelling.
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Although in principle the first five moments can be obtained via
PT, in practice the complexity of the calculations grows rapidly with
the order of both moment and perturbative expansion. We therefore
decide to adopt an hybrid approach in which we assume that the
first three moments can be directly predicted, whilst fourth and fifth
moment (and in general all higher order moments) are implicitly
modelled as functions of a set of physically meaningful dimension-
less parameters, which arise naturally by general considerations
about the properties of the GG distribution itself. The amplitude
of these parameters is then obtained by comparisons with N-body
simulations.

2.3 Parametrization

The expression for the first three moments of P as a function of the
moments of B is

m(1) = Mμ (22)

c(2) = Mσ
2 + Cμμ + Cσσ (23)

c(3) = 6Mσ Cμσ . (24)

It is clear that the GG parameters {Mμ, Mσ , Cμμ, Cσσ , Cμσ} are
uniquely defined once we specify {m(1), c(2), c(3)} plus a prescription
on how to split c(2) into the three summands Mσ

2, Cμμ and Cσσ , i.e.
a prescription for their relative weight. We then rewrite equation
(23) in terms of three dimensionless quantities,

1 = Mσ
2

c(2)
+ Cμμ

c(2)
+ Cσσ

c(2)
= ϕMσ + ϕCμμ + ϕCσσ . (25)

Due to isotropy, P(v‖|r⊥, r‖) can be seen as the projection of a
two-dimensional distribution Pr (vr , vt |r), where the subscripts r
and t stand for parallel and perpendicular to the pair separation, see
Appendix A. As a consequence c(2) is in general characterized by
the following symmetry,

c(2)(r, μθ ) = c(2)
r (r) μ2

θ + c(2)
t (r)

(
1 − μ2

θ

)
. (26)

It is then convenient to define

1 = ϕ
(r)
Mσ (r) + ϕ

(r)
Cμμ(r) + ϕ

(r)
Cσσ (r) (27)

1 = ϕ
(t)
Mσ (r) + ϕ

(t)
Cμμ(r) + ϕ

(t)
Cσσ (r) (28)

so that instead of three two-dimensional functions we have to deal
with six one-dimensional functions.3

Clearly, given the above equations, the functions we need to
model are actually only four. A simple ansatz is then

ϕ
(r)
Cμμ(r) = κ (r)

μ g(r/rg) (29)

ϕ
(r)
Cσσ (r) = κ (r)

σ g(r/rg) (30)

ϕ
(r)
Mσ (r) = 1 − ϕ

(r)
Cμμ(r) − ϕ

(r)
Cσσ (r) (31)

ϕ
(t)
Cμμ(r) = κ (t)

μ g(r/rg) (32)

3 This decomposition is based on the implicit assumption that the sym-
metry described by equation (26) can be applied not only to c(2) but
also individually to each of its three building blocks, i.e. Cσσ (r, μθ ) =
C

(r)
σσ (r)μ2

θ + C
(t)
σσ (r)

(
1 − μ2

θ

)
, and similarly for Mσ

2 and Cμμ. The ϕ func-

tions can be explicitly defined as ϕ
(r)
Cσσ = C

(r)
σσ /c

(2)
r and ϕ

(t)
Cσσ = C

(t)
σσ /c

(2)
t .

It follows that ϕCσσ = ϕ
(r)
Cσσ μ2

θ + ϕ
(t)
Cσσ

(
1 − μ2

θ

)
.

ϕ
(t)
Cσσ (r) = κ (t)

σ g(r/rg) (33)

ϕ
(t)
Mσ (r) = 1 − ϕ

(t)
Cμμ(r) − ϕ

(t)
Cσσ (r), (34)

where g can be any monotonic regular function such that

g(r) →
{

0 r → ∞
1 r → 0

, (35)

e.g. g(r/rg) = 1
1+(r/rg )2 . By construction rg represents the scale

above which the Gaussian limit is recovered, whereas κ (r)
μ , κ (r)

σ ,
κ (t)

μ , κ (t)
σ represent the amplitudes of the corresponding ϕ functions

at r = 0.

2.4 The skewness problem

Independently of the functional form chosen for ϕMσ , ϕCμμ and
ϕCσσ , from equations (24) and (25) we can write

c(3) = 6c(2)3/2
ρ

√
ϕMσ ϕCμμ ϕCσσ , (36)

where ρ ≡ Cμσ /
√

Cμμ Cσσ is the correlation coefficient of the
bivariate Gaussian. Since in general |ρ| < 1, for any given c(2)

equation (36) provides us with an upper bound for |c(3)|,
∣∣c(3)

∣∣ <
2√
3
c(2)3/2

, (37)

corresponding to ρ = ±1 and ϕMσ = ϕCμμ = ϕCσσ = 1/3. By
explicitly defining the skewness, γ ≡ c(3)/c(2)3/2, we have |γ | <

2/
√

3 ∼ 1.155. In Fig. 2, we show that this limit is reached for DM
at z = 0 at r ∼ 5 h−1 Mpc, μθ ∼ 0, and is exceeded at higher redshift.
For halo catalogues, not shown in the figure for simplicity, this
behaviour is even more marked.4 Thus, we see that the GG model
is unable to match the observed level of skewness and requires
further generalization as described in the next section (but see also
Appendix C for an alternative approach).

