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understanding, which is quite a different thing. And often to understand something you have
to work it out yourself because no one else has done it.”

David Blackwell



ii

Dedication
In loving memory of Chicco, Lucky I, Jack, Lula, Mottino and Knuth.



iii

Statement of Contribution
All, but the material in Chapter 1, is based on published papers. Specifically, Chapter 2-
3-4 are based on a joint work with Marco Bressan, Nicolò Cesa-Bianchi and Silvio Lattanzi
(NeurIPS 2020, COLT 2021, NeurIPS 2021). Chapter 5 is based on a joint work with Marco
Bressan, Nicolò Cesa-Bianchi and Fabio Vitale (NeurIPS 2019). Finally, Chapter 6 is based on
a joint work with Andreas Maurer, Daniela Angela Parletta and Massimiliano Pontil (ICML
2021).



iv

Abstract
This thesis is dedicated to the study of algorithms for clustering and robust unsupervised
learning. Specifically, a significant part of this thesis is dedicated to the problem of semi-
supervised cluster recovery. Given a finite set of n points partitioned according to an unknown
clustering, the goal is to recover the unknown clustering using as few oracle queries as possible.
We mostly focus on the framework of the same-cluster queries: given a pair of points x and
y, a same cluster query returns a binary answer saying yes if x and y belongs to the same
cluster, and no otherwise. In this framework, we seek for algorithms that by actively asking
queries reconstruct exactly the underlying clustering. The target query complexity (i.e. the
number of queries asked by the algorithm) if O(log n).

We also consider a more general (and weaker) notion of supervision offered by the similarity
queries. Given a pair of points x and y, the oracle answer yes if the points are similar and
no otherwise. In this context, the similarity may, for example, represent a notion of metric-
closeness between points or also the membership to the same-cluster. In the former case,
similarity queries may be seen as same-cluster queries with errors since points that are close
may be well into different clusters. This type of feedback is common for clustering problems
on graphs, where the presence of an edge between two vertices do not need to establish the
membership to the same cluster. In this framework, we consider the case of Correlation
Clustering and design a simple and efficient query-based approximation algorithm for it. We
prove also that the same approximation algorithm features some cluster recovery properties.

Finally a third contribution goes into the area of robust unsupervised learning. In this
framework, data comes from a mixture distribution λµ + (1 − λ)ν where ν is noise, and the
goal is to identify a model with a small risk w.r.t. the target distribution µ. We show that the
minimization of a certain L-statistic of the training data, provably leads to a model with small
risk w.r.t. µ; even in the high noise regime. Our method works in the general reconstruction
error minimization framework which encompass k-means and k-median clustering, principal
subspace analysis, sparse coding and non-negative matrix factorization. Since the proposed
method is NP-Hard to compute, we complement the results with an efficient Lloyd-like descent
algorithm.
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Chapter 1

Introduction

This chapter is an overview of the contributions given by this thesis. The objective is to
detail the questions investigated in the subsequent chapters, describe the major technical
contributions and present the structure of the thesis.

1.1 Research Problems
In this section we details the problems investigated in the subsequent chapters. The re-
search problems faced in this thesis are arranged around three main themes: cluster recovery,
approximation-algorithms for correlation clustering, and robustness in unsupervised learning.

1.1.1 Semi-Supervised Cluster Recovery
Problem Formulation. Clustering is one of the most common learning task and can be
(roughly) formulated as the problem of identifying groups in a set X of points from some
given space X . Such groups are called clusters and the induced partitions of X are called
clusterings. There are at least two different ways in which clustering can be formulated. One
approach consists in defining a cost function over possible clusterings of the data; once the
cost is defined, clustering became an optimization problem that seeks for the clustering with
the smallest cost. This approach lead to the so-called optimization-based clustering methods.
Examples of such methods include the well known k-center methods, most spectral methods
and correlation clustering.

The implicit assumption behind optimization-based methods is that the ground truth
clusterings in the data are well approximated by the minima of the cost function. While
this assumption holds on many datasets, there are also cases where the underlying clustering
is not well approximated by the solutions of any clustering-based optimization. In these
cases, it is more convenient to formulate the clustering task as the problem of identifying the
ground-truth clustering within a prescribed family of clustering. In the stronger version of this
problem, one typically asks for the exact reconstruction of the underlying clustering (modulo
label permutations), a problem we refer to as exact cluster recovery. This problem can
also be relaxed either by allowing for some error and/or by focusing only on the large clusters.

Notice that, unless strong assumptions on the data are made, the problem of exact recovery
cannot be solved. As a result, one may relax the problem to allow some form of expert su-
pervision. One popular form of supervision is offered by the so-called same-cluster-queries
where the algorithm is allowed to ask to a human-expert do x and y belong to the same clus-
ter?. The expert answers such questions without making mistakes. These queries are natural
in many contexts, such as crowd-sourcing (e.g. the labellers are asked whether two images
depict the same city).

We can now define the following search problem problem.

Definition 1.1 (Semi-Supervised Exact Recovery). Let X ⊆ X a size n set and C an unknown
partition of X into k-clusters and let SCQ be the same-cluster query oracle. The semi-
supervised exact cluster recovery problem is defined as the problem of identifying C by possibly
querying SQC.
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Obviously, it is always possible to trivially recover C by asking all n(n−1)/2 queries. How-
ever, queries are costly and one is usually interested in using as few queries as possible. We
refer to the number of queried asked by the algorithm in the worst case as its query com-
plexity. Since we will consider algorithms that can interactively select the oracle queries - as
opposed to algorithms that receive a batch of oracle answers at the beginning - the hope is to
get an exponential improvement in the query complexity (similarly to what happens in some
binary classification problems where one observe a transition from O(n) to O(log(n))). Thus
the specific research problem we consider is that of establishing conditions on X and the class
of clusterings, that allow for the exact recovery of C using O(log n).

Contributions In this thesis we identify conditions and algorithms for the exact recovery
of clusterings with O(log n) queries in a range of settings. The main results are list below.

1. For convex clusterings in Rm we provide an algorithm that is capable of recovering any
convex clustering satisfying a certain notion of γ-margin, we name convex-hull margin,
with O(k2m5(1 + 1/γ)m log(1 + 1/γ) log n). On the negative side, we show that a
dependence on (1 + 1/γ)m/2 is necessary to any algorithm.

2. For the case of arbitrary pseudo-metric spaces, we introduce the one-vs-all margin, a
generalization of the convex-hull margin. We design an algorithm that recovers any (pos-
sibly non-convex) clustering satisfying the one-vs-all margin with O(M(γ)k log k log n)
queries, where M(γ) is a quantity related to the packing number of X . We show that
this notion of margin is implied by many popular notions of data stability such as SVM
margin, α-center proximity and ε-perturbation stability. On the negative side, we show
that - to achieve exact recovery - any algorithm has to make at least Ω(M(γ)) queries
in expectation. As a result, the proposed algorithm is essentially optimal as for the
dependence on M .

3. For clustering that are realized by binary hypothesis from some class H, we introduce
a combinatorial parameter of H we name coslicing dimension denoted by cosl(H)(H).
We show that exact recovery with O(log n) queries is possible if and only if cosl(H) <
∞. Specifically we show that when the coslicing dimension is bounded, there exist
an algorithm for exact recovery that makes O(cosl(H)k log k log n) queries. On the
negative side, we show that if cosl(H) is infinite, then any algorithm needs Ω(n) queries
in expectation to achieve exact recovery.

4. Finally, we consider non-convex clusterings in general pseudo-metric spaces satisfying
a certain notion of margin-based graph-theoretic convexity named geodesic convexity
with margin. This notion, intuitively requires that: (i) each cluster Ci is connect at
same scale εi; (ii) growing a small ball of radius at most βεi around a point x ∈ Ci
does not hit any points from different clusters, (iii) any small detour of length γ` from
the shortest path (whose length is `) among two points from the same cluster does
not contain points from other clusters. Under this assumption, we design algorithms
that, if given a point for each cluster, recover the underlying (β, γ)-geodesically convex
clustering with O(k2 log n+k2(6/(γβ))D(X )) queries, where D(X ) is a generalization of
the doubling dimension of X . On the lower bound side, we show that no algorithm can
recover (γ, β)-geodesically convex clusters with less than Ω(n) queries if a point from
each cluster is not provided as input.

In the first three settings, the provided algorithms have 0-error probability but the query
complexity bounds hold with high-probability. In the last setting instead, the algorithm is
completely deterministic.

1.1.2 Semi-Supervised Correlation Clustering
Problem Formulation. Correlation Clustering (CC) is a well known optimization-based
clustering paradigm which found many applications despite its computational hardness: at
best, only constant factor approximation algorithms are admitted. Its success is mostly due
to its modelling flexibility (being based on arbitrary similarity graphs) and the fact that it
does not requires the user to specify the number of clusters to adopt. In its basic formulation,
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CC requires the input to be completely specified in the form of a similarity graph, i.e. a clique
over the points with ± signs over the edges. The output is the clustering with the smallest
disagreement coefficient which we denote with OPT. Given a clustering, its disagreement
coefficient is defined as the number of − signs within-clusters plus the number of + signs
between clusters. However, as most of modern real world data-sets are huge, obtaining
accurate similarities for the entire date is extremely costly. Then, it is natural to extend
CC to a query based setting where the algorithm does not get the whole graph beforehand,
but can ask the sign of the edges to an oracle. Within this context, a natural research problem
is that of designing algorithms which given a query budget Q, obtain a small approximation
error.

Contributions The main contributions of this thesis to the query-based extension of CC
are the following.

1. We provide a simple query based 3-factor approximation algorithm for CC. The algo-
rithm guarantees an expected cost of at most 3OPT+O(n3/Q) using at most Q queries.
We complement this result, by showing that with Q queries any algorithm has a cost of
at least of OPT + Ω(n3/Q).

2. We show that a slight modification of the algorithm is capable of recovering all almost
clique clusters; i.e. clusters where only a small fraction of edges between their nodes
has been added or removed (even adversarially).

3. We design a fully additive approximation algorithm that with Q queries attains an error
of OPT +O(n5/2/

√
Q). If OPT = 0, the same algorithm attains an error of O(n3/Q).

We complement this results with a lower bound of Ω(n2/
√
Q).

1.1.3 Robust Unsupervised Learning
Problem Formulation. Most real-world data-sets are affected by noise which impacts
negatively the performances of many common machine learning algorithms. As an example,
it is not hard to show that the standard k-means algorithm can be broken by a single isolated
data point. For this reason, it is important to design algorithms that can tolerate some amount
of noise. In this context, one popular noise model that has received substantial consideration
is the so called Huber contamination model which assumes the training data to be generated
by a mixture distribution ν = (1 − λ)µ + λν∗, where µ is the so-called target distribution,
ν∗ is the so-called perturbing distribution which generate the noise and λ ∈ [0, 1] is a scalar
controlling the amount of noise. The objective is to learn a model with good performances
w.r.t µ from data generated by the mixture ν.

One general formulation of unsupervised learning is the following. Let S be a family
of subsets of Rd and S ∈ S, the reconstruction error of S on a point z ∈ Rd is defined
as dS(z) = infy∈S ‖y − z‖22. The standard setting where the learner get an i.i.d. data-set
X ∼ µn is well understood and empirical risk minimization works well in this setting. Indeed,
the empirical risk minimization formulation of this general problem includes many popular
unsupervised learning problems. For example, if we let S to be the family of all size-k sets
we recover the classical k-means problem. Similarly, if we let S to be the family of all k-
dimensional sub-spaces of Rd we recover the classical Principal Component Analysis. The
research question we investigate in this thesis is the following.

Definition 1.2 (Robust Unsupervised Learning). Under the Huber contamination model and
possibly additional assumptions, is it possible to design methods that provably output a model
with small risk with respect to the target distribution µ?

Contributions In the context of this problem the main contributions of this thesis are the
following.

1. We formalize a natural notation of outliers, withing the Huber contamination model,
that allows for the design of algorithms that tolerate large fraction of noise, i.e. λ > 0.5.
The proposed notion focuses on the model class S: outliers are defined as points that
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do not fit any model in the given class. More formally, we require the distribution ν∗
to be not as much as concentrated (up to same critical scale) as the target µ on any
model in S.

2. We propose a method based on the minimization of an L-statistic of the data and show
that under the prescribed assumption, it is able of asymptotically recovering a model
with good performance w.r.t. µ, even when λ > 0.5.

3. We show that the same approach also enjoys finite-sample guarantees in terms of uniform
convergence. To this end, we prove 3 novel uniform bounds for the proposed statistical
functional. Two bounds are dimension-free and one is variance sensitive. Overall, we
show that uniform convergence holds with a rate of about O(log n/n).

4. To overcame the computational hardness of the proposed algorithm, we develop a simple
and efficient descent method and assess its performance on real-world data-sets.

1.2 How to Read This Thesis
This manuscript is contains 5 chapters in addition to this introduction. At high level, the
thesis consists of three parts that can be read independently and that correspond to the
research problems described in the previous section.

• The first part is devoted to the exact cluster recovery problem and consists of the 3
chapters. The first chapter serves mostly as a warm-up and presents the case of exact
recovery of ellipsoidal shaped clusters. Most results in this chapter are subsumed by the
results presented in Chapter 3. The lower bound presented in this chapter holds also
in the more general setting of convex clustering in Euclidean spaces. In addition, this
chapter introduces a novel algorithmic technique, we name monocromatic tessellation,
which may be of independent interest.

• The second part consists of Chapter 5 and is about Correlation Clustering with Queries.

• The third part and the final part, consisting of Chapter 6, is devoted to the problem of
robust unsupervised learning.

Each chapter is self-contained and can thus be read independently from the others. To
this end, each chapter defines its own notation and presents its related work section and
appendices.
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Chapter 2

Exact recovery of Ellipsoidal
Shaped Clusters

The scope of this chapter is mostly to serve as a warm-up for the subsequent two chapters.
The main result of this chapter, namely an upper bound on the query complexity for recover-
ing ellipsoidal clusters, is indeed improved in the next chapter. The lower bounds, although
simple, are instead state-of-art. The algorithm we present in this chapter is significantly dif-
ferent from those presented in Chapter 3: while less efficient it is based on a novel algorithmic
technique, named monocromatic tessellation, that we believe may be of independent interest.

2.1 Introduction
Clustering is a central problem of unsupervised learning with a wide range of applications in
machine learning and data science. The goal of clustering is to partition a set of points in
different groups, so that similar points are assigned to the same group and dissimilar points
are assigned to different groups. A basic formulation is the k-clustering problem, in which
the input points must be partitioned into k disjoint subsets. A typical example is center-
based k-clustering, where the points lie in a metric space and one is interested in recovering
k clusters that minimize the distance between the points and the cluster centers. Different
variants of this problem, captured by the classic k-center, k-median, and k-means problems,
have been extensively studied for several decades Ahmadian et al. [2020]; Gonzalez [1985];
Li and Svensson [2016].

In this chapter we investigate the problem of recovering a latent clustering in the popular
semi-supervised active clustering model of Ashtiani et al. Ashtiani et al. [2016]. In this model,
we are given a set X of n input points in Rd and access to an oracle. The oracle answers same-
cluster queries (SCQs) with respect to a fixed but unknown k-clustering and tells whether
any two given points in X belong to the same cluster or not. The goal is to design efficient
algorithms that recover the latent clustering while asking as few oracle queries as possible.
Because SCQ queries are natural in crowd-sourcing systems, this model has been extensively
studied both in theory Ailon et al. [2018b,c]; Gamlath et al. [2018]; Huleihel et al. [2019];
Mazumdar and Pal [2017]; Mazumdar and Saha [2017b,a]; Saha and Subramanian [2019b];
Vitale et al. [2019] and in practice Firmani et al. [2018]; Gruenheid et al. [2015]; Verroios
and Garcia-Molina [2015]; Verroios et al. [2017] — see also Emamjomeh-Zadeh and Kempe
[2018] for other types of queries. In their work Ashtiani et al. [2016], Ashtiani et al. showed
that by using O(lnn) same-cluster queries one can recover the optimal k-means clustering of
X in polynomial time, whereas doing so without the queries would be computationally hard.
Unfortunately, Ashtiani et al. [2016] relies crucially on a strong separation assumption, called
γ-margin condition: for every cluster C there must exist a sphere SC , centered in the centroid
µC of C, such that C lies entirely inside SC and every point not in C is at distance (1 + γ)rC
from µC , where rC is the radius of SC . Thus, although Ashtiani et al. [2016] achieves cluster
recovery with O(lnn) queries, it does so only for a very narrow class of clusterings.

In this chapter we significantly enlarge the class of clusterings that can be efficiently
recovered. We do so by relaxing the γ-margin condition of Ashtiani et al. [2016] in two ways
(see Section 2.2 for a formal definition). First, we assume that every cluster C has γ-margin
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Figure 2.1: A toy instance on 105 points that we solve exactly with 105
queries, while the scq-k-means algorithm of Ashtiani et al. [2016] is no better

than random labeling.

in some latent space, obtained by linearly transforming all points according to some unknown
positive semi-definite matrix WC . This is equivalent to assume that C is bounded by an
ellipsoid (possibly degenerate) rather than by a sphere (which corresponds to WC = I). This
is useful because in many real-world applications the features are on different scales, and so
each cluster tends to be distorted along specific directions causing ellipsoids to fit the data
better than spheres Dzogang et al. [2012]; Kameyama and Kosugi [1999]; Marica [2014];
Moshtaghi et al. [2011]; Shuhua et al. [2013]. Second, we allow the center of the ellipsoid
to lie anywhere in space — in the centroid of C or anywhere else, even outside the convex
hull of C. This includes as special cases clusterings in the latent space which are solutions to
k-medians, k-centers, or one of their variants. It is not hard to see that this setting captures
much more general and challenging scenarios. For example, the latent clustering can be
an optimal solution of k-centers where some points have been adversarially deleted and the
features adversarially rescaled before the input points are handed to us. In fact, the latent
clustering need not be the solution to an optimization problem, and in particular need not
be center-based: it can be literally any clustering, as long as it respects the margin condition
just described.

Our main result is that, even in this significantly more general setting, it is still possible to
recover the latent clustering exactly, in polynomial time, and using only O(lnn) same-cluster
queries. The price to pay for this generality is an exponential dependence of the number of
queries on the dimension d of the input space; this dependence is however unavoidable, as we
show via rigorous lower bounds. Our algorithm is radically different from the one in Ashtiani
et al. [2016], which we call scq-k-means here. The reason is that scq-k-means uses same-
cluster queries to estimate the clusters’ centroids and find their spherical boundaries via binary
search. Under our more general setting, however, the clusters are not separated by spheres
centered in their centroids, and thus scq-k-means fails, as shown in Figure 2.1 (see Section 2.8
for more experiments). Instead of binary search, we develop a geometric technique, based on
careful tessellations of minimum-volume enclosing ellipsoids (MVEEs). The key idea is that
MVEEs combine a low VC-dimension, which makes learning easy, with a small volume, which
can be decomposed in easily classifiable elements. While MVEEs are not guaranteed to be
consistent with the cluster samples, our results can be also proven using consistent ellipsoids
that are close to the convex hull of the samples. This notion of low-stretch consistent ellipsoid
is new, and may be interesting in its own right.

2.2 Preliminaries and definitions
All missing statements and proofs can be found in the appendix. The input to our problem is
a triple (X, k, γ) where X ⊂ Rd is a set of n arbitrary points, k ≥ 2 is an integer, and γ ∈ R>0

is the margin (see below). We assume there exists a latent clustering C = {C1, . . . , Ck} over
the input set X, which we do not know and want to compute. To this end, we are given
access to an oracle answering same-cluster queries: a query scq(x,x′) is answered by +1 if
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x,x′ are in the same cluster of C, and by −1 otherwise. Our goal is to recover C while using
as few queries as possible. Note that, given any subset S ⊆ X, with at most k|S| queries one
can always learn the label (cluster) of each x ∈ S up to a relabeling of C, see Ashtiani et al.
[2016].

It is immediate to see that if C is completely arbitrary, then no algorithm can reconstruct
C with less than n queries. Here, we assume some structure by requiring each cluster to satisfy
a certain margin condition, as follows. Let W ∈ Rd×d be some positive semidefinite matrix
(possibly different for each cluster). Then W induces the seminorm ‖x‖W =

√
x>Wx, which

in turn induces the pseudo-metric dW (x,y) = ‖x− y‖W . The same notation applies to any
other PSD matrix, and when the matrix is clear from the context, we drop the subscript and
write simply d(·, ·). The margin condition that we assume is the following:

Definition 2.1 (Clustering margin). A cluster C has margin γ > 0 if there exist a PSD
matrix W = W (C) and a point c ∈ Rd such that for all y /∈ C and all x ∈ C we have
dW (y, c) >

√
1 + γ dW (x, c). If this holds for all clusters, then we say that the clustering C

has margin γ.

This is our only assumption. In particular, we do not assume the cluster sizes are balanced,
or that C is the solution to an optimization problem, or that points in a cluster C are closer
to the center of C than to the centers of other clusters. Note that the matrices W and
the points c are unknown to us. The spherical k-means setting of Ashtiani et al. [2016]
corresponds to the special case where for every C we have W = rI for some r = r(C) > 0
and c = µ(C) = 1

|C|
∑
x∈C x.

We denote a clustering returned by our algorithm by Ĉ = {Ĉ1, . . . , Ĉk}. The quality of Ĉ
is measured by the disagreement with C under the best possible relabeling of the clusters, that
is, 4(Ĉ, C) = minσ∈Sk

1
2n

∑k
i=1 |Ĉσ(i)∆Ci|, where Sk is the set of all permutations of [k]. Our

goal is to minimize 4(Ĉ, C) using as few queries as possible. In particular, we characterize
the query complexity of exact reconstruction, corresponding to 4(Ĉ, C) = 0. The rank of a
cluster C, denoted by rank(C), is the rank of the subspace spanned by its points.

Finally we recall few definitions and results from PAC learning.

Definition 2.2 (PAC learning). Let X an arbitrary set and H ⊂ 2X a family of binary
hypothesis on X . H is said to be PAC learnable if there exists and algorithm A such that
for every distribution D on X, every h∗ ∈ H and every ε, δ ∈ (0, 1), upon receiving an i.i.d.
sample S of size m = m(ε, δ) from D labelled by h∗, outputs an hypothesis function hS ∈ 2X

that satisfies

PS∼Dm (RD(hS) ≤ ε) ≥ 1− δ (2.1)

where RD(hS) = Px∼D (x ∈ hS∆h∗) is the risk of hS and m is called query complexity of A.

It is well known that PAC learnability is determined by the VC dimension of H defined
as follows. Given a sample S, the projection of H on S is defined as HS = {h ∩ S|h ∈ H};
S is shattered by H if HS = 2S . The VC dimension of H is defined as the size of the largest
subset S of X that is shattered by H if it is finite and as∞ otherwise. The following classical
result holds (e.g. [Shalev-Shwartz and Ben-David, 2014c, Theorem 6.8]).

Theorem 2.3. If H has finite VC dimension d̂, then the algorithm that returns a subset
hS of H consistent with S, i.e. hS ∩ S = h∗ ∩ S, is a PAC learner for H and its sample
complexity is dC d̂+log(1/δ)

ε e for an absolute constant C > 0. Such algorithm is called Empirical
Risk Minimizer (ERM).

2.3 Contributions
Our main contribution is an efficient active clustering algorithm, named recur, to recover
the latent clustering exactly. We show the following.

Theorem 2.4. Consider any instance (X, k, γ) whose clustering C has margin γ. Let n = |X|,
let r ≤ d be the maximum rank of a cluster in C, and let f(r, γ) = max

{
2r,O

(
r
γ ln rγ

)r}. Given
(X, k, γ), recur with probability 1 outputs C (up to a relabeling), and with high probability
runs in time O((k lnn)(n+k2 ln k)) using O

(
(k lnn) (k2d2 ln k+f(r, γ))

)
same-cluster queries.
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More in general, recur clusters correctly (1 − ε)n points using O
(
(k ln 1/ε) (k2d2 ln k +

f(r, γ))
)
queries in expectation. Note that the query complexity depends on r rather than

on d, which is desirable as real-world data often exhibits a low rank (i.e., every point can
be expressed as a linear combination of at most r other points in the same cluster, for some
r�d). In addition, unlike the algorithm of Ashtiani et al. [2016], which is Monte Carlo and
thus can fail, recur is Las Vegas: it returns the correct clustering with probability 1, and
the randomness is only over the number of queries and the running time. Notice that in this
setting, the standard transformation from Monte Carlo to Las Vegas is not applicable as it
requires the existence of an efficient verifier, i.e. a routine that can assess the correctness of
the proposed clustering. Moreover, recur is simple to understand and easy to implement.
It works by recovering a constant fraction of some cluster at each round, as follows (see
Section 2.5 and Section 2.6):
1. Sampling. We draw points uniformly at random from X until, for some cluster C, we

obtain a sample SC of size ' d2. We can show that with good probability |C| ' 1
k |X|,

and that, by standard PAC bounds, any ellipsoid E containing SC contains at least half
of C.

2. Computing the MVEE. We compute the MVEE (minimum-volume enclosing ellipsoid)
E = EJ(SC) of SC . As said, by PAC bounds, E contains at least half of C. If we were
lucky, E would not contain any point from other clusters, and E ∩X would be our large
subset of C. Unfortunately, E can contain an arbitrarily large number of points from
X \ C. Our goal is to find them and recover C ∩ E.

3. Tessellating the MVEE. To recover C ∩ E, we partition E into roughly (d/γ)d hyper-
rectangles, each one with the property of being monochromatic: its points are either all in
C or all in X \ C. Thanks to this special tessellation, with roughly (d/γ)d queries we can
find all hyperrectangles containing only points of C, and thus compute C ∩ E.
Our second contribution is to show a family of instances where every algorithm needs

roughly (1/γ)r same-cluster queries to return the correct clustering. This holds even if the
algorithm is allowed to fail with constant probability. Together with Theorem 2.4, this gives
an approximate characterization of the query complexity of the problem as a function of γ
and r. That is, for ellipsoidal clusters, a margin of γ is necessary and sufficient to achieve
a query complexity that grows roughly as (1/γ)r. This lower bound also implies that our
algorithm is nearly optimal, even compared to algorithms that can fail. The result is given
formally in Section 2.7.

Our final contribution is a set of experiments on large synthetic datasets. They show that
our algorithm recur achieves exact cluster reconstruction efficiently, see Section 2.8.

2.4 Related work.
The semi-supervised active clustering (SSAC) framework was introduced in Ashtiani et al.
[2016], together with the scq-k-means algorithm that recovers C using O(k2 ln k+k lnn) same-
cluster queries. This is achieved via binary search under assumptions much stronger than ours
(see above). In our setting, scq-k-means works only when every point c is close to the cluster
centroid and the condition number of W is small (see the appendix); indeed, our experiments
show that scq-k-means fails even when W ' I. Interestingly, even if binary search and its
generalizations are at the core of many active learning techniques Nowak [2011], here they
do not seem to help. We remark that we depend on γ in the same way as Ashtiani et al.
[2016]: if γ is a lower bound on the actual margin of C, then the correctness is guaranteed,
otherwise we may return any clustering. Clustering with same-cluster queries is also studied
in Mazumdar and Pal [2017], but they assume stochastic similarities between points that
do not necessarily define a metric. Same-cluster queries for center-based clustering in metric
spaces were also considered by Sanyal and Das [2019], under α-center proximity Awasthi et al.
[2012b] instead of γ-margin (see [Ashtiani et al., 2016, Appendix B] for a comparison between
the two notions). Finally, Ailon et al. [2018c] used same-cluster queries to obtain a PTAS for
k-means. Unfortunately, this gives no guarantee on the clustering error: a good k-means value
can be achieved by a clustering very different from the optimal one, and vice versa. From a
more theoretical viewpoint, the problem has been extensively studied for clusters generated
by a latent mixture of Gaussians Dasgupta [1999]; Kalai et al. [2010]; Hardt and Price [2015].
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As same-cluster queries can be used to label the points, one can also learn the clusters
using standard pool-based active learning tools. For example, using quadratic feature expan-
sion, our ellipsoidal clusters can be learned as hyperplanes. Unfortunately, the worst-case
label complexity of actively learning hyperplanes with margin γ < 1/2 is still Ω

(
(R/γ)d

)
,

where R is the radius of the smallest ball enclosing the points Gonen et al. [2013]. Some
approaches that bypass this lower bound have been proposed. In Gonen et al. [2013] they
prove an approximation result, showing that OPT×O

(
d ln R

γ

)
queries are sufficient to learn

any hyperplane with margin γ, where OPT is the number of queries made by the optimal
active learning algorithm. Moreover, under distributional assumptions, linear separators can
be learned efficiently with roughly O(d lnn) label queries Balcan et al. [2007b]; Balcan and
Long [2013b]; Dasgupta [2005]. In a different line of work, Kane et al. [2017b] show that
O
(
(d lnn) ln R

γ

)
queries suffice for linear separators with margin γ when the algorithm can

also make comparison queries: for any two pairs of points (x,x′) and (y,y′) from X, a com-
parison query returns 1 iff dW (x,x′) ≤ dW (y,y′). As we show, comparison queries do not
help learning the latent metric dW using metric learning techniques Kulis [2013] (see the ap-
pendix). In general, the query complexity of pool-based active learning is characterized by the
star dimension of the family of sets Hanneke and Yang [2015]. This implies that, if we allow
for a non-zero probability of failure, then O(s lnn) queries are sufficient for reconstructing a
single cluster, where s is the star dimension of ellipsoids with margin γ. To the best of our
knowledge, this quantity is not known for ellipsoids with margin (not even for halfspaces with
margin), and our results seem to suggest a value of order (d/γ)d. If true, this would imply
then the general algorithms of Hanneke and Yang [2015] could be used to solve our problem
with a number of queries comparable to ours. However, note that our reconstructions are
exact with probability one, and are achieved by simple algorithms that work well in practice.

