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Abstract

INTRODUCTION. The healthcare sector is failing to utilize routinely produced clinical data to
refine the care experience and to augment knowledge created in clinical study. The big
data culture and the closely connected field of machine learning constitute the latest and
the best opportunity yet to put to good use data created as a by-product of clinical care.
Aim of this thesis was to test the capabilities of machine learning algorithms applied to
real-world clinical nutritional data to assist clinicians in their decision making process.
Machine learning was used in two predictive contexts: 1) prediction of routinely
collected parameters for patients non-eligible for the reference method, and 2)
prediction of failure to meet clinical targets set out for the patient.

MATERIAL AND METHODS. A large nutritional dataset collected at the International Center of
Nutritional Status (University of Milan, Milan, Italy) was used for the analysis. The
dataset include 15780 patients and multi-domains predictors providing informations on
age, sex, education, occupation, marital status, family status, menstruation, pregnancies,
diet status, diet history, physical activity, smoking, pharmacological treatments, clinical
signs, weight history, physical exam, blood pressure, anthropometry, bioimpedance
analysis, ultrasound (abdomen fat thicknesses), indirect calorimetry, laboratory exams,
anxiety, depression, binge eating, emotion regulation, eating disorders, and adherence to
a Mediterranean diet.
Machine learning algorithms were applied in order to predict the following outcomes:
resting energy expenditure by indirect calorimetry, total body water by bio-impedance
analysis, weight loss failure, failure to improve basal glycemia, failure to improve total
cholesterolemia, failure to improve triglyceridemia. To evaluate accuracy and
discrimination ability of machine learning and statistical algorithms, a series of
cross-validation experiments were conducted for all outcomes, and the most accurate
algorithm for each outcome was selected as the best for that outcome. Accuracy was
defined with the root-mean-square error for continuous outcomes and the correct
classification fraction for categorical outcomes.

RESULTS. Machine learning algorithms outperformed statistical algorithms for all
outcomes. The best performing models were tree-based models, in particular bagged
decision trees performed best for continuous outcomes, while random forests
performed best for categorical outcomes (with the exception of the triglyceridemia
outcome which saw a boosted tree algorithm as the best performer).
In the prediction of resting energy expenditure and total body water, accuracy was high
and the mean errors were deemed small in the context of clinical practice [mean (95%
confidence interval) root-mean-square error 27.6 (20.9, 34.3) kcal/day and 0.842
(0.768, 0.916) l respectively].
In the prediction of weight loss failure, failure to improve basal glycemia, failure to
improve total cholesterolemia, and failure to improve triglyceridemia, the mean correct
classification fraction ranged between .616 and .735, but even the best algorithms
showed good sensitivity but poor specificity (mean area under the ROC curve ranged
between .652 and .687). For categorical outcomes unbalanced toward the event,
machine learning models were the only one able to improve the accuracy of a naive



classifier that assumes that all patients will experience the event, although only in
weight loss failure model outcome accuracy was consistently above the naive classifier.

DISCUSSION. Our results highlight the ability of machine learning algorithms to provide a
high-accuracy alternative to reference techniques for non-eligible patients. The big-data
culture paired with machine learning algorithms seem able to overcome limitations
imposed from using externally-developed equations, providing highly accurate
predictions.
In the setting of identifying non-responders, machine learning algorithms did not
provide highly discriminant predictions, but were the only ones able to provide a better
prediction of random guessing or the historical rate of event. In this more ambitious
task, machine learning algorithm results need to be critically interpreted by the
clinician, whose reasoning is necessarily different but can incorporate the suggestions
provided from these algorithms.



Introduction

A global learning health system

THE HEALTHCARE SECTOR might be expected to be relentless in seeking to identify and apply
what is best in practice, but a mixture of factors works in combination to generate a
sector that is frequently performing below its potential. Some of these factors are
socio-cultural (innate caution rooted in a principle of non nocere, vested interests,
health system complexity, and established professional norms), while others are
informational (the evidence required to guide best decisions is either not available, or if
available, not accessed or used by the decision-makers).

EVIDENCE-BASED PRACTICE is the movement embodying this emphasis on clinical evidence to
guide practice. However, evidence based practice is an ideal that, for many reasons, is
difficult to achieve:

Knowledge availability is imperfect, as knowledge may either be missing, be fuzzy in
nature, or be difficult to access by the physician.

Knowledge update should be sought by clinicians throughout their career. Nevertheless,
it was estimated that each individual evidence base has an estimated half-life of 7 years.
Learning takes valuable time and new paradigms of care may seem alien or threatening
to clinicians.

Knowledge creation is itself flawed. The scientific community have elaborated rigorous
study design and statistical analysis to produce evidence that enables market entry of
new therapeutic strategies, but little is known about longer term outcomes, about how
new solutions are put into practice outside the rigorous conditions in which they are
tested, about interaction with other conditions or treatments, or about drift in practice.
These factors contribute to the so-called reproducibility crisis, according to which many
scientific studies, even the most rigorous ones, are impossible to replicate outside the
initial conditions.

ISLANDS OF INFORMATION constitute the ground on which the health sector operates.
Information seldom has the means to escape those islands, to enable rapid learning
from experience, and put that learning efficiently to work. It reportedly takes 17 years
before a new element of validated clinical knowledge finds its way into routine clinical
practice in the United States.

This is in sharp contrast to other sectors, such as industry and commerce. Both those
sectors maximise the use of its internal data and resultant information, embodying a
learning organisation philosophy. This approach overrides any local parochialisms of
practice, or indeed, when safety is concerned, it also overrides commercial competition.
This surely must provide a vision and goal for the health sector to maximise
effectiveness through data, as the key to safety and efficiency. Health outcomes and
health status should be recognised as the measure of system performance, and data
from a range of inputs should be continuously analysed to produce operational
intelligence, to enable learning of what works and what doesn’t.



Of course, there are major ethical, cultural, and political differences between health and
the other sectors that have deployed learning models. These differences should not be
used as a reason why learning health systems cannot be created. Rather, they are factors
that must be taken into account in building a learning system that can promote
individual and population health while conserving increasingly scarce national and
global resources.

A LEARNING HEALTH SYSTEM is increasingly taking shape. In the United States the Institute of
Medicine (Institute of Medicine 2011), a long-time proponent of the concept, defines a
learning health system as:

“…one in which progress in science, informatics, and care culture align to
generate new knowledge as an ongoing, natural by-product of the care
experience, and seamlessly refine and deliver best practices for continuous
improvement in health and health care.”

Big data and artificial intelligence

THE ERA OF BIG DATA has begun over recent years thanks to the digitalization, collection and
storage of vast quantities of data in combination with advances in data science
(Docherty and Lone 2015). The potential benefits of these large databases to health are
significant, with faster progress in improving health, better value for money and higher
quality science. Also, this may be of particular benefit to clinical care and research.

There is no specific definition for big data, but it is generally understood to refer to
datasets whose size, complexity and dynamic nature are beyond the scope of traditional
data collection and analysis methods. The analysis of such complex data requires
methods more familiar to the field of informatics than clinical research, such as machine
learning and computational linguistics.

Generally, big data in clinical research comes in 2 forms: data on a huge number of
variables per subject or data on a huge number of subjects. Collecting a huge number of
variables, more so from different fields, is important because diseases do not occur in
isolation: they result from an interaction between genetic, molecular, environmental,
and lifestyle factors. On the other hand, to find meaningful associations between
variables, a huge number of subjects needs to be studied.

ARTIFICIAL INTELLIGENCE (AI) is a part of computer science that tries to make computers
more intelligent (Kononenko 2001). One of the basic requirements for any intelligent
behavior is learning and most of the researchers today agree that there is no intelligence
without learning. Therefore, machine learning is one of the major branches of AI and,
indeed, it is one of the most rapidly developing subfields of AI research.

Machine learning is the scientific discipline that focuses on how computers learn from
data. It arises at the intersection of statistics, which seeks to learn relationships from
data, and computer science, with its emphasis on efficient computing algorithms. This
marriage between mathematics and computer science is driven by the unique
computational challenges of building statistical models from massive data sets (Deo
2015). Two types of learning exist, supervised learning and unsupervised learning.