2.5 Gaussian (local) quasi-Gaussianity

To overcome this problem, we generalize GG by introducing the
concept of Gaussian (local) quasi-Gaussianity (GQG). We can ac-
count for a small deviation from local Gaussianity by Edgeworth-
expanding the local distributions,

P(v‖) =
∫

dμ dσ E(v‖|μ, σ ) B(μ, σ ), (38)

where

E(v‖|μ, σ ) = G(v‖|μ, σ )

[
1 + γL

6
H3

(
v‖ − μ

σ

)]
, (39)

γL = c
(3)
L

σ 3
, (40)

H3(x) = x3 − 3x. (41)

c
(3)
L is third central moment of the local distribution E (hence γ L is

the local skewness) and H3 is the third probabilistic Hermite poly-
nomials. It should be noted that, since the integral in equation (38)
formally includes negative values of σ , from equations (39) and
(41) it follows that both positively and negatively skewed (quasi)

4 In Paper I this issue did not arise because only DM particles at z = 0 were
considered.
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3788 D. Bianchi, W. J. Percival and J. Bel

Figure 2. Measurement from simulations of the skewness of the line-of-
sight pairwise velocity distribution, γ = c(3)/c(2)3/2, presented using iso-
skewness contours as a function of the real-space separation parallel and
perpendicular to the line of sight, r‖ and r⊥, respectively, for DM particles
from the MDR1 simulation at two different redshifts, as labelled in the
figure.

Gaussians contribute to the overall PDF. This guaranties that the
net contribution of the local to the overall skewness vanishes for
σ → 0, a desirable property if we want to avoid the nonsense of
skewed Dirac deltas. It is none the less useful to say that, although
the formulation of GQG clearly follows from the idea of allowing
for a small skewness correction on local distributions, in a more
general picture it can also be seen just as a generalized Edgeworth
expansion, i.e. a practical way to control the skewness of a distri-
bution without changing its first two moments. In the perspective
of using the model for a Monte Carlo estimation of cosmological
parameters in which second and third moments are free to vary, it
is important to have removed a potential source of artefacts such
those that would arise from exceeding the upper limit of equation
(37). As in the simpler case of the GG distribution, it is possible to
integrate equation (38) with respect to μ,

P(v‖) =
∫

dσ

{
1

2πA exp

[
−
∑2

n=0 Kn (v‖ − Mμ)n

2A2

]

×
[

1 + S
A6

3∑
k=0

Qk (v‖ − Mμ)k
]}

, (42)

where A and Kn are defined in Section 2.1, and

S = γL σ 3/6 (43)

Q3 = Cσσ
3 (44)

Q2 = −3Cμσ Cσσ
2 (σ − Mσ ) (45)

Q1 = 3Cσσ [Mσ Cμσ
2(Mσ − 2σ )

+Cμσ
2(σ 2 + Cσσ ) − Cσσ

2(σ 2 + Cμμ)] (46)

Q0 = Cμσ
3[3Cσσ (Mσ − σ ) − (σ − Mσ )3]

+3Cμσ Cσσ
2(σ 2 + Cμμ)(σ − Mσ ). (47)

The first three moments of the GQG distribution are

m(1) = Mμ (48)

c(2) = Mσ
2 + Cμμ + Cσσ (49)

c(3) = 6Mσ Cμσ + γLMσ (Mσ
2 + 3Cσσ ). (50)

These are the same as the GG distribution apart for the
γ LMσ (Mσ

2 + 3Cσσ ) term which accounts for the excess skew-
ness. Keeping in mind that c(3) is given and that equation (50)

can be written as c(3) = 6ρ

√
Mσ

2CμμCσσ + γLMσ (Mσ
2 + 3Cσσ ),

there are (at least) two practical ways to use the GQG prescription.

(i) We can define

ρ0 = c(3)

6
√

Mσ
2CμμCσσ

, (51)

and adopt the following prescription,[
ρ

γL

]
=
[

ρ0

0

]
, (52)

if |ρ0| < 1, whilst[
ρ

γL

]
=
⎡
⎣ ρ0/|ρ0|

c(3)−ρ0/|ρ0| 6
√

Mσ
2CμμCσσ

Mσ (Mσ
2+3Cσσ )

⎤
⎦, (53)

elsewhere. This corresponds to using GQG as an empirical correc-
tion for GG, to be ‘switched on’ only when required by the third
moment. The benefit of this approach is that it does not require any
additional parameter,5 the downside is that is not guaranteed that
the shape of the velocity PDF varies smoothly with (r⊥, r‖).

(ii) The alternative is to use[
ρ

γL

]
=
⎡
⎣ α c(3)

6
√

Mσ
2CμμCσσ

(1 − α) c(3)

Mσ (Mσ
2+3Cσσ )

⎤
⎦, (54)

where, by construction, α ∈ (0, 1) controls the ratio between the
skewness created by the covariance Cμσ and the local skewness.

5 Formally for |ρ| = 1 a bivariate Gaussian is not well defined, therefore for
any practical application we have to modify equation (53) with ρ = ρ0

|ρ0| − ε,
where ε � 1.
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RSD model covering large and small scales 3789

In practice, rather then α we prefer to use the parameter τ ∈ (0,
+∞), defined as follows,

α =
(
ϕ

(r)
Cμμ ϕ

(r)
Cσσ

)τ

, (55)

which is just a simple power-law ansatz, guaranteeing that when
ϕ

(r)
Cμμ = 0 or ϕ

(r)
Cσσ = 0 the global skewness comes from the local

one alone, i.e. α = 0, without introducing further parameters. This is
somehow required by the fact that when ϕ

(r)
Cμμ = 0 or ϕ

(r)
Cσσ = 0 the

covariance is not well defined.6 The same argument does not apply
for ϕ

(t)
Cμμ and ϕ

(t)
Cσσ because, for μθ = 0, the skewness disappears by

symmetry. Clearly, in terms of pros and cons, this second approach
is exactly the opposite of the first one.
Having tested both of the above solutions, we implement ap-
proach (ii). The reason behind this choice is that the profile of
the redshift-space correlation function obtained via approach (i) is
affected by the presence of wiggles on small scales, which might
induce an artificial scale dependence, e.g. when fitting for cos-
mological parameters. Likely, these undesired features are a di-
rect consequence of the non-smooth behaviour discussed above. As
for the amplitude of the local skewness, we can roughly estimate
γ L ∈ ( − 0.3, 0). Note, however, that this is an indirect measurement,
obtained by assuming the model introduced in Section 2.6, and as
such it should be intended as a consistency test to ensure that the
deviations from local Gaussianity are not too large.