2.5 Recovery of a single cluster with one-sided error
This section describes the core of our cluster recovery algorithm. The main idea is to show
that, given any subset SC ⊆ C of some cluster C, if we compute a small ellipsoid E containing
SC , then we can compute C ∩ E deterministically with a small number of queries.

Consider a subset SC ⊆ C, and let conv(SC) be its convex hull. The minimum-volume
enclosing ellipsoid (MVEE) of SC , also known as Löwner-John ellipsoid and denoted by
EJ(SC), is the volume-minimizing ellipsoid E such that SC ⊂ E (see, e.g., Todd [2016]). The
main result of this section is that C ∩ EJ(SC) is easy to learn. Formally, we prove:

Theorem 2.5. Suppose we are given a subset SC ⊆ C, where C is any unknown cluster. Then
we can learn C∩EJ(SC) using max

{
2r,O

(
r
γ ln rγ

)r} same-cluster queries, where r = rank(C)

and EJ(SC) is the minimum-volume enclosing ellipsoid of SC .

In the rest of the section we show how to learn C ∩ EJ(SC) and sketch the proof of the
theorem.

The MVEE. The first idea is to compute an ellipsoid E that is “close” to conv(SC). A
d-rounding of SC is any ellipsoid E satisfying the following (we assume the center of E is the
origin):

1

d
E ⊆ conv(SC) ⊆ E (2.2)

In particular, by a classical theorem by John Khachiyan [1996a], the MVEE EJ(SC) is a
d-rounding of SC . We therefore let E = EJ(SC). Note however that any d-rounding ellipsoid
E can be chosen instead, as the only property we exploit in our proofs is (2.2).

It should be noted that the ambient space dimensionality d can be replaced by r =
rank(SC). To this end, before computing E = EJ(SC), we compute the span V of SC and
a canonical basis for it using a standard algorithm (e.g., Gram-Schmidt). We then use V as
new ambient space, and search for EJ(SC) in V . This works since EJ(SC) ⊂ V , and lowers
the dimensionality from d to r ≤ d. From this point onward we still use d in our notation,
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Figure 2.2: The tessellationR of E∩Rd+. Every hyperrectangle R (shaded)
is such that R ∩ E is monochromatic, i.e. contains only points of C or of

X \ C.

but all our constructions and claims hold unchanged if instead one uses r, coherently with
the bounds of Theorem 2.5.

The monochromatic tessellation. We now show that, by exploiting the γ-margin condi-
tion, we can learn C∩EJ(SC) with a small number of queries. We do so by discretizing EJ(SC)
into hyperrectangles so that, for each hyperrectangle, we need only one query to decide if it
lies in C or not. The crux is to show that there exists such a discretization, which we call
monochromatic tessellation, consisting of relatively few hyperrectangles, roughly ( dγ ln dγ )d.

Let E = EJ(SC). To describe the monochromatic tessellation, we first define the notion
of monochromatic subset:

Definition 2.6. A set B ⊂ Rd is monochromatic with respect to a cluster C if it does not
contain two points x,y with x ∈ C and y /∈ C.

Fix a hyperrectangle R ⊂ Rd. The above definition implies that, if B = R∩E is monochro-
matic, then we learn the label of all points in B with a single query. Indeed, if we take any
y ∈ B and any x ∈ SC , the query scq(y,x) tells us whether y ∈ C or y /∈ C simultaneously
for all y ∈ B. Therefore, if we can cover E with m monochromatic hyperrectangles, then we
can learn C ∩ E with m queries. Our goal is to show that we can do so with m ' ( dγ ln dγ )d.

We now describe the construction in more detail; see also Figure 2.2. The first observation
is that, if any two points x,y ∈ X are such that x ∈ C and y /∈ C, then |xi−yi| & γ/d for some
i. Indeed, if this was not the case then x,y would be too close and would violate the γ-margin
condition. This implies that, for ρ ' 1 + γ/d, any hyperrectangle whose sides have the form
[βi, βiρ ] is monochromatic. We can exploit this observation to construct the tessellation. Let
the semiaxes of E be the canonical basis for Rd and its center µ be the origin. For simplicity,
we only consider the positive orthant, the argument being identical for every other orthant.
Let Li be the length of the i-th semiaxis of E. The goal is to cover the interval [0, Li] along the
i-th semiaxis of E with roughly logρ(Li/βi) intervals of length increasing geometrically with
ρ. More precisely, we let Ti =

{[
0, βi

]
,
(
βi, βiρ

]
, . . . ,

(
βiρ

b−1, βiρ
b
]}

, where βi > 0, ρ > 1,
and b ≥ 0 are functions of γ and d. Then our tessellation is the cartesian product of all the
Ti:

Definition 2.7. Let Rd+ be the positive orthant of Rd. The tessellation R of E∩Rd+ is the set
of (b+1)d hyperrectangles expressed in the canonical basis {u1, . . . ,ud} of E: R = T1×. . .×Td.

We now come to the central fact. Loosely speaking, if βi ' γ
dLi then the point (β1, . . . , βd)

lies “well inside” conv(SC), because (2.2) tells us E itself is close to conv(SC). By setting ρ, b
adequately, then, we can guarantee the intervals of Ti of the form (βiρ

j−1, βiρ
j ] cover all the

space between conv(SC) and E. More formally we show that, for a suitable choice of βi, ρ, b,
the tessellation R satisfies the following properties (see the appendix):
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(1) |R| ≤ max
{

1,O
(
d
γ ln dγ

)d}
(2) E ∩ Rd+ ⊆

⋃
R∈R

R

(3) For every R ∈ R, the set R ∩ E is monochromatic w.r.t. C
Once the three properties are established, Theorem 2.5 immediately derives from the discus-
sion above.

Pseudocode. We list below our algorithm that learns C ∩ E subject to the bounds of
Theorem 2.5. We start by computing E = EJ(SC) and selecting the subset EX = X ∩E. We
then proceed with the tessellation, but without constructing R explicitly. Note indeed that,
for every y ∈ EX , the hyperrectangle R(y) containing y is determined uniquely by |yi|/βi
for all i ∈ [d]. In fact, we can manage all orthants at once by simply looking at yi/βi. After
grouping all points y by their R(y), we repeatedly take a yet-unlabeled R and label it as C
or not C. Finally, we return all points in the hyperrectangles labeled as C.

Algorithm 1 TessellationLearn(X,SC , γ)

1: compute E ← EJ(SC) or any other r-rounding of SC
2: compute EX ← X ∩ E
3: compute βi, ρ, b as a function of r, γ . see Figure 2.2
4: for every y ∈ EX do
5: map y to R(y)

6: xC ← any point in SC
7: while there is some unlabeled R do
8: label(R)← scq(xC ,y), where y is any point s.t. R(y) = R

9: return all y mapped to R such that label(R) = +1

Low-stretch separators. We conclude this section with a technical note. Although the
MVEEs enable exact cluster reconstruction, they do not give PAC guarantees since they do
not ensure consistency. Indeed, if we draw a sample S from X and let SC = S ∩ C, there is
no guarantee that E = EJ(SC) separates SC from S \SC . On the other hand, any ellipsoid E
separating SC from S \ SC is a good classifier in the PAC sense, but there is no guarantee it
will be close to conv(SC), thus breaking down our algorithm. Interestingly, in the appendix
we show that it is possible to compute an ellipsoid that is simultaneously a good PAC classifier
and close to conv(SC), yielding essentially the same bounds as Theorem 2.5. Formally, we
have:

Definition 2.8. Given any finite set X in Rd and a subset S ⊂ X, a Φ-stretch separator for
S is any ellipsoid E separating S from X \ S and such that E ⊆ ΦEJ(S).

Theorem 2.9. Suppose C has margin γ > 0 w.r.t. to some z ∈ Rd and fix any subset
SC ⊆ C. There exists a Φ-stretch separator for SC with Φ = 64

√
2d2 max

{
125, 1/γ3

}
.

2.6 Exact recovery of all clusters
In this section we conclude the construction of our algorithm recur (listed below), and we
bound its query complexity and running time. recur proceeds in rounds. At each round, it
draws samples uniformly at random from X until, for some sufficiently large b > 0, it obtains
a sample SC of size bd2 ln k from some cluster C. At this point, by concentration and PAC
bounds, we know that any ellipsoid E containing SC satisfies |C∩E| ≥ 1

4k |X| with probability
at least 1/2. recur uses the routine TessellationLearn() from Section 2.5 to compute such a
subset C ∩ E efficiently (see Theorem 2.5). recur then deletes C ∩ E from X and repeats
the process on the remaining points. This continues until a fraction (1 − ε) of points have
been clustered. In particular, when ε < 1/n, recur clusters all the points of X.

Regarding the correctness of recur, we have:
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Algorithm 2 recur(X, k, γ, ε)

1: Ĉ1, . . . , Ĉk ← ∅
2: while |X| > εn do
3: draw samples with replacement from X until |SC | ≥ bd2ln k for some C
4: CE ← TessellationLearn(X,SC , γ)
5: add CE to the corresponding Ĉi
6: X ← X \ CE
7: return Ĉ = {Ĉ1, . . . , Ĉk}

Lemma 2.10. The clustering Ĉ returned by recur(X, k, γ, ε) satisfies 4(Ĉ, C) ≤ ε. In
particular, for ε < 1/n we have 4(Ĉ, C) = 0.

This holds because 4(Ĉ, C) is bounded by the fraction of points that are still in X when
recur returns; and this fraction is at most ε by construction. Regarding the cost of recur,
we have:

Lemma 2.11. recur(X, k, γ, ε) makes O(k3 ln k ln(1/ε)) same-cluster queries in expectation,
and for all fixed a ≥ 1, recur(X, k, γ, 0) with probability at least 1−n−a makes O(k3 ln k lnn)

same-cluster queries and runs in time O((k lnn)(n+ k2 ln k)) = Õ(kn+ k3).

In the rest of the section we sketch the proof of Lemma 2.11. We start by bounding the
number of rounds performed by recur. Recall that, at each round, with probability at least
1/2 a fraction at least 1/4k of points are labeled and removed. Thus, at each round, the size
of X drops by (1− 1/8k) in expectation. Hence, we need roughly 8k ln(1/ε) rounds before the
size of X drops below εn. Indeed, we prove:

Lemma 2.12. recur(X, k, γ, ε) makes at most 8k ln(1/ε) rounds in expectation, and for
all fixed a ≥ 1, recur(X, k, γ, 0) with probability at least 1 − n−a performs at most (8k +
6a
√
k) lnn rounds.

We can now bound the query cost and running time of recur, by counting the work done
at each round and using Lemma 2.12. To simplify the discussion we treat d, r, γ as constants,
but fine-grained bounds can be derived immediately from the discussion itself.

Query cost of recur. The algorithm makes queries at line 3 and line 4. At line 3,
recur draws at most bkd2 ln k = O(k ln k) samples. This holds since there are at most
k clusters, so after bkd2 ln k samples, the condition |SC | ≥ bd2 ln k will hold for some C.
Since learning the label of each sample requires at most k queries, line 3 makes O(k2 ln k)
queries in total. At line 4, recur makes f(d, γ) = O(1) queries by Theorem 2.5. Together
with Lemma 2.12, this implies that recur with probability at least 1 − n−a makes at most
O(k lnn)×O(k2 ln k) = O(k3 ln k lnn) queries.

Running time of recur. Line 3 takes time O(k2 ln k), see above. The rest of each round
is dominated by the invocation of TessellationLearn at line 4. Recall then the pseudocode of
TessellationLearn from Section 2.5. At line 1, computing E = EJ(SC) or any r-rounding of SC
takes time O(|SC |3.5 ln |SC |), see Khachiyan [1996a].1 This is in Õ(1) since by construction
|SC | = O(d2 ln k) = Õ(1). Computing EX = X ∩ E takes time O(|X|poly(d)) = O(n). For
the index (line 4), we can build in time O(|X ∩ E|) a dictionary that maps every R ∈ R to
the set R ∩ EX . The classification part (line 7) takes time |R| = O(1). Finally, enumerating
all positive R and concatenating the list of their points takes again time O(|X ∩E|poly(d)).
By the rounds bound of Lemma 2.12, then, recur with probability at least 1− n−a runs in
time O((k lnn)(n+ k2 ln k)).

2.7 Lower bounds
We show that any algorithm achieving exact cluster reconstruction must, in the worst case,
perform a number of same-cluster queries that is exponential in d (the well-known “curse of
dimensionality”). Formally, in the appendix we prove:

1More precisely, for a set S an ellipsoid E such that 1
(1+ε)d

E ⊂ conv(S) ⊂ E can be computed in
O(|S|3.5 ln(|S|/ε)) operations in the real number model of computation, see Khachiyan [1996a].
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Theorem 2.13. Choose any possibly randomized learning algorithm. There exist:
1. for all γ ∈ (0, 1/7) and d ≥ 2, an instance on n = Ω

(
( 1+γ

8γ )
d−1
2

)
points and 3 clusters

2. for all γ > 0 and d ≥ 48(1 + γ)2, an instance on n = Ω
(
e

d
48(1+γ)2

)
points and 2 clusters

such that (i) the latent clustering C has margin γ, and (ii) to return with probability 2/3 a Ĉ
such that 4(Ĉ, C) = 0, the algorithm must make Ω(n) same-cluster queries in expectation.

The lower bound uses two different constructions, each one giving a specific instance distri-
bution where any algorithm must perform Ω(n) queries in expectation, where n is exponential
in d as in the statement of the theorem. The first construction is similar to the one shown
in Gonen et al. [2013]. The input set X is a packing of ' (1/γ)d points on the d-dimensional
sphere, at distance ' √γ from each other. We show that, for x = (x1, . . . , xd) ∈ X drawn
uniformly at random, setting W = (1 + γ) diag(x2

1, . . . , x
2
d) makes x an outlier. That is,

X \ {x} forms a first cluster C1, and {x} forms a second cluster C2, and both clusters satisfy
the margin condition. In order to output the correct clustering, any algorithm must find
x, which requires Ω(n) queries in expectation. In the second construction, X is a random
sample of n ' exp(d/(1 + γ)2) points from the d-dimensional hypercube {0, 1}d such that
each coordinate is independently 1 with probability ' 1

1+γ . Similarly to the first construction
we show that, for x ∈ X drawn uniformly at random, setting W = (1 + γ) diag(x1, . . . , xd)
makes x an outlier, and any algorithm needs Ω(n) queries to find it.

2.8 Experiments
We implemented our algorithm recur and compared it against scq-k-means Ashtiani et al.
[2016]. To this end, we generated four synthetic instances on n = 105 points with increasing
dimension d = 2, 4, 6, 8. The latent clusterings consist of k = 5 ellipsoidal clusters of equal
size, each one with margin γ = 1 w.r.t. a random center and a random PSD matrix with
condition number κ = 100, making each cluster stretched by 10× in a random direction. To
account for an imperfect knowledge of the data, we fed recur with a value of γ = 10 (thus, it
could in principle output a wrong clustering). We also adopted for recur the batch sampling
of scq-k-means, i.e., we draw k · 10 samples in each round; this makes recur slightly less
efficient than with its original sampling scheme (see line 3).

To further improve the performance of recur, we use a simple “greedy hull expansion”
heuristic that can increase the number of points recovered at each round without performing
additional queries. Immediately after taking the sample SC , we repeatedly expand its convex
hull conv(SC) by a factor ' (1 + γ/d), and add all the points that fall inside it to SC . If C
is sufficiently dense, a substantial fraction of it will be added to SC ; while, by the margin
assumption, no point outside C will ever be added to SC (see the proof of the tessellation).
This greedy hull expansion is repeated until no new points are found, in which case we proceed
to compute the MVEE and the tessellation.

Figure 2.3 shows for both algorithms the clustering error 4 versus the number of queries,
round by round, averaged over 10 independent runs (scq-k-means has a single measurement
since it runs “in one shot”). The run variance is negligible and we do not report it. Observe that
the error of scq-k-means is always in the range 20%–40%. In contrast, the error of recur
decreases exponentially with the rounds until the latent clustering is exactly recovered, as
predicted by our theoretical results. To achieve 4 ≤ .05, recur uses less than 3% of the
queries needed by a brute force labeling, which is kn = 5×105. Note that, except when clusters
are aligned as in Figure 2.1, scq-k-means continues to perform poorly even after whitening
the input data to compensate for skewness. Finally, note how the number of queries issued
by recur increases with the dimensionality d, in line with Theorem 2.13.
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Figure 2.3: Clustering error vs. number of queries for k = 5 and d =
2, 4, 6, 8 (left to right, top to bottom). While scq-k-means performs rather

poorly, recur always achieves exact reconstruction.



15

Appendix

2.A Ancillary results

2.A.1 VC-dimension of ellipsoids
For any PSD matrix M , we denote by EM =

{
x ∈ Rd : dM (x,µ) ≤ 1

}
the µ-centered el-

lipsoid with semiaxes of length λ−1/2
1 , . . . , λ

−1/2
d , where λ1, . . . , λd ≥ 0 are the eigenvalues of

M . We recall the following classical VC-dimension bound (see, e.g., Fournier and Teytaud
[2011]).

Theorem 2.14. The VC-dimension of the class H = {EM : M ∈ Rd,M � 0} of (possibly
degenerate) ellipsoids in Rd is d2+3d

2 .

2.A.2 Generalization error bounds
The next result is a simple adaptation of the classical VC bound for the realizable case (see,
e.g., [Shalev-Shwartz and Ben-David, 2014c, Theorem 6.8]).

Theorem 2.15. There exists a universal constant c > 0 such that for any family H of
measurable sets E ⊂ Rd of VC-dimension d < ∞, any probability distribution D on Rd, and
any ε, δ ∈ (0, 1), if S is a sample of m ≥ cd ln(1/ε)+ln(1/δ)

ε points drawn i.i.d. from D, then for
any E∗ ∈ H we have:

D
(
E∆E∗

)
≤ ε and D

(
E′ \ E∗

)
≤ ε

with probability at least 1− δ with respect to the random draw of S, where E is any element
of H such that E ∩ S = E∗ ∩ S, and E′ is any element of H such that E∗ ∩ S ⊆ E′ ∩ S.

The first inequality is the classical PAC bound for the zero-one loss, which uses the fact
that the VC dimension of {E∆E∗ : E ∈ H} is the same as the VC dimension of H. The
second inequality follows immediately from the same proof by noting that, for any E∗ ∈ H
the VC dimension of {E \ E∗ : E ∈ H} is not larger than the VC dimension of H because,
for any sample S and for any F,G ∈ H, (F \E∗) ∩ S 6= (G \E∗) ∩ S implies F ∩ S 6= G ∩ S.

2.A.3 Concentration bounds
We recall standard concentration bounds for non-positively correlated binary random vari-
ables, see Dubhashi and Panconesi [2009a]. Let X1, . . . , Xn be binary random variables. We
say that X1, . . . , Xn are non-positively correlated if for all I ⊆ {1, . . . , n} we have:

P
(
∀i ∈ I : Xi = 0

)
≤
∏
i∈I

P(Xi = 0) and P
(
∀i ∈ I : Xi = 1

)
≤
∏
i∈I

P(Xi = 1) (2.3)

Lemma 2.16 (Chernoff bounds). Let X1, . . . , Xn be non-positively correlated binary random
variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any ε > 0, we have:

P
(
X < (1− ε)E[X]

)
< e−

ε2

2 E[X] (2.4)

P
(
X > (1 + ε)E[X]

)
< e−

ε2

2+εE[X] (2.5)
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2.A.4 Yao’s minimax principle
We recall Yao’s minimax principle for Monte Carlo algorithms. Let A be a finite family of
deterministic algorithms and I a finite family of problem instances. Fix any two distributions
p over I and q over A, and any δ ∈ [0, 1/2]. Let minA∈A EI∼p[Cδ(I, A)] be the minimum,
over every algorithm A that fails with probability at most δ over the input distribution p, of
the expect cost of A over the input distribution itself. Similarly, let maxI∈I EA∼q[Cδ(I, A)]
be the expected cost of the randomized algorithm defined by q under its worst input from
I, assuming it fails with probability at most δ. Then (see Motwani and Raghavan [1995],
Proposition 2.6):

max
I∈I

Eq[Cδ(I, A)] ≥ 1

2
min
A∈A

Ep[C2δ(I, A)] (2.6)

2.B Supplementary material for Section 2.5

2.B.1 Monochromatic Tessellation
We give a formal version of the claim about the monochromatic tessellation of Section 2.5:

Theorem 2.17. Suppose we are given an ellipsoid E such that 1
dΦE ⊂ conv(SC) ⊂ E for

some stretch factor Φ > 0. Then for a suitable choice of βi, ρ, b, the tessellation R of the
positive orthant of E (Definition 2.7) satisfies:
(1) |R| ≤ max

{
1, O

(
dΦ
γ lndΦ

γ

)d}
(2) E ∩ Rd+ ⊆ ∪R∈RR
(3) for every R ∈ R, the set R ∩ E is monochromatic

In order to prove Theorem 2.17, we define the tessellation and prove properties (1-3) for
γ ≤ 1/2. For γ > 1

2 the tessellation is defined as for γ = 1
2 , and one can check all properties

still hold. In the proof we use a constant c =
√

5 and assume γ < c2 − 2c, which is satisfied
since c2 − 2c = 5− 2

√
5 > 1/2.

First of all, we define the intervals Ti. The base i-th coordinate is:

βi =
γ

c
√

2d

Li
Φd

(2.7)

Note that, for all i,

Li
βi

=
Φcd
√

2d

γ
(2.8)

Define:

α =
γ

c
√

2Φd
(2.9)

and let:

b = max

(
0,

⌈
log1+α

(cΦd√2d

γ

)⌉)
(2.10)

(The parameter ρ of the informal description of Section 2.5 is exactly 1 + α). Finally, define
the interval set along the i-th axis as:

Ti =


{[

0, βi
]}

if b = 0{[
0, βi

]
,
(
βi, βi(1 + α)

]
, . . . ,

(
βi(1 + α)b−1, βi(1 + α)b

]}
if b ≥ 1

(2.11)
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Proof of (1). By construction, |Ti| = b+ 1. Thus, |R| =
∏
i∈[d] |Ti| = (b+ 1)d. Thus, if

b = 0 then |R| = 1, else by (2.10) and 2.8,

b =

 ln
(
cΦd
√

2d
γ

)
ln(1 + α)

 (2.12)

≤

⌈
2

α
ln
(cΦd√2d

γ

)⌉
since ln(1 + α) ≥ α/2 as α ≤ 1 (2.13)

=

⌈
2
√

2cΦd

γ
ln
cΦd
√

2d

γ

⌉
definition of α (2.14)

= O

(
dΦ

γ
ln
dΦ

γ

)
since dΦ ≥ 1, γ ≤ 1/2 (2.15)

in which case |R| = O
(
dΦ
γ ln dΦ

γ

)d. Taking the maximum over the two cases proves the claim.
Proof of (2). We show for any x ∈ E ∩ Rd+ there exists R ∈ R containing x. Clearly, if

x ∈ E ∩ Rd+, then 〈x,ui〉 ∈ [0, Li] for all i ∈ [d]. But Ti covers, along the i-th direction ui,
the interval from 0 to

βi(1 + α)b = βi(1 + α)max(0,dlog1+α(Li/βi)e) ≥ βi(1 + α)dlog1+α(Li/βi)e ≥ Li (2.16)

Therefore some R ∈ R contains x.
Proof of (3). Given any hyperrectangle R ∈ R, we show that the existence of x,y ∈ R∩E

with x ∈ C and y /∈ C leads to a contradiction. For the sake of the analysis we conventionally
set the origin at the center µ of E, i.e. we assume µ = 0.

We define Ein = 1
ΦdE and let M = UΛU> be its PSD matrix, where U =

[
u1, . . . ,ud]

and Λ = diag(λ1, . . . , λd). Note that λi = 1
`2i

= Φ2d2

L2
i

where `i = Li
Φd is the length of the i-th

semiaxis of Ein. For any R ∈ R, let Ri be the projection of R on ui (i.e. Ri is one of the
intervals of Ti defined in (2.11)). Let D = D(R) = {i ∈ [d] : 0 /∈ Ri}. We let UD and U¬D be
the matrices obtained by zeroing out the columns of U corresponding to the indices in [d] \D
and D, respectively. Observe that if x,y ∈ R ∩ E then:

〈x− y,ui〉2 < α2 〈x,ui〉2 ∀i ∈ D (2.17)

〈x− y,ui〉2 ≤ β2
i ∀i /∈ D (2.18)

Now suppose C has margin at least γ for some γ ∈ (0, c2 − 2c], and suppose x,y ∈ R ∩ E
with x ∈ C and y /∈ C. Through a set of ancillary lemmata proven below, this leads to the
absurd:

γ2

c2
< dW (y,x)2 Lemma 2.18 (2.19)

≤ dM (y,x)2 Lemma 2.19 (2.20)

< α2dM (x,µ)2 +
γ2

2c2
Lemma 2.20 (2.21)

≤ γ2

2c2
+
γ2

2c2
Lemma 2.21 (2.22)

In the rest of the proof we prove the four lemmata.

Lemma 2.18. γ
c < dW (y,x).

Proof. Let z be the point w.r.t. which the margin of C holds. By the margin assumption,

dW (y, z) >
√

1 + γ and dW (x, z) ≤ 1 (2.23)

By the triangle inequality then,

dW (y,x) ≥ dW (y, z)− dW (x, z) >
√

1 + γ − 1 (2.24)
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One can check that for γ ≤ c2 − 2c we have 1 + γ ≥ (1 + γ
c )2. Therefore

dW (y,x) >
√

(1 + γ/c)2 − 1 =
γ

c
(2.25)

as desired.

Lemma 2.19. dW (·) ≤ dM (·).

Proof. By the assumptions of the theorem, Ein ⊆ convµ(C). Moreover, by the assumptions
on dW (·), the unit ball of dW (·) contains conv(C). Thus, the unit ball of dW (·) contains the
unit ball of dM (·). This implies W �M , thus ‖ · ‖W ≤ ‖ · ‖M and dW (·) ≤ dM (·).

Lemma 2.20. dM (y,x)2 < α2dM (x,µ)2 + γ2

2c2 .

Proof. We decompose dM (y,x)2 along the colspaces of UD and U¬D:

dM (y,x)2 = ‖M1/2(y − x)‖22 (2.26)

= ‖M1/2(y − x)‖2UDU>D + ‖M1/2(y − x)‖2U¬DU>¬D (2.27)

Next, we bound the two terms of (2.27). To this end, we need to show that for all D ⊆ [d]
and v ∈ Rd:

‖M1/2v‖2UDUDᵀ =
∑
i∈D

λi 〈v,ui〉2 (2.28)

Let indeed JD = diag(1D) be the selection matrix corresponding to the indices of D. Then
UD = UJD, and so UᵀUD = UᵀUJD = JD. This gives:

‖M1/2v‖2UDUDᵀ = vᵀ(UΛ1/2Uᵀ)UDUD
ᵀ(UΛ1/2Uᵀ)v definition of M and ‖ · ‖· (2.29)

= vᵀUΛ1/2JDJDΛ1/2Uᵀv since UᵀUD = JD (2.30)

= vᵀUJDΛ1/2Λ1/2JDU
ᵀv since Λ, JD are diagonal (2.31)

= vᵀUDΛUD
ᵀv since UJD = UD (2.32)

= ‖UDᵀv‖2Λ by definition (2.33)

=
∑
i∈D

λi 〈v,ui〉2 (2.34)

Now we can bound the first term of (2.27):

‖M1/2(y − x)‖2UDU>D =
∑
i∈D

λi 〈y − x,ui〉2 by (2.34) (2.35)

< α2
∑
i∈D

λi 〈x,ui〉2 by (2.17) (2.36)

= α2‖M1/2x‖2UDU>D by (2.34) (2.37)

≤ α2‖M1/2x‖2UU> (2.38)

= α2‖M1/2x‖22 since UU> = I (2.39)

= α2d2
M (x,µ) since µ = 0 (2.40)

And for the second term of (2.27), we have:

‖M1/2(y − x)‖2U¬DU>¬D =
∑
i/∈D

λi 〈y − x,ui〉2 by (2.34) (2.41)

≤
∑
i/∈D

λiβ
2
i by (2.18) (2.42)

=
∑
i/∈D

Φ2d2

L2
i

(
γ

c
√

2d

Li
Φd

)2

by definition of λi and βi (2.43)
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=
∑
i/∈D

γ2

2dc2
(2.44)

≤ γ2

2c2
(2.45)

Summing the bounds on the two terms shows that dM (y,x)2 < α2dM (x,µ)2+ γ2

2c2 , as claimed.

Lemma 2.21. α2dM (x,µ)2 ≤ γ2

2c2 .

Proof. By construction we have x ∈ E and E = Φd · Ein. Therefore 1
Φdx ∈ Ein, that is:

1 ≥ dM
( 1

Φd
x,µ

)2

=
1

Φ2d2
dM (x,µ)2 (2.46)

where we used the fact that dM (·,µ)2 = ‖ · ‖2M since µ = 0. Rearranging terms, this proves
that dM (x,µ)2 ≤ Φ2d2. Multiplying by α2, we obtain:

α2dM (x,µ)2 ≤
(

γ√
2cΦd

)2

Φ2d2 =
γ2

2c2
(2.47)

as desired.

The proof of the theorem is complete.

2.B.2 Low-stretch separators and proof of Theorem 2.9
In this section we show how to compute the separator of Theorem 2.9. In fact, computing
the separator is easy; the nontrivial part is Theorem 2.9 itself, that is, showing that such a
separator always exists.

To compute the separator we first compute the MVEE EJ = (M?,µ?) of SC (see Sec-
tion 2.5). We then solve the following semidefinite program:

max
α∈R,µ∈Rd,M∈Rd×d

α

s.t. M � αM?〈
M, (x− µ)(x− µ)>

〉
≤ 1 ∀x ∈ SC〈

M, (y − µ)(y − µ)>
〉
> 1 ∀y ∈ SC̄

(2.48)

where, for any two symmetric matrices A and B, 〈A,B〉 = tr(AB) is the usual Frobenius inner
product, implying 〈M, (x − µ)(x − µ)>〉 = dM (x,µ)2. In words, the constraint M � αM?

says that E must fit into EJ if we scale EJ by a factor Φ = 1/
√
α. The other constraints require

E to contain all of SC but none of the points of SC̄ . The objective function thus minimizes
the stretch Φ of E.