Supervised learning starts with the goal of predicting a known output or target.
Supervised learning focuses on classification, which involves choosing among subgroups



to best describe a new instance of data, and regression, which involves estimating an
unknown continuous parameter. Supervised learning is often used to estimate risk. In
modeling risk, the computer is doing more than merely approximating physician skills
but finding novel relationships not readily apparent to human beings.

In unsupervised learning there are no outputs to predict. Instead, we are trying to find
naturally occurring patterns or groupings within the data. This is inherently a more
challenging task to judge and often the value of such groups learned through
unsupervised learning is evaluated by its performance in subsequent supervised
learning tasks.

Exploiting big data for clinical care and clinical research

MEDICAL RESEARCH is currently not meeting the information needs of patients, clinicians,
administrators, and policy makers. The flow of new knowledge is too slow, and its scope
is too narrow. The medical research community’s delay in adopting big-data approaches
has left it particularly ill prepared for a precision medicine future that is designed to
provide personalized information and individualized care. Medicine aspires to be a
learning health care system, but it is failing to rapidly learn through data generated by
individuals in clinical care and daily life. Big data and machine learning can facilitate
efforts in both clinical care and clinical research.

First, data-driven thinking and methods can play a critical role in the emergence of
personalized healthcare (Chawla and Davis 2013). Numerous diseases have preventable
risk factors or at least indicators of risk. However, the possible combination of risk
factors is so complex, it’s impossible for an individual physician to fully analyze it in real
time at the time of patient interaction. Currently, providers take careful histories and do
physical examinations and selective laboratory testing to determine patient health and
risk for future disease. These are generally limited to a few diseases and by the skill and
knowledge of the individual provider and competing priorities for individual visits.
Thus, taking the next big steps in personalized healthcare requires a computing and
analytics framework to aggregate and integrate all the information collected by
clinicians and the main patient outcomes. This would allow us to discover deep
knowledge about patient similarities and connections, and provide personalized disease
risk profiles for each individual patient, derived from not only the electronic medical
record information of that patient, but also from similarities of that patient to other
patients.

Second, medical practice and clinical research are still largely anchored in producing
new knowledge through studies that tend to narrow the research question and avoid the
complexities of real-world practice. Clinical trials, for instance, often exclude
complicated patients (eg. those who may have several medical ailments and complex
treatment regimens), but those patients are the patients typically seen in medical
offices. These studies are most commonly focused on a single question, are often
expensive, and take years to complete. Moreover, most studies are poorly equipped to
explore how various factors may interact to influence the result for a particular patient.
Meanwhile, data generated every day, for a variety of practical purposes, could serve as
a practically inexhaustible source of knowledge to fuel a learning healthcare system.



However, to date, these data are largely wasted as a source of research and rarely
investigated.

There are at least two ways in which machine learning can aid clinicians and medical
researchers:

● clinical decision support system, using supervised learning to link data collected in
real time to future outcomes

● new patterns recognition, using unsupervised learning to represent high
dimensional data to find naturally occurring and possibly novel patterns on
which to base further investigations

Both will be explored in the following chapters.

Clinical decision support systems

Clinical decision support systems (CDSSs) are usually embedded within electronic
health records and go from pop-up alerts to more sophisticated tools incorporating
clinical prediction rules or models. In the latest review of such systems, Kwan et al.
(2020) found on average a 5.8% improvement in proportion of patients receiving
desired care, although the upper quartile of improvement was much higher (10-62%).
The reviewed CDSSs weren’t necessarily using AI or were based on machine learning
algorithms.

THE FIRST WAVE OF AI in medicine happened in the 1970’s. Testament of that are projects
such as Shortliffe’s work with MYCIN, Kulikowski’s individualized clinical decision
models, and de Dombal’s computer-aided diagnosis of acute abdominal pain which
incorporated newer statistical reasoning methods (probabilistic reasoning and neural
networks).

The need for rigorous evaluation of the quality and impact of AI was recognised in the
1980s. While the first publications focused mainly on methodologies for evaluating
performance in a laboratory environment, later papers addressed field-testing in clinical
settings, to examine effects on the process of care delivery.

Later, following implementations of AI in clinical practice, studies shifted to the clinical
impacts of AI and on the related methodological challenges to find adequate clinical
endpoints. Building upon evidence about the benefit of AI in medicine, research then
focused on reviewing the impact of AI on patient outcomes in inpatient settings, in
psychiatry, and medication safety.

The challenges recognised in the early days of applying AI were among others:

● the legal and ethical issues
● capturing the context, including informal information that is not documented in

the medical record, but is nevertheless part of a doctor’s mental image about the
patient

● the transferability of algorithms from one setting to another both with respect to
patient groups and clinical setting

● the inability of AI to reason at the boundaries or outside its own application
range



● capturing the dynamic nature of professional knowledge development in health
care

Montani and Striani (2019) analysed the latest literature contributions to CDSSs (years
2017-2018), focusing on approaches that adopted AI techniques. Their specific goal was
to understand if “classical” knowledge-based CDSSs were still being proposed, or if there
has been a shift in favor of big data analytics and machine learning approaches. They
found that 49⁄75 .65 papers presented data-driven CDSSs, 26⁄75 .35 presented
knowledge-based CDSSs (with 6⁄26 presenting a hybrid approach). They emphasize that
the need for transparency and explainability is nowadays being recognized as a central
theme to be addressed by AI research. To this point, they see in the hybrid approaches a
promising strategy to deal with transparency and explainability issues, combining
formalized knowledge and learnt knowledge in order to improve CDSSs competence,
flexibility, and, of course, explainability.

To this date, CDSSs are not widely used in the clinical setting, despite 4 decades of
research showing diagnostic accuracy that rivals the performance of expert clinician.
Shortliffe and Sepúlveda (2018) provide their viewpoint on this issue, establishing these
points of criticality:

● black boxes are unacceptable
● time is a scarce resource
● complexity and lack of usability thwart use
● relevance and insight are essential
● delivery of knowledge and information must be respectful to the clinician
● scientific foundation must be strong

EVALUATION OF A CDSS needs to be carried out from its inception, to the actual use in
clinical settings, and beyond:

Design and development of AI: historically, evaluation of AI was limited to the design and
development phase, as implementation and use of AI systems in routine clinical practice
was rare. During design and development, evaluation concentrates upon the
performance of the algorithms in terms of discrimination, accuracy, and precision.
Depending on the use case, one performance measure might be more important than
the other.

Selection and use of AI: widespread availability of clinical data, easy to use AI
development environments and online communities have resulted in rapidly growing
numbers of algorithms that have become available to clinicians. When multiple
algorithms are available and one must be selected, it is important to evaluate any risks
of data quality issues, and poor fit of the foundational data to a new situation, such as
different population and morbidity patterns. We are also interested in the
decision-making performance of humans with and without AI assistance. Once an
algorithm is developed, clinical validation of its utility is needed. The algorithm may be
correct but is it operationally meaningful and useful? Does it fit the clinical workflow?
Does it still represent up-to-date clinical knowledge? Will it change clinical decisions?
What level of confidence can be given? A significant concern here is that when humans
are assisted by CDSSs, they tend to over-rely and delegate full responsibility to the CDSS
rather than continuing to be vigilant. This is known as automation bias and can have



dangerous consequences when the CDSS is wrong or fails, or the presenting problem is
subtly unique.

Ultimately, a CDSS need to provide evidence of:

● safety and reliability, through processes able to identify and deal with predictable
errors, and a monitoring system able to identify near-misses or similar problems

● quality of the advice provided
● stability of its knowledge base

ONGOING SURVEILLANCE OF AI should measure the impact of AI on patient outcomes, the
experience of receiving and providing care, as well as both organisational and social
impacts (Magrabi et al. 2019). Over time, the context, treatment possibilities, and
patient population might change. Therefore, once implemented, ongoing surveillance is
needed to monitor and recalibrate AI algorithms.