2.6 Simplest possible ansatz

For a model to be useful it is important to keep it as simple as
possible (but no simpler). With this in mind, we discuss here the
simplest possible ansatz for the parameters κ (r)

μ , κ (r)
σ , κ (t)

μ , κ (t)
σ , rg

and τ .

(i) Although the univariate-Gaussian assumption has been
proved successful in describing the large scale behaviour of massive
haloes from N-body simulations, we know that the true velocity PDF
never really reaches the Gaussian limit (e.g. Scoccimarro 2004). In
fact, even in linear theory, the multivariate Gaussian joint distribu-
tion of density and velocity field does not yield a Gaussian line-of-
sight pairwise velocity PDF (Fisher 1995). Furthermore, we expect
the higher order moments of the velocity PDF to become impor-
tant only on relatively small scales where the correlation function
is steeper, see e.g. equation 15 in Paper I, or, in other words, we
expect the shape of the velocity PDF not to be particularly relevant
on large scales. This suggest that we adopt rg = +∞.

(ii) A relevant part of the global skewness is due to the covariance
Cμσ between local infall and velocity dispersion (Paper I and Tinker
2007). We have just shown that, when GG is assumed, the maximum
efficiency in converting the covariance into skewness is obtained for
ϕCμμ = ϕCσσ = 1/3. In general, the skewness reaches its maximum
for μθ = 1 and disappears for μθ = 0. This suggests that we adopt
κ (r)

μ = κ (r)
σ = 1/3.

(iii) Similarly, the value of τ must be small enough to be com-
patible with the general picture in which the skewness is largely
sourced by the covariance. On the other hand, it cannot be zero
because of the skewness problem described in Section 2.4. Based
on our measurements, in the most extreme cases, corresponding to

6 In general, equation (55) would require more investigation but, in practice,
hereafter we model ϕ

(r)
Cμμ and ϕ

(r)
Cσσ as constant functions and the relation

between α and τ becomes trivial.

high-redshift DM and low-redshift small-mass haloes, the skew-
ness can exceed the upper limit given by GG of ∼40 per cent. From
equations (54) and (55), it is easy to see that this missing skewness
can be obtained by setting7 τ = 1/4.

With these ansatze, our model only depends on the first three
moments of the velocity PDF, m(1), c(2) and c(3), plus two free pa-
rameters, κ (t)

μ , κ (t)
σ . We show in Section 3 that this model gives a

good description of the redshift-space clustering. It should none the
less be said that, if we are interested in the true shape of the ve-
locity PDF, e.g. when dealing with direct measurements of the
velocity field (e.g. Springob et al. 2007; Tully et al. 2013), the
above assumptions should be relaxed.

2.7 Model

We provide a brief summary of our methodology for modelling the
redshift-space clustering:

(i) The first three velocity moments can be decomposed in radial
and tangential components m(1)

r , c(2)
r , c(2)

t , c(3)
r and c

(3)
t , which depend

on the real-space separation r, but not on μθ , see Appendix A. We
assume that these quantities can be predicted theoretically as a
function of cosmological parameters.

(ii) We evaluate the scale-dependent GQG parameters as

Mμ = m(1)
r (r) μθ (56)

Cμμ = 1

3
c(2)
r (r) μ2

θ + κ (t)
μ c(2)

t (r)
(
1 − μ2

θ

)
(57)

Cσσ = 1

3
c(2)
r (r) μ2

θ + κ (t)
σ c(2)

t (r)
(
1 − μ2

θ

)
(58)

Mσ
2 = c(2)

r (r) μ2
θ + c(2)

t (r)
(
1 − μ2

θ

) − Cμμ − Cσσ (59)

Cμσ = 1√
3

[
c(3)
r (r) μ2

θ + c
(3)
t (r)

(
1 − μ2

θ

)]
μθ

6Mσ

(60)

γL =
(

1 − 1√
3

) [
c(3)
r (r) μ2

θ + c
(3)
t (r)

(
1 − μ2

θ

)]
μθ

Mσ (Mσ
2 + 3Cσσ )

, (61)

where κ (t)
μ , κ (t)

σ ∈ (0, 1), with κ (t)
μ + κ (t)

σ ≤ 1, are scale-independent
dimensionless parameters, which, in the simplest scenario, can be
used as nuisance parameters or tuned to simulations.

(iii) We use the GQG parameters to compute the scale-dependent
velocity distribution, P , via equation (42). The procedure is self-
consistent, i.e. the second moment of the so obtained distribution
is exactly c(2) = c(2)

r (r) μ2
θ + c

(2)
t (r)

(
1 − μ2

θ

)
, regardless of the

amplitude of κ (t)
μ and κ (t)

σ , and similarly for m(1) and c(3).
(iv) We useP and the real-space correlation function ξR to obtain

the redshift-space correlation function ξ S via equation (1), where
ξR is assumed to be predicted by theory or measured from data (e.g.
Saunders, Rowan-Robinson & Lawrence 1992).

7 In this final model, τ = 1/4 corresponds to α ∼ 0.6. As a reference, τ = 0
corresponds to α = 1 (i.e. GG is recovered), whereas τ > 1 corresponds to
α ∼ 0 (i.e. the global skewness is sourced by the local skewness alone). We
tested the performance of the model for 0.4 � α � 0.8, and we concluded
that, within this range, variations in α can be effectively absorbed in small
changes of the free parameters κ

(t)
μ and κ

(r)
σ .
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3790 D. Bianchi, W. J. Percival and J. Bel

Figure 3. Redshift-space correlation function as a function of the redshift-space separation parallel and perpendicular to the line of sight, s‖ and s⊥, respectively,
for different tracers and redshifts as labelled in the figure. The iso-correlation contours are obtained via the streaming model with different assumptions for the
line-of-sight velocity PDF, specifically: direct measure from the simulations, black dashed; direct measure of the first three moments from the simulations plus
GQG assumption, red solid; direct measure of the first three moments from the simulations plus Edgeworth expansion, blue solid; direct measure of the first
two moments from the simulations plus univariate Gaussian assumption, green solid.