In the rest of this paragraph we prove Theorem 2.9.

Proof of Theorem 2.9 (sketch). To build the intuition, we first give a proof sketch where
the involved quantities are simplified. The analysis is performed in the latent space Rd with
inner product 〈u,v〉 = u>Wv. Setting conventionally z = 0, C then lies in the unit ball
B0 and all points of X \ C lie outside

√
1 + γ B0. For simplicity we assume γ � 1 so that√

1 + γ ' 1+γ, but we can easily extend the result to any γ > 0. Now fix the subset SC ⊆ C,
and let EJ = EJ(SC) be the MVEE of SC . Observe the following fact: B0 trivially satisfies
(1), but in general violates (2); in contrast, EJ trivially satisfies (2), but in general violates
(1). The key idea is thus to “compare” B0 and EJ and take, loosely speaking, the best of the
two. To see how this works, suppose for instance EJ has small radius, say less than γ/4. In
this case, E = EJ yields the thesis. Indeed, since the center µ? of EJ is in B0, then any point
of E is within distance 1 + γ/4 ≤

√
1 + γ of the center of B0, and lies inside

√
1 + γ B0. Thus

EJ separates SC from X \ C, satisfying (1). At the other extreme, suppose EJ is large, say
with all its d semiaxes longer than γ/4. In this case, E = B0 yields the thesis: indeed, by
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µ

B0

z

Figure 2.B.1: Left: the MVEE EJ of SC and the affine subspace U + µ?

(marked simply as U) spanned by its largest semiaxes. There is no guarantee
that EJ ⊆

√
1 + γ B0. Right: the separator E, centered in the center µ of B,

with the largest semiaxis in U and the smallest one in U⊥. We can guarantee
that SC ⊂ E ⊂

√
1 + γ B0.

hypothesis E fits entirely inside 4/γEJ, satisfying (2). Unfortunately, the general case is more
complex, since EJ may be large along some axes and small along others. In this case, both
B0 and EJ fail to satisfy the properties. This requires us to choose the axes and the center of
E more carefully. We show how to do this with the help of Figure 2.B.1.

Let {u1, . . . ,ud} be the orthonormal basis defined by the semiaxes of EJ and `?1, . . . , `
?
d

be the corresponding semiaxes lengths. We define a threshold ε = γ3
/d2, and partition

{u1, . . . ,ud} as AP = {i : `?i > ε} and AQ = {i : `?i ≤ ε}. Thus AP contains the large
semiaxes of EJ and AQ the small ones. Let U,U⊥ be the subspaces spanned by {ui : i ∈ AP }
and {ui : i ∈ AQ}, respectively. Consider the subset B = B0 ∩ (µ? + U). Note that B is a
ball in at most d dimensions, since it is the intersection of a d-dimensional ball and an affine
linear subspace of Rd. Let µ and ` be, respectively, the center and radius of B. We set the
center of E at µ, and the lengths `i of its semiaxes as follows:

`i =

{ `√
1−γ if i ∈ AP
`?i√
ε

if i ∈ AQ
(2.49)

Loosely speaking, we are “copying” the semiaxes from either B0 or EJ depending on `?i . In
particular, the large semiaxes (in AP ) are set so to contain all of B and exceed it by a little,
taking care of not intersecting

√
1 + γ B0. Instead, the small semiaxes (in AQ) are so small

that we can safely set them to 1/
√
ε times those of EJ, so that we add some “slack” to include

SC without risking to intersect
√

1 + γ B0. Now we are done, and our low-stretch separator
is (M,µ) where M =

∑d
i=1`

−2
i uiui

ᵀ. This the ellipsoid E that yields Theorem 2.9. In the
next paragraph, we show how we can find efficiently all points in E that belong to C.

2.B.3 Proof of Theorem 2.9 (full).
We prove the theorem for γ ≤ 1/5 and use the fact that whenever C has weak margin γ then it
also has weak margin γ′ for all γ′ > γ. As announced, the analysis is carried out in the latent
space Rd equipped with the inner product 〈u,v〉 = u>Wv. All norms ‖u‖, distances d(u,v),
and (cosine of) angles 〈u,v〉

/(
‖u‖ ‖v‖

)
are computed according to this inner product unless

otherwise specified. Let B0 be the unit ball centered at the origin, which we conventionally
set at z, the point in the convex hull of C according to which the margin is computed. Then,
by assumption, C ⊂ B0, and x /∈

√
1 + γ B0 for all x /∈ C. For ease of notation, in this proof

be denote the MVEE by E? rather than EJ. Let then (E?,µ?) be the MVEE of SC ; note
that µ? ∈ conv(SC) ⊆ B0. We let u1, . . . ,ud be the orthonormal eigenvector basis given by
the axes of E? and λ?1, . . . , λ?d the corresponding eigenvalues. Note that if mini λ

?
i ≥ 5/γ2 then

E? has radius ≤ γ/
√

5 and thus, since µ? ∈ B0 and γ ≤ 1/5, its distance from B0 is at most
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Figure 2.B.2: Left: the separating ball B0 of C, the MVEE E? of SC , and
the affine subspace U + µ? spanned by its largest semiaxes. Middle: E is
our separator centered in the center µ of the ball B = U ∩ B0. Right: a
point x ∈ SC with its projections onto U and U⊥ with respect to the origin,

which we conventionally set at µ (the center of E).

1+ γ/
√

5 =
√

1 + 2γ/
√

5 + γ2
/5 <

√
1 + γ. In this case we can simply set E = E? and the thesis

is proven. Thus, from now on we assume mini λ
?
i < 5/γ2.

Now let:

ε =
γ3

32d2
(2.50)

and partition (the indices of) the basis {u1, . . . ,ud} as follows:

AP = {i : λ?i < 1/ε2}, AQ = [d] \AP (2.51)

Since mini λ
?
i < 5/γ2 and 5/γ2 ≤ 1/ε2, then by construction the set AP is not empty. We now

define the ellipsoid E. Let U,U⊥ be the subspaces spanned by {ui : i ∈ AP } and {ui : i ∈ AQ}
respectively, and let B = B0 ∩ (µ? + U). Note that B is a ball, since it is the intersection of
a ball and an affine linear subspace. Let µ and ` be, respectively, the center and radius of B
and define

λi =

{
(1−

√
5γ/4)`−2 i ∈ AP

ελ?i i ∈ AQ
M =

d∑
i=1

λiuiui
ᵀ (2.52)

Then our ellipsoidal separator is E = {x ∈ Rd : dM (x,µ) ≤ 1}. See Figure 2.B.2 for a
pictorial representation. We now prove that E satisfies: (1) SC ⊂ E, (2) E ⊆ 64

√
2d2

γ3 E?(SC),
(3) E ⊂

√
1 + γ B0.

Proof of (1). Set the center µ of E as the origin. For all i ∈ [d] let Ui = uiui
ᵀ and define

the following matrices:

P0 =
∑
i∈AP

Ui, Q0 =
∑
i∈AQ

Ui (2.53)

P =
∑
i∈AP

λiUi, Q =
∑
i∈AQ

λiUi (2.54)

P? =
∑
i∈AP

λ?iUi, Q? =
∑
i∈AQ

λ?iUi (2.55)

We want to show that d2
M (x,µ) ≤ 1 for all x ∈ SC . Note that dM (x,µ)2 equals (recall that

µ = 0):

xᵀPx+ xᵀQx (2.56)
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Figure 2.B.3: Left: a point x ∈ SC ⊂ B0 which lies in E as well. Right:
for a fixed a > 0, the ratio b/a is maximized when the segment of length a
lies on the line passing through the center of B0, in which case b/a = sin θ

1−cos θ

for some θ ∈ (0, π/2).

Let us start with the second term of (2.56). By definition of Q? and since

µ?ᵀQ? = (µ? − µ)
ᵀ
Q? = 000

because µ? − µ ∈ U ,

xᵀQx = εxᵀQ?x = ε (x− µ?)ᵀQ?(x− µ?) ≤ ε <
γ

4
(2.57)

where the penultimate inequality follows from x ∈ E?.
We turn to the first term of (2.56). If we let p, q be the projections of x − µ = x onto

U,U⊥, so that

‖p‖2 = xᵀP0x, ‖q‖2 = xᵀQ0x (2.58)

then by definition of the λi we have:

xᵀPx =
1−

√
5γ/4

`2
‖p‖2 (2.59)

We can thus focus on bounding ‖p‖. Since B is a ball of radius `, then ‖p‖ ≤ ` + d(p, B),
where d(p, B) is the distance of p from its projection on B —see Figure 2.B.3, left.

Now, since x ∈ B0, the ratio d(p,B)
‖q‖ is maximized when ` → 0 (i.e., B has a vanishing

radius), in which case d(p, B) ≤ sin θ and ‖q‖ ≥ 1− cos θ, where θ ∈ (0, π/2]; see Figure 2.B.3
right. Then:

‖q‖
d(p, B)

≥ 1− cos θ

sin θ
= tan

θ

2
≥ θ

2
≥ sin θ

2
≥ d(p, B)

2
(2.60)

where we used the tangent half-angle formula and the Taylor expansion of tan θ. This yields
d(p, B) ≤

√
2 ‖q‖2. Thus:

‖p‖ ≤ `+
√

2‖q‖ (2.61)

But since λ?i ≥ 1/ε2 for all i ∈ AQ:

‖q‖2 = xᵀQ0x ≤ ε2 xᵀQ?x = ε2(x− µ?)ᵀQ?(x− µ?) ≤ ε2 (2.62)

Therefore:

xᵀPx ≤
1−

√
5γ/4

`2
(
`+
√

2ε
)2 ≤ (1−

√
5γ/4)

(
1 +

√
2ε/`
)2 (2.63)
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Next, we show that
√

2ε
` ≤

1
2

√
5γ/4. First,

√
2ε =

√
2
γ3

32d2
=
γ
√
γ

4d
(2.64)

We now temporarily set µ? as the origin. We want to show that the projection of 1/dE?

on U is contained in B. Now, the projection of an ellipsoid on the subspace spanned by a
subset of its axes is a subset of the ellipsoid itself, and U is by definition spanned by a subset
of the axes of E?. Therefore the projection P of 1/dE? on U satisfies P ⊆ 1/dE?. Suppose
then by contradiction that P 6⊆ B. Since B = U ∩ B0, this implies that 1/dE? /∈ B0. But by
John’s theorem, 1/dE? ⊆ conv(SC), and therefore conv(SC) /∈ B0, which is absurd. Therefore
P ⊆ B.

Let us get back to the proof, with µ as the origin. On the one hand, the definitions of
AP and U imply that the largest semiaxis of E? of length `? = 1/

√
mini λ?i lies in U , thus P

has radius at least 1
d`
?. On the other hand B has radius `, and we have seen that P ⊆ B.

Therefore, ` ≥ 1
d`
?. Finally, by our assumption on mini λ

?
i , we have mini λ

?
i < 5/γ2 and so

`? > γ/
√

5. Therefore, ` ≥ γ/
√

5d, which together with (2.64) guarantees
√

2ε
` ≤

√
5γ
4 = 1

2

√
5γ/4.

Thus, continuing (2.63):

xᵀPx ≤ (1−
√

5γ/4)
(

1 +
1

2

√
5γ/4

)2

(2.65)

Now (1− x)(1 + x
2 )2 < 1− 3

4x
2 for all x > 0, thus with x =

√
5γ/4 >

√
γ we get:

xᵀPx < 1− 3

4
γ (2.66)

By summing (2.57) and (2.66), we get:

xᵀPx+ xᵀQx < 1− 3

4
γ +

γ

4
< 1 (2.67)

Proof of (2). Comparing the eigenvalues of E and E?, and using ` ≤ 1 and γ ≤ 1/5, we
obtain:

λi
λ?i
≥

{
(1−
√

5γ/4)/`2

1/ε2 ≥ ε2

2 i ∈ AP
ε > ε2

2 i ∈ AQ
(2.68)

Thus the semiaxes lengths of E are at most
√

2/ε times those of E?. Now let E?+ be the
set obtained by scaling E? by a factor 2

√
2/ε = 64

√
2d2/γ3 about its origin µ?. Note that

µ? ∈ conv(SC) and, by item (1), conv(SC) ⊆ E, which implies µ? ∈ E. Now, E?+ contains
any set of the form y+ 1

2E
?
+ if the latter contains µ?; this includes the set

√
2
ε E

? centered in
µ, which in turn contains E as we already said.

Proof of (3). We prove that d(x,B0)2 < γ for all x ∈ E. Since B0 is the unit ball, this
implies E ⊂

√
1 + γ B0. Consider then any such x. Let again p, q be the projections of x on

U and U⊥ respectively. Because B ⊆ B0, d(x,B0)2 ≤ d(x, B)2 = d(p, B)2 + ‖q‖2. See again
Figure 2.B.3, left, but with x possibly outside B0. For the first term, note that

d(p, B) ≤ max
i∈AP

√
1/λi − ` (2.69)

By definition of λi, this yields:

d(p, B)2 ≤

 `√
1−

√
5γ/4

− `

2

≤

 1√
1−

√
5γ/4

− 1

2

(because ` ≤ 1)
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Now we show that the right-hand side is bounded by 3
4γ. Consider f(x) = 1√

1−x − 1 for

x ∈ [0, 1/2]. Now ∂2f
∂x2 = 3

4 (1−x)−5/2 > 0, so f is convex. Moreover, f(1/2) =
√

2−1 < 0.83·1/2,
and clearly f(0) = 0 ≤ 0.83 · 0. By convexity then, for all x ∈ [0, 1/2] we have f(x) ≤ 0.83x
which implies f(x)2 < 0.75x2. By substituting x =

√
5γ/4, for all γ ≤ 1/5 we obtain:

d(p, B)2 ≤

 1√
1−

√
5γ/4

− 1

2

<
3

4
· 5

4
γ =

15

16
γ (2.70)

Let us now turn to q. By definition of Q0, of Q, and of λi for i ∈ AQ, we have:

‖q‖2 = xᵀQ0x ≤ max
i∈AQ

1

λi
xᵀQx = max

i∈AQ

1

ελ?i
xᵀQx (2.71)

But xᵀQx ≤ 1 since x ∈ E, and recalling that λ?i ≥ 1/ε2 for all i ∈ AQ, we obtain:

‖q‖2 ≤ 1

ε(1/ε2)
= ε <

γ

16
(2.72)

Finally, by summing (2.70) and (2.72):

d(x,B0)2 ≤ d(p, B)2 + ‖q‖2 < γ (2.73)

The proof is complete.

2.C Supplementary material for Section 2.6

2.C.1 Lemma 2.22
Lemma 2.22. Let b > 0 be a sufficiently large constant. Let S be a sample of points drawn
independently and uniformly at random from X. Let C = arg maxCj∈C |S∩Cj |, let SC = S∩C,
and suppose |SC | ≥ bd2 ln k. If E is any (possibly degenerate) ellipsoid in Rd such that
SC = C ∩ E, then with probability at least 1/2 we have |C ∩ E| ≥ |X| 1

4k . The same holds if
we require that E ∩ (S \ SC) = ∅, i.e., that E separates SC from S \ SC .

Proof. Let n = |X| for short, and for any ellipsoid E let EX = E ∩ X. We show that,
with C defined as above, (i) with probability at least 1 − 1/4 we have |C| ≥ n/2k, and (ii)
with probability at least 1 − 1/4, if |C| ≥ n/2k then |EX∆C| ≤ 1/2|C| where ∆ denotes
symmetric difference. By a union bound, then, with probability at least 1/2 we have |E∩C| ≥
|C| − |EX∆C| ≥ 1

2 |C| ≥ n/4k.
(i). Let S be the multiset of samples drawn from X, and for every cluster Ci ∈ C let

Ni be the number of samples in Ci. Let s = kbd2 ln k; note that |S| ≤ s since there are
at most k clusters. Now fix any Ci with |Ci| < n

2k . Then E[Ni] ≤ s |Ci|n < bd2 ln k
2 , and

by standard concentration bounds (Lemma 2.16 in this supplementary material), we have
P(Ni ≥ bd2 ln k) = exp(−Ω(b ln k)), which for b large enough drops below 1/4k. Therefore, the
probability that Ni ≥ bd2 ln k when taking s ≤ kbd2 ln k samples is at most 1/4k. By a union
bound on all Ci with |Ci| < n/2k, then, |C| ≥ n/2k with probability 1− 1/4.

(ii). Consider now any Ci with |Ci| ≥ n/2k. We invoke the generalization bounds of
Theorem 2.15 in this supplementary material with ε = 1/4k and δ = 1/4k, on the hypothesis
class H of all (possibly degenerate) ellipsoids in Rd. For b large enough, the generalization
error of any ellipsoid E that contains SC is, with probability at least 1 − 1/4k, at most 1/4k,
which means |EX∆Ci| ≤ n/4k ≤ 1/2|Ci|, as desired. By a union bound on all clusters, with
probability at least 1 − 1/4 this holds for all Ci with |Ci| ≥ n/2k. The same argument holds
if we require E to separate S ∩ Ci from S \ Ci, see again Theorem 2.15. By a union bound
with point (i) above, we have E ∩ C ≤ 1/2|C| with probability at least 1/2, as claimed.
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2.C.2 Proof of Lemma 2.12
LetX0 = X and N0 = n, and for all i ≥ 1, letXi be the set of points not yet labeled at the end
of round i, let Ni = |Xi|, and let Ri = {Ni ≤ Ni−1(1− 1/4k)}. Recall that SC is large enough
so that, by Lemma 2.22 in this supplementary material, we have P(Ri = 1 |Xi−1) ≥ 1/2 for
all i. For every t ≥ 1 let ρt =

∑t
i=1Ri. Note that:

Nt ≤ N0(1− 1/4k)ρt < ne−
ρt
4k (2.74)

If ρt ≥ 4k ln(1/ε), then Nt < εn and recur(X, k, γ, ε) stops. The number of rounds executed
by recur(X, k, γ, ε) is thus at most rε = min{t : ρt ≥ 4k ln(1/ε)}.

Now, for all i ≥ 1 consider the σ-algebra Fi−1 generated by X0, . . . , Xi−1, and define:
Zi = RiBi, where B1, B2, . . . are Bernoulli random variables where each Bi has parameter
1
/(

2E[Ri | Fi−1]
)
. Obviously, Zi ≤ Ri, and thus for all t we deterministically have:

ρt =

t∑
i=1

Ri ≥
t∑
i=1

Zi (2.75)

Now note that:

E[Zi | Fi−1] = E[Ri | Fi−1]
1

2E[Ri | Fi−1]
=

1

2
(2.76)

Now we can prove the theorem. For the first claim, simply note that E[rε] ≤ 8k ln(1/ε),
as this is the expected number of fair coin tosses to get 4k ln(1/ε) heads.

For the second claim, consider any t ≥ 8k lnn + 6a
√
k lnn. Letting ζt =

∑t
i=1 Zt, the

event r0 ≥ t implies ζt < 4k lnn = t
2 − 3a

√
k lnn = E[ζt] − δ where δ = 3a

√
k lnn. By

Hoeffding’s inequality this event has probability at most e−2δ2/t, and one can check that for
all a ≥ 1 we have 2δ2

t ≥ a lnn.

2.D Supplementary material for Section 2.7

2.D.1 Proof of Theorem 2.13
We state and prove two distinct theorems which immediately imply Theorem 2.13.

Theorem 2.23. For all 0 < γ < 1/7, all d ≥ 2, and every (possibly randomized) learning
algorithm, there exists an instance on n ≥ 2( 1+γ

8γ )
d−1
2 points and |C| = 3 latent clusters such

that (1) all clusters have margin γ, and (2) to return with probability 2/3 a clustering Ĉ such
that 4(Ĉ, C) = 0 the algorithm must make Ω(n) same-cluster queries in expectation.

Proof. The idea is the following. We define a single set of points X ⊂ Rd and randomize over
the choice of the latent PSD matrix W ; the claim of the theorem follows by applying Yao’s
minimax principle. Specifically, we let X be a Θ(

√
γ)-packing of points on the unit sphere in

Rd. We show that, for x ∈ X drawn uniformly at random, settingW = (1+γ) diag(x2
1, . . . , x

2
d)

makes x an outlier, as its distance dW (x,0) from the origin is 1 + γ, while every other point
is at distance ≤ 1. Since there are roughly (1/γ)d such points x in our set, the bound follows.

We start by defining the points X in terms of their entry-wise squared vectors. Consider
S+
d = Rd+ ∩ Sd where Sd = {x ∈ Rd : ‖x‖2 = 1} is the unit sphere in Rd. We want to

show that there exists a set of 1
2 (1/ε)d−1 points in S+

d whose pairwise distance is bigger than
ε/2, where ε will be defined later. To see this, recall that the packing number of the unit
ball Bd = {x ∈ Rd : ‖x‖2 ≤ 1} is M(B, ε) ≥ (1/ε)d —see, e.g., Vershynin [2018]. For ε/2
and d − 1, this implies there exists Y ⊆ Bd−1 such that |Y | ≥ (2/ε)d−1 and ‖y − y′‖2 > ε/2
for all distinct y,y′ ∈ Y . Now, consider the lifting function f : Bd−1 → Rd defined by
f(y) = (

√
1− ‖y‖22, y1, . . . , yd−1). Define the lifted set Z = {f(y) : y ∈ Y }. Clearly, every

z ∈ Z satisfies ‖z‖2 = 1 and z0 ≥ 0, so z lies on the northern hemisphere of the sphere
Sd. Moreover, ‖f(y) − f(y′)‖2 ≥ ‖y − y′‖2 for any two y,y′ ∈ Y . Hence, we have a set
Z of (2/ε)d−1 points on the d-dimensional sphere such that ‖z − z′‖2 > ε/2 for all distinct
z, z′ ∈ Z. But a hemisphere is the union of 2d−1 orthants, hence some orthant contains at
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least 2−(d−1)(2/ε)d−1 = (1/ε)d−1 of the points of Z. Without loss of generality we may assume
this is the positive orthant and denote the set as Z+.

We now define the input set X ⊆ Rd as follows:

X = X+ ∪X− = {
√
z : z ∈ Z+} ∪ {−

√
z : z ∈ Z+}

Note that n = |X| = 2|Z+| = 2(1/ε)d−1. Next, we show how every z ∈ Z+ defines a clustering
instance satisfying the constraints of the thesis. For any z∗ ∈ Z+; let w = (1 + γ)z∗ and
W = diag(w1, . . . , wd), which is PSD as required. Define the following three clusters:

C ′ = {−
√
z∗} C ′′ = {

√
z∗} C = X \ (C ′ ∪ C ′′)

where, for f : R → R, f(x) =
(
f(x1), . . . , f(xd)

)
. Since C ′ and C ′′ are singletons, they

trivially have weak margin γ. We now show that C has weak margin γ w.r.t. to µ = 000;
that is, dW (x,µ)2 > 1 + γ for x = ±

√
z∗ and dW (x,µ)2 ≤ 1 otherwise. First, note that

dW (x,µ)2 =
〈
w,x2

〉
. Now,

dW (x,µ)2 =

{
(1 + γ) 〈z∗, z∗〉 = 1 + γ if x ∈ C ′, C ′′

(1 + γ)
〈
z∗,x2

〉
if x ∈ C (2.77)

However, by construction of Z+, we have that for all x ∈ C and z = x2,

(ε/2)2 ≤ ‖z − z∗‖22 = ‖z‖22 − 2 〈z, z∗〉+ ‖z∗‖22 = 2(1− 〈z, z∗〉)

which implies
〈
z∗,x2

〉
≤ 1− (ε/2)2/2 = 1− ε2/8 = 1/(1+γ) for ε =

√
8γ/(1+γ). Therefore (2.77)

gives dW (x,µ)2 = (1 + γ)
〈
z∗,x2

〉
≤ 1. This proves C has weak margin γ as desired.

The size of X is:

n ≥ 2
( 1√

8γ/(1+γ)

)d−1

= 2
(1 + γ

8γ

) d−1
2

Now the distribution of the instances is defined by taking z∗ from the uniform distribution
over Z+. Consider any deterministic algorithm running over such a distribution. Note that
same-cluster queries always return +1 unless at least one of the two queried points is not in
C. As C contains all points in X but the symmetric pair

√
z∗,−

√
z∗ for a randomly drawn

z∗, a constant fraction of the points in X must be queried before one element of the pair
is found with probability bounded away from zero. Thus, any deterministic algorithm that
returns a zero-error clustering with probability at least δ for any constant δ > 0 must perform
Ω(n) queries. By Yao’s principle for Monte Carlo algorithms then (see Section 2.A.4 above),
any randomized algorithm that errs with probability at most 1−δ

2 ≤
1
2 for any constant δ > 0

must make Ω(n) queries as well.

Theorem 2.24. For all γ > 0, all d ≥ 48(1 + γ)2, and every (possibly randomized) learning
algorithm, there exists an instance on n = Ω

(
exp(d/(1 + γ)2)

)
points and |C| = 2 latent

clusters such that (1) all clusters have margin at least γ, and (2) to return with probability
2/3 a clustering Ĉ such that 4(Ĉ, C) = 0 the algorithm must make Ω(n) same-cluster queries
in expectation.

Proof. We exhibit a distribution of instances that gives a lower bound for every algorithm,
and then use Yao’s minimax principle. Let p = 1

2(1+γ) . Consider a set of vectors x1, . . . ,xn
where every entry of each vector xj,i is i.i.d. and it is equal to 1 with probability. p. Define
X = {x1, . . . ,xn}; note that in general |X| ≤ n since the points might not be all distinct.
Let x? = xn, C = {x1, . . . ,xn−1}, C ′ = {x?}. The latent clustering is C = {C,C ′}, and the
matrix and center of C are respectively W = diag(x?) and c = 0. The algorithms receive in
input a random permutation of X; clearly, if it makes o(|X|) queries, then it has vanishing
probability to find x?, which is necessary to return the latent clustering C.

Now we claim that, if d ≥ 48(1 + γ)2, then we can set n = Ω
(

exp
(

d
48(1+γ)2

))
and with

constant probability we will have (i) |X| = Ω(n), and (ii) C,C ′ have margin γ. This is
sufficient, since the theorem then follows by applying Yao’s minimax principle.
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Let us first bound the probability that |X| < n. Note that for any two points xi,xi′ with
i 6= i′ we have P(xi = xi′) = ((1 − p)2 + p2)d < (1 − 1

2(1+γ) )d < e−
d

2(1+γ) . Therefore, by a

simple union bound over all pairs, P(|X| < n) < n2e−
d

2(1+γ) .
Next we want show that, dW (x, c)2 ' dp for x ∈ C ′ whereas dW (x, c)2 ' dp2 for x ∈ C;

this will give the margin.
Now, for any x,

dW (x, c)2 =

d∑
i=1

x?i (xi − 0)2 =

{ ∑d
i=1 x

?
i xi ∼ B(d, p2) x ∈ C∑d

i=1 x
? ∼ B(d, p) x ∈ C ′

(2.78)

Where in the last equality we use the fact that the entries are unary, and where with the
notation B(d, p) we refer to a vector of length d where each entry is equal to 1 with probability
p. Let µ = dp2 and µ′ = dp, let ε = 1/(1+

√
2), and define

φ = µ(1 + ε), φ′ = µ′(1− ε√p) (2.79)

By standard tail bounds,

P(dW (x, c)2 ≥ φ) ≤ e−
ε2µ
3 for x ∈ C (2.80)

P(dW (x, c)2 < φ′) < e−
ε2pµ′

3 = e−
ε2µ
3 for x ∈ C ′ (2.81)

By a union bound on all points, the margin γC of C fails to satisfy the following inequality
with probability at most |X|e−

ε2µ
3 ≤ ne−

ε2µ
3 :

1 + γC =
minx/∈C dW (x, c)2

maxx∈C dW (x, c)2
≥ φ′

φ
=
dp(1− ε√p)
dp2(1 + ε)

=
1− ε√p
p(1 + ε)

≥ 1

2p
= 1 + γ (2.82)

where the penultime inequality holds since 1−ε√p
1+ε ≥

1
2 for our values of p and ε. Note that,

since p = 1
2(1+γ) and n ≤ 1

c exp
(

d
48(1+γ)2

)
+ 1,

ne−
ε2µ
3 = ne−

dp2

12 = ne
− d

48(1+γ)2 (2.83)

By one last union bound, the probability that |X| = n and γC ≥ γ is at least

1− ne−
d

48(1+γ)2 − n2e−
d

2(1+γ) (2.84)

If d ≥ 48
(1+γ)2 , then we can let n = Ω

(
e

d
48(1+γ)2

)
while ensuring the above probability is

bounded away from 0.
The rest of the proof and the application of Yao’s principle is essentially identical to the

proof of Theorem 2.23 above.

2.E Comparison with scq-k-means
In this section we compare our algorithm to scq-k-means of Ashtiani et al. [2016]. We show
that, in our setting, scq-k-means fails even on very simple instances, although it can still
work under (restrictive) assumptions on γ, W , and the centers.

scq-k-means works as follows. First, the center of mass µC of some cluster C is estimated
using O

(
poly(k, 1/γ)

)
scq queries; second, all points in X are sorted by their distance from

µC and the radius of C is found via binary search. The binary search is done using same-
cluster queries between the sorted points and any point already known to be in C. The
margin condition ensures that, if we have an accurate enough estimate of µC , then the binary
search will be successful (there are no inversions of the sorted points w.r.t. their cluster). This
approach thus yields a O(lnn) scq queries bound (the number of queries to estimate µC is
independent of n).
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C1

C2

Figure 2.E.1: A bad instance for scq-k-means. With good probability,
the algorithm classifies all points in a single cluster, incurring error ' 1/2,

the same as a random labeling.