Several indicators need to be monitored through the use of AI in clinical settings:

● system quality: once implemented, AI system requires ongoing surveillance based
on a set of measures to recalibrate AI algorithms

● information quality: it covers quality of data used as input for the AI as well as
quality of the output information

● service quality: it refers to help desk-type support available for users as well as
long-term feedback from users for both immediate updates as well as for the
entire system development

● system use: it refers to utilization (e.g. use/ non-use, frequency of use) of the
system output

● user satisfaction/acceptance: it refers to user perceptions about system output
● outcomes: it refer to the individual and organizational impacts

Inductive insight from clinical data

INTEGRATING CLINICAL DATA for accurate diagnosis and treatment is one of the greatest
challenges in medicine. New-knowledge discovery in high-dimensional data would
require novel data-driven approaches rather than more conventional hypothesis-driven
approaches (Jafari et al. 2020).

This has historically been the case for genomic information. Raw genomic data is vastly
beyond human capabilities of understanding, and interactions with molecular and
phenotypic features should also be considered to obtain a more systematic
characterization. A systematic integration of all of this available information may
provide a promising approach to knowledge discovery.

CLUSTERING has been commonly used to identify subpopulations of patients with
distinctive genetic variants or gene expression profiles (Jafari et al. 2020). Implementing
clustering methods in the context of precision medicine is not only applicable to omics
data, but also to physiological data. Also, imaging data, as a major part of health records
of individuals, is now commonly utilized. Furthermore, it has been shown that utilizing
biomedical annotations can potentially improve clustering analysis to obtain more
biologically relevant disease categories.



Exploring subclasses of diseases and drugs is a prevalent task in medicine. While
identifying the heterogeneity of patients is critical, identifying the driving
characteristics of such heterogeneity shall create new paths to knowledge discovery. To
understand the underlying factors that are shared by patients with similar diseases, a
vast multi-domain data generating process should be employed. By introducing machine
learning algorithms, such complex domains of information can be systematically
evaluated, and cluster analysis may further help infer the distinctive disease patterns.

Obesity is a complex problem

HIGH MULTI-DOMAIN COMPLEXITY is the common denominator to several models of obesity’s
causality, risk factors and comorbidities. According to the biomedical perspective,
obesity is essentially the result of an energy imbalance driven by individual behavior
wherein energy intake exceeds energy expenditure over time. The past few decades
have seen a shift toward a socio-ecological view of obesity, in which individual behavior
is situated within a broader social context (Frood et al. 2013).

In representing the “obesity system” the Foresight group has found in 2007 more than
100 socio-ecological variables and more than 300 interconnections from which obesity
can arise (Vandenbroeck, Goossens, and Clemens 2007). These variables come from
several domains such as physiology, food consumption, physical activity, psychology,
environment and social domain. Today the system would be even more complex due to
progress in obesity research in the last decade.

Not only the determinants of obesity are multi-factorial, multi-domain and complex in
their interactions, even the resulting condition can present itself in many different ways
and can be associated with a wide array of comorbidities or with none (eg. metabolically
healthy obesity) (Stefan et al. 2013).

The only way to understand obesity is as a consequence of complex interactions
between many variables. It may be so complex that traditional statistical modeling
(i.e. parametric models) may produce questionable conclusions (Breiman 2001).

THE INTERNATIONAL CENTER FOR THE ASSESSMENT OF NUTRITIONAL STATUS (ICANS) is a nutritional
care clinical facility in the Milan urban setting devoted to multidisciplinary treatment of
nutritional and nutrition-related diseases. The ICANS is equipped with a unique setting
of state-of-the-art instruments to assess body composition (dual-x ray energy
absorptiometry, air displacement plethysmography), visceral fat (ultrasonography),
body water (bioimpedance analyser), resting energy expenditure (indirect calorimetry)
and biochemical parameters of interest in nutritional and metabolic studies (mass
spectrometer systems, integrated analyzer for clinical chemistry and immunoassay
testing).

Relevant to this project, the ICANS has collected data since its inception in an electronic
health record system. The amount of data collected can be classified as big data in both
size and complexity on a multi-domain level. More than 20.000 patients have been
recorded, with and more than 250 data entries have been routinely recorded in the
database, encompassing several domains (data from body composition, metabolic rate,
habitual diet, physical activity, clinical history, physiological and behavioral, social and



demographic). Several subset of patients also received additional examinations, further
increasing variables recorded.

Aims

The general aim of this thesis was to test the capabilities of machine learning algorithms
to serve as the fundamental building block for a CDSS when applied to real-world
clinical nutritional data.

Two possible CDSS features will be explored:

● compensatory system for missing variables: prediction of routinely collected
parameters for patients non-eligible for the reference method (supervised
learning of continuous, cross-sectional variables)

● alert system aimed to identify non-responders: prediction of failure to meet
clinical targets set out for the patient (supervised learning of categorical,
prospective variables)

In both settings, alternative models aided by unsupervised learning of the many
predictors included in the dataset were fitted and possible predictive improvements
tested.

Material and methods

Dataset

DATA used in the analysis was collected at the ICANS (University of Milan, Milan, Italy), as
part of a large ongoing open-cohort nutritional study. Patients were recruited between
January 2009 and August 2019. At baseline, patients received a full nutritional
assessment, based on the assessment an hypocaloric diet was provided, and a follow-up
examination was scheduled. At follow-up, patients were interviewed by a registered
dietitian, anthropometric measurements were collected, and, based on baseline clinical
findings, secondary endpoints were evaluated.

PATIENTS included in this study were self-referring patients seeking a weight loss
program, mainly resident in Milan or nearby cities. Eligibility criteria were: age ≥ 18
years; not pregnant and not nursing; no condition severely limiting movements and
physical activity; no severe cardiovascular, neurological, endocrine, or psychiatric
disorder; prescribed an hypocaloric diet, with macro- and micronutrient levels set
accordingly to the Italian recommended daily allowances (Società Italiana di Nutrizione
Umana 2014), and with a Mediterranean pattern. Characteristics of the sample are
presented in Table 1.



Table 1: Patient characteristics

Characteristic
Overall,

N = 15,780
Female,

N = 11,253
Male,

N = 4,527

Age 47 (37, 56) 47 (36, 56) 47 (37, 57)

Education

Bachelor 5,672 (36%) 3,988 (36%) 1,684 (37%)

Lower secondary 1,868 (12%) 1,288 (12%) 580 (13%)

Other 394 (2.5%) 296 (2.7%) 98 (2.2%)

Primary 555 (3.5%) 356 (3.2%) 199 (4.4%)

Tertiary 190 (1.2%) 155 (1.4%) 35 (0.8%)

Upper secondary 6,975 (45%) 5,079 (46%) 1,896 (42%)

Unknown 126 91 35

Occupation

Freelancer 1,265 (8.1%) 711 (6.4%) 554 (12%)

Homemaker 843 (5.4%) 843 (7.6%) 0 (0%)

Laborer 489 (3.1%) 294 (2.6%) 195 (4.3%)

Office 7,119 (46%) 5,254 (47%) 1,865 (42%)

Other 2,590 (17%) 1,693 (15%) 897 (20%)

Retired 1,565 (10%) 1,101 (9.9%) 464 (10%)

Student 1,324 (8.5%) 930 (8.4%) 394 (8.8%)

Unemployed 422 (2.7%) 303 (2.7%) 119 (2.7%)

Unknown 163 124 39

Marital status

Divorced 1,032 (6.6%) 779 (7.0%) 253 (5.6%)

Married 7,893 (51%) 5,480 (49%) 2,413 (54%)

Single 6,289 (40%) 4,515 (41%) 1,774 (40%)

Widowed 402 (2.6%) 357 (3.2%) 45 (1.0%)

Unknown 164 122 42

Physical activity level

None 8,147 (60%) 6,015 (61%) 2,132 (57%)

<2 h/week 2,800 (21%) 2,089 (21%) 711 (19%)

2-4h /week 1,896 (14%) 1,303 (13%) 593 (16%)

4-7 h/week 625 (4.6%) 395 (4.0%) 230 (6.1%)