The above equations refer to the ‘simplest possible ansatz’ dis-
cussed in Section 2.6, but the generalization to a more complex
scenario is straightforward.

3 C O M PA R I S O N W I T H SI M U L ATI O N S

For our investigation we use the data from the MultiDark MDR1 run
(Prada et al. 2012), which follows the dynamics of 20483 particles
over a cubical volume of (1000 h−1Mpc)3. The set of cosmological
parameters assumed for this simulation is compatible with WMAP5
and WMAP7 data, {�m, ��, �b, σ 8, ns}= {0.27, 0.73, 0.047, 0.82,
0.95}. We consider three different redshifts, z = 0, 0.5 and 1. For
each redshift, we consider DM particles and two mass-selected halo
catalogues, 1012 < (M/M�) < 1013 and M > 1013 M�. The haloes
are identified via a friend-of-friend algorithm, with linking length
0.17.

Since we assume that the first three moments m(1), c(2) and c(3)

are known, as well as the real-space correlation function ξR, we
directly measure them from the simulation. We also estimate from
the simulation the overall line-of-sight pairwise velocity PDF P ,
which we use as a reference for model comparison. The procedures
adopted for all these measurements are reported in Appendix A.

In Fig. 3, we present the redshift-space two-dimensional correla-
tion function ξ S(s⊥, s‖) obtained via the streaming model, equation
(1), with various assumptions, and compare these with the measured
velocity PDF (see Appendix E for the correspondent fractional de-
viations). The lines represent:

(i) direct measure of the velocity PDF from the simulations, black
dashed;

(ii) direct measure of the first three moments from the simulations
plus GQG assumption for the velocity PDF, red solid;
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RSD model covering large and small scales 3791

Figure 4. Legendre monopole of the redshift-space correlation function ξ0(s) as a function of the redshift-space separation s, for different tracers and redshifts
as labelled in the figure. Following common practice, on the y-axis we report s2ξ0(s), in order to help in the visualization of the large-scale behaviour. The lines
correspond to the same models as in Fig. 3, with the same colour coding, except for the direct measurement of the velocity PDF, which is here represented by
open circles.

(iii) direct measure of the first three moments from the simula-
tions plus Edgeworth expansion for the velocity PDF, blue solid;

(iv) direct measure of the first two moments from the simulations
plus univariate Gaussian assumption for the velocity PDF, green
solid.

Since for each of the above we use the same ‘true’ real-space cor-
relation function ξR(r), any difference in the corresponding ξ S(s⊥,
s‖) can be attributed to the impact of different assumptions on the
shape of the velocity PDF. As discussed in Section 2.2, the GQG
distribution requires additional knowledge of the functions ϕ. These
latter, under the simplest possible ansatz, can be parametrized by
κ (t)

μ and κ (t)
σ , Section 2.6. We fit these parameters to simulations.

Since on large scales all the models perform well, here we focus
on small-to-intermediate scales. As can be seen from the figure, for
any tracer and redshift considered, the GQG prescription improves
on the ESM, which in turn improves on the GSM. This is some-
what expected, given the different number of degrees of freedom
of the different models (none the less, we note that on the smallest
scales the GSM seems to perform slightly better than the ESM even
though it has fewer degrees of freedom). Specifically, the smaller
the mass of the tracer the larger the improvement provided by GQG
with respect to ESM and GSM, which is also expected, since the
velocity PDF becomes less and less Gaussian going from massive
to less-massive haloes and then to DM.

In Figs 4–6, we plot the first three even Legendre multipoles of
the redshift-space correlation function, namely the monopole ξ 0(s),
the quadrupole ξ 2(s) and the hexadecapole ξ 4(s). In general, Legen-
dre multipoles are preferred with respect to the full two-dimensional
correlation function when fitting models to the data because it is eas-

ier to estimate the correspondent covariance matrix. Monopole and
quadrupole moments have been recently used for estimation of the
cosmological parameters via the GSM (e.g. Samushia et al. 2014).
The monopole, Fig. 4, is quite accurate for all the three models con-
sidered, with a small deviation of ESM and GSM from the expected
amplitude on small scales in the DM case. This small-scale inac-
curacy becomes more important when we consider the quadrupole,
Fig. 5. Specifically, the ESM is biased for scales �10 − 15 h−1 Mpc,
depending on tracer and redshift, whilst the GSM starts failing on
∼10 h−1 Mpc larger scales.8 On the other hand, as already noted,
on the smallest scales the deviation from the expected amplitude is
more severe for the ESM. The GQG distribution is instead in good
agreement with the direct measurements on all scales. A similar be-
haviour is found for the hexadecapole, Fig. 6. In this case the ESM
fails on scales �15 − 30 h−1 Mpc, depending on tracer and redshift,
whilst the GSM is biased on all the scales considered. The GQG
prescription recovers the correct amplitude on all scales, except for
a deviation on small scales in the DM case. We attribute this devi-
ation to the simplistic form we have assumed for the functions ϕ.
Very likely, it would be possible to improve on this by allowing for
more general functional forms (see appendix D for a more realistic
description of the small-scale behaviour), none the less, since the

8 With respect to a similar consistency test of the GSM reported in fig.
6 of Reid & White (2011), we note some discrepancy in the small-scale
behaviour, especially for the quadrupole. The origin of this discrepancy is
not clear, however the overall message of Reid and White’s work, i.e. the
GSM is few per cent precise on scales �30 h−1 Mpc for the monopole and
quadruple of standard halo populations, is compatible with our results.
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3792 D. Bianchi, W. J. Percival and J. Bel

Figure 5. Same as Fig. 4 but for the quadrupole of the redshift-space correlation function ξ2(s).

Figure 6. Same as Fig. 4 but for the hexadecapole of the redshift-space correlation function ξ4(s).
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RSD model covering large and small scales 3793

Figure 7. Legendre monopole, quadrupole and hexadecapole of
the redshift-space correlation function, for the halo catalogue
1012 < (M/M�) < 1013 at z = 0, on a large separation range,
0 < s < 80 h−1 Mpc. The lines correspond to the same models as in Fig. 4,
with the same colour coding.

issue appears in the DM case only, in this work we prefer not to
further complicate the model.