It is easy to see that this algorithm relies crucially on (1) each cluster C must be spherical,
and (2) the center of the sphere must coincide with the centroid µC . In formal terms, the
setting of Ashtiani et al. [2016] is a special cases of ours where for all C we have WC = Id
and c = Ex∈C [x]. If any of these two assumptions does not hold, then it is easy to construct
instances where Ashtiani et al. [2016] fails to recover the clusters and, in fact, achieves error
very close to a completely random labeling. Formally:

Lemma 2.25. For any fixed d ≥ 2, any p ∈ (0, 1), and any sufficiently small γ > 0, there
are arbitrarily large instances on n points and k = 2 clusters on which scq-k-means incurs
error 4(Ĉ, C) ≥ 1−p

2 with probability at least 1− p.

Sketch of the proof. We describe the generic instance on n points for d = 2. The latent
clustering C is formed by two clusters C1, C2 of size respectively n1 = n 1+p

2 and n2 = n 1−p
2 .

In C1, half of the points are in (1, 0) and half in (−1, 0). In C2, all points are in (0,
√

1+γ
2 ).

(One can in fact perturb the instance so that all points are distinct without impairing the
proof). For both clusters, the center coincide with their center of mass, µ1 = (0, 0) and
µ2 = (0,

√
1+γ
2 ). For both clusters, the latent metric is given by the PSD matrix W = ( .25 0

0 1 ).
It is easy to see that dW (x,µ1)2 = 1/4 if x ∈ C1 and dW (x,µ1)2 = (1+γ)/4 if x ∈ C2, and

so C1 has margin exactly γ. On the other hand C2 has margin γ since dW (x,µ2)2 = 0 if
x ∈ C2 and dW (x,µ2)2 > 0 otherwise.

Now consider scq-k-means. The algorithm starts by sampling at least k ln(k)
γ4 points fromX

and setting µ̂ to the average of the points with the majority label. By standard concentration
bounds then, for γ small enough, with probability at least 1− p the majority cluster will be
C1 and the estimate µ̂ of its center of mass (0, 0) will be sufficiently close to µ1 that the
ordering of all points in X by their Euclidean distance w.r.t. µ̂ will set all of C2 before all of
C1. But since n2 = n 1−p

2 , the median of the sorted sequence will be a point of C1. Thus the
binary search will make its first query on a point of C1 and will continue thereafter classifying
all of X as belonging to C1. Thus the algorithm will output the clustering Ĉ = {X, ∅} which
gives 4(Ĉ, C) = 1−p

2 .

Next, we show that the approach Ashtiani et al. [2016] still works if one relaxes the
assumption W = I, at the price of strengthening the margin γ. Let λmax and λmin > 0 be,
respectively, the largest and smallest eigenvalues of W . The condition number κW of W is
the ratio λmax

/
λmin. If κW is not too large, thenW does not significantly alter the Euclidean

metric, and the ordering of the points is preserved. Formally:

Lemma 2.26. Let κW be the condition number of W . If every cluster C has margin at least
κW −1 with respect to its center of mass µC , and if we know µC , then we can recover C with
O(lnn) scq queries.

Proof. Fix any cluster C and let µ = µC . For any z ∈ Rd we have λmin‖z‖22 ≤ ‖z‖2W ≤
λmax‖z‖22 where λmin and λmax are, respectively, the smallest and largest eigenvalue of W .
Sort all other points x by their Euclidean distance ‖x − µ‖2 from µ. Then, for any x ∈ C
and any y /∈ C we have:

‖y − µ‖22
‖x− µ‖22

≥ λmin

λmax

‖y − µ‖2W
‖x− µ‖2W

=
1

κW

d(y,µ)2

d(x,µ)2
>

1 + γ

κW
(2.85)
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Hence, if γ ≥ κW − 1, there is r ≥ 0 such that ‖x− µ‖2 ≤ r for all x ∈ C and ‖y − µ‖2 ≥ r
all y /∈ C. We can thus recover C via binary search as in Ashtiani et al. [2016].

As a final remark, we observe that the above approach is rather brittle, since κW is
unknown (because W is), and if the condition κW ≤ 1 + γ fails, then once again the binary
search can return a clustering far from the correct one.

2.F Comparison with metric learning
In this section we show that metric learning, a common approach to latent cluster recovery
and related problems, does not solve our problem even when combined with same-cluster and
comparison queries. Intuitively, we want to learn an approximate distance d̂ that preserves
the ordering of the distances between the points. That is, for all x,y, z ∈ X, d(x,y) ≤ d(x, z)

implies d̂(x,y) ≤ d̂(x, z). If this holds then d and d̂ are equivalent from the point of view
of binary search. To simplify the task, we may equip the algorithm with an additional
comparison query cmp, which takes in input two pairs of points x,x′ and y,y′ from X and
tells precisely whether d(x,x′) ≤ d(y,y′) or not. It turns out that, even with scq+cmp
queries, learning such a d̂ requires to query essentially all the input points.

Theorem 2.27. For any d ≥ 3, learning any d̂ such that, for all x,y, z ∈ X, if d(x,y) ≤
d(x, z) then d̂(x,y) ≤ d̂(x, z), requires Ω(n) scq+cmp queries in the worst case, even with
an arbitrarily large margin γ.

Proof. We reduce the problem of learning the order of pairwise distances induced by W ,
which we call ORD, to the problem of learning a separator hyperplane, which we call SEP
and whose query complexity is linear in n.

Problem SEP is as follows. The inputs are a set X = {x1, . . . ,xn} ⊂ Rd (the observations)
and a set H = {h1, . . . ,hk} ⊂ Rd+ (the hypotheses). We require that hj ∈ Rd+. We have
oracle access to σ : X → {+1,−1} such that σ(·) = sign〈h, ·〉 for some h ∈ H. The output is
the h ∈ H that agrees with σ. We assume H, X support a margin: ∃ε > 0, possibly dependent
on the instance, such that sign〈h,x〉 = sign〈h,x′〉 for all x′ with ‖x − x′‖ ≤ ε. (Note that
this is not the cluster margin γ).

Let QORD(n) and QSEP(n) be the query complexities of ORD and SEP on n points. We
show:

Lemma 2.28. QORD(3n) ≤ QSEP(n).

Proof. Let X = {x1, . . . ,xn} ⊆ Rd be the input points for SEP and let h ∈ Rd+ be the target
hypothesis. By scaling the dataset we can assume ‖xi‖ ≤ ε for any desired ε (even dependent
on n). We define an instance of ORD on n′ = 3n points as follows. First, W = diag(h).
Second, the input set is X ′ = S1 ∪ . . . ∪ Sn where for i = 1, . . . , n we define Si = {ai, bi, ci}
with:

ai = 6i · 1 (2.86)
bi = 2 · ai (2.87)
ci = 3 · ai + xi (2.88)

We first show that a solution to ORD gives a solution of SEP. Suppose indeed that for all
pairs of points {q,p}, {x,y} we know whether dW (q,p) ≤ dW (x,y). This is equivalent to
knowing the output of cmp({q,p}, {x,y}), which is

cmp({q,p}, {x,y}) = sign
〈
h, (q − p)2 − (x− y)2

〉
(2.89)

Consider then the point q = ci,p = x = bi,y = ai for each i. Then:

cmp({q,p}, {x,y}) = sign
〈
h, (ai − bi)2 − (bi − ci)2

〉
(2.90)

= sign
〈
h, (ai)

2 − (−ai − xi)2
〉

(2.91)

= sign
〈
h, 2 · 6ixi − x2

i

〉
(2.92)
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= sign
〈
h,xi

(
1− xi

2 · 6i
)〉

(2.93)

By the margin hypothesis, for ε small enough this equals sign(〈h,xi〉), i.e., the label of xi in
SEP.

We now show that all the other queries reveal no information about the solution of SEP.
Suppose then the points are not in the form q = ci,p = x = bi,y = ai. Without loss of
generality, we can assume that q > p and q ≥ x > y. It is then easy to see that, for ε small
enough, (q − p)2 − (x− y)2 > 0 or (q − p)2 − (x− y)2 < 0. This holds independently of the
xi and of W and therefore gives no information about the solution of SEP.

It follows that, if we can solve ORD in f(3n) cmp queries, then we can solve SEP in f(n)
queries. Finally, note that adding scq queries does not reduce the query complexity (e.g.,
let X lie in a single cluster). For the same reason, we can even assume an arbitrarily large
cluster margin γ.

It remains to show that SEP requires Ω(n) cmp queries in the worst case. This is well
known, but we need to ensure that H ⊂ Rd+ and that any h ∈ H supports a margin as
described above.

Consider the following set X = {x1, . . . ,xn} ⊆ R3:

xi = (1− δ,− cos(θi),− sin(θi)) (2.94)

where θi = i π2n and δ is sufficiently small. Let H = {h1, . . . ,hn}, where

hj = (1, cos(θj), sin(θj)) (2.95)

Note that H ⊂ Rd+ as required. Clearly:

〈hj ,xi〉 =

{
−δ if j = i
1− (δ + cos(θi − θj)) if j 6= i

(2.96)

By choosing δ = 1−cos(π/2n)
2 we have sign 〈h,xi〉 = −1 if and only if i = j. Clearly, any

algorithm needs to probe Ω(n) labels to learn h with constant probability for some h ∈ H.
Finally, note that any h supports a margin, as required.
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Chapter 3

Exact recovery of Margin-Based
Clusterings

The scope of this chapter is to improve upon the results presented in Chapter 2, both in terms
of generality and in terms of query complexity. In particular, we begin by introducing a sim-
ple but general notion of margin between clusters that captures, as special cases, the margins
used in previous works (including that used in chapter 2), the classic SVM margin, and stan-
dard notions of stability for center-based clusterings. We then show that under this margin
assumptions, there exist algorithms that recover all clusterings exactly using only O(log n)
queries in a variety of settings including convex clusters in Rm and possibly non-convex clus-
ters in general pseudo-metric spaces. Finally for clusterings realized by binary concept classes
we give a combinatorial characterization of recoverability with O(log n) queries, and we show
that, for many concept classes in Euclidean spaces, this characterization is equivalent to our
margin condition.

3.1 Introduction
This chapter investigates the problem of exact cluster recovery using oracle queries, in the
well-known framework introduced by Ashtiani et al. [2016]. We are given a set X of n points
from some domain X (e.g., from the Euclidean m-dimensional space Rm) and an oracle
answering to same-cluster queries of the form “are these two points in the same cluster?”
or, equivalently, to label queries of the form “which cluster does this point belong to?”. The
oracle answers are consistent with some clustering C = (C1, . . . , Ck) of X unknown to the
algorithm, where k is a fixed constant. The goal is to design an algorithm that recovers C
deterministically by using as few queries as possible.

Clearly, if there are no restrictions on C, then any algorithm needs n queries in the worst
case. Thus, the question is what assumptions on C yield query-efficient algorithms. Since a
good clustering is often thought of as having well-separated clusters, a natural assumption is
that C satisfies some margin property; and previous work shows precisely that some margin
properties yield cluster recovery algorithms that achieve the “gold standard” bound ofO(log n)
queries. The first such algorithm appeared in Ashtiani et al. [2016] for the Euclidean case
(i.e., when X ⊆ Rm), with the following result. If every cluster Ci is separated from X \ Ci
by a ball that is centered in the center of mass of Ci, then O(log n) queries are sufficient
to recover C with high probability, provided that, for some fixed γ > 0, every ball does not
include points of other clusters, even if expanded by a factor of 1 + γ. The parameter γ is
called margin, and the number of queries needed to recover C grows with 1/γ.

In a first attempt at generalizing this result, Bressan et al. [2020a] showed that with
O(log n) queries one can actually recover clusters with ellipsoidal separators, at the price of a
dependence on γ and m of approximately (m/γ)m. Interestingly, this result was achieved via
boosting of one-sided error learning, which works as follows. Suppose that, by making O(1)
queries, we could identify correctly (with zero mistakes) a constant fraction of the points in
some cluster Ci. Then, we could label those points as i, remove them from the dataset, and
repeat. It is not hard to show that, after O(log n) rounds, we have correctly labeled all the
input points with high probability. The difficult task is, of course, using only O(1) queries to
identify correctly a constant fraction of some cluster Ci (this is called learning with one-sided
error, since all points predicted to be in Ci are indeed in Ci, while points predicted not to



Chapter 3. Exact recovery of Margin-Based Clusterings 32

be in Ci can be anywhere). The key insight of Bressan et al. [2020a] is that, if the clusters
have margin γ with respect to their ellipsoidal separators, then roughly (m/γ)m queries are
sufficient. This leads to the following question: how much can this margin-based approach
be extended?

3.1.1 Contributions
In this chapter we provide several answers, revealing how margin-based cluster recovery and
one-sided error learning are intimately connected. Our main contributions are as follows.

1. We introduce a new notion of margin in Euclidean spaces, that we call “convex hull margin”
(Definition 3.2). This is a strict generalization of the margins of [Bressan et al., 2020a;
Ashtiani et al., 2016] and of the usual SVM margin, and allows the clusters to have any
shape whatsoever as long as they are convex. Under the convex hull margin, we develop a
novel technique for learning with one-sided error that we call convex hull expansion trick.
It essentially amounts to sampling many points from a single cluster and “inflate” their
convex hull by a factor of (1 + γ). This simple technique (whose proof, however, is quite
technical) yields an algorithm for exact cluster recovery in Rm which runs in polynomial
time and makes O(log n) queries (Theorem 3.3). The dependence of the query bound on γ
and m is of order (1 + 1/γ)m, which is significantly better than [Bressan et al., 2020a] and
closer to the query complexity lower bound of order (1 + 1/γ)m/2.

2. We introduce a notion of cluster margin for general pseudometric spaces called one-versus-
all margin (Definition 3.5). This notion of margin is strictly more general than convex hull
margin, and captures as special cases some standard notions of stability for hard clustering
problems, such as k-means or k-centers. We show that, if a clustering has one-versus-all
margin, then it can be recovered with O(log n) queries by an algorithm that uses a purely
learning-based approach (Theorem 3.10). The O(log n) query bound hides a dependence
on the complexity of the pseudometric space expressed in terms of its packing number. We
show that such a dependence is essentially optimal, thus characterizing the recoverability
of clusterings in this setting.

3. Finally, we show a new connection between margin-based learning and exact active cluster
recoverability, when clusters are realized by some concept class H (that is, when for each
cluster Ci there is a concept hi ∈ H such that X ∩ hi = Ci). We show that if a certain
combinatorial parameter of H, called coslicing dimension, is bounded, then one can learn
clusterings with O(log n) label queries; otherwise, Ω(n) queries are needed in the worst
case (Theorem 3.12). Moreover, we show that if H is any concept class in Rm that is
closed under affine transformations and well-behaved in a natural sense, then the clusters
realized by H are recoverable with O(log n) label queries if and only if they have positive
one-versus-all margin (Theorem 3.14).

Our contributions have implications for active learning of binary and multiclass classifiers,
too. More precisely, our O(log n) query bounds imply Õ(log 1/ε) query bounds for pool-based
active learning [McCallum and Nigam, 1998], where ε is the generalization error. To see this,
draw a set X of Θ

(
ε−1(K log 1/ε+log 1/δ)

)
unlabeled samples from the underlying distribution,

where K is the relevant measure of capacity (the VC-dimension or the Natarajan dimension),
run our algorithms over X, and compute a hypothesis consistent with the recovered labeling
C. These types of reductions are standard in active learning, see for instance [Kane et al.,
2017a].

Additional related work. Same-cluster queries are natural to implement in crowd-sourcing
and for this reason they have been extensively studied both in theory [Ailon et al., 2018b,c;
Gamlath et al., 2018; Huleihel et al., 2019; Mazumdar and Pal, 2017; Mazumdar and Saha,
2017b,a; Saha and Subramanian, 2019b; Vitale et al., 2019] and in practice [Firmani et al.,
2018; Gruenheid et al., 2015; Verroios and Garcia-Molina, 2015; Verroios et al., 2017]. Note
that same-cluster queries are essentially equivalent to label queries, the basic mechanism of
active learning [Hanneke, 2014].

Various notions of margin are central in both active learning and cluster recovery [Xu
et al., 2004; Balcan et al., 2007a; Balcan and Long, 2013a; Kane et al., 2017a; Bressan et al.,
2021a]. Our coslicing dimension is similar to the slicing dimension of Kivinen [1995] and the
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star number of Hanneke and Yang [2015]. Our arguments based on packing numbers are
similar to those based on the inference dimension of Kane et al. [2017a] or the lossless sample
compression of [Hopkins et al., 2021], as we cannot infer the label of a point only when it is far
from already-labeled points. Combinatorial characterizations of multiclass learning have been
also proposed in the passive case by Ben-David et al. [1995]; Rubinstein et al. [2009]; Daniely
and Shalev-Shwartz [2014]. Other learning settings related to one-sided and active learning
are RPU learning [Rivest and Sloan, 1988] and perfect selective classification [El-Yaniv and
Wiener, 2012] — see [Hopkins et al., 2019] for a discussion.

3.2 Preliminaries and notation
The input is a pair (X,O), where X is a set of n points from some domain X , and O is a
label oracle that, when queried on any x ∈ X, returns the cluster id C(x) of x. The oracle O
is consistent with a latent clustering C = (C1, . . . , Ck) of X, i.e., a k-uple of pairwise disjoint
sets whose union is X.1 Note that we allow clusters to be empty. Our goal is to recover C
exactly, by making as few queries as possible to O. Queries can be made adaptively, that
is, the j-th point to be queried can be chosen as a function of the answers to the first j − 1
queries. We express the number of queries as a function of k, n, and other parameters to be
introduced later. This setting is essentially equivalent to the semi-supervised active clustering
(SSAC) framework of Ashtiani et al. [2016], where the oracle answers same-cluster queries
scq(x, y) that, for any two points x, y ∈ X, return true iff C(x) = C(y). We use label queries
instead of scq queries only for simplicity. Indeed, any scq query can be emulated with two
label queries; conversely, the label of any point can be learned with k scq queries, up to a
relabeling of the clusters. This implies that our bounds on the number of queries for cluster
recovery hold for an scq oracle as well, up to a multiplicative factor of k.

We often assume a metric or a pseudometric d over X (a pseudometric allows two distinct
points to have distance 0). For any X ⊂ X , we denote by φd(X) = supx,x′∈X d(x, x′) the
diameter of X measured by d, and we define φd(∅) = 0. For any two sets U, S ⊂ X , we denote
by d(U, S) = infx∈U,y∈S d(U, S) their distance according to d, and we define d(U, ∅) = ∞.
For any X ⊂ Rm, we write conv(X) for the convex hull of X. The unit Euclidean sphere
in Rm is Sm−1 = {x ∈ Rm : ‖x‖2 = 1}. We recall some learning-theoretic facts. Let H
be an arbitrary collection of subsets of X (i.e., a concept class). The intersection class of
H is I(H) =

⋃
i∈N{h1 ∩ . . . ∩ hi : h1, . . . , hi ∈ H}. Given any S ⊂ X and any S′ ⊆ S

realized by some h? ∈ H, the smallest concept in I(H) consistent with S′ is defined as
h◦ =

⋂
{h ∈ H : h ∩ S = S′}. Note that h◦ ⊆ h?. Finally, we recall the definition of learning

with one-sided error:

Definition 3.1 (Kivinen [1995], Definition 4.4). An algorithm A learns H with one-sided
error ε and confidence δ with r examples if, for any target concept h? ∈ H and any probability
measure P over X , by drawing r independent labeled examples from P, the algorithm outputs
a concept h ⊆ h? such that P(h? \ h) ≤ ε with probability at least 1− δ.

3.3 Margin-based exact recovery of clusters in Euclidean
spaces

In this section, we consider the Euclidean setting X = Rm. We show that the ellipsoidal
margin assumption of Bressan et al. [2020a] can be significantly generalized, while retaining
the O(log n) query complexity, by introducing what we call the convex hull margin. In a
nutshell the convex hull margin says that, given any cluster C, any point not in C is separated
by the convex hull of C by a distance at least γ times the diameter of C. Instead of using
the Euclidean metric, however, we allow distances to be measured by any pseudometric over
Rm, which we do not need to know, and which may even differ from cluster to cluster. The
only requirement is that the pseudometric be homogeneous and invariant under translation
(i.e., induced by a seminorm).

1In line with previous works, we assume k is fixed and known.
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Definition 3.2 (Convex hull margin). Let D be the family of all pseudometrics induced by
the seminorms over Rm, and let X ⊂ Rm be a finite set. A clustering C = (C1, . . . , Ck) of X
has convex hull margin γ if for every i ∈ [k] there exists di ∈ D such that:

di
(
X \ Ci, conv(Ci)

)
> γ φdi(Ci) (3.1)

This new definition has a few interesting properties. First, it strictly generalizes the
ellipsoidal margin of Bressan et al. [2020a] and the spherical margin of Ashtiani et al. [2016].
To see this, let D be the class of all pseudometrics over Rm that can be written as dW (x, y) =
〈x− y,W (x− y)〉 for some positive semidefinite matrixW ∈ Rm×m (for the spherical margin,
take W = rI where I is the identity matrix). Second, it strictly generalizes the classic
SVM margin, which prescribes a distance of γ φ(X) between the clusters where φ(X) is the
Euclidean diameter of X. Indeed, since every cluster has Euclidean diameter at most φ(X),
a SVM margin of γ implies a convex hull margin of γ. On the other hand, there are cases
with arbitrarily small SVM margin but arbitrarily large convex hull margin, as we see in
Section 3.4. Third, the use of pseudometrics allows us to capture the Euclidean distance
between the points after projection on a subspace V ⊂ Rm, modelling scenarios where each
cluster only “cares” about a certain subset of the features.

Under the convex hull margin, we give a polynomial-time algorithm, named CheatRec
(for Convex Hull ExpAnsion Trick Recovery) that recovers C using O(log n) queries.

Theorem 3.3. Let (X,O) be an instance whose clustering C has convex hull margin γ > 0.
Then CheatRec(X,O, γ) deterministically outputs C, runs in time poly(k, n,m), and with
high probability makes at most O

(
k2m5 (1 + 1/γ)

m
log(1 + 1/γ) log n

)
queries.

To put this result in perspective, consider the algorithm of Bressan et al. [2020a]. Under
an ellipsoidal margin of γEL, that algorithm achieves a query bound of roughly

(
m
γEL

)m log n.
One can check that their ellipsoidal margin of γEL implies2 convex hull margin γ ≥ γEL

3 for
all γEL ≤ 1. Hence, in this range, our dependence on γ is better by Θ(mm) factors.

As we said, CheatRec is based on boosting learners with one-sided error. What makes
CheatRec different, however, is the technique used to learn with one-sided error. To explain
this, let us recall how the algorithm of Bressan et al. [2020a] works. Their idea is to learn an
approximate ellipsoidal separator that contains a constant fraction of some cluster Ci, and
then remove from it all points that do not belong to Ci. Crucially, to learn the approximate
separator, the algorithm needs a number of queries proportional to the VC-dimension of
the corresponding class, which for m-dimensional ellipsoids is O(m2). Unfortunately, this
approach does not work with the convex hull margin, since the class of allowed separators
has unbounded VC-dimension (it is the class of all polytopes in Rm).

To bypass this obstacle we develop a novel technique for learning with one-sided error
that we call convex hull expansion trick. This technique essentially amounts to the following
procedure: draw a large labeled sample from X, take all the sampled points that belong to
the same cluster C, and inflate their convex hull by a factor 1 + γ. This can be seen as a
way to exploit the convex hull margin directly, without going through the VC-dimension of
the separators. Such a trick may appear natural, but proving it to work is not trivial and
requires a combination of results from probability, convex geometry, and PAC learning. In
the rest of the section, we describe the trick and sketch the proof of Theorem 3.3. For the
complete proof, see the appendix.

3.3.1 CheatRec and the convex hull expansion trick
The starting point of CheatRec is the following idea. Let s be a parameter to be set later.
In each round, CheatRec draws from X a uniform random sample S of size |S| = ks. Then,
using the oracle, it determines the partition S1, . . . , Sk induced by C. As there are at most
k clusters, for at least one of them (say cluster C) we have |SC | ≥ s, a fact that allow us
to use PAC bounds later on. Now, let K = conv(SC), and let d ∈ D be the pseudometric
that gives the margin of C. Since d is homogeneous and invariant under translation (recall

2Their definition of margin uses squared distances, so if a cluster has margin γEL by their definition, then
it has convex hull margin

√
1 + γEL− 1. This is why we need to make this apparently misplaced observation.
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that D contains pseudometrics induced by seminorms), we know that any point y such that
d(y,K) ≤ γφd(K) must belong to C as well. Therefore, if we pick any point z ∈ K and
compute the scaling Q = (1 + γ)K with respect to z, Q will not intersect clusters other than
C. Hence, we can safely label all points in X ∩Q as belonging to C. As long as we stick with
this, we will not make mistakes — in other words, we learn with one-sided error. However,
this is not sufficient: in order to make actual progress, we must guarantee that X∩Q contains
a good fraction of C. It is not obvious why this should be true: in the worst case, X ∩ Q
could simply coincide with SC and we would have learned nothing.

It is here that the convex hull expansion trick enters the game. The key idea is to choose
z = µK , the center of mass of K. Since however computing µK is hard [Rademacher, 2007],
we use an approximation. We give here the technical statement and a sketch of the proof (full
proof in the appendix). The uniform probability measure U over K is defined by U(K ′) =
vol(K′)
vol(K) for all measurable K ′ ⊆ K. A probability measure P is ε-uniform if |P(K ′)−U(K ′)| ≤
ε for all measurable K ′ ⊆ K.

Lemma 3.4 (Convex hull expansion trick). Fix γ > 0, and let s = Θ
(
m5
(
1 + 1/γ

)m
log
(
1 +

1/γ
))

large enough. Let SC be a sample of s independent uniform random points from some
cluster C, and let K = conv(SC). Let X1, . . . , XN be independent random points sampled
ε-uniformly from K, with ε ∈ Θ(m−1) small enough and N ∈ Θ(m2) large enough, and let
z = 1

N

∑N
i=1Xi. Finally, let Q = (1 + γ)K where the center of the scaling is z. Then, with

probability arbitrarily close to 1, we have |Q ∩ C| ≥ 1
2 |C|.

Sketch of the proof. To begin, suppose that Q was obtained by scaling K about its own center
of mass µK . Then, by a probabilistic argument, a result of Naszódi [2018] implies the existence
of a polytope P on roughly (1 + 1/γ)m vertices such that K ⊆ P ⊆ Q. Thus, if we can show
that X∩P contains a good fraction of C, then X∩Q will contain a good fraction of C, too. To
ensure that X ∩P contains a good fraction of C, we observe that the class Pt of all polytopes
on at most t vertices has VC-dimension at most 8m2t log2 t, by a recent result [Kupavskii,
2020]. Hence, if we let |SC | = s ' (1 + 1/γ)m, then by standard PAC bounds X ∩ P contains
half of C with probability arbitrarily close to 1. This holds because, as K ⊆ P ⊆ Q, then P
is consistent with SC .

Now suppose that, in place of µK , we use z = 1
N

∑N
i=1Xi. IfK is in isotropic position, then

its radius is bounded by m, and therefore ‖Xi‖2 ≤ m. This implies that, if N = Θ(m2) and
each Xi comes from a distribution that is Θ(1/m)-uniform over K, then with high probability
z is at distance η = O(1) from µK . In particular, by increasing N by constant factors, we can
make arbitrarily small the probability that η ≤ 1/3. Then, by adapting the result of Naszódi
[2018] with an extension of Grunbaum’s inequality for convex bodies due to Bertsimas and
Vempala [2004], we can show that |Q ∩ C| ≥ 1

2 |C| with probability arbitrarily large.

We conclude with a note on how to implement CheatRec in polynomial time. The
central point is to avoid computing K = conv(SC) explicitly as an intersection of halfspaces,
since this could take time |SC |Θ(m). Thus, we proceed as follows. First, we transform SC
so that conv(SC) is in what is called a near-isotropic position. To this end, we compute
John’s ellipsoid for SC , and apply the map that turns that ellipsoid into a ball, which takes
polynomial time. Afterwards, we can draw X1, . . . , XN efficiently via the “hit-and-run from a
corner” algorithm of Lovász and Vempala [2006], in time O

(
poly(m, |SC |) log m

ε

)
per sample,

including the time to solve a linear program to determine when the walk hits the boundary of
K. Once we have z, we rescale SC about z itself, and label all points in (1 + γ) conv(SC) as
belonging to C. This amounts to solving for every x ∈ X a feasibility problem, which takes
polynomial time. Finally, observe that the polytope P appearing in the proof is only for the
analysis, and is never computed. For a complete discussion, see the full proof.

3.4 A more abstract view: the one-versus-all margin
In this section, we consider the case where X is a generic space equipped with a set of
pseudometrics. Like in Section 3.3, we want to formulate a notion of margin between clusters.
However, now we cannot express the margin in terms of the diameter of convex hulls (since
X need not be a vector space and may have no notion of convexity at all), and we cannot
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Figure 3.4.1: An instance with arbitrarily small SVM margin but un-
bounded one-versus-all margin.

apply any “expansion trick” (since the pseudometrics may not be homogeneous and invariant
under translation). Instead, we adopt what we call the one-versus-all margin. We prove
that clusterings with positive one-versus-all margin can be recovered again with O(log n)
oracle queries. However, we do not provide running time bounds like those of Section 3.3:
our algorithm is essentially based on computing an ERM, which in general may take time
superpolynomial in n.

Next, we introduce the one-versus-all margin.

Definition 3.5 (One-versus-all margin). Choose k pseudometrics d1, . . . , dk over X . A clus-
tering C = (C1, . . . , Ck) of a finite set X ⊂ X has one-versus-all margin γ with respect to
d1, . . . , dk if for all i ∈ [k] we have:

di(X \ Ci, Ci) > γ φdi(Ci) (3.2)

Remark. Unlike the convex hull margin, here the pseudometrics d1, . . . , dk are fixed in
advance. This is not a weakness of the above definition, but rather a strength of the convex
hull margin, which allows one to recover clusters without even knowing d1, . . . , dk.