>7 h/week 162 (1.2%) 83 (0.8%) 79 (2.1%)

Unknown 2,150 1,368 782

Smoking status

Never smoked 8,317 (53%) 6,344 (56%) 1,973 (46%)

Ex-smoker 3,262 (21%) 2,076 (18%) 1,186 (28%)

Smoker 3,967 (26%) 2,832 (25%) 1,135 (26%)

Unknown 234 1 233

BMI category

Underweight 238 (1.5%) 156 (1.4%) 82 (1.9%)

Normal weight 3,483 (22%) 2,970 (26%) 513 (12%)

Overweight 5,790 (37%) 4,162 (37%) 1,628 (37%)

Obese (Class I) 3,862 (25%) 2,426 (22%) 1,436 (32%)

Obese (Class II) 1,549 (9.9%) 1,017 (9.0%) 532 (12%)

Obese (Class III) 736 (4.7%) 507 (4.5%) 229 (5.2%)

Unknown 122 15 107

High fasting glucose 734 (4.7%) 376 (3.3%) 358 (7.9%)

High total cholesterol 2,041 (13%) 1,438 (13%) 603 (13%)

High triglycerides 622 (3.9%) 266 (2.4%) 356 (7.9%)

THE COHORT STUDY complied with the principles established by the Declaration of Helsinki,
and written informed consent was obtained by each subject. The ethical committee of
the University of Milan (n. 6/2019) approved the study procedures.



Variables and measurements

OUTCOMES for supervised learning were both continuous and categorical. For categorical
outcomes, important nutritional outcomes were chosen, either is subpopulation at risk
or common to the whole sample; while dichotomizing such outcomes is challenging and
potentially misleading, the main concern was to provide macro prediction on future
outcome based on general practice employed in our specific setting, in the context of a
CDSS.

● continuous outcomes: it was deemed useful to try to predict continuous outcomes
generated through reference technique that, for specific reasons, cannot be used
with every patient; that would permit to not rely in those cases on externally
developed predictive equation, but to maximise accuracy through setting-specific
algorithms:
− resting energy expenditure (REE) by indirect calorimetry (kcal/day), the

use of indirect calorimetry could be prevented
− total body water (TBW) by bio-impedance analysis (l)

● categorical outcomes:
− weight loss failure (0 = weight loss, 1 = no weight loss): weight loss was

defined as reaching -5% of baseline body weight at follow-up
− failure to improve basal glycemia (0 = improved, 1 = not improved):

improvement was defined as recording fasting glucose >110 mg/dL at
baseline and <100 mg/dL at follow-up

− failure to improve total cholesterolemia (0 = improved, 1 = not improved):
improvement was defined as recording total cholesterol >220 mg/dL at
baseline and <200 mg/dL at follow-up

− failure to improve triglyceridemia (0 = improved, 1 = not improved):
improvement was defined as recording triglycerides >180 mg/dL at
baseline and <150 mg/dL at follow-up

For prospective outcomes follow-up was defined as a period between 1 month and 7
months after baseline evaluation.

PREDICTORS were derived by all baseline measurements. These included:

● demographic data: age, sex, education, occupation, marital status
● medical history: family status, menstruation, pregnancies, diet status, diet history,

physical activity, smoking, pharmacological treatments, clinical signs, weight
history

● parameters: physical exam, blood pressure, anthropometry, bioimpedance
analysis, ultrasound (abdomen fat thicknesses), indirect calorimetry, laboratory
exams

● questionnaires: anxiety, depression, binge eating, emotion regulation, eating
disorders and adherence to a Mediterranean diet

Overall the included predictors gave a variable representation of the following domains:
biology, individual psychology, individual activity, activity environment, societal
influences.



A detailed list of data collection procedures, variables included and their coding is
available in the Appendix.

Machine learning and statistical analysis

FOR SUPERVISED LEARNING maximum predictive strength was sought through optimization of
relevant metrics. For continuous variables, the root-mean-square error (RMSE) and the
coefficient of determination R2; for categorical variables, the correct classification
fraction (CCF) and the receiver operating characteristic area under the curve (AUROC).
Between accuracy and discrimination ability, accuracy was selected as the most relevant
metric in the clinical settings, and was sought through minimization of RMSE for
continuous variables and maximization of the CCF for categorical variables.

Several statistical and machine learning models were compared using V-fold
cross-validation resampling. For models requiring tuning parameters, a grid made of
several combinations of tuning parameters was tested via V-fold cross-validation.

Prior to model selection, per-model preprocessing steps were defined in order to
guarantee the best predictive ability for the specific model. To capture uncertainty about
non-deterministic data manipulation, all preprocessing steps were repeated in each
cross-validation fold.

UNSUPERVISED LEARNING was employed as an optional preprocessing step aimed to reduce
the dimensionality of the dataset. In particular, principal component analysis (PCA) was
used to transform the set of predictors in a reduced number of predictors designed to
capture the maximum amount of information in the original variables. A potential
benefit of this approach, other than the dimensionality reduction, is the production of
statistically independent predictors that can ameliorate the problem of inter-variables
correlations in the dataset.

SOFTWARE used to perform the analysis was R 4.1.1 (R Core Team 2021). Refer to the
Appendix for a detailed explanation of machine learning and statistical analysis used,
and R code used to carry out the analysis.

Results

MODEL SCREENING results for continuous and categorical outcomes, respectively, are shown
in Figure 1 and Figure 2. For each outcome, a metric of accuracy and discrimination
ability is presented (for continuous outcomes the RMSE and R², while for categorical
outcomes the CCF and the AUROC). For each model and metric, the mean and confidence
intervals obtained by the cross-validation process are shown (although, for each
outcome and model, only the best combination of hyperparameters is shown). For each
model, a version with and without PCA preprocessing (unsupervised learning) is shown.



Figure 1: Comparison of accuracy (root-mean-square error, RMSE) and discrimination ability (coefficient of determination, R²) of
statistical and machine learning models in the prediction of continuous outcomes. For each model and metric, mean and confidence
bounds (95% confidence) across resamples were computed. For each model, an alternative with and without principal component

analysis (PCA, unsupervised learning) is shown.



Figure 2: Comparison of accuracy (correct classification fraction, CCF) and discrimination ability (area under the ROC curve, ROC AUC)
of statistical and machine learning models in the prediction of categorical outcomes. For each model and metric, mean and confidence

bounds (95% confidence) across resamples were computed. For each model, an alternative with and without principal component
analysis (PCA, unsupervised learning) is shown. For each outcome, the historical rate of patients experiencing the event is marked with a

vertical dashed line.



FOR CONTINUOUS OUTCOMES, machine learning models based on decision trees (simple
decision trees, bagged decision trees, boosted trees, and random forest) were generally
the best performing models, producing both models with very low RMSE and a high R².
PCA was generally not useful in improving the predictive ability of these models. Table 2
show in details accuracy and discrimination ability metrics for the best performing
model (bagged decision trees for both outcomes) also including the hyperparameters
that were selected in the screening process. Figure 3 compares measured outcomes with
outcomes predicted from the best performing model, in a calibration plot obtained from
the cross-validation process (the red dashed line represents the line of equality, where
ideally the points would lie).

Table 2: Best model for each continuous outcome, ranked by accuracy (root-mean-square error, RMSE).

Outcome Best model Model hyperparameters RMSE 1 R² 1

Resting energy
expenditure (kcal)

Bagged decision tree Cost/complexity parameter = 6.36e-07;
Maximum depth = 15;
Minimal node size = 34

27.6
(20.9, 34.3)

0.988
(0.982, 0.994)

Total body water (l) Bagged decision tree Cost/complexity parameter = 3.24e-10;
Maximum depth = 9;
Minimal node size = 8

0.842
(0.768, 0.916)

0.988
(0.986, 0.99)

1 Mean (95% CI)

Figure 3: Calibration plot for continuous outcomes. The line of equality is drawn as a red dashed line.