For completeness, in Fig. 7 we show the multipoles of the cor-
relation function for the 1012 < (M/M�) < 1013 halo catalogue
over a broader range of separations. As anticipated, on large scales
all the three models tend to match the expected amplitude. We note
however that the GSM is wrong even on moderate scales for the
hexadecapole.

4 D I S C U S S I O N A N D C O N C L U S I O N S

It is well known that a per cent level understanding of the anisotropy
of the redshift-space galaxy clustering is needed to accurately re-
cover cosmological information from the RSD signal in order to
shed light on the issue of dark energy versus modified gravity. From
a statistical point of view, the source of the anisotropy is the galaxy
line-of-sight pairwise velocity distribution. It is therefore important
to adopt a realistic functional form for this velocity PDF when fit-
ting models to the data. To this purpose, in Paper I we introduced
the GG prescription for the velocity PDF. In this work, we have
continued the development of this model by making explicit the
dependence of the GG distribution on quantities predictable by the-
ory, namely its first three moments, and extending it to the more
general concept of GQG. To keep the model as simple as possible,
we have proposed an ansatz with two free dimensionless parameters
that describe how infall velocity and velocity dispersion vary when
moving from one place to another in our Universe. Since their inter-
pretation is clear, these parameters can be theoretically predicted or,
assuming a more pragmatic approach, tuned to simulations or used

as nuisance parameters. State-of-the-art PT has proven successful
in predicting the large-scale behaviour of the velocity PDF and the
correspondent monopole and quadrupole of the redshift-space cor-
relation function (e.g. Reid & White 2011; Wang, Reid & White
2014), at least for massive haloes, M ∼ 1013 M�. Unfortunately, by
definition, any PT breaks down for small separations. Consequently,
alternative approaches have been suggested in the literature, span-
ning from purely theoretical (e.g. Sheth 1996) to hybrid techniques
in which N-body simulations plus an HOD are employed to deal
with the issue of non-linearities (e.g. Tinker 2007; Reid et al. 2014).
One of the main results from our work is to provide a framework
in which perturbation and small-scale theories are smoothly joined,
so that all available RSD information can be coherently extracted
from redshift surveys. A fundamental requirement for a redshift-
space model is that it must be precise on all scales interest, and it
should inform the user of the scales on which the model can be
trusted. We have compared to N-body simulations the well-known
GSM (Reid & White 2011), the more recent ESM (Uhlemann et al.
2015) and the GQG prescription over a broad range of separations,
from 0 to 80 h−1 Mpc. Different redshifts, from z = 0 to 1, and
different tracers, namely DM particles and two mass-selected cat-
alogues of DM haloes, have been considered. We have concluded
that, among the three, QGQ is the only model capable of provid-
ing a precise redshift-space correlation function on scales down to
∼5 h−1 Mpc over the range of redshifts covered by future surveys.
Keeping in mind that the range of validity of the models depends
on tracer, redshift and order of the Legendre multipoles we are in-
terested in, for finiteness, we can say that all the models converge
to the expected amplitude on scales �30 h−1 Mpc, at least for mul-
tipole and quadrupole. Since these scales roughly coincide with the
range of validity of state-of-the-art PTs, if we rely only on PT and
if we are not interested in higher order multipoles, the most natural
choice is the simplest model among the three, i.e. the GSM. As for
the ESM, we have found it to be unbiased down to smaller scales
and for higher order multipoles than the GSM, thus confirming the
results by Uhlemann et al. (2015), but, on the other hand, it seems
to behave even worse than the GSM on the smallest scales. We
can therefore think of it as a natural extension of the GSM in the
perspective of further PT developments. In particular, a better pre-
diction of the third moment of the velocity PDF is required before
the ESM can be applied to data on smaller scales. Formally, the
same argument holds for the GQG model, none the less, since this
latter is meant to include non-linear scales, it could be possible to
obtain a prediction for the third moment by interpolating between
(very) small and (very) large scales. More precisely, as shown in
the lower-right panel of Fig. A1, the functions c

(3)
t and c(3)

r , which
fully characterize the third moment, are peaked at r � 10 h−1 Mpc.
By adopting a model for the small-scale limit that includes those
separation, most likely using simulations in a similar way to that
proposed in Reid et al. (2014), we would then be able to interpolate
between these peaks and their large-scale limit, which is trivially 0.

For the above reasons, we have not tested here the performance
of the of the models in recovering cosmological parameters, the
growth rate f in particular. This important topic will be explored
in a further work in which a prescription for the small-scale limit
will be discussed. Also left for further work is an extensive test of
the model on realistic mock galaxy catalogues, which very likely
will give results somewhere in between those obtained for DM and
haloes.

Another interesting question to be answered is whether the GQG
distribution can play a role in the interpretation of the data coming
from direct measurements of the velocity of galaxies (e.g. Springob
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et al. 2007; Tully et al. 2013), or, conversely, whether these data can
be helpful in tuning the GQG parameters.

The moments of the velocity PDF on small scales are extremely
sensitive to deviations from GR (e.g. Fontanot et al. 2013; Hellwing
et al. 2014). Constraining these quantities is therefore of particu-
lar interest in understanding gravity. Although we have tested our
model against �CDM simulations only, at no stage of its derivation
have we assumed GR. Further investigation is clearly needed into
this topic, but we do not see any obvious reason for the model not to
be compatible with modified-gravity velocity PDFs and clustering.

Similarly, we do not expect baryonic physics to invalidate the
GQG description, but, obviously, taking into account the impact of
baryons makes the theoretical prediction of the very small scales
more challenging.