Note also that, just like the convex hull margin, the one-versus-all margin in Rm is strictly
more general than the SVM margin. The fact that SVM margin implies one-versus-all margin
follows by the observation in Section 3.3. The fact that one-versus-all margin does not imply
SVM margin is shown in Lemma 3.6 below.

Lemma 3.6. For any u ∈ R2 let du(x, y) = |〈u, x− y〉|. For any η > 0 there exists a
clustering C = (C1, C2) on a set X ⊂ R2 that has arbitrarily large one-versus-all margin with
respect to d(0,1), d(1,0), and yet du(C1, C2) ≤ η φdu(X) for any u ∈ R2 \ 0.

Proof sketch. Consider Figure 3.4.1. The two points along the x axis belong to C1, and the
two points along the y axis belong to C2. The pseudometric d1 = d(0,1) measures the distance
along the y axis, and the pseudometric d2 = d(1,0) measures the distance along the x axis.
It is easy to see that d1(C1, C2) > 0 = φd1(C1), and that d2(C1, C2) > 0 = φd2(C2). Hence,
the one-versus-all margin of C with respect to d1, d2 is unbounded. Yet, for any η > 0 we can
make du(C1, C2) ≤ η φdu(X) for any nonzero vector u ∈ R2, by placing the endpoints of the
clusters arbitrarily near the origin.

3.4.1 Stability of center-based clusterings
Fix any pseudometric d over X . A clustering C = (C1, . . . , Ck) of X is center-based if there
exist k points c1, . . . , ck ∈ X , called centers, such that for every i ∈ [k] and every x ∈ Ci we
have d(x, cj) > d(x, ci) for all j 6= i. In other terms, every point is assigned to the nearest
center. It is well known that many popular center-based clustering problems, such as k-means
or k-centers, are NP-hard to solve in general. However, those problems become polynomial-
time solvable (or approximable) if the solution C meets certain stability properties. Here we
show that two of these properties, the α-center proximity of Awasthi et al. [2012a] and the
(1+ε)-perturbation resilience of Bilu and Linial [2012], imply a positive one-versus-all margin.
Let us recall these properties. We define a (1 + ε)-perturbation of d as any function d′ (which
need not be a pseudometric) such that d ≤ d′ ≤ (1 + ε)d.

Definition 3.7. Let C be a center-based clustering.
• C satisfies α-center proximity with α > 1 if, for all i ∈ [k], for all x ∈ Ci and all j 6= i we
have d(x, cj) > αd(x, ci).
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• C is (1 + ε)-perturbation resilient with ε > 0 if it is induced by the same centers c1, . . . , ck
under any (1 + ε)-perturbation of d.

It is known that (1 + ε)-perturbation resilience implies α-center proximity with α = 1 + ε,
see [Awasthi et al., 2012a]. Our result is:

Theorem 3.8. If C satisfies α-center proximity, then it has one-versus-all margin at least
(α−1)2

2(α+1) . Hence, if C satisfies (1 + ε)-perturbation stability, then it has one-versus-all margin

at least ε2

2(ε+2) .

The proof of Theorem 3.8 is found in the appendix.

3.4.2 Cluster recovery with one-versus-all margin
We conclude by showing that, if C has one-versus-all margin γ > 0, then one can recover
C with O(log n) queries. Our algorithm, mRec, considers the set of all possible clusters
that satisfy the margin, and for each label selects the smallest hypotheses consistent with the
sampled points. To prove that this approach works, we establish a formal connection between
one-versus-all margin and one-sided-error learnability of the concept classes induced by all
possible clusters with margin.

We need some further notation. As usual, let d be any pseudometric over X . For any
X ⊂ X and any r > 0, we denote byM(X, r, d) the maximum cardinality of any A ⊆ X such
that d(x, y) > r for all distinct x, y ∈ A. From now on we assume thatM(X, r, d) is bounded,
and for any γ > 0, we define M(γ, d) = max{M

(
B(x, r), γr, d

)
: x ∈ X , r > 0}. Hence, for

any γ > 0, any ball B in X contains at most M(γ, d) points at pairwise distance greater than
γ times the radius of B, and some B attains this bound.3 Finally, by vc-dim(H,X) we denote
the VC-dimension of a generic concept class H over a set X.

Lemma 3.9 (One-versus-all margin implies one-sided-error learnability). Let d be any pseu-
dometric over X . For any finite X ⊂ X and any γ > 0, define the effective concept class over
X:

H = {C ⊆ X : d(X \ C,C) > γ φd(C)} (3.3)

Then H = I(H), and vc-dim(H,X) ≤M where M = max(2,M(γ, d)). As a consequence,
H can be learned with one-sided error ε and confidence δ with O

(
ε−2(M log 1/ε+1/δ)

)
examples

by choosing the smallest consistent hypothesis in H.

Sketch of the proof. To prove that H = I(H), one can take any two C1, C2 ∈ H and show
that C1 ∩ C2 satisfies the margin condition, too. To prove that vc-dim(H,X) ≤M , we have
two steps. First, let sl(H,X) be the slicing dimension of H. This is the size of the largest
subset S ⊆ X sliced by H, i.e., such that for every x ∈ S there is C ∈ H giving S \x = S∩C,
see [Kivinen, 1995]. As the same work shows, we have vc-dim(I(H), X) ≤ sl(H,X); hence,
to prove vc-dim(H,X) ≤ M it suffices to prove that sl(H,X) ≤ M . To this end, we use a
packing argument. Suppose that S ⊆ X is sliced by H, choose any x ∈ S, and let C ∈ H such
that S \ x = S ∩C. By construction of H, we know that d(C, x) > γφd(C). Since S \ x ⊆ C,
this yields:

d
(
S \ x, x

)
≥ d(C, x) > γ φd(C) ≥ γ φd(S \ x) (3.4)

It can be shown that this implies d(S \x, x) > γφd(S) for all x ∈ S, and, in turn, |S| ≤M .
The claim on the learnability with one-sided error holds by choice of the smallest consistent
hypothesis in H = I(H), combined with standard PAC bounds.

We can now present our main result. We let M(γ) = maxd∈{d1,...,dk}M(γ, d), with
d1, . . . , dk as in Definition 3.5.

3IfM(X, r, d) is not bounded, then our results can be extended in the natural way, that is, we can prove
a lower bound of Ω(n) queries for instances of n points.
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Theorem 3.10. Let (X,O) be any instance whose latent clustering C has one-versus-all
margin γ > 0 with respect to d1, . . . , dk. Then mRec(X,O, γ) deterministically outputs C
while making, with high probability, at most O(Mk log k log n) queries to O, where M =
max(2,M(γ)). Moreover, for any algorithm A and for any γ > 0, there are instances with
one-versus-all margin γ on which A makes Ω(M(2γ)) queries in expectation.

Sketch of the proof. For the lower bounds, we take a set X on M(2γ) points at pairwise
distance larger than 2γ times the radius of X, which is at least γ times the diameter of X,
and we draw a random clustering C in the form (x,X \x). One can see that C has one-versus-
all margin γ, and simple arguments, coupled with Yao’s principle for Monte Carlo algorithms,
show that any algorithm needs Ω(M(2γ)) queries in the worst case to return C. For the upper
bounds, we show how to learn an expected constant fraction of X with one-sided error using
Θ(Mk lg k) queries; the rest follows by our general boosting argument. To begin, for each
i ∈ [k] we let Hi = {C ⊆ X : di(C,X \ C) > γ φdi(C)}. We then set ε = 1/2k and δ = 1/2, and
draw a labeled sample S of size Θ(ε−1(M log 1/ε + log 1/δ)) = Θ(Mk log k). Finally, for each
i ∈ [k] we choose the smallest hypothesis Ĉi ∈ Hi consistent with the subset Si ⊆ S labeled
as i, and we assign label i to all points in Ĉi. By Lemma 3.9, with probability at least 1/2 we
have |Ĉi| ≥ |Ci| − ε|X| = |Ci| − |X|/2k. As |Ĉi| ≥ 0, this implies E|Ĉi| ≥ |Ci|/2 − |X|/4k.
By summing over all i, this shows that we are labelling correctly at least |X|/4 points in
expectation.

Remark. By Theorem 3.10, in Rm mRec yields a O(log n) query bound even when the
clusters are not convex. However, this does not mean that mRec subsumes CheatRec. First,
as noted above, here d1, . . . , dk are known in advance. Second, mRec works by computing
the smallest hypothesis Ĉi consistent with Si (see the proof of Theorem 3.10), which in
general may take superpolynomial time. Indeed, CheatRec runs in polynomial time by not
computing Ĉi at all.

3.5 One-versus-all clusterings
In this section, we study active cluster recovery when the clusters can be realized by binary
concepts from some concept class H. In other words, this is the clustering equivalent of
the classic one-versus-all formulation of multiclass classifiers (see, e.g., [Shalev-Shwartz and
Ben-David, 2014a]). We show that the active recoverability of clusterings in this setting is
driven by the coslicing dimension of H, a combinatorial quantity similar to the star number
of Hanneke and Yang [2015] and the slicing dimension of [Kivinen, 1995]. We also show that,
for many natural concept classes in Rm, a bounded coslicing dimension is equivalent to a
positive one-versus-all margin.

As usual, let X be any domain, X ⊂ X be any finite set, and C = (C1, . . . , Ck) be a
clustering of X. Let H be any concept class over X . We say that C is realized by H if for
all i ∈ [k] there is some hi ∈ H such that Ci = X ∩ hi. For example, the ellipsoidal clusters
of Bressan et al. [2020a] can be formulated by letting X = Rm and letting H to be the family
of all ellipsoids in Rm, and the convex clusters of Section 3.3 can be formulated by letting
X = Rm and letting H to be the family of all polytopes in Rm. Clearly, we expect that the
number of active queries needed to recover C depends on the complexity of H. This leads
us to the following question: what can we say about the recoverability of C in terms of the
concept class H?

3.5.1 A general characterization: the coslicing dimension
In this section, we characterize the active recoverability of C via the coslicing dimension of
H, a combinatorial quantity similar to the slicing dimension of Kivinen [1995] and the star
number of Hanneke and Yang [2015].

Definition 3.11. We say that H coslices X ⊆ X if for all x ∈ X there exist two concepts
h+
x , h

−
x ∈ H such that X ∩h+

x = {x} and X ∩h−x = X \{x}. The coslicing dimension of H is:

cosl(H) = sup{|X| : X is cosliced by H}
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If H coslices arbitrarily large sets then we let cosl(H) =∞.

For instance, let X = Rm. If H is the class of linear separators, then cosl(H) =∞ (take X
to be the set of vertices of an n-vertex polytope and use the hyperplane separator theorem).
If instead H is the class of axis-aligned boxes, it can be shown that cosl(H) = 2m. Our main
result is:

Theorem 3.12. If cosl(H) <∞ then there is an algorithm that, given any n-point instance
whose latent clustering C is realized by H, recovers C with O(cosl(H) k log k log n) queries with
high probability. Moreover, for any algorithm A there are instances on cosl(H) points whose
latent clustering C is realized by H where A makes Ω(cosl(H)) queries in expectation to return
C. As a consequence, if cosl(H) = ∞ then any algorithm needs Ω(n) queries in expectation
to recover an n-point clustering realized by H.

Sketch of the proof. The proof follows the same ideas of the proof of Theorem 3.10. For the
lower bounds, we take any X cosliced by H with |X| = cosl(H), and we draw a random
clustering of X in the form (x,X \ x). For the upper bounds, for each i ∈ [k] we define:

Hi = {C : C = C ′i ∧ (C ′1, . . . , C
′
k) ∈ Pk(X)} (3.5)

where Pk(X) is the set of all clusterings of X realized by H. As observed in the proof
of Lemma 3.9, we have the general relationship vc-dim(I(Hi), X) ≤ sl(Hi, X) whenever
sl(Hi, X) <∞. Therefore, if we show that sl(Hi, X) ≤ cosl(H), by drawing a labeled sample
of size Θ(cosl(H) k log k) we can recover the labels of an expected constant fraction of X, as
in the proof of Lemma 3.9. To prove that sl(Hi, X) ≤ cosl(H), let U = {x1, . . . , x`} ⊆ X
be sliced by Hi. By construction of Hi, there are ` clusterings C1, . . . , C` realized by H and
such that Cj = (xj , U \ xj) for all j ∈ [`]. This implies that U is cosliced by H. Hence,
|U | ≤ cosl(H) and so sl(Hi, X) ≤ cosl(H).

Remark. In the case of convex clusters in Rm, we would let H be the class of all convex
polytopes, obtaining cosl(H) = ∞ and thus Theorem 3.12 would not provide any useful
bound. This is true even if C has convex hull margin γ > 0, although by Theorem 3.3 we
know that C can be recovered with O(log n) queries. The same holds for the one-versus-all
margin. This is because we defined the coslicing dimension as a function of H, whereas the
margin depends on the instance (X,O). To fix this, one can redefine the coslicing dimension in
the form cosl(H, I) where I is a class of instances, and adapt Theorem 3.12 correspondingly.
Then, if every instance (X,O) ∈ I has margin γ > 0, one can bound cosl(H, I) as a function
of γ, retrieving the same type of bounds of Theorem 3.3 and Theorem 3.10.

3.5.2 The one-versus-all margin, again!
We look again at the Euclidean case, X = Rm. Consider any concept class H. Theorem 3.12
and the above remark say that, if cosl(H, I) < ∞, where I is the class of allowed instances,
then any clustering C realized by H can be recovered with O(log n) queries, with no need for
the one-versus-all margin (Definition 3.5). We show that, for a wide family of concept classes
in Rm, both things are actually equivalent: we can achieve the O(log n) bound if and only
if the instances have positive one-versus-all margin. This establishes a connection between
one-versus-all margin and active learnability of clusterings realized by concept classes in Rm.
In what follows, we assume that H satisfies:

Definition 3.13. A concept class H in Rm is non-fractal if there is h ∈ H such that both h
and its complement contain a ball of positive radius.

This assumption avoids pathological cases (for instance, H containing only hypotheses
that are affine transformations of Cantor’s set). Our result is:

Theorem 3.14. Let H be a concept class in Rm that is non-fractal and closed under affine
transformations. There is an algorithm that, given any instance whose latent clustering C
has one-versus-all margin γ and is realized by H, returns C while making O(Mk log k log n)
queries with high probability, where M = max

(
2, (1+ 4/γ)m

)
. Moreover, for any algorithm A,
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Figure 3.5.1: The η-packing X is in B, and thus in h, except for x that
lies in h̄. By taking B arbitrarily close to x, we can make η arbitrarily small

and thus X arbitrarily large.

there exist arbitrarily large n-point instances, whose latent clustering C has arbitrarily small
one-versus-all margin and is realized by H, where A makes Ω(n) queries in expectation to
recover C.

Sketch of the proof. The upper bounds follow by Theorem 3.10 and the packing number of
Rm. For the lower bounds, we show that arbitrarily large packings of a sphere are cosliced by
H. We use Figure 3.5.1 for reference. Let h ∈ Rm be such that both h and its complement h̄
contain a ball of positive radius. Then, for any ρ > 0 there exist a ball B = B(c, r) ⊆ h with
r > 0, and a point x ∈ h̄ such that d(B, x) ≤ ρ. Now take a sphere S of radius r′ � r with
center on the segment xc. Let η = supy∈S\B d(x, y), and let X be an η-packing of S, that is, a
subset of points of S such that d(x′, x′′) > η for all distinct x′, x′′ ∈ X. Note how this implies
that every x′ ∈ X \ x necessarily lies in S ∩B, and therefore, in S ∩ h. Moreover, by letting
η/r′ → 0, we can take X arbitrarily large. Since H is closed under affine transformations, by
rotating X it follows that for every x ∈ X there is hx ∈ H such that X ∩ hx = X \ x. By
applying the same argument to h̄ and by complementation we can show that X ∩ h′x = {x}
for some h′x ∈ H for all x ∈ X as well. Hence H coslices arbitrarily large sets. To conclude,
invoke Theorem 3.12.

Note that Theorem 3.14 applies to several basic concept classes H. For instance, when H
is the class of all linear separators, the class of all ellipsoids, the class of all polytopes, and
the class of all convex bodies (bounded or not, and possibly degenerate). It also includes
more complex classes whose hypotheses are not convex: for instance, the class of all finite or
infinite disjoint unions of balls, polytopes, or convex bodies.
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Appendix

3.A Proof of Lemma 3.4
Lemma 3.4 (Convex hull expansion trick). Fix γ > 0, and let s = Θ

(
m5
(
1 + 1/γ

)m
log
(
1 +

1/γ
))

large enough. Let SC be a sample of s independent uniform random points from some
cluster C, and let K = conv(SC). Let X1, . . . , XN be independent random points sampled
ε-uniformly from K, with ε ∈ Θ(m−1) small enough and N ∈ Θ(m2) large enough, and let
z = 1

N

∑N
i=1Xi. Finally, let Q = (1 + γ)K where the center of the scaling is z. Then, with

probability arbitrarily close to 1, we have |Q ∩ C| ≥ 1
2 |C|.

Preliminaries. Without loss of generality, we assume that K has full rank (as one can
always work in the subspace spanned by SC , which can be computed in time O(|SC |m)). For
technical reasons, we let ϑ = 1

1+γ ∈ (0, 1) and prove the lemma for s = Ω
(

m5

ϑ(1−ϑ)m ln 1
ϑ(1−ϑ)

)
large enough. To see that any s ∈ Θ

(
m5
(
1 + 1/γ

)m
ln
(
1 + 1/γ

))
satisfies this assumption, first

substitute ϑ to get:

1

ϑ(1− ϑ)m
ln

1

ϑ(1− ϑ)
= (1 + γ)

(
1 + γ

γ

)m
ln

(1 + γ)2

γ
(3.6)

which is in O
(
(1 + 1/γ)m(1 + γ) ln(1 + 1/γ)

)
. Now note that (1 + γ) ln

(
1 + 1/γ

)
is bounded by

O
(
γ · 1/γ

)
= O(1) for γ > 1, and by 2 ln

(
1 + 1/γ

)
= O

(
ln 1/γ

)
when γ ≤ 1. Hence, in any case

the term (1 + γ) ln(1 + 1/γ) is in O(ln(1 + 1/γ)). Therefore:

(
1 + 1/γ

)m
ln
(
1 + 1/γ

)
= Ω

(
1

ϑ(1− ϑ)m
ln

1

ϑ(1− ϑ)

)
(3.7)

as claimed.
Before starting with the actual proof, we introduce some further definitions and notation.

Definition 3.15. A convex body K ⊂ Rm is in isotropic position4 if it has center of mass
in the origin,

∫
K
x dx = 0, and moment of inertia 1 in every direction,

∫
K
〈x, u〉2 dx = 1 for

all u ∈ Sm−1.

We define the norm ‖ · ‖K = ‖f(·)‖2 where f = fK is the unique affine transformation
such that f(K) is in isotropic position. We let R(K) = supx∈K ‖x‖2 denote the Euclidean
radius of K, and we let RK(K) = supx∈K ‖x‖K denote the isotropic radius of K. We also let
dK(x, y) = ‖x− y‖K be the isotropic distance of K.

Now, the proof has two steps. First, we show that the point z = 1
N

∑N
i=1Xi is close to

the centroid µK of K, according to dK(·), with good probability. Second, we show that if
this is the case, then K

ϑ , where the scaling is meant about z, contains a polytope P which
contains K and thus SC , and which belongs to a class with VC dimension O

(
m5

ϑ(1−ϑ)m

)
. By

standard PAC bounds this implies that |P ∩C| ≥ 1
2 |C|, with a probability that can be made

arbitrarily close to 1 by adjusting the constants.

Step 1: z is close to the centroid of K

Let µK be the center of mass of K. We prove:
4Not to be confused with the definition of [Giannopoulos, 2003], where the assumption

∫
K 〈x, u〉

2 dx = 1
is replaced by vol(K) = 1.
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Lemma 3.16. Fix any η, p ≥ 0, and choose any ε ≤ η
4(m+1) and N ≥ 16(m+1)2

p2η2 . If
X1, . . . , XN are drawn independently and ε-uniformly at random from K, and X̄ = 1

NXi,
then:

P
(
dK
(
X̄, µK

)
≤ η

)
≥ 1− p (3.8)

For the proof of Lemma 3.16, we need two ancillary results.

Lemma 3.17. RK(K) ≤ m+ 1.

Proof. Consider K in isotropic position, and let K ′ = ϑK where ϑ = vol(K)−1/m, so that
vol(K ′) = 1. Then, K ′ is in isotropic position according to the definition of Giannopoulos
[2003]. In this case, [Giannopoulos, 2003, Theorem 1.2.4] implies R(K ′) ≤ (m + 1)LK ,
where LK is the isotropic constant which, for all u ∈ Sm−1, satisfies

∫
K′
〈x, u〉2 dx = L2

K .
Since K ′ = ϑK and

∫
K
〈x, u〉2 dx = 1 by the isotropy of K, we have LK = ϑ. Hence

R(K ′) ≤ (m+ 1)ϑ, that is, R(K) ≤ m+ 1.

Lemma 3.18. If X is drawn from an ε-uniform distribution over K, then ‖EX‖K ≤ 2ε(m+
1).

Proof. Since X is ε-uniform over K, there exists a coupling (X,Y ) with P(X 6= Y ) ≤ ε and
Y uniform over K. Since ‖EY ‖K = 0, we have:

‖EX‖K = ‖E[X − Y ]‖K ≤ P(X 6= Y ) sup
x,y∈K

dK(x, y) ≤ ε 2RK(K) ≤ 2ε(m+ 1) (3.9)

where the last inequality is given by Lemma 3.17.

Proof of Lemma 3.16. For the sake of the analysis we look at K from its isotropic position.
Note that the Xi are still ε-uniform over K, since the affine map that places K in isotropic
position preserves volume ratios. The claim becomes:

P
(
‖X̄‖2 ≤ η

)
≥ 1− p (3.10)

Now, ‖X̄‖2 ≤ ‖EX̄‖2+‖X̄−EX̄‖2. Thus, we show that ‖EX̄‖2 ≤ η
2 , and that ‖X̄−EX̄‖2 ≤ η

2
with probability at least 1− p. For the first part, by Lemma 3.18, and since ε ≤ η

4(m+1) , we
obtain:

‖EX̄‖2 = ‖EXi‖2 ≤ 2ε(m+ 1) ≤ η

2
(3.11)

For the second part, by Lemma 3.17 we have ‖Xi‖2 ≤ m + 1 for all i. Therefore, if we let
Yi = Xi − EXi for all i, we have ‖Yi‖2 ≤ 2(m + 1) and thus ‖Yi‖22 ≤ 4(m + 1)2. Now let
Ȳ = 1

N

∑N
i=1 Yi. Since the Yi are independent and with EYi = 0, then E 〈Yi, Yj〉 = 0 whenever

i 6= j and therefore:

E‖Ȳ ‖22 = E
(

1

N2

N∑
i,j=1

〈Yi, Yj〉
)

=
1

N2

N∑
i=1

E‖Yi‖22 ≤
4(m+ 1)2

N
(3.12)

Plugging in our value N ≥ 16(m+1)2

p2η2 , and using Jensen’s inequality, we obtain:

(
E‖Ȳ ‖2

)2 ≤ E‖Ȳ ‖22 ≤
p2η2

4
(3.13)

Therefore E‖Ȳ ‖2 ≤ pη
2 , which by Markov’s inequality implies that P

(
‖Ȳ ‖2 > η

2

)
< p. By

noting that Ȳ = X̄ − EX̄, the proof is complete.

Step 2: showing a tight enclosing polytope

We prove:
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Lemma 3.19. Let z ∈ Rm such that dK(z, µK) ≤ 1
e −

1
3 . For any ϑ ∈ (0, 1) there exists a

polytope P on t = O
(

m2

ϑ(1−ϑ)m

)
vertices such that K ⊆ P ⊆ K

ϑ , where the scaling is about z.

For the proof, we need some ancillary results.

Theorem 3.20 (Bertsimas and Vempala [2004], Theorem 3). Let K be a convex set in
isotropic position and z be a point at distance t from its centroid. Then any halfspace con-
taining z contains at least 1

e − t of the volume of K.

Now we adapt a result by Naszódi [2018], recalled here for convenience. We say that a
halfspace F supports a convex body from outside if F intersects the boundary of the body,
but not its interior.

Lemma 3.21 (Lemma 2.1, Naszódi [2018]). Let 0 < ϑ < 1, and F be a halfspace that supports
ϑK from outside, where the scaling is about µK . Then:

vol(K ∩ F ) ≥ vol(K) · (1− ϑ)m
1

e
(3.14)

Our adaptation is:

Lemma 3.22. Let z ∈ Rm, let 0 < ϑ < 1, and let F be a half-space that supports ϑK from
outside, where the scaling is about z. Then:

vol(K ∩ F ) ≥ vol(K) · (1− ϑ)m
(

1

e
− dK(µK , z)

)
(3.15)

Proof. The proof is similar to the proof of the original lemma. See Figure 3.A.1 for reference.
Let F0 be a translate of F whose boundary contains z, and let K0 = K ∩ F0. Let F1

be a translate of F that supports K from outside, and let p ∈ F1 ∩ K. Now consider
K ′0 = ϑp + (1 − ϑ)K0, that is, the homothetic copy of K0 with center p and ratio 1 − ϑ.
The crucial observation is that F = ϑp + (1 − ϑ)F0, which implies K ′0 ⊂ K ∩ F . Clearly
vol(K ′0) = (1 − ϑ)m vol(K0). Moreover, by Theorem 3.20 we have vol(K0) ≥ vol(K)(1/e − t)
where t = dK(µK , z); this holds because mapping K to its isotropic position preserves volume
ratios. This concludes the proof.

ϑ
1−ϑ p

z

F0 F F1

K0

K ′0

Figure 3.A.1: a visual proof of Lemma 3.22, with d(z, p) = 1 for simplicity.

Proof of Lemma 3.19. We adapt the construction behind [Naszódi, 2018, Theorem 1.2], by
replacing ε = (1−ϑ)m

e with ε = (1−ϑ)m

3 . The theorem then says that, if we set:

t =

⌈
C

(m+ 1)3

(1− ϑ)m
ln

3

(1− ϑ)m

⌉
(3.16)
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and we let X1, . . . , Xt be t points chosen independently and uniformly at random from K,
and let P = conv(X1, . . . , Xt), then ϑK ⊆ P ⊆ K with probability at least 1− p, where

p = 4

(
11C2

(
(1− ϑ)m

3

)C−2
)m+1

(3.17)

Now, we choose C = Θ( 1
ϑ ln 1

ϑ ) large enough. On the one hand, we obtain:

t =

⌈
C

(m+ 1)3

(1− ϑ)m
ln

3

(1− ϑ)m

⌉
= O

(
m2

ϑ(1− ϑ)m
ln

1

ϑ
ln

1

1− ϑ

)
(3.18)

Since ϑ ∈ (0, 1), we have ln 1
ϑ ln 1

1−ϑ = ln(1 + 1/x) ln(1 + x) where x = ϑ
1−ϑ > 0. However,

ln(1 + 1/x) ln(1 + x) < 1 for all x > 0. Therefore, t ∈ O
(

m2

ϑ(1−ϑ)m

)
. On the other hand, by

setting C large enough we can make C2
( (1−ϑ)m

3

)C−2 arbitrarily small, and therefore p < 1.
Since p < 1, we conclude that there exists a polytope P on t ∈ O

(
m2

ϑ(1−ϑ)m

)
vertices such

that ϑK ⊆ P ⊆ K. To conclude, instead of P simply take P
ϑ where the scaling is about z.

Wrap-up

First, by Lemma 3.16, by taking N ∈ O(m2) large enough we can make dK(µK , z) ≤ 1
e −

1
3

with probability arbitrarily close to 1. Now let Pt be the family of all polytopes in Rm on
at most t vertices. For t ∈ O

(
m2

ϑ(1−ϑ)m

)
large enough, Lemma 3.19 implies that there exists

some P ∈ Pt such that K ⊆ P ⊆ K
ϑ .

Now we prove that, by choosing s large enough, with probability arbitrarily close to 1 we
have |Kϑ ∩ C| ≥

1
2 |C|. First, by a recent result of Kupavskii [2020], we have vc-dim(Pt) ≤

8m2t log2 t. For our t this yields

vc-dim(Pt) = O
(
m2 m2

ϑ(1− ϑ)m
ln

m2

ϑ(1− ϑ)m

)
= O

(
m5

ϑ(1− ϑ)m
ln

1

ϑ(1− ϑ)

)
(3.19)

where in the last equality we used ln m2

ϑ(1−ϑ)m = ln m(2/m)m

ϑ(1−ϑ)m ≤ m ln m2/m

ϑ(1−ϑ) = O
(
m ln 1

ϑ(1−ϑ)

)
.

Hence, by choosing |SC | = s = O
(

m5

ϑ(1−ϑ)m ln 1
ϑ(1−ϑ)

)
large enough, for any constant c, ε, δ we

can make:

|SC | ≥ c
vc-dim(Pt) ln 1

ε + ln 1
δ

ε
(3.20)

Since P is consistent with SC , that is, P ⊃ SC , then by standard PAC bounds we have
|P ∩ C| ≥ (1 − ε)|C| with probability at least 1 − δ. But P ⊆ K

ϑ , and therefore |Kϑ ∩ C| ≥
(1− ε)|C| with probability at least 1− δ. By adjusting the constants this yields the thesis of
Lemma 3.4.

3.B Proof of Theorem 3.3
Theorem 3.3. Let (X,O) be an instance whose clustering C has convex hull margin γ > 0.
Then CheatRec(X,O, γ) deterministically outputs C, runs in time poly(k, n,m), and with
high probability makes at most O

(
k2m5 (1 + 1/γ)

m
log(1 + 1/γ) log n

)
queries.

We give the pseudocode of the algorithm for reference. First, we prove the correctness
and the query bound. Then we show the running time bound. Note that, for readability, the
pseudocode given here is high-level; the actual implementation is more complex, see below.