FOR CATEGORICAL OUTCOMES, machine learning models based on decision trees (simple
decision trees, bagged decision trees, boosted trees, and random forest) were generally
the best performing models, producing both models with relatively high CCF and
AUROC. PCA was generally not useful in improving the predictive ability of these models.
The accuracy results need to be put in context of a naive classifier that would assume
that all patients experience the event, which should have an accuracy similar to the
historical proportion of events in the dataset (denoted in Figure 2 for each outcome
with a vertical dashed line). Taking the naive classifier in consideration, only the best
model of the weight outcome was able to consistently record a better performance of
the naive classifier, while models predicting a (lack of) triglyceridemia improvement
were generally able to perform better than the naive classifier. Table 3 show in details
accuracy and discrimination ability metrics for the best performing model (random



forest for the cholesterolemia model, boosted trees for all other outcomes). Table 4
reports confusion matrices (true and false positive and negative rates) obtained from
cross-validation of the best models for each outcome. Figure 4 shows the ROC curves for
the best performing model for each outcome, showing the relationship between
sensitivity and specificity over a continuum of different event thresholds (the dashed
line denotes the expected performance of random guessing in an unbalanced setting).

Table 3: Best model for each categorical outcome, ranked by accuracy (correct classification fraction, CCF).

Outcome Best model Model hyperparameters Accuracy 1 AUROC 1

Failure to lose weight Random forest # randomly selected predictors = 509;
# trees = 1440;
Minimal node size = 12

0.694
(0.688, 0.7)

0.652
(0.64, 0.664)

Failure to improve
basal glycemia

Random forest # randomly selected predictors = 379;
# trees = 403;
Minimal node size = 34

0.689
(0.669, 0.71)

0.687
(0.673, 0.701)

Failure to improve
cholesterolemia

Random forest # randomly selected predictors = 126;
# trees = 1240;
Minimal node size = 8

0.735
(0.715, 0.754)

0.653
(0.618, 0.687)

Failure to improve
triglyceridemia

Boosted trees # randomly selected predictors = 94;
# trees = 363;
Minimal node size = 27;
Maximum depth of a tree = 5;
Learning rate = 0.00171;
Minimum loss reduction = 0.091;
Proportion of observations sampled = 0.633;
# iteration before stopping = 3

0.616
(0.577, 0.654)

0.652
(0.616, 0.689)

1 Mean (95% CI)

Table 4: Confusion matrices for the best model of each categorical outcome.

Failure to lose weight Failure to improve basal glycemia
Failure to improve

cholesterolemia
Failure to improve triglyceridemia

Predicted
event

Predicted
no event Total

Predicted
event

Predicted
no event Total

Predicted
event

Predicted
no event Total

Predicted
event

Predicted
no event Total

Event 5,172
(94%)

313
(5.7%)

5,485
(100%)

441
(88%)

58 (12%) 499
(100%)

1,439
(97%)

52
(3.5%)

1,491
(100%)

211
(70%)

91 (30%) 302
(100%)

No
event

2,128
(85%)

383
(15%)

2,511
(100%)

167
(71%)

68
(29%)

235
(100%)

483
(88%)

67 (12%) 550
(100%)

148
(46%)

172
(54%)

320
(100%)

Total 7,300
(91%)

696
(8.7%)

7,996
(100%)

608
(83%)

126
(17%)

734
(100%)

1,922
(94%)

119
(5.8%)

2,041
(100%)

359
(58%)

263
(42%)

622
(100%)



Figure 4: Receiver operator curve for categorical outcomes. Each resample is drawn with a different color.

Discussion

OUR RESULTS show good overall performance of machine learning models when applied to
clinical data in nutritional settings. Supervised learning algorithms performed
extremely well in the prediction of continuous cross-sectional outcomes, showing great
potential as compensatory system for missing variables that could aid the clinician with
a better prediction than those provide by externally developed equations or surrogate
methods, when a particular patient does not satisfy the eligibility criteria for the
reference method. In the prediction of prospective categorical outcomes, machine
learning models were not only the best performers, they were the only one able to
provide better predictions than a naive classifier based on historical rates in highly
unbalanced settings. As such, they show potential as an alert system aimed to improve
identification of non-responders based on baseline evaluation and setting-specific
historical success rates, but to date their discrimantion ability remains low.
Unsupervised learning, in the form of dimensionality reduction preprocessing, was



generally not useful in improving predictive performance of supervised machine
learning models.

In the context of a CDSS, prediction of cross-sectional variables, such as those selected in
this thesis (REE and TBW), can provide useful information to the clinician when
circumstances arise that prevent the use of the reference technique for some patients.
Indirect calorimetry is considered the gold standard method for measuring REE and can
be routinely used in clinical practice, but there are instances in normal clinical practice
in which it cannot be used (eg. claustrophobic patients, lack of fasting, interfering
pharmacological treatments). The same applies to bioimpedance analysis, a technique
that can provide useful information on hydration and body composition through the
measurement of TBW, but is not advised when the patient is carrying an implanted
cardio-verter-defibrillator, pace makers, prostheses or metal implants. In cases in which
these techniques cannot be used, the clinician usually relies on externally developed
predictive equations. These equations have the advantage of having been developed
with a rigorous and specific study design, but the need of being highly transferable from
the original development environment to other foreign settings imposes several
constraints. The equations usually only include a few important predictors of the
outcome in order to be more broadly used, but doing so they cannot fully take advantage
of highly-dimensional data that is nonetheless collected for the patient. Also, the
population on which these equations have been developed do not necessarily match the
population object of our clinical practice.

On the other hand, the selected classification tasks were certainly more ambitious, being
prospective and considering outcomes easily influenced by several factors. The weight,
glycemia and cholesterolemia models were also challenged by highly unbalanced
outcomes that, even after upsampling in the preprocessing phase, produced models
with good sensitivity but poor specificity. The most interesting result came from the
weight model, as it was the only one in this unbalanced setting to have consistently
beaten the naive classifier based on historical rates by a few percentage points.
Prediction of weight loss is certainly one of the most challenging issues in nutrition, as
after decades of research, it remains an untackled problem. In the prediction of the
categorical outcomes, the weight loss model was the one with the largest sample size,
being an outcome routinely explored and documented in our patients. This has likely
contributed to the difference in performance versus the glycemia and cholesterolemia
model. The model in the triglyceridemia prediction was the one that more consistently
performed better than the naive classifier. Noticeably this was the most balanced setting
and that seems to have contributed positively in this regard. Once again these models do
not increase the data collection burden as they are based on routinely collected clinical
data, and when integrated in a CDSS, they can leverage these data to provide the
clinician with a probability of success on several relevant outcomes based on historical
data of patients similar to the one at hand. These results may be included in a CDSS in
the form of probability of the patient being a non-responder to historical treatment
strategies adopted for similar patients. More than a binary classifier, showing the
probability of a patient being a non-responder would allow the clinician to measure the
confidence of the suggestion provided by the machine learning algorithm and integrate
the result in her own clinical decision process.

INTERPRETABILITY AND UNCERTAINTY are one of most researched topics today in AI and machine
learning. Some computational reasoning methods in AI, such as neural networks, are



considered black boxes to end-users. Auditing has been proposed as a pragmatic
approach to evaluating opaque algorithms that were devised autonomously. This follows
an analogy to human judgement; typically we measure outcomes, not problem-solving
style or cognitive process. However, given the fundamental healthcare ethic of “first do
no harm”, some authors argue that more effort is needed in the design phases to explain
the principles of a computational model to allow transparent assessment (Magrabi et al.
2019). They suggest this would help to keep clinicians and patients engaged and avoid
conflict between practitioners and commercial algorithm developers. They advise
algorithm developers, including those who operate on a proprietary basis, on the need
to consider how to open the black box (even if partially) and work within a framework
for shareable biomedical knowledge so that clinicians can judge the merits of AI models.

In this thesis, interpretability of the best performing models was limited by the
complexity of the model structure. The best performing models were all tree-based
models, that is models that split the data multiple times according to certain cutoff
values in the predictors. Through splitting, different subsets of the dataset are created,
with each instance belonging to one subset. The final subsets are called terminal or leaf
nodes and the intermediate subsets are called internal nodes or split nodes. To predict
the outcome in each leaf node, the average outcome of the training data in this node is
used, for both categorical and continuous outcomes.