Finally, we note that we have defined and analysed a very general
probability distribution function, the GG distribution, which could
prove useful in completely different fields. As a generalization, we
have also introduced the GQG distributions, which is formally a
pseudo-distribution, since for extreme values of the local skewness
it can assume negative amplitude. It is none the less important to
note that, at variance with what we have found for the standard
Edgeworth expansion, in our measurements this unphysical situa-
tion never occurs.
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A P P E N D I X A : M E A S U R E M E N T S O F
V E L O C I T Y P D F, M O M E N T S A N D
C O R R E L AT I O N F U N C T I O N FRO M
SI MULATI ONS

Ignoring wide-angle effects, the line-of-sight pairwise veloc-
ity distribution P(v‖|r⊥, r‖) is obtained by projecting along the
line of sight the two-dimensional pairwise velocity distribution
Pr (vr , vt |r). This latter is the joint distribution of the parallel (vr)
and perpendicular (vt) components of the pairwise velocity with re-
spect to the pair separation r . Due to isotropy it depends only on the
length r of the separation vector. Although measurements of P and
Pr are formally equivalent, we prefer to adopt the second approach
since it allows us to take advantage of all possible symmetries, thus
minimizing statistical noise and cosmic variance (in essence, we do
not need to choose a line of sight).

Similarly, the moments of the pairwise-velocity PDF can be de-
composed as follows (e.g. Uhlemann et al. 2015),

m(1)(r, μθ ) = m(1)
r (r) μθ (A1)

c(2)(r, μθ ) = c(2)
r (r) μθ

2 + c(2)
t (r)

(
1 − μθ

2
)

(A2)

c(3)(r, μθ ) =
[
c(3)
r (r) μθ

2 + c
(3)
t (r)

(
1 − μθ

2
)]

μθ , (A3)

where r = √
r⊥2 + r‖2, μθ = r‖/r and we have used the fact that,

because of isotropy, the only non-vanishing correlators between the
radial and tangential component of the pairwise velocity are those
involving even powers (i.e. the modulus) of the tangential compo-
nent. Here, for self-consistency and to minimize the statistical noise,
it is convenient to follow a scheme that is somehow opposite to what
we do for the PDF: from P we measure the left-hand term of these
equations, but our model requires as an input the radial-dependent
functions on the right-hand side, which is what is usually predicted
in PT. We then need to invert this set of equations. From equation
(A1) we get

m(1)
r (r) = 1

�μθ

∫
�μθ

dμθ

m(1)(r, μθ )

μθ

, (A4)

where the integral can in principle be performed over any ar-
bitrary interval �μθ = μmax

θ − μmin
θ , with 0 < μmin

θ < μmax
θ < 1.

Similarly, equation (A2) yields

c(2)
r (r) = 1

�μθ

∫
�μθ

dμθ

[
2

3μ2
θ − 1

c(2)(r, μθ )

− 2(1 − μθ
2)

3μθ
2 − 1

c̄(2)(r)

]
(A5)

c(2)
t (r) = 1

�μθ

∫
�μθ

dμθ

[
1

1 − 3μ2
θ

c(2)(r, μθ )

− 3μ2
θ

1 − 3μ2
θ

c̄(2)(r)

]
, (A6)
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RSD model covering large and small scales 3795

Figure A1. Moments of the line-of-sight pairwise velocity distribution for the DM catalogue at z = 0 (the velocity is measured in units of length via the standard
H−1 rescaling). Upper panels, from left to right: first moment m(1), second central moment c(2) and third central moment c(3), presented using iso-amplitude
contours as a function of the real-space separation parallel and perpendicular to the line of sight, r‖ and r⊥, respectively. Different lines represents: direct
measurements of the moments from simulations, solid coloured, reconstruction of the moments via equations (A1), (A2) and (A3). Lower panels: measurements
of the parallel and perpendicular (with respect to the real-space separation vector r) component of the moments as a function of r, as labelled in the figure.
These functions are used as input for computing the dashed lines in the correspondent upper panel.

where we have defined

c̄(2)(r) =
∫ 1

0
dμθ c(2)(r, μθ ). (A7)

Finally, from equation (A3) we obtain

c(3)
r (r) = 1

�μθ

∫
�μθ

dμθ

[
1

μθ

(
2μ2

θ − 1
) c(3)(r, μθ )

− 4
(
1 − μ2

θ

)
2μ2

θ − 1
c̄(3)(r)

]
(A8)

c(3)
t (r) = 1

�μθ

∫
�μθ

dμθ

[
1

μθ

(
1 − 2μ2

θ

) c(3)(r, μθ )

− 4μ2
θ

1 − 2μ2
θ

c̄(3)(r)

]
, (A9)

where

c̄(3)(r) =
∫ 1

0
dμθ c(3)(r, μθ ). (A10)

Clearly, the larger �μθ the more information we include in our
analysis, none the less two potential issues have to be considered.

(i) For μθ = 1 the integrals might diverge. This problem is nat-
urally solved by the fact that the moments are measured in bins of
μθ , which means that the largest available μmax

θ is always smaller
than 1.

(ii) Since the odd moments vanish for μθ → 0 [equations (A1)
and (A3)], including small values of μθ in our analysis only add
instability. For these moments we then safely adopt μmin

θ = 0.5.

In the left upper panel of Fig. A1, we compare the direct measure-
ment fromP of the first moment m(1) (solid lines) with that obtained
by estimating m(1)

r via equation (A4) and then multiplying by μθ

(dashed lines). In other words, we test the validity of our approach

by comparing left- with right-hand side of equation (A1). We do
the same for the less trivial measurements of c(2) and c(3), central
and right upper panel, respectively. Only contours from the DM
catalogue at z = 0 are shown but all tracers and redshift considered
yield similar results. We also report in the lower panels the under-
ling decomposition of the moments. Given the good match seen in
the figures, we can conclude that our procedure to decompose the
moments works properly and will not introduce any kind of bias in
our final results.

For the estimation of correlation function we adopt the natural
estimator ξ = DD

RR − 1, where DD and RR represent the number of
data and random pairs at a given separation, respectively. This is the
most natural choice when dealing with periodical boxes, in which
there are no border effects and RR can be computed analytically.