Correctness and query bound. We prove that, at each round, for some i we recover at
least half of the points in Ci with probability 1− δ, where δ can be made arbitrarily small by
adjusting the constants. Let Si be the subset of the sample S having label i. Since there are
at most k clusters and |S| = ks, for some i we will have |Si| ≥ s. Now we apply Lemma 3.4
to K = conv(Si). Since s satisfies the hypotheses, the lemma says that Ĉi = Q ∩X has size
|Ĉi| ≥ |Ci|2 with probability arbitrarily close to 1 (that is, with probability 1− δ as above). It
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Algorithm 3 HullTrick(K, 1 + γ)

let N = Ω(m2) large enough
let ε = O(m−1) small enough
draw N i.i.d. random points X1, . . . , XN from any ε-uniform distribution over K
let z = 1

N

∑N
i=1Xi

return z + (1 + γ)(K − z)

Algorithm 4 CheatRec(X,O, γ)

while X 6= ∅ do
let s = O

(
m5
(
1 + 1/γ

)m
ln
(
1 + 1/γ

))
large enough

draw a uniform random sample S of size min(|X|, ks) from X, without repetition
learn the labels of S with ks queries to O
let Si be the points of S having label i
for i = 1, . . . , k do

K = conv(Si)
Q = HullTrick(K, 1 + γ)
Ĉi = Q ∩X
label all points of Ĉi with label i
X = X \ Ĉi

remains to show that Ĉi ⊆ Ci. Let d be any pseudometric that is homogeneous and invariant
under translation. Then, any point y ∈ (1 + γ)K ∩ X satisfies d(y,K) ≤ γ φd(K). But
K = conv(Si) ⊆ conv(Ci). Therefore φd(K) ≤ φd(Ci). Hence d(y, conv(Ci)) ≤ γ φd(Ci). By
the convex margin assumption, this implies that y ∈ Ci. This also proves the correctness of
the algorithm. The total query bound follows as in Lemma 3 of [Bressan et al., 2020a], whose
algorithm also recovers an expected fraction 1

4k of all points in each round.
Running time bound. First, we analyze the running time of CheatRec excluding the

call to HullTrick. Drawing and labeling the samples obviously cost O(n) time throughout
the entire execution. In the main loop, K is actually not computed explicitly — see below.
Similarly, Q is simply a set of points obtained by rescaling Si about some point in space.
Thus, computing Ĉi = Q ∩X and labeling its points boils down to deciding, for all x ∈ X,
if x can be written as

∑
xj∈Qj λjxj for a set of coefficients λ1, . . . , λ|Q| ∈ [0, 1]. This can be

done with polynomial precision using any polynomial-time solver for linear programs (say,
the ellipsoid method).

Let us now turn to HullTrick. The computationally expensive part is drawing N points
from an ε-uniform distribution over K = conv(Si). This can be done with any method of
choice. Here, we consider the “hit-and-run from a corner” algorithm of Lovász and Vempala
[2006], which implements a fast mixing random walk whose stationary distribution is uniform
over any convex body. We remark that other methods for computing approximate centers
exist, see for example [Basu and Oertel, 2017].

The implementation is as follows. First, we put K in near-isotropic position by computing
the minimum volume enclosing ellipsoid (MVEE) and then applying an affine transformation
to make the MVEE into the ball of unit radius. As shown in [Khachiyan, 1996b], this operation
takes time |Si|m2

(
lnm+ ln ln |Si|

)
. After this transformation, let µ be the center of the unit

ball that contains K. Observe that µ is at distance at least 1
m from the boundary of K: this

holds since, by John’s theorem, the ball of radius 1
m centered at µ is entirely contained in

K. Now we execute the hit-and-run from a corner algorithm starting at µ. By the results
of Lovász and Vempala [2006], we have the following bound.

Lemma 3.23 (See Lovász and Vempala [2006], Corollary 1.2). Assume hit-and-run is started
from µ. For any ε > 0, the distribution of the random walk after

t = Θ
(
m4 ln

m

ε

)
steps is ε-uniform over K.
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It remains to implement the hit-and-run algorithm over K. To this end we need to solve
the following problem: given a generic point x ∈ K and a vector u ∈ Sn−1, determine the
intersection of the ray {x+αu}α≥0 with the boundary of K. This amounts to solving a linear
program that searches for the maximum value α ≥ 0 such that x + αu can be written as∑
xj∈Si λjxj for a set of coefficients λ1, . . . , λ|Si| ∈ [0, 1]. We can solve such an LP in time

tK = poly(|Si|,m) with polynomial precision using any polynomial-time solver for linear
programs. The total time to draw the N samples is therefore:

O
(
|Si|m2

(
lnm+ ln ln |Si|

)
+NtK m

4 ln
m

ε

)
(3.21)

As we set N = O(m2) and ε = O(m−1), the total running time is:

O
(
|Si|m2

(
lnm+ ln ln |Si|

)
+ tK m

6 lnm
)

(3.22)

which is in poly(|Si|,m) = poly(n,m).

3.C Proof of Lemma 3.6
Lemma 3.6. For any u ∈ R2 let du(x, y) = |〈u, x− y〉|. For any η > 0 there exists a
clustering C = (C1, C2) on a set X ⊂ R2 that has arbitrarily large one-versus-all margin with
respect to d(0,1), d(1,0), and yet du(C1, C2) ≤ η φdu(X) for any u ∈ R2 \ 0.

Let u1 = (1, 0) and u2 = (0, 1), and for some constant a independent of η and to be fixed
later, consider the set X consisting of the four points (see Figure 3.4.1):

p1 = η u1, q1 = a u1 (3.23)
p2 = η u2, q2 = a u2 (3.24)

Finally, let C = (C1, C2) where C1 = {p1, q1} and C2 = {p2, q2}.
Consider the two pseudometrics d1 = d(0,1) and d2 = d(1,0). Then φd1(C1) = 0 and

d1(C1, C2) = η, and vice versa, φd2(C2) = 0 and d2(C1, C2) = η. Thus, the one-versus-all
margin of C with respect to d1, d2 is unbounded.

Now choose any u ∈ R2 \ 0. Without loss of generality, by rescaling we can assume u to
be a unit vector. In this case, we have du(C1, C2) ≤ du(p1, p2) ≤ ‖p1 − p2‖2 = η

√
2. Yet,

the convex hull of X contains a ball of radius Ω(1), and therefore φd(X) = Ω(1), where the
constants depend on a. Hence, we can make d(C1, C2) ≤ η φd(X) by choosing a appropriately.

3.D Proof of Theorem 3.8
Theorem 3.8. If C satisfies α-center proximity, then it has one-versus-all margin at least
(α−1)2

2(α+1) . Hence, if C satisfies (1 + ε)-perturbation stability, then it has one-versus-all margin

at least ε2

2(ε+2) .

Consider any cluster Ci with center ci. We must show that any y ∈ Cj with j 6= i

satisfies d(y, x) > (α−1)2

2(α+1)φd(Ci) for all x ∈ Ci. Let x′ = arg maxx∈Ci d(x, ci). Clearly, if
d(x′, ci) = 0 then all points of Ci coincide and φd(Ci) = 0. If this is the case, then by the
α-center proximity, for any x ∈ Ci and any y ∈ Cj we have d(y, x) = d(y, ci) > αd(y, cj) ≥ 0.
Therefore d(y, x) > aφd(Ci) for any a > 0, which in particular proves our thesis.

Suppose instead that d(x′, ci) > 0. Choose any x ∈ Ci and any y ∈ Cj . Now, we have two
cases.

Case 1: x = ci. In this case we proceed as follows. Bear in mind that d(x′, ci) = φd(Ci),
d(y, ci) = d(y, x), and d(y, cj) <

1
αd(y, ci).

φd(Ci) = d(x′, ci) (3.25)

<
1

α
d(x′, cj) (3.26)
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≤ 1

α

(
d(x′, ci) + d(ci, y) + d(y, cj)

)
(3.27)

<
1

α

(
φd(Ci) + d(y, x) +

1

α
d(y, ci)

)
(3.28)

=
1

α
φd(Ci) +

1

α
d(y, x) +

1

α2
d(y, x) (3.29)

from which we infer

d(y, x) >
α(α− 1)

α+ 1
φd(Ci) >

(α− 1)2

2(α+ 1)
φd(Ci) (3.30)

Case 2: x 6= ci. In this case, d(x, ci) > 0, and we start by deriving:

d(y, x) ≥ d(x, cj)− d(y, cj) (3.31)

> d(x, cj)−
1

α
d(y, ci) (3.32)

≥ d(x, cj)−
1

α

(
d(y, x) + d(x, ci)

)
(3.33)

= − 1

α
d(y, x) + d(x, cj)−

1

α
d(x, ci) (3.34)

and thus

d(y, x)

(
α+ 1

α

)
> d(x, cj)−

1

α
d(x, ci) (3.35)

which yields

d(y, x) >
α

α+ 1
d(x, cj)−

1

α+ 1
d(x, ci) (3.36)

Let β = d(x′,ci)
d(x,ci)

. Observe that φd(Ci) ≤ 2βd(x, ci) and therefore d(x, ci) ≥ φd(Ci)
2β .

Now we consider two cases. First, suppose that β ≤ α+1
α−1 . In this case, we apply d(x, cj) >

αd(x, ci) to (3.36) to obtain:

d(y, x) >
α2

α+ 1
d(x, ci)−

1

α+ 1
d(x, ci) (3.37)

= d(x, ci)(α− 1) (3.38)

≥ φd(Ci)

2β
(α− 1) (3.39)

≥ φd(Ci)
(α− 1)2

2(α+ 1)
(3.40)

Suppose instead that β > α+1
α−1 . Since we chose x′ ∈ Ci such that d(x′, ci) = βd(x, ci), we

obtain:

d(x, cj) > d(x′, cj)− d(x, x′) (3.41)

> αd(x′, ci)−
(
d(x, ci) + d(x′, ci)

)
(3.42)

= αβd(x, ci)−
(
d(x, ci) + βd(x, ci)

)
(3.43)

= d(x, ci)((α− 1)β − 1) (3.44)

Combining this with (3.36), we obtain:

d(y, x) > d(x, ci)

(
α

α+ 1
((α− 1)β − 1)− 1

α+ 1

)
(3.45)

= d(x, ci)

(
α(α− 1)β

α+ 1
− 1

)
(3.46)
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≥ φd(Ci)

2β

(
α(α− 1)β

α+ 1
− 1

)
(3.47)

= φd(Ci)

(
α(α− 1)

2(α+ 1)
− 1

2β

)
(3.48)

> φd(Ci)

(
α(α− 1)− (α− 1)

2(α+ 1)

)
(3.49)

= φd(Ci)
(α− 1)2

2(α+ 1)
(3.50)

Hence, in all cases, we obtain d(y, x) > φd(Ci)
(α−1)2

2(α+1) . This concludes the proof.

3.E Proof of Lemma 3.9
Lemma 3.9 (One-versus-all margin implies one-sided-error learnability). Let d be any pseu-
dometric over X . For any finite X ⊂ X and any γ > 0, define the effective concept class over
X:

H = {C ⊆ X : d(X \ C,C) > γ φd(C)} (3.3)

Then H = I(H), and vc-dim(H,X) ≤M where M = max(2,M(γ, d)). As a consequence,
H can be learned with one-sided error ε and confidence δ with O

(
ε−2(M log 1/ε+1/δ)

)
examples

by choosing the smallest consistent hypothesis in H.

For the first claim, we start by showing that H = I(H). Let C1, C2 ∈ H. We show that
C := C1 ∩ C2 ∈ H, too. Consider any y ∈ X \ C, and without loss of generality assume
that y /∈ C1. Since C ⊆ C1, we have φd(C1) ≥ φd(C) and d(y, C) ≥ d(y, C1). Moreover,
d(y, C1) > γ φd(C1) since C1 ∈ H. Therefore:

d(y, C) ≥ d(y, C1) > γ φd(C1) ≥ γ φd(C) (3.51)

proving that d(y, C) > γ φd(C). Since this holds for all y ∈ X \ C, we have C ∈ H as well.
Therefore, H = I(H).

Since H = I(H), then vc-dim(H,X) = vc-dim(I(H), X). Now, we use the following
results of Kivinen [1995]:

Definition 3.24. [Kivinen [1995], Definition 5.11] Let X be any domain and H ⊆ 2X be a
concept class. We say that H slices X ⊂ X if, for each x ∈ X, there is h ∈ H such that
X ∩h = X \ {x}. The slicing dimension of (H,X ), denoted by sl(H,X ), is the maximum size
of a set sliced by H. If H slices arbitrarily large sets, then we let sl(H,X ) =∞.

Lemma 3.25 (Kivinen [1995], Lemma 5.19). If sl(H,X ) < ∞, then vc-dim(I(H),X ) ≤
sl(H,X ).

We will now show that sl(H,X) ≤M , where M is finite by assumption. By Lemma 3.25,
this will imply vc-dim(H,X) ≤ sl(H,X).

Let S ⊆ X be any set of size sl(H,X) that is sliced by H. To show that sl(H,X) ≤ M ,
we need to show that |S| ≤ M . If |S| ≤ 2, then this is trivial, since M ≥ 2. Suppose then
that |S| ≥ 3. Choose a, b ∈ S such that d(a, b) = φd(S). Since S is sliced by H, for any x ∈ S
we must have S \ x = S ∩C for some C ∈ H. Since S \ x ⊆ C, we have d

(
S \ x, x

)
≥ d(C, x)

and φd(C) ≥ φd(S \x). Moreover, d(C, x) > γ φd(C), since x ∈ X \C and C ∈ H. Therefore:

d
(
S \ x, x

)
≥ d(C, x) (3.52)
> γ φd(C) (3.53)
≥ γ φd(S \ x) (3.54)

Hence, d(S \ x, x) > γ φd(S \ x) for all x ∈ S.
Now, suppose first that γ ≥ 1. Since |S| ≥ 3, any x ∈ S \ {a, b} yields the absurd:

φd(S) ≥ d(S \ x, x) (3.55)
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> φd(S \ x) since γ ≥ 1 (3.56)
= d(a, b) since a, b ∈ S \ x (3.57)
= φd(S) by the choice of a, b (3.58)

Hence we must have |S| ≤ 2, which implies again |S| ≤ M . Suppose instead that γ < 1.
Then, for any two distinct points x, y ∈ S, we have d(x, y) > γφd(S). This is trivially true
if x = a and y = b; otherwise, assuming x /∈ {a, b}, it follows by the fact that d(x, y) ≥
d(S \ x, x) > γφd(S \ x) = γφd(S), as seen above. Moreover, S is contained in the closed ball
B(x, φd(S)) for any x ∈ S. Therefore,M(B(x, r), γr, d) ≥ |S| for r = φd(S) and some x ∈ X .
By definition of M(γ, d) this implies that |S| ≤ M(γ, d), and M(γ, d) ≤ M . This concludes
the proof.

3.F Proof of Theorem 3.10
Theorem 3.10. Let (X,O) be any instance whose latent clustering C has one-versus-all
margin γ > 0 with respect to d1, . . . , dk. Then mRec(X,O, γ) deterministically outputs C
while making, with high probability, at most O(Mk log k log n) queries to O, where M =
max(2,M(γ)). Moreover, for any algorithm A and for any γ > 0, there are instances with
one-versus-all margin γ on which A makes Ω(M(2γ)) queries in expectation.

For the lower bounds, let γ′ = 2γ. By definition of M(γ′), there exists a set X of M(γ′)
points that, according to some d ∈ {d1, . . . , dk}, lies within a ball of radius r > 0, and
thus has diameter at most 2r, and such that d(x, y) > γ′r = 2γr for all distinct x, y ∈ X.
Now choose x ∈ X uniformly at random, and define C = (x,X \ x). The argument above
shows that d(x,X \ x) > γφd(X), which implies that C has one-versus-all margin γ. Clearly,
in expectation over the distribution of C, any exact cluster recovery algorithm must make
Ω(|X|) = Ω(M(2γ)) queries. By Yao’s principle for Monte Carlo algorithms, then, any such
algorithm makes Ω(M(2γ)) queries on some instance.

Let us turn to the upper bounds. The pseudocode of mRec is given below. As in the
proof sketch, for each i ∈ [k] the class Hi is defined as:

Hi = {C ⊆ X : di(X \ C,C) > γ φdi(C)} (3.59)

As said in the proof sketch, by Lemma 3.9 and by the definition of learning with one-sided
error (Definition 3.1), we have Ĉi ⊆ Ci and therefore mRec never misclassifies any point, and
moreover we have:

P
(∣∣Ci \ Ĉi∣∣ ≤ ε|X|) ≥ 1− δ (3.60)

In our case, that is, with ε = 1/2k and δ = 1/2, and since |Ci \ Ĉi| = |Ci| − |Ĉi|, this yields:

P
(∣∣Ĉi∣∣ ≥ |Ci| − |X|

2k

)
≥ 1

2
(3.61)

which, since
∣∣Ĉi∣∣ ≥ 0, implies:

E
∣∣Ĉi∣∣ ≥ 1

2
·
(
|Ci| −

|X|
2k

)
=
|Ci|
2
− |X|

4k
(3.62)

By summing over all i ∈ [k], at each round mRec correctly labels, and removes from X, an
expected number of points equal to:

E
∣∣∣Ĉ1 ∪ . . . ∪ Ĉk

∣∣∣ =
k∑
i=1

E
∣∣Ĉi∣∣ ≥ k∑

i=1

(
|Ci|
2
− |X|

4k

)
=
|X|
2
− |X|

4
=
|X|
4

(3.63)

Thus, at each round mRec gets rid of an expected fraction 1/4 of all points still in X. By
a standard probabilistic argument this implies that, with high probability, all points are
correctly labeled within O(log n) rounds, see Lemma 3 of [Bressan et al., 2020a]. Therefore,
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the total number of queries is bounded by O(Mk log k) with high probability. This concludes
the proof.

Algorithm 5 mRec(X,O)

if X = ∅ then return
for each i ∈ [k] let Hi as in Equation 3.59
draw a sample S of |S| = Θ

(
Mk ln k

)
points u.a.r. from X

use O to learn the labels of S
for i ∈ [k] do

let Si be the subset of S having label i
let Ĉi be the smallest set in Hi consistent with Si
give label i to every x ∈ Ĉi

let X ′ = X \ ∪i∈[k]Ĉi
mRec(X ′, O)

3.G Proof of Theorem 3.12
As said in the sketch, the proof follows the same ideas of the proof of Theorem 3.10.

For the lower bounds, suppose that cosl(H) < ∞, and let X be a set cosliced by H with
|X| = cosl(H). We draw a random uniform element x ∈ X, and we consider the clustering
C = (x,X \ x). By definition of sliced set, C is realised by H, and therefore it satisfies the
assumptions. Now the same arguments of the lower bounds of Theorem 3.10 imply that
any algorithm needs Ω(|X|) = Ω(cosl(H)) queries on some instance to return C. Clearly, if
cosl(H) =∞ this means that we can take |X| = n arbitrarily large, whence the second lower
bound.

For the upper bounds, let Pk(X) be the set of all k-clusterings of X that are realised by
H. Then, for each i ∈ [k] we define:

Hi = {C ′ : C ′ = C ′i ∧ (C ′1, . . . , C
′
k) ∈ Pk(X)} (3.64)

As in mRec, we learn each class Hi with one-sided error by choosing the smallest hypothesis
in I(Hi) that is consistent with Si, for a labeled sample S of size Θ(vc-dim(I(Hi), X) k ln k).
As shown in the proof of Lemma 3.9, a result of Kivinen [1995] implies that if sl(Hi, X) <∞
then vc-dim(I(Hi), X) ≤ sl(Hi, X). Therefore, to prove the theorem we only need to show
that sl(Hi, X) ≤ cosl(H). To this end, suppose that U = {x1, . . . , x`} ⊆ X is sliced by Hi.
By construction of Hi, this means that there are ` clusterings C1, . . . , C`, each one realised
by H, such that Ci = ({xi}, U \ {xi}) for all i ∈ [k]. This implies that U is cosliced by H.
Hence, |U | ≤ cosl(H) and so sl(Hi, X) ≤ cosl(H), as claimed. The rest of the proof is similar
to the proof of Theorem 3.10, and shows that at each round we recover an expected constant
fraction of all points, and that therefore all points will be recovered with high probability
after O(log n) rounds. This shows that we can recover C by making with high probability at
most O(cosl(H)k log k log n) queries.

3.H Proof of Theorem 3.14
Theorem 3.14. Let H be a concept class in Rm that is non-fractal and closed under affine
transformations. There is an algorithm that, given any instance whose latent clustering C
has one-versus-all margin γ and is realized by H, returns C while making O(Mk log k log n)
queries with high probability, where M = max

(
2, (1+ 4/γ)m

)
. Moreover, for any algorithm A,

there exist arbitrarily large n-point instances, whose latent clustering C has arbitrarily small
one-versus-all margin and is realized by H, where A makes Ω(n) queries in expectation to
recover C.

The upper bound follows from Theorem 3.10, by using the standard fact that in the
Euclidean metric the unit ball has covering number N (B(x, 1), ε) ≤ (1 + 2/ε)m for all ε > 0.
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As it is well-known, we haveM(B(x, 1), ε) ≤ N (B(x, 1), ε/2), which for ε = γ yields M(γ) ≤
(1 + 4/γ)m.

We now prove the lower bound. Having instances with “arbitrarily small one-versus-all
margin” means that γ = 0, see Definition 3.5. Take any h ∈ H such that both h and its
complement h̄ contain a ball of positive radius. Note that this implies that, for any ρ > 0,
there exists a closed ball B with radius r > 0 such that:

B ⊆ h (3.65)
∃x ∈ h̄ : d(B, x) ≤ ρ (3.66)

Let c be the center of B. Consider a sphere S of radius r′ that contains x and whose center c′
lies on the affine subspace x+ α(c− x). Let η = supy∈S\B d(x, y) and let X be an η-packing
of S. Note that, since γ = 0, we can choose ρ and r′ arbitrarily small, and in particular we
can make the ratio η

r′ arbitrarily small. This implies that we can make X arbitrarily large,
see Figure 3.H.1.

c

B

c′x

X

Figure 3.H.1: An η-packing X such that X∩h = X \{x} and X∩h̄ = {x}.
The ball B is by construction entirely in h, whereas x is by construction in

h̄.

Now, consider x′ ∈ X \ {x}. As by construction d(x′, x) > η, and as r′ < r, we must have
x′ ∈ B. Therefore, x′ ∈ h. Hence the concept hx = h is such that X ∩hx = X \{x}. Now, for
any x′ ∈ X \ {x}, there is a rotation R with fixed point c′ and such that R(x′) = x. Hence,
hx′ = R−1hx is such that X ∩hx′ = X \ {x′}. Since R−1 is an affine transformation, hx′ ∈ H
as well. Hence, for every x ∈ X there exists some concept hx ∈ H such that X∩hx = X \{x}.

Now consider the complement h̄ of h. Note that h̄ ∈ co(H). The first part of the argument
above can be applied to h̄ as well, showing that for every x ∈ X there exists h̄x ∈ co(H) such
that X ∩ h̄x = X \ {x}. Now consider the complement hx of h̄x. Clearly hx ∈ H, and
moreover, X ∩ hx = {x}.

Hence, for any x ∈ X there are two concepts h−x , h+
x ∈ H such that X ∩ h−x = X \ {x}

and X ∩ h+
x = {x}. Hence, every 2-clustering C of X in the form C1 = {x}, C2 = X \ {x}

is realized by H. Note that this holds with X fixed; we just need to transform the concetps
appropriately. It is they immediate to see that any algorithm must perform Ω(|X|) queries
on some instance (X,O). As we can make X arbitrarily large, this completes the proof.
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Chapter 4

Exact recovery of Density-Based
Clusterings

The scope of this chapter is to analyze the exact cluster recovery problem in the context on
non-convex density-based clustering. We begin by introducing a structural characterization
of clusters, called (β, γ)-convexity, that can be applied to any finite set of points equipped
with a semi-metric. Using this convexity notion, we design a deterministic algorithm that
recovers (β, γ)-convex clusters using O(log n) same-cluster queries. We then show that the
algorithm has an optimal dependence on some of the problem parameters by proving lower
bounds. Finally we show that by using an additional and more powerful type of query, it is
possible to recover also clusters of different (and unknown) scales.

4.1 Introduction
We investigate the problem of exact reconstruction of clusters using oracle queries in the
semi-supervised active clustering framework (SSAC) of Ashtiani et al. [2016]. In SSAC,
we are given n points in a metric space, and the goal is to partition these points into k
clusters with the help of an oracle answering queries of the form “do x and y belong to the
same cluster?”. When the metric is Euclidean, Ashtiani et al. [2016], Bressan et al. [2020b]
and Bressan et al. [2021b] show that exact reconstruction is possible using only O(log n)
oracle queries, which mirrors the query complexity of efficient active learning. These results
heavily rely on the Euclidean geometry of the clusters; in particular, clusters are assumed to
be convex (e.g., ellipsoidal) and separable with a margin. These assumptions exclude many
natural definitions of “cluster”, such as those based on notions of density, or those computed
by popular techniques like spectral clustering, linkage clustering, or DBSCAN.

In this chapter we study exact cluster recovery in metric spaces, or —more generally—
finite semimetric spaces (where the triangle inequality is not necessarily satisfied). The use of
semimetrics in clustering, and in other machine learning tasks, is motivated by the fact that in
many applications domains the notion of distance is strongly non-Euclidean [Gottlieb et al.,
2017]. Classic examples include the Wasserstein distance in vision, the Levenshtein distance
in string matching, the cosine dissimilarity in document analysis, the Pearson dissimilarity in
bioinformatics. In all these cases, the notions of convexity and separability with margin are
lost, or exist only in certain generalized forms, so the cluster recovery techniques of Ashtiani
et al. [2016]; Bressan et al. [2020b, 2021b] do not apply anymore. To fill this gap, we introduce
a novel notion of cluster convexity that can be applied to any finite semimetric space and
that can be exploited algorithmically.

We start by considering geodesic convexity in weighted graphs [Pelayo, 2013], a well-known
generalization of Euclidean convexity that has been used, among others, for node classification
in graphs Thiessen and Gärtner [2020]. Given a weighted graph G, a subset C ⊆ V (G) is said
to be geodesically convex if every shortest path between any two vertices of C lies entirely
in C. Thus, in a finite semimetric space, we could say that C is a convex cluster if it is
geodesically convex in the weighted graph G encoding the semimetric (with the distances as
weights). Unfortunately, this condition is too lax. To see this, take n distinct points on
a circle with the Euclidean metric. In G, the shortest path between any two points x, y is
always the edge (x, y) itself. Thus, according to this definition, any subset of the n points
will be geodesically convex, and so every clustering will be admitted, which means that Ω(n)
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Figure 4.1.1: Left: a toy point set. Right: the graph GX(ε) and a valid
(β, γ)-convex clustering for X (clusters encoded by the color of the points),

for any β < 1
2
and γ > 0.

Figure 4.1.2: Left: a toy point set. Middle and right: the graphs GX(ε1)
and GX(ε2) where ε1 < ε2 are the radii of the “outer” cluster C1 and the
“inner” cluster C2. The clustering is (β, γ)-convex for β ≤ .5 and γ ≤ .1.

queries will be needed to recover the clustering. However, we will show that a variant of
this approach gives a suitable notion of convexity, one that yields efficient recovery with only
O(log n) queries while capturing the density of the clusters.

4.1.1 Contributions.
We introduce (β, γ)-convex clusterings, a novel family of clusterings defined on the weighted
graph G encoding the semimetric on X. For any ε > 0, let GX(ε) be the unweighted subgraph
of G obtained by deleting all edges (x, y) with d(x, y) > ε. We say that a clustering is (β, γ)-
convex (with β, γ ∈ (0, 1]) if for some ε > 0 every cluster C satisfies the following three
properties. Connectivity : the subgraph of GX(ε) induced by C is connected. Local metric
margin: if x ∈ C and y /∈ C, then d(x, y) > βε1. Geodesic convexity with margin: in GX(ε),
if x, y ∈ C and the shortest path between x and y has length `, then any simple path between
x and y of length at most `(1+γ) does not leave C. The smallest ε for which these properties
hold is called the radius of the clusters. It is important to observe that (β, γ)-convexity
includes nontrivial cases. For instance, (β, γ)-convex clusters can be strongly non-convex in
Rd, as depicted in Figure 4.1.1. Moreover, we can allow the clusters to have different radii
ε1, . . . , εk (see below), as depicted in Figure 4.1.2. These examples suggest that, in a certain
sense, one can view (β, γ)-convexity as a way of translating density into convexity. Moreover,
if we drop any one of the three conditions —connectedness, local metric margin, and geodesic
convexity with margin— the clusters can become disconnected, too close to one another, or
interspersed with other clusters, see Section 4.3.1.

Our first result shows that (β, γ)-convex clusterings can be recovered efficiently using a
small number of same-cluster queries (scq for short). More precisely, if ε, β, γ are known, and
for each cluster we know an arbitrary initial point, called seed,2 then we can deterministically
recover all clusters with O

(
k2 log n + k2

(
6/βγ

)dens(X))
scq queries. Here, dens(X) is the

density dimension of X [Gottlieb and Krauthgamer, 2013], a generalization of the doubling
1Note that, for any clustering C in a finite semimetric space X and for any ε > 0, a β such that the local

metric margin condition holds can always be found. In this respect, β defines a hierarchy over clusterings,
where large values of β identify clusterings that are easier to learn.