For basic decision tree models, the interpretation is simple: starting from the root node,
the path to the next node and the edges tell which subsets is going to be selected, and
when the leaf node is reached, the node tells the predicted outcome. Also, the overall
importance of a predictor in a decision can be computed by going through all the splits
for which the predictor was used and measuring how much it has reduced the variance
or other indices compared to the parent node. The sum of all importances is scaled to
100 so that each importance can be interpreted as a share of the overall model
importance. Individual predictions of a decision tree can be explained by decomposing
the decision path into one component per predictor.

While simple decision trees have natural visualization and tend to create good
explanations for the prediction produced, they have several drawbacks. Simple decision
trees fail to deal with linear relationships, as any linear relationship between an input
predictor and the outcome has to be approximated by splits, creating an inefficient step
function. They lack smoothness and so slight changes in the input predictors can have a
big impact on the predicted outcome, which is usually not desirable. Trees are also quite
unstable, because each split depends on the parent split and so few changes in the
training dataset can create a completely different tree. Also, decision trees are very
interpretable as long as they are short, as the number of terminal nodes increases
quickly with depth.

To overcome the disadvantage of simple decision trees and increasing their predictive
accuracy and robustness, several techniques have been developed, such as bagging,
random forests, and boosting. Bagging improves both accuracy and stability of decision
trees by generating several bootstrapped training data sets on which to fit simple
decision trees that are then averaged in a single model. While bagging does improve
overall on simple decision trees, it can suffer from strong predictors in the dataset that
tend to create very similar trees even in the bootstrapped data sets. Random forest
improves on bagging by forcing each split to consider a subset of the predictors,



effectively forcing decorrelation between trees. Boosting is similar in concept to
bagging, but instead of growing trees on different bootstraps resamples, it grows trees
sequentially based on residuals of previously fitted trees. Sequential trees in boosting
are forced to grow small and so the overall tree grows slowly and more stable than a
single decision tree.

Our results confirm the benefits of these approaches to improve predictive accuracy and
stability across resamples of decision trees, at the expense of the clear interpretability of
simple decision trees or other models. While some innovative approaches have been
developed to aid interpretability of complex tree-base models (Friedman and Popescu
2008), the high-dimensionality and more importantly the study design used in this
thesis limit the usefulness of any tentative interpretation of the fitted models,
potentially leading to misleading conclusions.

BUT IS INTERPRETABILITY NECESSARY? Several assumptions underlie the focus on explainability
as the primary means by which to address concerns around accountability,
transparency, trust, and adoption of machine learning in healthcare (Sendak et al.
2020):

● Clinicians are presumed to have substantial technical and quantitative expertise
with which to engage with explainable machine learning.

● Clinicians often incorporate information into clinical decisions without a
comprehensive understanding of the mechanism by which the information is
generated.

● The volume and complexity of the knowledge that physicians need to master has
grown exponentially beyond their capacity as individuals and as such the
effective use of information in clinical decision making should be prioritised
rather than comprehensive understanding of how information is generated.

The application of medical knowledge does not necessarily require the identification of
causal relations. The human body is in many ways “a black box”, in which the causes and
mechanisms of illnesses often elude explanation. The use of AI fundamentally calls into
question the extent to which we tolerate uncertainty in medical decision making (Harish
et al. 2021). Even with AI to help clinicians weigh the likelihood of various diagnoses
(and the usefulness of various treatments) against one another, it is not possible to
reduce diagnostic uncertainty to zero. Successful integration of AI into the clinical
decision-making framework requires clinicians to handle uncertainty as a relative
measure rather than an absolute value to minimize.

THIS THESIS offers a glimpse of the potential of machine learning algorithms applied to
routinely collected clinical data. The strengths of this thesis lie in the dimension of the
dataset used, both as number of observations and number of variables/domains
explored. Also, many algorithms were tested both among machine learning and
statistical algorithms, trying to optimize each one with a series of selected per-model
pre-processing steps. On the other hand, some limitations have to be noted. First, while
the dataset was certainly big by traditional standards, the number of observation
relative to the number of predictors was not deemed infinite and to avoid selection bias
derived from splitting the dataset in training-and-test splits, only internal
cross-validation was used to test the predictive abilities of the models. Also, in the
prediction of categorical prospective outcomes, a detailed encoding of all aspects of the



therapeutic plan was not available, but it would have likely improved the prediction and
would have surely provided a much greater insight for the clinician having to choose
between different strategies.

IN CONCLUSION, AI thinking processes do not mirror how a human processes questions.
Humans have an immediate instinct for whether they know the correct answer, and this
intuitive confidence is a subjective experience for a human. While both humans and AI
take confidence-driven approaches, only AI explicitly incorporates confidence as a
quantifiable and objective metric. This can lead to instances in which a (low-confidence)
AI conclusion is obviously wrong from the human viewpoint, explaining why the public
may be uncomfortable with an AI system functioning under uncertainty. For a system to
wield decision-making power, one must accept that the AI system will eventually draw
incorrect inferences and that humans using intuition will see these incorrect inferences
as blatantly obvious. On the other hand, acting on high-confidence suggestions of
machine learning algorithms and correctly encoding the new therapeutic approaches
will eventually improve the predictive ability of these models that are dynamic and
evolving in nature.

The clinical adoption of AI may be a reflection of how intrinsic uncertainty is to
medicine. Clinicians must reckon with and ultimately accept the fact that no diagnosis is
certain, which is why they synthesize differential diagnoses. The calculated probabilities
of AI-based CDSSs must, in practice, be reconciled with the intuition of expert clinicians
if we are to understand differences in how recommendations emerge.



Appendix

Data collection

DEMOGRAPHIC DATA. Demographic data was self-reported by the patient and included age,
sex, education, occupation, and marital status.

MEDICAL HISTORY. An accurate medical interview was carried out, along with the collection
of medical condition self-reported diagnosis and information regarding current drug
therapies. For women, menstruation status and pregnancy history was investigated.
Smoking habits, dietary habits, diet history and weight history were investigated. A
structured interview was employed to investigate physical activity levels. Subjects
engaging in any structured physical exercise for >2 h/week were deemed as physically
active.

ANTHROPOMETRY. Body weight, body height and fat mass fraction were assessed with
anthropometric methods. All anthropometric measurements were collected by
well-trained registered dietitians at the ICANS center. Procedures used are detailed in
Lohman and Roche (1988).

Body weight was measured to the nearest 100 g with a mechanical column scale
graduated to 100 g, and with a capacity of 160 kg (Seca 700, Seca GmbH, Hamburg,
Germany). Body height was measured to the nearest 1 mm with a stadiometer
graduated to 1 mm, and with a measuring range of 20-205 cm (Seca 217, Seca GmbH,
Hamburg, Germany). Waist circumference was measured to the nearest 0.1 cm with an
inextensible metric tape, wide 0.5 cm, and graduated to 1 mm (Gima 27341, Gima S.p.A.,
Gessate, Italy). Biceps, triceps, subscapular, and suprailiac skinfold thicknesses were
measured to the nearest 0.1 mm using a skinfold caliper with a 35 mm² jaw face area,
exerting a 10±2 g/mm² pressure between the jaws, with a range of 0-40 mm, calibrated
to 0.2 mm (Holtain Tanner/Whitehouse Skinfold Caliper, Croswell, UK).

Body mass index (BMI, kg/m²) was calculated as body weight divided by the square of
the body height, and classified according to the World Health Organization (2000)
guidelines. Body density (kg/l) and fat mass fraction (as %) were estimated using
formula provided by Durnin and Womersley (1974) and Siri (1961), respectively.

BIOIMPEDANCE ANALYSIS. Impedance was measured using a tetrapolar 8-point tactile
electrode system (InBody 720, Biospace, Seoul, Korea) at 1, 5, 50, 250, 500 and 1000
kHz. The system measured the impedance of the participant's right arm, left arm, trunk,
right leg and left leg. Participants stood on the scale platform of the instrument and
grasped the handles of the device, to provide contact with a total of eight electrodes
(two for each foot and for each hand).