For all the measurements in this work, we adopt linear bins of
1 h−1 Mpc size [note that, since we use the standard H−1 rescaling
(see e.g. Scoccimarro 2004), the velocities are measured in unit of
length].

A P P E N D I X B : D E TA I L S O N T H E MO M E N T
G E N E R AT I N G F U N C T I O N

For the sake of completeness, in Table B1 we report the MGF of the
GG distribution for a few specific combinations of the parameter
set {Mμ, Mσ , Cμμ, Cσσ , Cμσ}. Specifically, from top to bottom we
show:

(i) The MGF of the full distribution.
(ii) The zero-skewness limit, Cμσ = 0. This is the limit of the

GG distribution for μθ → 0 where the skewness disappears by
symmetry.

(iii) The maximum-skewness limit, M2
σ = Cμμ = Cσσ . Since, as

shown in Section 2.4, for this combination of the parameters the con-
version of covariance in skewness is maximized, we assumed this
limit for μθ → 1. Note however that, in order to match simulations,
we have to correct for the skewness by using GQG, Section 2.5.
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Table B1. Moment generating function of the GG distribution (central column) for different assumptions on the parameters Mμ, Mσ , Cμμ, Cσσ and Cμσ

(left-hand column). In the right-hand column is reported the number of free parameters.

Assumptions Moment generating function n.f.p.

– 1√
1−t2Cσσ

exp
{

tMμ + 1
2 t2Mσ

2 + 1/2
1−t2Cσσ

[
t2Cμμ + 2t3Cμσ Mσ + t4

(
Mσ

2Cσσ − det C
)]}

5

Cμσ = 0 1√
1−t2Cσσ

exp
{

tMμ + 1
2 t2Mσ

2 + 1/2
1−t2Cσσ

[
t2Cμμ + t4Cσσ

(
Mσ

2 − Cμμ

)]}
4

Mσ
2 = Cμμ = Cσσ

1√
1−t2Mσ

2
exp

{
tMμ + 1

1−t2Mσ
2

[
t2Mσ

2 + t3Cμσ Mσ + t4
(
Cμσ − 1

2 Mσ
4
)]}

3

Cσσ = Cμσ = 0 exp
[
tMμ + 1

2 t2
(
Mσ

2 + Cμμ

)]
3

Cμμ = Cμσ = 0 1√
1−t2Cσσ

exp

(
tMμ +

1
2 t2Mσ

2

1−t2Cσσ

)
3

Cμμ = Cμσ = 0, Mσ
2 = 2Cσσ

1√
1−t2Cσσ

exp
(
tMμ + t2Cσσ

1−t2Cσσ

)
2

Mσ = Cμμ = Cμσ = 0 1√
1−t2Cσσ

exp
(
tMμ

)
2

Figure B1. Moment generating functions of the GG distribution for dif-
ferent combinations of the parameters Mσ , Cμμ and Cσσ as labelled in
the figure, solid coloured. Only the zero-skewness case is considered, i.e.
Cμσ = 0. For comparison, we also show the moment generating function of
Gaussian and exponential distributions, black dot–dashed and black dashed,
respectively. All the curves are standardized, i.e. zero mean and unit vari-
ance.

(iv) The Gaussian limit, Cσσ = 0. This limit has been discussed in
Section 2.1. When the further condition Cμμ = 0 is added, we obtain
a very natural large scale limit.

(v) The small-scale limit, Cμμ = Cμσ = 0. As discussed in Sec-
tion 2.1 and, more extensively, in Appendix D, this is the behaviour
we expect at very small separations, where the infall velocity dis-
appears.

(vi) The quasi-exponential limit, Cμμ = Cμσ = 0 and
Mσ

2 = 2Cσσ . The MGF of an exponential is exp(μt)/(1 − 1
2 σ 2t2),

where μ is the mean and σ 2 the variance, which clearly differs from
what is reported in the table. None the less we, show in Fig. B1
that for this combination of the parameters the MGFs of the two
distributions behave in a very similar way.

(vii) The combination Mσ = Cμμ = Cμσ = 0, which, formally,
is another sub case of the small-scale limit. Although we have not
explicitly used such combinations it in this work, it is by itself inter-
esting to see how simple becomes the MGF under this condition. As
far as we know, this do not correspond to the MGF of any common
distribution but it helps us in showing how wide is the parameter
space spanned by the GG distribution, see Fig. B1.

In Fig. B1, we show the MGF of the GG distribution for the
combination of parameters discussed above (coloured solid). For
comparison, we also report the MGF of Gaussian and exponential
distribution (black dot–dashed and black dashed, respectively). All
the functions have zero mean, unitary variance and zero skewness. It
is clear from the figure that the GG distribution efficiently covers the
space between Gaussian and exponential distribution and beyond.

APPENDI X C : BI VARI ATE D I STRI BUTI O N
O F μ A N D

√
σ A S A N A LT E R NAT I V E

WAY TO A L L OW FO R M O R E S K E W N E S S

Most of the calculations presented in this paper can be easily ex-
tended to the case in which the jointly distributed variables are μ

and σ
1

2n , with n ∈ N, rather than μ and σ . Here we discuss the
specific scenario in which n = 1, i.e. μ and ψ ≡ √

σ are jointly
distributed according to a bivariate Gaussian. Since, as shown in the
following, the resulting upper limit for the skewness of the velocity
PDF is higher than that of a standard GG distribution, this approach
potentially represents a viable alternative to GQG in solving the
skewness issue, Section 2.4.