2We note here that this last assumptions can be dropped if the clusters have roughly similar sizes. In fact,
if the gap between the size of the largest and smallest clusters is χ we can obtain the seed w.h.p. by sampling
Õ(kχ) nodes and retrieving their cluster membership using Õ(k2χ) same cluster queries
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dimension that, in metric spaces, is used to bound the size of packings. This dependence of
our exponent on dens(X) is asymptotically optimal, as we prove that, in the worst case, any
algorithm needs Ω(2dens(X)) scq queries to recover a (β, γ)-convex clustering. The running
time of our algorithm is O

(
k2(n+m)

)
, where m is the number of edges of G (i.e., the number

of finite distances between the input points). The key step of our algorithm consists in finding
a cluster separator between each cluster C and the other clusters. To do this, we need to find
edges between C and other clusters in the graph GX(ε), which requires to carefully exploit
the structural properties of (β, γ)-convexity. We note that, interestingly, in the r-dimensional
Euclidean setting, the cluster recovery algorithm of [Bressan et al., 2021b] makes a number
of queries roughly of the order of O

(
(1/γ)r log n

)
, where γ is the convex margin. This shows

that our notion of convexity plays a role similar to that of Euclidean convexity.
Next, we investigate the power of queries. First, we show that, without seed nodes, any

algorithm using only the scq oracle needs Ω(n) queries to recover the clusters. To circumvent
this lower bound, we add a more powerful query, called seed. Given a partition of X and
the id of a cluster, the seed query provides a certificate (i.e., a point of X) that the cluster
is cut by the partition, or answers negatively if the cluster is not cut. We show that, if we
can use O

(
k2 log n+ k2

(
6/βγ

)dens(X))
scq queries plus only O(k2) seed queries, then we can

recover clusters with different radii ε1, . . . , εk, a case that we model by generalizing the (β, γ)-
convex definition in a natural way. This allows us to capture clusters with different “scales”,
as shown in Figure 4.1.2. If the radii ε1, . . . , εk are unknown, we show that O(k log n) seed
queries are sufficient to learn them in time O

(
mα(m,n) + kn log n

)
, where α is the inverse of

the Ackermann function, and that no algorithm can learn the radii with less than Ω(k log n
k )

queries. Furthermore, if one of β and γ is unknown, we show that we can still learn the
clusters by paying a small overhead.

4.2 Related work
Exact reconstruction of clusters with same-cluster queries was introduced by Ashtiani et al.
[2016], who showed how to recover exactly the optimal k-means clustering with O(k2 log n)
queries when each cluster lies inside a sphere centered in the cluster’s centroid and well
separated from the spheres of other clusters. Bressan et al. [2020b] extend these results to
clusters separated by arbitrary ellipsoids with arbitrary centers, and Bressan et al. [2021b] to
arbitrary convex clusters with margin. Both results assume the standard Euclidean metric.

seed queries have been used by Hanneke [2009] as “positive example queries”, by Balcan
and Hanneke [2012] as “conditional class queries”, by Beygelzimer et al. [2016]; Attenberg and
Provost [2010] as “search queries”, and, implicitly, also by Tong and Chang [2001]; Doyle et al.
[2011]. Previous works also show that seed queries are well justified in practice, as noted
by Beygelzimer et al. [2016].

As with O(k) scq queries one can learn the cluster id of any point (up to a relabeling
of the clusters), we could reduce our problem to the problem of classifying the nodes of
GX(ε). Dasarathy et al. [2015] develop a probabilistic active classification algorithm, called
S2 (shortest-shortest-path), whose label complexity depends on the graph’s structure. In
particular, the label complexity is linear in the size of the boundary of the cut between nodes
with different labels. Unfortunately, even under (β, γ)-convexity, in GX(ε) this boundary
can have size Ω(n). Thiessen and Gärtner [2020] show a deterministic algorithm with label
complexity proportional to the size of the shortest path cover of the graph (the smallest set
of shortest paths that cover all nodes). Again, in GX(ε) this cover could have size Ω(n) even
under (β, γ)-convexity. Active classification on unweighted graph has been also studied by
Afshani et al. [2007]; Cesa-Bianchi et al. [2010]; Guillory and Bilmes [2011], but only with
approximate reconstruction guarantees (i.e., Ω(n) queries may be needed for exact recovery).

Mazumdar and Saha [2017a] study exact cluster reconstruction with a scq oracle on
weighted graphs, where weights express similarities. They prove a logarithmic query bound
using a Monte-Carlo algorithm and a log-linear bound using a Las-Vegas algorithm. However,
similarly to a stochastic block model, they assume that the weights are drawn from some
latent distribution that depends on the clustering. Stochastic block models [Zhang et al.,
2014; Gadde et al., 2016] and geometric block models [Chien et al., 2020] have been also
considered as generative models for active clustering on graphs.
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Center-based [Balcan and Long, 2013b], density-based [Mai et al., 2013], spectral [Wang
and Davidson, 2010; Shamir and Tishby, 2011], and hierarchical [Eriksson et al., 2011; Krish-
namurthy et al., 2012] clustering have been also studied in a more restricted active learning
setting, where the algorithm has access to the pairwise distances through an oracle.

4.3 Preliminaries and notation
Our algorithms receive in input a semimetric represented by an undirected weighted graph
G = (X, E , d), where d(x, y) > 0 is the weight3 of the edge (x, y) ∈ E and |X| = n. For
ε > 0, we let GX(ε) be the undirected graph with vertex set X where x, y ∈ X are connected
if and only if d(x, y) ≤ ε. Given a graph G = (V,E) and two vertices x, y ∈ V , we denote
by dG(x, y) the shortest-path distance between x and y in G and by ρ(G) the number of
connected components of G. Given any subset U ⊆ V , we use G[U ] to denote the subgraph
of G induced by U , and we use Γ(U) to denote the set of edges having exactly one endpoint
in U . An edge (x, y) ∈ Γ(U) is called a cut edge of U .

Let x ∈ X and r > 0, the ball of center x and radius r is B(x, r) = {y ∈ X : d(x, y) ≤ r}.
For any set K ⊆ X, we denote by M(K, r) the maximum cardinality of any subset A of K
such that all distinct x, y ∈ A satisfy d(x, y) > r. Following Gottlieb et al. [2017], we define
the density constant of X as:4

µ(X) = min {µ ∈ N : (x ∈ X) ∧ (r > 0)⇒M(B(x, r), r/2) ≤ µ} (4.1)

Therefore, in X, any ball of radius r contains at most µ(X) points at pairwise distance larger
than r

2 . The density dimension of X is dens(X) = log2 µ(X). It is easy to see that, for any
ball B(x, r) and for any η ∈ (0, 1) we have:

M(B(x, r), ηr) ≤ µ(X)

⌈
log2

1
η

⌉
≤ (2/η)

dens(X) (4.2)

When d is a metric, we have dbl(X) ≤ dens(X) ≤ 2 dbl(X) where dbl(X) is the doubling
dimension of X, see Lemma 4.17 in Appendix 4.A. We denote by M∗(η) the maximum of
M(B(x, r), ηr) over all x ∈ X and r > 0. The quantityM∗(η) appears in our bounds, with
η being a function of β and γ. Note thatM∗(η) ≤

(
2/η
)dens(X), by (4.2).

A k-clustering of X is a partition C = (C1, . . . , Ck) of X. We denote by C(x) the cluster id
of x, so that x ∈ CC(x). We now introduce the characterization of the clusterings considered
in this work. The following definition is for clusters with identical radii; a more complex
version will be needed in the case with different radii, see Section 4.5.

Definition 4.1 ((β, γ)-convex clustering). For any β, γ ∈ (0, 1], a clustering C = (C1, . . . , Ck)
of X is (β, γ)-convex if ∃ ε > 0 such that for each i ∈ [k] the following properties hold:
1. connectedness: the subgraph induced by Ci in GX(ε) is connected
2. local metric margin: for all x, y ∈ X, if x ∈ Ci and y /∈ Ci, then d(x, y) > βε

3. geodesic convexity with margin: if x, y ∈ Ci, then in GX(ε) any simple path between x
and y of length at most (1 + γ)dGX(ε)(x, y) lies entirely in Ci

The smallest value of ε satisfying the three properties is called the radius of the clusters.5
In this work, we assume the algorithm obtains information about the unknown target

clustering C through same-cluster queries [Ashtiani et al., 2016]:

scq: for any x, y ∈ X, scq(x, y) returns {C(x) = C(y)}, where {·} is the indicator function

If only same-cluster queries are available, we assume that, together with X, the recovery
algorithm is given a seed node si ∈ Ci for each cluster Ci. Seed nodes are collected in a vector

3Our query bounds do not depend on the size of the weights.
4While [Gottlieb et al., 2017] uses open balls, we use closed balls.
5Actually, our algorithm of Section 4.4 works with any such ε. We use the minimum to disambiguate the

radius.
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a)

b)

c)

Figure 4.3.1: a) a clustering violating connectivity, b) a clustering vio-
lating local metric margin, c) a clustering violating geodesic convexity with
margin. Empty nodes are in C1, filled nodes are in C2. Shown are the edges

of GX(ε).

sss = (s1, . . . , sk). Without seed nodes, Ω(n) same-cluster queries are needed to recover C (see
Section 4.8)6.

When the cluster radii are different and/or unknown, or the seed nodes are not available,
we show that there are instances where Ω(n) same cluster queries are needed. To overcome
this limitation, we allow the algorithm to use another type of queries, called seed queries:

seed: for any S ⊆ X and i ∈ [k], seed(S, i) returns an arbitrary point si ∈ Ci ∩ S, or nil if
Ci ∩ S = ∅.

The seed query is a kind of separation oracle: given a partition (S,X \S) of X and a cluster
label i, the query can be used to check whether Ci is cut by this partition. Indeed, if Ci is
cut, then seed(S, i) and seed(X \S, i) return a point of Ci belonging to, respectively, S and
X \S. Note that these queries are very natural. In a crowdsourcing setting, they correspond
to asking the rater to identify an entity (say a picture of a car) within a set (say a set of
pictures).

4.3.1 Necessity of the properties of Definition 4.1
We give some representative examples of degenerate clusterings resulting from dropping any
of the properties of Definition 4.1. We assume that k = 2 and X ⊆ R2 with d being the
Euclidean metric. The examples are depicted in Figure 4.3.1 below.
Removing connectivity. Choose any β, γ ≤ 1. Let X consist of disjoint subsets, each one
with Euclidean diameter ≤ ε, and sufficiently far from each other. Label any subsets as C1

and the rest as C2. Note that the second and third property of Definition 4.1 are satisfied.
Removing local metric margin. Choose any γ ≤ 1. Let C1 be formed by collinear points
equally spaced by ε, and the same for C2, so that two extremal points of C1 and C2 are at
arbitrarily small distance δ < ε. Note that the first and third property of Definition 4.1 are
satisfied.
Removing geodesic convexity with margin. Choose any β < 1

2 . The set X is formed
by collinear points equally spaced by ε

2 , with the points of cluster C1 interleaved with those
of cluster C2. Note that the first and second property of Definition 4.1 are satisfied, but the
third is violated for any γ = ω(1/n): take the two extreme nodes of C1 and change their
shortest path to use a node of C2.

4.3.2 Relationship with other clustering notions
As noted, (β, γ)-convexity is meant to capture density-based clusterings produced by popular
algorithms such as Single Linkage and DBSCAN. Those clusterings, however, are in general
not recoverable with less than Ω(n) queries, since they allow for Ω(n) ties (points that can
be assigned to one of two clusters in an arbitrary way). Therefore, (β, γ)-convexity should be
thought of as an additional property, to be requested on top of existing notions of clustering
in order to obtain efficient exact recovery. Here, we give two examples of how existing notions
of clustering yield (β, γ)-convexity in particular cases.

6As we already said, if the sizes of the clusters are “roughly” balanced we can remove this assumption and
sample Õ(k) random nodes and use Õ(k2) same-cluster queries to obtain the seed nodes with high probability.
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The first example is DBSCAN, whose parameters are the connectivity radius r and the
density parameter κ. The clustering is defined by looking at GX(r), clustering together any
maximal (sub)tree whose vertices all have degree at least κ, and assigning each remaining
vertex to the same cluster as some of its neighbors (if it has a neighbor). Now, suppose that
GX(r) is formed by k connected components, and each one of them is spanned by a tree
on vertices that have degree at least κ. Then, by taking ε = r, one can see that each such
component is a cluster that is (β, γ)-dense for β ≥ 1 and every γ > 0.

The second example is that of spherical clusters with margin [Ashtiani et al., 2016]. In this
case we use the generalized (β, γ)-convexity, see Definition 4.10. Let X ⊂ Rd, and suppose
that every cluster Ci is contained in some ball Bi = B(ci, ri), so that, for some δ > 0,
B(ci, ri(1 + δ)) ∩ Cj = ∅ for all j 6= i. Suppose that each Ci is a set of (aδ )d points drawn
independently and uniformly from Bi, for some constant a > 0. We claim that the resulting
clustering is (β, γ)-convex with high probability, for β = 1 and any γ > 0. Indeed, (aδ )d points
draws uniformly at random from Bi are with high probability a δri

2 -net for Bi [Vershynin,
2018] when a is sufficiently large. In this case, it is easy to see that Ci is connected in GX(εi),
where εi = δri, thus satifying condition (1) of Definition 4.10. Moreover, by assumption, for
any x ∈ Ci and any y ∈ Cj with j 6= i we have d(y, x) > εi, thus satisfying conditions (2) and
(3) of Definition 4.10 for β = 1 and any γ > 0.

Chapter organization. Section 4.4 gives the step-by-step construction of our algorithm for
recovering (β, γ)-convex clusterings. Section 4.5 extends (β, γ)-convexity to capture clusters
with different radii, and shows how, by introducing seed queries, our algorithm can be
extended to this case. Section 4.6 shows how we can learn the radii as well as β or γ,
using again seed queries. Section 4.7 discusses an efficient implementation of our algorithms.
Section 4.8 presents our query complexity lower bounds.

4.4 Exact recovery of (β, γ)-convex clusters
Throughout this section we assume that ε, β, γ are known, and that we know a vector of seed
nodes sss = (s1, . . . , sk), so that si ∈ Ci for all i. Under these assumptions, our goal is to
construct an algorithm, called RecoverCluster, that for any i returns Ci using O

(
k log n +

kM∗
(
βγ

2+γ

))
scq queries and time O(k(n + m)). By running RecoverCluster once for each

i, it is immediate to obtain a full cluster recovery algorithm, RecoverClustering, with the
following guarantees. Note that M∗

(
βγ

2+γ

)
≤ (6/βγ)dens(X) since M∗(η) ≤ (2/η)dens(X) and

γ ≤ 1.

Theorem 4.2. Suppose C is (β, γ)-convex (Definition 4.1). Then RecoverClustering(X, ε,sss)
deterministically returns C in time O(k2(n + m)) using O

(
k2 log n + k2 (6/βγ)dens(X)

)
scq

queries.

The rest of this section describes RecoverCluster and proves Theorem 4.2, with the excep-
tion of the running time bound, which is proven in Section 4.7. Unless otherwise specified,
from now on G stands for GX(ε).

4.4.1 Margin-based separation, and binary search on shortest paths.
We start with a subroutine MBS (Margin-Based Separator) that, given an input set Z and
the cluster index i, computes Z ∩Ci. The routine uses the local metric margin and is efficient
when the metric radius of Z is small.

Algorithm 6 MBS(Z, ε, u)

1: U := ∅
2: for each connected component H of GZ(βε) do
3: choose any x ∈ V (H)
4: if scq(x, u) = 1 then add V (H) to U
5: return U
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Lemma 4.3. For any u ∈ X and any Z ⊆ X such that Z ⊆ B(z, r) for some z ∈ X and
r <∞, MBS(Z, ε, u) returns Z ∩ Ci usingM∗

(
βε
r

)
scq queries, where i = C(u).

Proof. Let GZ = GZ(βε). If H is any connected component of GZ , then d(x, y) ≤ βε for all
x, y ∈ H. Thus, a repeated application of the local metric margin implies that all nodes of H
belong to the same cluster. Therefore, either V (H)∩Ci = ∅, or V (H) ⊆ Ci. This shows that
x is added to U if and only if x ∈ Ci, proving the correctness. For the query complexity, let
P be the set of points x queried by the algorithm at line 4. Clearly P is an independent set
in GZ and, thus, d(x, y) > βε for all distinct x, y ∈ P . By the definition ofM∗ this implies
that |P | ≤ M∗(βεr ).

Next, we introduce a condition for finding efficiently a cut edge of Ci. A path π =
(x1, . . . , x|π|) is Ci-prefixed if there exists an index j∗ ∈

[
|π|
]
such that xj ∈ Ci if and only if

j ∈ {1, . . . , j∗}

Lemma 4.4. Let Ci ⊆ R ⊆ X such that G[R] is connected. Then, in G[R], any shortest path
between any si ∈ Ci and any s ∈ R \ Ci is Ci-prefixed.

Proof. Suppose by contradiction that in G[R] there exists a shortest path π between si ∈ Ci
and s ∈ R \ Ci that is not Ci-prefixed. Then some prefix π′ of π is a shortest path between
si ∈ Ci and s′i ∈ Ci that intersects R \ Ci. Now observe that π′ is a shortest path in G, too.
This holds because any shortest path between si and s′i in G lies inside G[Ci] by geodesic
convexity, and thus inside G[R] as Ci ⊆ R. By geodesic convexity this implies that π′ ⊆ G[Ci],
a contradiction.

Finally, we observe that, in a Ci-prefixed simple path, a cut edge of Ci can be found via
binary search from the endpoints of the path. This yields a subroutine FindCutEdge with
the following guarantees (pseudocode in Appendix 4.B):

Remark 4.1. Given a simple Ci-prefixed path π, FindCutEdge(π) returns the unique cut
edge of Ci in π using O(log n) scq queries.

4.4.2 Cluster separators
We introduce the notion of cluster separator, which is at the heart of our algorithm.

Definition 4.5. A partition (Si, Sj) of X is an (i, j)-separator of X if Si∩Cj = Sj ∩Ci = ∅.

This is similar to half-spaces in abstract closure systems [Seiffarth et al., 2019], where we
would have Ci ⊆ Si and Cj ⊆ Sj . We use the weaker condition Si∩Cj = Sj ∩Ci = ∅ because
in some of our algorithms X will be a subset of the input set, in which case Cj ⊆ X might
not hold. On the other hand, we will always make sure that Ci ⊆ X holds.

Now, if Ci ⊆ X and (Si, Sj) is an (i, j)-separator for X, then Ci ⊆ Si but Cj ∩ Si = ∅.
Thus, if we could compute an (i, j)-separator for all j 6= i, then we could compute Ci by a
simple set intersection. Unfortunately, it is not clear how to compute (Si, Sj) for an arbitrary
j, even given the seed node sj . However, as we shall see, we can compute (Si, Sj) if we know
a cut edge (ui, uj) between Ci and Cj . The trick is to take each x ∈ X and look at its
distance dG(x, ui) from ui. If dG(x, ui) <

1
γ , then we learn whether ui ∈ Ci using MBS. If

instead dG(x, ui) ≥ 1
γ , then the comparison dG(x, ui) ≤ dG(x, uj) tells us whether x should

be in Si or in Sj , without using any query. This is implied by geodesic convexity through the
following lemma, proven in Appendix 4.B:

Lemma 4.6. Let (ui, uj) ∈ G be a cut edge between Ci and Cj. For all x ∈ X with 1
γ ≤

dG(ui, x) <∞, if dG(ui, x) ≤ dG(uj , x) then x /∈ Cj, and if dG(ui, x) ≥ dG(uj , x) then x /∈ Ci.

The intuition is that dG(ui, x) ≤ dG(uj , x) and x ∈ Cj cannot both hold, because this would
violate the geodesic convexity of Cj , and the same holds when i and j are exchanged.

The above discussion leads to CSeparator (Algorithm 7), whose correctness and query
cost are proven in Lemma 4.7. Clearly enough, to use CSeparator we need to compute the
cut edge (ui, uj), and we show how to do so in the next sections.

Lemma 4.7. Let (ui, uj) ∈ G be a cut edge between Ci and Cj. Then, CSeparator(G, ui, uj)
returns a pair (Si, Sj) that is an (i, j)-separator of V (G), using O(M∗(βγ)) scq queries.
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Algorithm 7 CSeparator(G, ui, uj)

1: Z := {x ∈ V (G) : dG(ui, x) < 1/γ}
2: Zi := MBS(Z, ε, ui), Zj := Z \ Zi
3: Ui := ∅, Uj := ∅
4: for each x ∈ V (G) \ Z do
5: choose any x ∈ V (H)
6: if dG(x, ui) ≤ dG(x, uj) then add x to Ui
7: else add x to Uj
8: return (Zi ∪ Ui, Zj ∪ Uj)

Proof. The query bound follows from Lemma 4.3 by observing that Z ⊆ B(ui, ε/γ). For
the correctness, we show that (Zi, Zj) is an (i, j)-separator of Z and (Ui, Uj) is an (i, j)-
separator of V (G) \ Z. For Z, Lemma 4.3 guarantees that Zi = Ci ∩ Z, and the algorithm
sets Zj = Z \Zi. So Zi ∩Cj = Zj ∩Ci = ∅, and (Zi, Zj) is an (i, j)-separator of Z. Consider
now any x ∈ V (G) \Z. By definition of Z, we have dG(x, ui) ≥ 1

γ . Therefore, by Lemma 4.6,
if the algorithm assigns x to Ui then x /∈ Cj , and if the algorithm assigns x to Uj then x /∈ Ci.
Therefore Ui ∩ Cj = Uj ∩ Ci = ∅, and (Ui, Uj) is an (i, j)-separator of V (G) \ Z.

4.4.3 Recovering a single cluster
We can now describe RecoverCluster (Algorithm 8). The algorithm starts by computing Ri,
the set of nodes reachable from si in G, and the corresponding induced subgraph Gi = G[Ri].
Note that, by the connectedness of the clusters, initially Ri is simply the union of Ci and zero
or more other clusters. Now, we search for some seed node sh ∈ sss, such that sh ∈ Ri but
sh 6= si. If no such node is found, then Ri = Ci and we are done. Otherwise, we compute
the shortest path π between sh and si in Gi. By Lemma 4.4, π is Ci-prefixed, and so by
Remark 4.1 we can find a cut edge (ui, uj) of Ci with O(log n) scq queries. With the cut edge
(ui, uj), we can compute an (i, j)-separator (Si, Sj) of X = V (G) using CSeparator. Finally,
we update Gi to be the connected component of si in G[Ri ∩ Si], and Ri to be its node set.
By definition of (Si, Sj), this update removes from Gi all points of Cj , so we have reduced
by at least one the number of clusters other than Ci intersected by Ri. After at most k − 1
of these rounds, we will be left with Ri = Ci.

Unfortunately, this process has a problem: we can run out of seeds in Ri. Indeed, by
taking Ri ∩ Si, we could remove every seed node sh, even if Ri ∩ Si still contains points of
Ch. If this is the case, then, even though Ri 6= Ci, RecoverCluster would be stuck, unable
to compute a new cut edge to remove some cluster from Ri. One is tempted to ignore the
fact that sh /∈ Ri, and simply compute the shortest path between sh and si for all h 6= i,
obtaining a set of different cut edges. This however does not work, as all those shortest paths
could use the same cut edge (ui, uj).

We bypass this obstacle by exploiting the separators found by RecoverCluster. By carefully
analysing the cuts induced by those separators, we devise an algorithm, FindNewSeed, that
either finds some new seed sh ∈ Ri \Ci or certifies that Ri = Ci. FindNewSeed is invoked by
RecoverCluster at the beginning of each round, and we describe it in Section 4.4.4.

Algorithm 8 RecoverCluster(G, ε,sss, i)

1: Gi := {the connected component of si in G}, Ri := V (Gi)
2: u := an empty vector
3: while True do
4: sh := FindNewSeed(G,Ri, ε, sss,u, i)
5: if sh = nil then stop and return Ri
6: π(si, sh) := ShortestPath(G[Ri], si, sh)
7: (ui, uj) := FindCutEdge(π(si, sh))
8: add ui to u
9: (Si, Sj) := CSeparator(G, ui, uj)

10: Gi := {the connected component of si in G[Ri ∩ Si]}, Ri := V (Gi)
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Lemma 4.8. RecoverCluster(G, ε,sss, i) returns Ci using O
(
k log n+kM∗( βγ

2+γ )
)
scq queries.

The proof is along the lines of the discussion above, see Appendix 4.B.

4.4.4 Finding new seed nodes
We describe FindNewSeed, which finds a node sh ∈ Ri \ Ci if Ri \ Ci 6= ∅, and otherwise
detects that Ri = Ci and returns nil. The key idea behind FindNewSeed is the following: if
Ri does not contain any seed sh ∈ sss other than si, then for each h 6= i either Ch ∩Ri = ∅, or,
by the connectedness of G[Ch], the cut Γ(Ri) must contain some edge of G[Ch]. Therefore,
the task boils down to finding such an edge, or deciding that no such edge exists. Clearly,
we cannot just check all edges in Γ(Ri), as this would require too many queries. Thus, we
proceed as follows.

Consider the beginning of a generic iteration of RecoverCluster, and let u be the set of
all nodes ui that appeared in a cut edge used in some previous iteration. First, for every
u ∈ u, we consider the set Z of nodes x ∈ Ri such that dG(u, x) < 2

γ +1. Then, like we did in
CSeparator, we use MBS to recover efficiently the subset Z \ Ci. If this subset is nonempty,
then we just return any x ∈ Z \ Ci and we are done. If after considering every u ∈ u we
have not found a seed, then we turn to the remaining nodes, that is, all nodes x such that
dG(u, x) ≥ 2

γ + 1 for all u ∈ u. In this case, as a consequence of geodesic convexity with
margin we prove the following structural result: if x has an edge (x, y) ∈ Γ(Ri), then x /∈ Ci.
So, if any such x exists, which we can check without making any query, then we can again
return x. If both attempts to find x ∈ Ri \ Ci fail, we can show that necessarily Ri = Ci.

Lemma 4.9 below states the guarantees of FindNewSeed. Its proof is found in Ap-
pendix 4.B.

Algorithm 9 FindNewSeed(G,Ri, ε, sss,u, i)

1: if sss ∩Ri 6= {si} then return any s ∈ sss ∩Ri \ {si};
2: for each u ∈ u do
3: Z = {x ∈ Ri : dG(u, x) < 2/γ + 1}
4: Zi := MBS(Z, ε, u) ;
5: if Z \ Zi 6= ∅ then return any x ∈ Z \ Zi;
6: if ∃ (x, y) ∈ Γ(Ri) such that ∀u ∈ u : dG(u, x) ≥ 2/γ + 1 then return any such x;
7: else return nil;

Lemma 4.9. At each iteration of RecoverCluster(G, ε,sss, i), FindNewSeed(G,Ri, ε, sss,u) re-
turns an x ∈ Ri \ Ci if Ri 6= Ci, or nil if Ri = Ci, using at most kM∗( βγ

2+γ ) scq queries.
Moreover, FindNewSeed can be adapted to make at most kM∗( βγ

2+γ ) scq queries over the
entire execution of RecoverCluster.

4.5 Extension to clusters with different radii
In this section we generalize the notion of (β, γ)-convexity (Definition 4.1) so to allow each
cluster Ci to have its own radius, denoted by εi. Then, by using seed queries, we will extend
our cluster recovery algorithm to this generalized setting. For technical reasons, we need to
strengthen geodesic convexity in a hereditary fashion.

Definition 4.10 (generalized (β, γ)-convex clustering). For any β, γ ∈ (0, 1], a k-clustering
C = (C1, . . . , Ck) of X is (β, γ)-convex if ∀ i ∈ [k] : ∃ εi > 0 such that the following properties
hold:
1. connectedness: the subgraph induced by Ci in GX(εi) is connected
2. local metric margin: for all x, y ∈ X, if x ∈ Ci and y /∈ Ci, then d(x, y) > βεi

3. geodesic convexity with margin: for any ε ≤ εi, if x, y ∈ Ci and dGX(ε)(x, y) <∞, then in
GX(ε) any simple path between x and y of length at most (1 + γ)dGX(ε)(x, y) lies entirely
in Ci
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In Lemma 4.20 in the Appendix, we show that if the conditions above are satisfied, then
they are satisfied in particular by the smallest εi such that Ci is connected in GX(εi).7 There-
fore, without loss of generality, we assume that each εi satisfies this minimality assumption.

We turn to the recovery of C. We show that, with some care, the problem can be reduced to
the case of identical radii, at the price of making O(k2) seed queries. This gives an algorithm
RecoverClustering2 with the following guarantees, where εεε = (ε1, . . . , εk) is the vector of the
radii:

Theorem 4.11. Suppose C is (β, γ)-convex. Then, RecoverClustering2(X,εεε,sss) determin-
istically returns C, has the same runtime as RecoverClustering(X,εεε,sss), and uses the same
number of scq queries as RecoverClustering(X,εεε,sss), plus at most O(k2) seed queries.

The basic idea of RecoverClustering2 is to invoke RecoverCluster for each i ∈ [k], as we did
for the case of identical radii, using the graph GX(εi) when we want to recover Ci. This does
not work straight away, however: in GX(εi), any cluster Cj with εj < εi is by definition not
required to satisfy geodesic convexity, which means that RecoverCluster can fail. However,
we can show that this approach works if we adopt the following precautions:

1. recover the clusters in nondecreasing order of radius

2. when recovering Ci, restrict GX(εi) to its connected component containing si

3. after recovering Ci, delete it from X.

Note that, for each i, this procedure works on a potentially different graph — thresholded at
a different radius, and containing only a subset of the original points. Thus, its correctness
may not be obvious. In particular, it may not be obvious that the clustering induced by the
sub-instance used at the i-th iteration is (β, γ)-convex, which is necessary for RecoverCluster
to work. We show that it is: for every i, at the i-th iteration, the residual clustering is
(β, γ)-convex. Thus the input to RecoverCluster satisfies the hypotheses of Lemma 4.8, and
by that lemma, RecoverCluster will return Ci using O

(
k log n+ kM∗( βγ

2+γ )
)

scq queries, as
desired. In all this, the role of seed queries is to find one seed node sh for each cluster in the
connected component of GX(εi) containing si, as required by RecoverCluster.

The formal construction of RecoverClustering2 and the proof of Theorem 4.11 are given
in Appendix 4.C.1.