Manufacturer equations were used to estimate the following variables: total body water
(TBW), extracellular water (ECW) and intracellular water (ICW).

The intra-examination coefficient of variation for bio-impedance analysis was 0.8 %.

ULTRASOUND. Visceral and subcutaneous adipose tissue thicknesses were measured at the
abdominal level by the same operator following a validated standardized protocol.



The instrument used was a Logiq 3 Pro system for abdominal ultrasonography,
equipped with a 3.5 MHz convex-array probe and a 7.5 MHz linear probe (GE
Healthcare, Milwaukee, WI, USA). Visceral adipose tissue was measured as the distance
between the posterior surface of the rectus abdominis muscle and the anterior wall of
the aorta at the level of linea alba, and subcutaneous adipose tissue was measured as
the distance between the external face of the rectus abdominis muscle and the
epidermis. Both thicknesses were determined three times, one centimetre above the
umbilicus, and a mean measurement was computed. The intra-operator coefficient of
variation for repeated VAT and SAT measurements in our laboratory is 0.8%.

INDIRECT CALORIMETRY. Resting energy expenditure was measured at baseline with indirect
calorimetry. All measurements were performed early in the morning, after a 12-hours
fast, with subjects lying supine, at rest but awake, in a quiet and thermally neutral
environment (24 °C). After a 15 minutes resting period, O2 consumption and CO2

production were measured using the canopy dilution technique (Ferrannini 1988), with
patients wearing a transparent ventilated canopy for 30 minutes, sampling gases every
30 seconds. To avoid gas leakages, the subject’s head was carefully wrapped with a veil.

Technical details of the indirect calorimeter used (Q-NRG+, Cosmed srl, Rome, Italy) are
presented by Delsoglio et al. (2020). Calibration of the flowmeter and gas analyzers
were performed according to the manufacturer’s instructions and schedule.

For each measurement, data collected during the first 5 min were discarded, while data
collected during the remaining minutes were averaged (mean) and scaled to provide
daily resting gas exchanges. Steady state was defined as the first five consecutive stable
30 seconds readings with a coefficient of variation <10 % for VO2 and VCO2, and when
available, data in steady state were preferred. The Weir formula (V. Weir 1949) was used
to estimate resting energy expenditure from gas exchanges measured at rest by indirect
calorimetry.

LABORATORY EXAMS. Fasting blood samples were taken by venipuncture of the antecubital
vein using vacuum tubes, in either sitting or lying position. After centrifugation (800g ×
10 min at 5°), aliquots of samples were stored at -80° until further analysis. Urine
samples of the second urination of the day were collected measuring time from first and
second urination with a timer. Pre-prandial glycemia and ketonemia were self-measured
by each patient with an in vitro diagnostic medical device for blood glucose and
β-ketone self-testing (GlucoMen LX PLUS, Menarini Diagnostics).

An auto-analyzer (Cobas Integra 400 plus, Roche Diagnostics, Mannheim) was used to
determine serum glucose, HBA1C, cholesterol, high-density lipoprotein (HDL)
cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, glutamic
oxaloacetic transaminase (GOT), glutamate-pyruvate transaminase (GPT),
gamma-glutamyltransferase (GGT) and urinary urea.

QUESTIONNAIRES. Anxiety, depression, binge eating, emotion regulation, eating disorders
and adherence to a Mediterranean diet were assessed at baseline with the State-Trait
Anxiety Inventory (Spielberger 2010), Depression Questionnaire (Vidotto et al. 2010),
Binge Eating Scale (Gormally et al. 1982), Difficulties in Emotion Regulation Scale
(Dan-Glauser and Scherer 2012), Eating Disorder Inventory (Garner, Olmstead, and



Polivy 1983), and the Mediterranean Diet Adherence Screener (Martínez-González
2012).

All questionnaires were self-administered by the patient.

We used the Form X of the State-Trait Anxiety Inventory, the original version of BES, and
version 3 of the Eating Disorder Inventory.

Continuous and categorical scores were computed following the scoring instructions of
each questionnaire.

Preprocessing

THE PREPROCESSING STEPS were tailored to the type of model being fit. Overall the following
preprocessing steps were used:

● dummy: transforming qualitative predictors with a numeric encoding
● zv: removing predictors with low variance
● impute: estimating missing variables (in model selection phase only simple

imputation was performed to limit computational time: for continuous variable
median imputation, for categorical variables a new “unknown” level

● decorrelate: filtering out highly-correlated predictors or using principal
component analysis to reduce dimensionality, or using a model-based technique
(e.g. regularization)

● normalize: centering and scaling of predictors
● transform: transforming predictors to be more symmetric

The table below shows preprocessing steps performed for each model.

Model selection

FOR SUPERVISED LEARNING, the following models were evaluated for both type of outcome
(unless stated otherwise):

● linear regression (continuous outcomes only)
● logistic regression (categorical outcomes only)
● linear discriminant analysis (categorical outcomes only)
● quadratic discriminant analysis (categorical outcomes only)
● naive Bayes (categorical outcomes only), tuned for kernel smoothness, and

Laplace correction
● K-nearest neighbour, tuned for number of nearest neighbors, and distance

weighting function, Minkowski distance order
● ridge regression and LASSO, tuned for the amount of regularization, and the

proportion of LASSO penalty
● decision trees, tuned for tree depth, minimal node size, and cost-complexity

parameter
● bagged trees, tuned for the cost/complexity parameter used by CART models, the

maximum depth of a tree, the minimum number of data points in a node that are



required for the node to be split further, and a cost value to assign to the class
corresponding to the first factor level

● random forest, tuned for number randomly selected predictors, number of trees,
and minimal node size

● boosted trees, tuned for tree depth, the number trees, the learning rate, the
number randomly selected predictors, the minimal node size,the minimum loss
reduction,the proportion observations sampled, and the number iterations
before stopping

● linear support vector machine, tuned for cost, and insensitivity margin
● single layer neural network, tuned for the number of hidden units, the amount of

regularization, and the number of epochs

To limit computation time, 5-fold cross validation and 10 values per hyperparameter
were tested. Where possible, racing with ANOVA models (Kuhn 2014) was performed to
further reduce computation time.

Model preprocessing, turning, resampling, and fitting were performed with the notable
addition of the Tidymodels package (Kuhn and Wickham 2020) to R (R Core Team
2021).

Code for preprocessing procedures

.recipe <-
list()

.recipe$preprocessing <-
function(recipe) {
recipe %>%
step_date(collected_on, features = c("month")) %>%
step_rm(patient_id, where(lubridate::is.Date),

where(lubridate::is.timepoint), contains("value")) %>%
step_mutate_at(where(is.logical), fn = ~as.factor(.x) %>%

forcats::fct_relabel(janitor::make_clean_names)) %>%
step_mutate_at(where(is.numeric),

fn = ~ ifelse(
.x < quantile(.x, probs = .01, na.rm = T) |
.x > quantile(.x, probs = .99, na.rm = T),

NA_real_,
.x

)) %>%
step_mutate_at(where(is.numeric) & !starts_with("ders"),

fn = ~ ifelse(.x < 0, NA_real_, .x))
}

.recipe$imputing <-
function(recipe) {
recipe %>%
step_impute_median(all_numeric_predictors()) %>%
step_novel(all_nominal_predictors()) %>%
step_unknown(all_nominal_predictors()) %>%
step_naomit(all_outcomes(), skip = T)

}

.recipe$dummy.nzv.impute.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%



step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.upsample.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$nzv.impute.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$nzv.impute.upsample.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$nzv.impute.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%



step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$nzv.impute.upsample.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$nzv.upsample.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
step_naomit(all_outcomes(), skip = T) %>%
step_upsample(all_outcomes()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$nzv.decorrelate <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
step_naomit(all_outcomes(), skip = T) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$nzv.impute.upsample.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$nzv.impute.decorrelate.normalize.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_BoxCox(all_numeric_predictors() & !starts_with("ders")) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%



step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.decorrelate.normalize.transform <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_BoxCox(all_numeric_predictors() & !starts_with("ders")) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_upsample(all_outcomes()) %>%
step_BoxCox(all_numeric_predictors() & !starts_with("ders")) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