The integration over μ still gives equation (8) but, obviously, with
different expressions for A and Ki ,

A2 = Cψψψ4 + CμμCψψ − Cμψ
2 (C1)

K2 = Cψψ (C2)

K1 = −2Cμψ

(
ψ − Mψ

)
(C3)

K0 = (
ψ4 + Cμμ

) (
ψ − Mψ

)2
. (C4)

As for the first three moments, we obtain

m(1) = Mμ (C5)

c(2) = Mψ
4 + Cμμ + 6Mψ

2Cψψ + 3Cψψ
2 (C6)

c(3) = 12
(
Mψ

3 + 3MψCψψ

)
Cμψ. (C7)

We can express equation (C7) in terms of the correlation coefficient
ρ = Cμψ/

√
CμμCψψ ,

c(3) = 12ρ

√(
Mψ

3 + 3MψCψψ

)2
CμμCψψ (C8)
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RSD model covering large and small scales 3797

In analogy to what we have done in Section 2.3, we define

ϕMψ ≡ Mψ
2

√
c(2)

ϕCψψ ≡
√

3

c(2)
Cψψ ϕCμμ ≡ Cμμ

c(2)
, (C9)

for which holds the relation

ϕCμμ + ϕ2
Mψ + 2

√
3ϕMψϕCψψ + ϕ2

Cψψ = 1. (C10)

We then rewrite equation (C8) as

c(3) = 4(
√

3c(2))
3/2

ρ(ϕMψ +
√

3ϕCψψ )
√

ϕMψϕCψψϕCμμ.

(C11)

Since by construction |ρ| < 1, form equations (C10) and (C11) we
can assess the upper limit for the skewness γ = c(3)

c(2)3/2 . Specifically,

we obtain |γ | � 1.85, which is ∼60 per cent larger than what we
get for a standard GG distribution, Section 2.4.

APPENDIX D : SMALL-SCALE LIMIT

For very small separations, r → 0, the velocity statistics is domi-
nated by pairs inside virialized region, we therefore expect the local
infall velocity to disappear, which implies Mμ = Cμμ = 0. Note
that the latter equality requires Cμσ = 0 as well. By substituting in
equation (8) we find

P =
∫

dσ
W√
2πσ 2

exp

(
− v‖2

2σ 2

)
, (D1)

where

W ≡ 1√
2πCσσ

exp

[
− (σ − Mσ )2

2Cσσ

]
. (D2)

Following the same reasoning behind equations (6) and (7), we
define

W±(σ ) ≡ W(−σ ) + W(σ )

=
√

2

πCσσ

exp

(
−σ 2 + Mσ

2

2Cσσ

)
cosh

(
Mσ σ

Cσσ

)
, (D3)

so that we can rewrite equation (D1) as an integral over a non-
negative range,

P =
∫ +∞

0
dσ

W±
√

2πσ 2
exp

(
− v‖2

2σ 2

)
. (D4)

In this small-scale scenario, at any given position in the universe,
the pairs contributing to the corresponding local velocity PDF all
belong to the same halo. We can therefore infer the variance σ 2,
which is the only remaining local parameter, from consideration on
the physical properties of a single isolated halo. A useful discussion
about this topic can be found in Sheth (1996), in which, under
the assumption that haloes are virialized and isothermal systems, an
expression for σ = σ (M) is derived, where M is the mass of the halo.
If we compare equation (D4) with the corresponding expression for
the small-scale velocity PDF derived by Sheth, his equation 5, we
realize that W± is essentially the probability T (M) that a pair with

separation r belongs to an halo of mass M. More specifically, for
any fixed (small) separation r, Sheth (1996) comes to the following
integral,

P =
∫ +∞

0
dM

θ (M − Mmin) T (M)√
2πσ (M)2

exp

(
− v‖2

2σ (M)2

)
, (D5)

where θ is a step function and Mmin is the minimum halo mass
compatible with the separation r. From equations (D4) and (D5),
it follows that W± can be seen as a two-parameter ansatz for the
function |dM/dσ | θ [M(σ ) − Mmin] T [M(σ )]. As shown by Sheth
(1996), under reasonable physical assumptions, this latter can be
computed once a mass function is provided.

A straightforward procedure to include this theoretical prediction
for the small-scale limit in our model can be obtained as follows.
From Table 2, it is easy to see that in the small-scale limit P can
be expressed as a function of its first two even central moments c(2)

and c(4),

Mσ
2 =

√
3

2
c(2)2 − 1

6
c(4) (D6)

Cσσ = c(2) − Mσ
2. (D7)

We then need a theoretical prediction of these two moments. Form
equation (D5), it follows

c(n) =
∫ +∞

Mmin

dM 3
n−2

2 σ (M)n T (M) (D8)

for n = 2, 4, which completes the modelling.
It should be noted that if we want to adapt the model introduced in

Section 2.2 to the small-scale limit just discussed, a decreasing (or
even flat, as proposed in Section 2.6) profile for the function ϕCμμ is
no longer acceptable. More explicitly, a decreasing profile implies
that if limr→0Cμμ = 0, then Cμμ = 0 at any separation, which means
Cμσ = 0 at any separation as well. A more general profile for the
functions ϕ is then required. The simplest possible improvement is
to define a scale r3 below which ϕCμμ, more precisely its parallel
and perpendicular components, is damped. Since, based on the
discussion in Section 2.4, we expect this scale to roughly correspond
the skewness maximum, from the right-hand panels of Fig. A1 we
can argue that r3 ∼ 5 h−1 Mpc.

A P P E N D I X E : PR E C I S I O N O F T H E MO D E L

For completeness, in Fig. E1 we explicitly show the ratio between
the ξ S(s⊥, s‖) corresponding to the three models discussed in this
work, GQG, GSM and ESM (red, green and blue solid lines in
Fig. 3), with respect to the reference one obtained by measuring
the velocity PDF directly from the simulations (black dashed lines
in Fig. 3). Only z = 0 is considered, but different redshifts yield
similar results. As expected, GQG outperforms GSM and ESM,
being per cent accurate almost everywhere. The residual small-
scale discrepancies can in principle be removed by improving the
modelling of the ϕ functions. We leave this topic to further work.
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Figure E1. Colour map of the ratio, at z = 0, between the two-dimensional correlation function obtained via GQG (left-hand panels), GSM (central panels)
and ESM (right-hand panels) with respect to that obtained by measuring the velocity PDF directly from the simulations, for different tracers as labelled in the
figure.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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