.recipe$dummy.nzv.impute.decorrelate.normalize.transform.pca <-
function(recipe) {
recipe %>%
.recipe$preprocessing() %>%
.recipe$imputing() %>%
step_BoxCox(all_numeric_predictors() & !starts_with("ders")) %>%
step_normalize(all_numeric_predictors()) %>%
step_nzv(all_predictors()) %>%
step_other(all_nominal_predictors(), other = "low_freq_values") %>%
step_dummy(all_nominal_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

}

Code for linear regression tasks

regr_wflow <-
function(sample) {
list(
race = bind_rows(
workflow_set(
list(
dummy.nzv.impute.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.decorrelate(),

dummy.nzv.impute.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.decorrelate.normalize.pca()

),
list(
linearreg.lm =



linear_reg() %>%
set_engine("lm"),

linearreg.glmnet =
linear_reg(penalty = tune(),

mixture = tune()) %>%
set_engine("glmnet"),

trees.boost =
boost_tree(
tree_depth = tune(),
trees = tune(),
learn_rate = tune(),
mtry = tune(),
min_n = tune(),
loss_reduction = tune(),
sample_size = tune(),
stop_iter = tune()

) %>%
set_engine("xgboost") %>%
set_mode("regression")

)
),
workflow_set(
list(
dummy.nzv.impute.decorrelate.normalize.transform =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.decorrelate.normalize.transform(),

dummy.nzv.impute.decorrelate.normalize.transform.pca =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.decorrelate.normalize.transform.pca()

),
list(
nearestneighbor =
nearest_neighbor(
neighbors = tune(),
weight_func = tune(),
dist_power = tune()

) %>%
set_engine("kknn") %>%
set_mode("regression"),

nnet.mlp =
mlp(
hidden_units = tune(),
penalty = tune(),
epochs = tune()

) %>%
set_engine("nnet") %>%
set_mode("regression"),

svm.linear =
svm_linear(cost = tune(), margin = tune()) %>%
set_engine("LiblineaR") %>%
set_mode("regression")

)
),
workflow_set(
list(
nzv.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.decorrelate(),

nzv.impute.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.decorrelate.normalize.pca()

),
list(
trees.decision =
decision_tree(
tree_depth = tune(),
min_n = tune(),
cost_complexity = tune()

) %>%
set_engine("rpart") %>%
set_mode("regression"),



trees.bag =
bag_tree(
cost_complexity = tune(),
tree_depth = tune(),
min_n = tune()

) %>%
set_engine("rpart") %>%
set_mode("regression")

)
)

),
no_race =
workflow_set(
list(
nzv.impute.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.decorrelate(),

nzv.impute.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.decorrelate.normalize.pca()

),
list(
trees.randforest =
rand_forest(
mtry = tune(),
trees = tune(),
min_n = tune()

) %>%
set_engine("ranger") %>%
set_mode("regression")

)
)

)
}

regr_resmpl <-
function(sample) {
list(
regr_wflow(sample)$race %>%
workflow_map(
"tune_race_anova",
verbose = T,
resamples = vfold_cv(sample, v = 5),
grid = 10,
control = control_race(
verbose = T,
save_pred = T,
save_workflow = T

)
),

regr_wflow(sample)$no_race %>%
workflow_map(
verbose = T,
resamples = vfold_cv(sample, v = 5),
grid = 10,
control = control_grid(
verbose = T,
save_pred = T,
save_workflow = T

)
)

)
}

regr_resampled <-
samples$reg %>%
map(~regr_resmpl(.x))



Code for classification tasks

class_wflow <-
function(sample) {
list(
race = bind_rows(
workflow_set(
list(
dummy.nzv.impute.upsample.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate(),

dummy.nzv.impute.upsample.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.pca()

),
list(
logisticreg.glm =
logistic_reg() %>%
set_engine("glm"),

logisticreg.glmnet =
logistic_reg(penalty = tune(),

mixture = tune()) %>%
set_engine("glmnet"),

discrim.linear =
discrim_linear() %>%
set_engine("MASS"),

discrim.quad =
discrim_quad() %>%
set_engine("MASS"),

trees.boost =
boost_tree(
tree_depth = tune(),
trees = tune(),
learn_rate = tune(),
mtry = tune(),
min_n = tune(),
loss_reduction = tune(),
sample_size = tune(),
stop_iter = tune()

) %>%
set_engine("xgboost") %>%
set_mode("classification")

)
),
workflow_set(
list(
nzv.impute.upsample.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.upsample.decorrelate(),

nzv.impute.upsample.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.upsample.decorrelate.normalize.pca()

),
list(
discrim.naivebayes =
naive_Bayes(smoothness = tune(),

Laplace = tune()) %>%
set_engine("klaR")

)
),
workflow_set(
list(
dummy.nzv.impute.upsample.decorrelate.normalize.transform =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform(),

dummy.nzv.impute.upsample.decorrelate.normalize.transform.pca =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform.pca()

),



list(
nearestneighbor =
nearest_neighbor(
neighbors = tune(),
weight_func = tune(),
dist_power = tune()

) %>%
set_engine("kknn") %>%
set_mode("classification"),

nnet.mlp =
mlp(
hidden_units = tune(),
penalty = tune(),
epochs = tune()

) %>%
set_engine("nnet") %>%
set_mode("classification")

)
),
workflow_set(
list(
nzv.upsample.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.upsample.decorrelate(),

nzv.impute.upsample.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.upsample.decorrelate.normalize.pca()

),
list(
trees.decision =
decision_tree(
tree_depth = tune(),
min_n = tune(),
cost_complexity = tune()

) %>%
set_engine("rpart") %>%
set_mode("classification"),

trees.bag =
bag_tree(
cost_complexity = tune(),
tree_depth = tune(),
min_n = tune(),
class_cost = tune()

) %>%
set_engine("rpart") %>%
set_mode("classification")

)
)

),
no_race =
workflow_set(
list(
nzv.impute.upsample.decorrelate =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.upsample.decorrelate(),

nzv.impute.upsample.decorrelate.normalize.pca =
recipe(outcome ~ ., sample) %>%
.recipe$nzv.impute.upsample.decorrelate.normalize.pca()

),
list(
trees.randforest =
rand_forest(
mtry = tune(),
trees = tune(),
min_n = tune()

) %>%
set_engine("ranger") %>%
set_mode("classification")

)
),

accuracy_only =



workflow_set(
list(
dummy.nzv.impute.upsample.decorrelate.normalize.transform =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform(),

dummy.nzv.impute.upsample.decorrelate.normalize.transform.pca =
recipe(outcome ~ ., sample) %>%
.recipe$dummy.nzv.impute.upsample.decorrelate.normalize.transform.pca()

),
list(
svm.linear =
svm_linear(cost = tune()) %>%
set_engine("LiblineaR") %>%
set_mode("classification")

)
)

)
}

class_resmpl <-
function(sample) {
list(
class_wflow(sample)$race %>%
workflow_map(
"tune_race_anova",
verbose = T,
resamples = vfold_cv(sample, v = 5, strata = "outcome"),
grid = 10,
control = control_race(
verbose = T,
save_pred = T,
save_workflow = T

)
),

class_wflow(sample)$no_race %>%
workflow_map(
verbose = T,
resamples = vfold_cv(sample, v = 5, strata = "outcome"),
grid = 10,
control = control_grid(
verbose = T,
save_pred = T,
save_workflow = T

)
),

class_wflow(sample)$accuracy_only %>%
workflow_map(
"tune_race_anova",
verbose = T,
metrics = metric_set(accuracy),
resamples = vfold_cv(sample, v = 5, strata = "outcome"),
grid = 10,
control = control_race(
verbose = T,
save_pred = T,
save_workflow = T

)
)

)
}

class_resampled <-
samples$class %>%
map(~class_resmpl(.x))
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