4.6 Learning the radii and the convexity parameters
In this section we show how to use seed queries to learn the cluster radii and to deal with
the case where one of β or γ is unknown. For learning the radii, we prove:

Theorem 4.12. Suppose C is (β, γ)-convex. Then, the cluster radii ε1, . . . , εk can be learned
using O(k log n) seed queries in time O(mα(m,n)+kn log n), where α(m,n) is the functional
inverse of the Ackermann function.8

This result hinges on three observations. First, as said above, εi is actually the smallest
ε such that all nodes of Ci belong to a single connected component of GX(ε). Second, with
O(1) seed queries, we can test whether Ci belongs to a single connected component of G,
for any given graph G, see Claim 4.1. Third, if T is any minimum spanning tree of G,
then the connected components of GX(ε) are exactly the connected components of T (ε), see
Claim 4.2. Our algorithm starts by computing T , which takes time O(mα(m,n)) where α is
inverse Ackermann, see [Chazelle, 2000]. Then, for each cluster Ci, we perform a binary search
to find the smallest edge weight ε such that Ci is connected in T (ε). All details are given
in Appendix 4.D. In Section 4.8, we also prove a nearly-matching lower bound of Ω(k log n

k )
queries.

We conclude by discussing the case where one among β and γ is unknown. Equipped with
the seed queries, we make a series of halving guesses for β or γ, until we detect that the
clustering is correct. This yields the following result (proof in Appendix 4.D):

7Note that this is different from requiring that GX(εi)[Ci] is connected; here we are only requiring that
any two points of Ci have a connecting path in GX(εi). Lemma 4.20 however shows that the smallest εi that
satisfies one condition is also the smallest εi that satisfies the other condition.

8For all practical purposes, α can be considered constant. For instance, α(m,m) ≤ 4 for allm ≤ 1
8
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Theorem 4.13. Suppose C is (β, γ)-convex, and let R = log( 4
βγ ) dens(X). If only one

between β and γ is unknown, then we can recover C with a multiplicative overhead of O(R) in
both query cost and running time, plus O(k2R) scq queries and O(kR) seed queries. This
applies to each one of our algorithms (i.e., with radii that are identical or not, known or
unknown).

4.7 Bounds on the running time
All our algorithms admit efficient implementations, with a running time linear in the size of
G (or essentially linear, see Section 4.6). Here, we give a quick overview of these implemen-
tations; for a more complete discussion, see Appendix 4.E.

Recall that our input is the weighted graph G = (X, E , d), where (u, v) ∈ E if and only
if d(u, v) < ∞. Recall also that n = |X| and m = |E|. We assume that d can be accessed
in constant time, which can be achieved with a hash map, whose construction takes time
O(m) [Fredman et al., 1982]. We further assume that, for any graph G and for any x ∈ V (G),
the edges incident to x can be listed in constant time per edge. Under these assumptions, the
following basic fact holds:

Remark 4.2. Given G, for any ε, the graph GX(ε) can be computed in time O(n+m). This
holds in general for thresholding any subgraph of G.

Using Observation 4.2, we can easily implement RecoverCluster so that it runs in time
O(k2(n+m)): essentially, for O(k2) times the algorithm computes the distances of all nodes
of GX(ε) from some given node u, which takes time O(n+m) via breadth-first search. Since
RecoverCluster is invoked once per each cluster, this would give a total running time of
O(k3(n + m)) for both RecoverClustering and RecoverClustering2. With some extra effort,
however, we show how to adapt RecoverCluster so that it runs O(k(n + m)), by amortizing
in particular the cost of its subroutine FindNewSeed. In the end, we obtain a total run-
ning time of O(k2(n + m)) for both our cluster recovery algorithms, RecoverClustering and
RecoverClustering2.

4.8 Lower Bounds
In this section we show that some of our parameters and assumptions are necessary, and in par-
ticular: (1) in general, to recover a (β, γ)-convex clustering, any algorithm needs Ω(2dens(X))
queries; (2) to recover a (β, γ)-convex clustering without initial seed nodes, any algorithm
needs Ω(n) scq queries; (3) to learn the radii of k clusters, any algorithm needs O(k log n

k )
scq and/or seed queries. The full proofs are deferred to Appendix 4.F.

Theorem 4.14 (Dependence on dens(X).). Choose any β, γ ∈ (0, 1). There is a distribution
of (β, γ)-convex 2-clusterings C (Definition 4.1 or Definition 4.10), where n = |X| = 2dens(X)

is arbitrarily large, such that any algorithm (even randomized) needs Ω(2dens(X)) scq and/or
seed queries to recover C with constant probability. This holds even if β, γ, ε are known.

Theorem 4.15 (Necessity of seeds.). Choose any β, γ ∈ (0, 1]. There is a distribution of
(β, γ)-convex 2-clusterings C (Definition 4.1 or Definition 4.10), where X ⊆ R2 with n = |X|
arbitrarily large and d the Euclidean distance, such that any algorithm (even randomized)
needs Ω(n) scq queries to recover C with constant probability if no seed nodes are given. This
holds even if γ, α, ε are known.

Theorem 4.16 (Cost of learning the radii.). For any k ≥ 2, and any sufficiently large n,
there exists a distribution of (1/2, 1)-convex k-clusterings (Definition 4.1 or Definition 4.10)
on n points such that any algorithm (even randomized) needs Ω(k log n

k ) seed and/or scq
queries to learn the radii of all clusters with constant probability.
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Appendix

4.A Supplementary material for Section 4.3
Lemma 4.17. If X is a metric space, then dbl(X) ≤ dens(X) ≤ 2 dbl(X) where dbl(X) and
dens(X) are respectively the doubling dimension and the density dimension of X.

Proof. Recall that dbl(X) = log2D(X), where D(X) is the doubling constant of X:

D(X) = min
{
D ∈ N : (x ∈ X) ∧ (r > 0)⇒ N

(
B(x, r),

r

2

)
≤ D

}
(4.3)

where N (K, η) is the covering number of K, that is, the smallest number of closed balls of
radius η whose union contains K. We recall from Section 4.3 that dens(X) = log2 µ(X),
where:

µ(X) = min
{
µ ∈ N : (x ∈ X) ∧ (r > 0)⇒M

(
B(x, r),

r

2

)
≤ µ

}
(4.4)

Now, since we are in a metric space, we have the well-known relationship:

M(K, 2η) ≤ N (K, η) ≤M(K, η) (4.5)

On the one hand, N (K, η) ≤ M(K, η) implies D(X) ≤ µ(X), and therefore dbl(X) ≤
dens(X). On the other hand,M(K, 2η) ≤ N (K, η) implies:

M(B(x, r), r/2) ≤ N (B(x, r), r/4) (4.6)
≤ N (B(x, r), r/2) ·D(X) (4.7)
≤ D(X) ·D(X) (4.8)

Therefore, µ(X) ≤ D(X)2, and dens(X) ≤ 2 dbl(X).

4.B Supplementary material for Section 4.4

4.B.1 Pseudocode of FindCutEdge

Algorithm 10 FindCutEdge(π(si, sh))

1: if |π(si, sh)| = 1 thenreturn π(si, sh)

2: choose a median node x ∈ π(si, sh)
3: if scq(si, x) = +1 thenreturn FindCutEdge(π(x, sh))
4: elsereturn FindCutEdge(π(si, x))

4.B.2 Proof of Lemma 4.6
Lemma 4.6. Let (ui, uj) ∈ G be a cut edge between Ci and Cj. For all x ∈ X with 1

γ ≤
dG(ui, x) <∞, if dG(ui, x) ≤ dG(uj , x) then x /∈ Cj, and if dG(ui, x) ≥ dG(uj , x) then x /∈ Ci.

Proof. Suppose dG(ui, x) ≤ dG(uj , x) and x ∈ Cj ; we show this leads to a contradiction.
Consider the path π = π(x, ui) + (ui, uj). First, π is a simple path. If this was not the
case, then we would have uj ∈ π(x, ui); but this would imply dG(uj , x) ≤ dG(ui, x) − 1,
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contradicting our assumption dG(ui, x) ≤ dG(uj , x). Second, we have:

|π| = dG(x, ui) + 1 (4.9)
≤ dG(x, uj) + 1 since dG(ui, x) ≤ dG(uj , x) (4.10)

≤ dG(x, uj) (1 + γ) since dG(x, uj) ≥ dG(x, ui) ≥
1

γ
(4.11)

Thus, π is a simple path between two nodes of Cj , with length at most (1 + γ) times their
distance in G, and containing a node of Ci. This violates the geodesic convexity of Cj . We
conclude that x /∈ Cj . The other case is symmetric.

4.B.3 Proof of Lemma 4.8
Lemma 4.8. RecoverCluster(G, ε,sss, i) returns Ci using O

(
k log n+kM∗( βγ

2+γ )
)
scq queries.

Proof. First, we prove the correctness. For each ` = 1, 2, . . ., we denote by R`i the set Ri
at the beginning of the `-th iteration, and by κ(R`i) the number of distinct clusters that R`i
intersects. We show that, at the beginning of the `-th iteration, the following invariants hold:
I1. G[R`i ] is connected
I2. Ci ⊆ R`i
I3. κ(R`i) ≤ κ(R1

i )− (`− 1)

Note that I2 and I3 imply that the algorithm terminates by returning Ci (line 5) after at
most k iterations. Invariant I1 holds by the construction of R`i , so we focus on proving I2 and
I3.

Suppose first ` = 1. Then, I2 holds by the assumptions of the lemma, and I3 is trivial.
Suppose then I1, I2, I3 hold for some ` ≥ 1, and that iteration ` + 1 exists; we show that
I2, I3 hold at iteration ` + 1 as well. First, if iteration ` + 1 exists, then Ci ( R`i . In this
case, by Lemma 4.9, FindNewSeed will return a node sh ∈ R`i \Ci. Since G[R`i ] is connected
by I1, the shortest path π(si, sh) exists in G[R`i ]. Because of Lemma 4.4 applied to R = R`i ,
such a path is also Ci-prefixed. Therefore, FindCutEdge(π(si, sh)) returns a cut edge (ui, uj)
of Ci in π(si, sh). At this point the hypotheses of Lemma 4.7 are satisfied, and therefore
the output (Si, Sj) of CSeparator(G, ui, uj) is an (i, j)-separator of V (G). Hence, Ci ⊆ Si
and Cj ∩ Si = ∅. Therefore, Ci ⊆ R`i ∩ Si. This implies that the connected component of
si in G[R`i ∩ Si] still contains Ci. The vertex set of this connected component is precisely
R`+1
i (line 10). Therefore, I2 holds at iteration `+ 1. Moreover, observe that uj ∈ R`i , since

uj ∈ π(si, sh) ⊆ R`i . Therefore R`i ∩ Cj 6= ∅. However, by construction, R`+1
i ⊆ R`i ∩ Si and

Si ∩ Cj = ∅ since (Si, Sj) is an (i, j)-separator of V (G). Therefore, κ(R`+1
i ) ≤ κ(R`i) − 1.

Because I3 holds at `, κ(R`+1
i ) ≤ κ(R1

i )− (`− 1)− 1 = κ(R1
i )− ((`+ 1)− 1). So, I3 holds at

iteration `+ 1, too.
Finally, we bound the number of queries. First, by Lemma 4.9, FindNewSeed makes at

most kM∗( βγ
2+γ ) scq in total across all iterations. Second, FindCutEdge makes O(log n)

queries at each iteration, see Observation 4.1. Third, CSeparator makes at most M∗(βγ)
queries at each iteration, see Lemma 4.7. Summing the three terms we obtain the claimed
bound.

4.B.4 Proof of Lemma 4.9
Lemma 4.9. At each iteration of RecoverCluster(G, ε,sss, i), FindNewSeed(G,Ri, ε, sss,u) re-
turns an x ∈ Ri \ Ci if Ri 6= Ci, or nil if Ri = Ci, using at most kM∗( βγ

2+γ ) scq queries.
Moreover, FindNewSeed can be adapted to make at most kM∗( βγ

2+γ ) scq queries over the
entire execution of RecoverCluster.

We need to prove two technical results, Lemma 4.18 and Lemma 4.19. Then, we will prove
Lemma 4.9.

Lemma 4.18. Let G be such that Ci ⊆ V (G), and let (Si, Sj) be an (i, j)-separator for V (G)
obtained from CSeparator(V (G), ui, uj). If (x, y) ∈ Γ(Si) and dG(ui, x) ≥ 2

γ +1, then x /∈ Ci.
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Proof. We show that x ∈ Ci violates the geodesic convexity of Ci. First (x, y) ∈ Γ(Si) implies
y ∈ Sj . Moreover, dG(ui, y) ≥ dG(ui, x) − 1 > 1

γ . Now recall the code of CSeparator. Since
dG(ui, y) > 1

γ , then y /∈ Zj . But y ∈ Sj = Zj ∪ Uj , and therefore y ∈ Uj . This means that
CSeparator executed line 7, which happens only if:

dG(uj , y) < dG(ui, y) (4.12)

Now consider the path π = (ui, uj) + π(uj , y) + (y, x) from ui to x where π(uj , y) has length
dG(uj , y). First, we observe that π is a simple path. Suppose indeed by contradiction that
π is not simple. Since π(uj , y) is simple (it is a shortest path), and since ui 6= x (because
dG(ui, x) ≥ 1 by assumption), we must have ui ∈ π(uj , y) or x ∈ π(uj , y). If ui ∈ π(uj , y),
then dG(uj , y) > dG(ui, y), which contradicts (4.12). If instead x ∈ π(uj , y), then dG(uj , y) >
dG(uj , x), which gives:

dG(uj , y) > dG(uj , x) (4.13)
≥ dG(ui, x) since x ∈ Si (4.14)
≥ dG(ui, y)− 1 since (x, y) ∈ E(G) (4.15)

which, since dG is integral, implies dG(uj , y) ≥ dG(ui, y). This contradicts again (4.12). Thus,
π is a simple path.

Now we show that |π| ≤ dG(ui, x) (1 + γ). From (4.12), we have:

dG(uj , y) ≤ dG(ui, y)− 1 since dG ∈ N (4.16)
≤ dG(ui, x) + dG(x, y)− 1 since (x, y) ∈ E(G) (4.17)
= dG(ui, x) (4.18)

And therefore:

|π| = dG(uj , y) + 2 (4.19)
≤ dG(ui, x) + 2 since dG(uj , y) ≤ dG(ui, x) (4.20)

≤ dG(ui, x) (1 + γ) since dG(ui, x) ≥ 2

γ
(4.21)

Therefore π is a simple path between two nodes of Ci that violates the geodesic convexity of
Ci. So x /∈ Ci, as claimed.

Now recall RecoverCluster(G, ε,sss, i). Let R`i be the value of Ri at the beginning of the
`-th iteration, and let (S`i , Sj`) be the separator computed by CSeparator at the `-th iteration
(note: the first cluster is always i, but the second cluster varies with `).

Lemma 4.19. If (x, y) ∈ Γ(R`i), then (x, y) ∈ Γ(Sτi ) for some τ ∈ {1, . . . , `− 1}.

Proof. Let:

τ = min
{

1 ≤ t ≤ `− 1 : (x, y) ∈ Γ(Rt+1
i )

}
(4.22)

First, we have x ∈ Sτi . Indeed, by construction Rτ+1
i ⊆ Rτi ∩ Sτi , and we know x ∈ Rτ+1

i .
Second, we have y /∈ Sτi . Suppose indeed by contradiction that y ∈ Sτi . Since x ∈ Rτi , and
since (x, y) /∈ Γ(Rτi ), then y ∈ Rτi . Therefore, y ∈ Sτi ∩ Rτi . So y would be connected to x
in G[Sτi ∩ Rτi ], and therefore we would have y ∈ Rτ+1

i as well, by construction of Rτ+1
i as a

connected component. But then, y ∈ Rτ+1
i would imply (x, y) /∈ Γ(Rτ+1

i ) which contradicts
our hypothesis. Therefore x ∈ Sτi and y /∈ Sτi , which implies (x, y) ∈ Γ(Sτi ), as claimed.

of Lemma 4.9. The first bound on the number of queries follows by Lemma 4.3, by observ-
ing that Z ⊆ B(u, ε( 2

γ + 1)) = B(u, ε2+γ
γ ). Let us now prove the correctness; the claim on

the adapted version will follow afterwards.
First, suppose that Ri = Ci. Then sss ∩ Ri = {si}. Moreover, at each iteration of the

loop, by Lemma 4.3 Zi = Z, so Z \ Zi = ∅. Finally, no edge (x, y) ∈ Γ(Ri) exists such that
dG(u, x) ≥ 2

γ + 1 for all u ∈ u. Indeed, if such an edge (x, y) existed, by Lemma 4.19 we
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would have (x, y) ∈ Γ(Si) at some previous round of RecoverCluster, which by Lemma 4.18
implies x /∈ Ci — a contradiction, since x ∈ Ri = Ci. Hence, FindNewSeed reaches the last
line and returns nil.

Suppose now that Ri 6= Ci. If sh ∈ Ri for some sh 6= si, then FindNewSeed returns
sh at line 1. Otherwise, we must have Ch ∩ Ri 6= ∅ but Ch * Ri for some h 6= i. By the
connectedness of Ch in G, this implies the existence of an edge (x, y) ∈ Γ(Ri) with x ∈ Ch.
If any such edge exists with dG(u, x) < 2

γ + 1 for some u ∈ u, then line 5 will find such an
x and return it. Otherwise, any such edge has dG(u, x) ≥ 2

γ + 1 for all u ∈ u. In this case,
line 6 will return some x such that (x, y) ∈ Γ(Ri) and dG(u, x) ≥ 2

γ + 1 for all u ∈ u, which
is correct since by Lemma 4.19 and Lemma 4.18 we have x /∈ Ci.

To make FindNewSeed use at most kM∗( βγ
2+γ ) queries over the whole execution of Re-

coverCluster, we keep track of Z \ Zi in the following way. At each invocation, we compute
the set Z(u) = {x ∈ Ri : dG(u, x) < 2

γ + 1}, where u is the last node added to u. Then we

invoke MBS only on Z(u), obtaining Z(u)
i , and we then add Z(u) \ Z(u)

i to Z \ Zi. Finally,
we remove from Z \ Zi all points not in Ri. This sequence of operations costsM∗( βγ

2+γ ) scq
queries, and the resulting set Z \Zi will be exactly the one computed by FindNewSeed above.
Hence the behavior of the algorithm is unchanged, but the total number of queries is at most
kM∗( βγ

2+γ ).

4.C Supplementary material for Section 4.5

4.C.1 Lemma 4.20
Lemma 4.20. Let C be a (β, γ)-convex k-clustering of X (Definition 4.10), and for i ∈
{1, . . . , k} let:

ζi = min{ζ : ∀x, y ∈ C : dGX(ζ)(x, y) <∞} (4.23)
ζ∗i = min{ζ : ρ(GCi(ζ)) = 1} (4.24)

Then ζi = ζ∗i , and all properties of Definition 4.10 hold when εi = ζi = ζ∗i .

Proof. First, observe that ζi ≤ ζ∗i , since ρ(GCi(ζ)) = 1 implies ∀x, y ∈ C : dGX(ζ)(x, y) <∞,
and thus the minimum in (4.23) is taken over a superset of that of (4.24). Now, consider
the graph GX(ζi). For any two nodes x, y ∈ Ci, since ζi ≤ ζ∗i and dGX(ζi)(x, y) < ∞, the
geodesic convexity implies that any shortest path in GX(ζi) between x and y lies in Ci. But
this means that the subgraph induced by Ci in GX(ζi) is connected. By definition of ζ∗i this
implies that ζ∗i ≤ ζi. We conclude that ζi = ζ∗i .

For the second claim, we consider each property in turn when εi = ζ∗i . The connectedness
of GCi(ζ∗i ) holds by definition of ζ∗i . Now let ζ be any value such that the three properties
hold when εi = ζ. Then ζ ≥ ζ∗i , because for εi < ζ∗i the connectedness fails, by definition of
ζ∗i . This implies that the local metric margin and the geodesic convexity with margin hold
for εi = ζ∗i , since they hold for εi = ζ ≥ ζ∗i .

4.C.2 Pseudo-code of RecoverClustering2 and proof of Theorem 4.11
Theorem 4.11. Suppose C is (β, γ)-convex. Then, RecoverClustering2(X,εεε,sss) determin-
istically returns C, has the same runtime as RecoverClustering(X,εεε,sss), and uses the same
number of scq queries as RecoverClustering(X,εεε,sss), plus at most O(k2) seed queries.

To prove the theorem, we need a technical lemma. It guarantees that, if we take the
connected component of the cluster with smallest radius ε∗ in GX(ε∗), then the clustering
induced by C on that subgraph is (β, γ)-convex (Definition 4.1) with radius ε∗.

Lemma 4.21. Let C be a (β, γ)-convex κ-clustering of X (Definition 4.10). Let ε∗ be the
smallest radius of any cluster of C, and let G∗ be the connected component of GX(ε∗) that
contains a cluster with radius ε∗. Finally, let X∗ = V (G∗), and let C∗ =

(
C1 ∩X∗, . . . , Cκ ∩

X∗
)
. Then, C∗ is a (β, γ)-convex clustering of X∗ with radius ε∗ (Definition 4.1).



Chapter 4. Exact recovery of Density-Based Clusterings 67

Proof. We verify that the three properties of Definition 4.1 hold with radius ε∗. This implies
that ε∗ is also the smallest such value, since the corresponding cluster becomes disconnected
in G∗(ε) for any ε < ε∗ — and thus ε∗ is indeed the radius of the clustering. We define
C∗i = Ci ∩ X∗ for all i ∈ [κ]. Note that the graph on which we verify the properties is
GX∗(ε

∗), which is precisely G∗ by the maximality of X∗ as a connected component. Hence,
from now on we write G∗ for GX∗(ε∗).

Connectivity: the subgraph induced by C∗i in G∗ is connected.
Proof. Consider two points x, y ∈ C∗i ; obviously x, y ∈ Ci. Since G∗ is connected, dG∗(x, y) <
∞. Moreover, dG∗(x, y) = dGX(ε∗)(x, y), since by construction G∗ is the connected component
of GX(ε∗) containing x and y. Thus, dGX(ε∗)(x, y) < ∞. Moreover, ε∗ ≤ εi by assumption.
Thus, x, y ∈ Ci, and dGX(ε∗)(x, y) < ∞ with ε∗ ≤ εi. Then, by the geodesic convexity of C
on X (Definition 4.10), any shortest path π between x and y in GX(ε∗) lies entirely in Ci.
Since again G∗ is the connected component of GX(ε∗) containing x, y, then π must lie in X∗.
We conclude that π ∈ Ci ∩X∗ = C∗i . This holds for any choice of x, y. Therefore, G∗[C∗i ] is
connected.

Local metric margin: for all x, y ∈ X∗, if x ∈ C∗i and y /∈ C∗i , then d(x, y) > βε∗.
Proof. Since x ∈ C∗i and y /∈ C∗i , then x ∈ Ci and y /∈ Ci. By the local metric margin of C,
and since εi ≥ ε∗, we have d(x, y) > βεi ≥ βε∗.
Geodesic convexity with margin: if x, y ∈ C∗i , then in G∗ any simple path between x and y of
length at most (1 + γ)dG∗(x, y) lies entirely in C∗i .
Proof. By the same argument of connectivity, we invoke the geodesic convexity (Defini-
tion 4.10) for x, y ∈ Ci, for ε = ε∗ ≤ εi. We obtain that GX(ε∗) contains no simple path
of length at most (1 + γ)dGX(ε∗)(x, y) between x and y that leaves Ci. This implies that
no such path exists in G∗ as well, since G∗ ⊆ GX(ε∗). Moreover, since C∗i = Ci ∩ X∗,
no such path exists in G∗ that leaves C∗i (otherwise it would leave Ci). Recalling that
(1 + γ)dGX(ε∗)(x, y) = (1 + γ)dG∗(x, y), we deduce that in G∗ there is no path of length at
most (1 + γ)dG∗(x, y) between x and y that leaves C∗i . This is the geodesic convexity of C∗i
in G∗ (Definition 4.1).

We can now present the algorithm for recovering (β, γ)-convex clusters with different radii.

Algorithm 11 RecoverClustering2(X,εεε,sss)
1: assume ε1 ≤ . . . ≤ εk
2: for i = 1, . . . , k do
3: G∗ := the connected component of si in GX(εi), X∗ := V (G∗)
4: for j = i+ 1, . . . , k dos∗j := seed(X∗, j)
5: s∗j := seed(X∗, j);

6: sss∗ := (si, s
∗
i+1, . . . , s

∗
k)

7: Ĉi := RecoverCluster(G∗, εi, sss
∗, i)

8: output Ĉi
9: X := X \ Ĉi

of Theorem 4.11. For each i = 1, . . . , k let Xi be the value of X at the beginning of the i-th
iteration of RecoverClustering2(X,εεε,sss). We show that the following three invariants holds:

1. Xi = Ci ∪ . . . ∪ Ck
2. (Ci, . . . , Ck) is a (β, γ)-convex clustering of Xi (Definition 4.10)

3. if i > 1 then the algorithm has output C1, . . . , Ci−1 so far

When i = 1 we have Xi = X, and all invariants clearly hold. Now assume that they hold
at the beginning of the i-th iteration for some i ≥ 1. We will show that the algorithm sets
Ĉi = Ci. This will imply that the three invariants hold at iteration i+ 1 as well. For the first
and third invariant, this is trivial. For the second, simply observe that deleting a cluster never
invalidates the three properties of Definition 4.10; thus, (Ci+1, . . . , Ck) will be a (β, γ)-convex
clustering of Xi+1 = Ci+1 ∪ . . . ∪ Ck.
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Thus, we prove that Ĉi = Ci. To this end, consider the subgraph G∗ and its node set V ∗
computed at line 3. Let Ci = (Ci, . . . , Ck), and let C∗i = (Ci ∩X∗, . . . , Ck ∩X∗). Since εi is
the smallest radius of all clusters in Ci, then by Lemma 4.21 with ε∗ = εi, C∗i is a (β, γ)-convex
clustering for Xi with radius εi (Definition 4.1). Furthermore, by construction sss∗ contains one
seed for each nonempty cluster in C∗. Therefore, by Lemma 4.8, RecoverCluster(G∗, ε, sss∗, i)
returns Ci, so Ĉi = Ci.

The bound on the number of queries is straightforward.

4.D Supplementary material for Section 4.6

4.D.1 GetEpsilons and proof of Theorem 4.12
Theorem 4.12. Suppose C is (β, γ)-convex. Then, the cluster radii ε1, . . . , εk can be learned
using O(k log n) seed queries in time O(mα(m,n)+kn log n), where α(m,n) is the functional
inverse of the Ackermann function.9

We start with a simple routine for testing the connectedness of a cluster using seed
queries.

Algorithm 12 IsConnected(G, i)

1: u := seed(V (G), i)
2: U := the connected component of u in G
3: return (seed(V (G) \ U, i) = nil);

Claim 4.1. If V (G) ∩ Ci 6= ∅, then IsConnected(G, i) uses two seed queries and returns
true if and only if dG(x, y) <∞ for all x, y ∈ Ci.

Let T be a minimum spanning tree of the weighted graph G. For any ε > 0, let T (ε) be
the forest obtained by keeping only the edges (x, y) of T such that d(x, y) ≤ ε. Recall the
following basic fact:

Claim 4.2. The connected components of T (ε) are the connected components of GX(ε).

As a consequence, we have:

Claim 4.3. IsConnected(T (ε), i) = IsConnected(GX(ε), i), for any i ∈ [k] and any ε > 0.

We introduce the algorithm for learning the radius of a single cluster.

Algorithm 13 GetEpsilon(T, i)

1: www := (w0, w1, . . . , w`), the distinct edge weights of T in increasing order, with w0 = 0
2: lo := 0, hi := `
3: while wlo < whi do
4: mid := b lo+hi2 c
5: if IsConnected(T (wmid), i) thenhi := mid else lo := mid+ 1

6: return whi

Lemma 4.22. If T is a MST of G = (X, E , d), then GetEpsilon(T, i) returns εi in time
O(n log n) using O(log n) seed queries.

Proof. It is straightforward to see that the algorithm stops within O(log n) iterations, since www
has at most m = O(n2) entries and (hi− lo) decreases by a constant factor at each iteration.
For the running time, since T has O(n) edges, every call to IsConnected(T (wmid), i) takes
time O(n). This gives the time bound of O(n log n).

Now we show that the algorithm returns εi. By Lemma 4.20, this is equivalent to prove
that the algorithm returns w∗ = min{w ∈ www : Ci is connected in GX(w)}. Consider the

9For all practical purposes, α can be considered constant. For instance, α(m,m) ≤ 4 for allm ≤ 1
8

22
22

65536

.
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beginning of a generic iteration, when the test wlo < whi is performed. We claim that
w∗ ≤ whi. To this end, observe that Ci is connected in GX(whi). This is true since it holds
at the beginning of the first iteration, when whi = w`, and because at each iteration hi is
set to mid only if IsConnected(T (wmid), i) = true. We now claim that w∗ ≥ wlo. This
holds since w∗ ≥ w0 = 0 at the first iteration, and because at each iteration lo is set to
mid + 1 only if IsConnected(T (wmid), i) = false. Therefore, when the algorithm stops, we
have wlo = whi = w∗, as claimed.

We conclude with the algorithm to learn all the radii. We denote by MST(m) the time
needed for computing the MST of a connected graph (note that we can always assume G is
connected, otherwise we can just compute its connected components in time O(m) and use
each one of them in turn). It is known that MST(m) = O(mα(m,m)), where α(m,m) is
the classic functional inverse of Ackermann’s function [Chazelle, 2000]. Lemma 4.23 below
follows immediately from these observations.

Algorithm 14 GetEpsilons(G = (X, E , d), k)

1: T := MST(G)
2: for i = 1, . . . , k do
3: ε̂i := GetEpsilon(T, i)

4: return ε̂1, . . . , ε̂k

Lemma 4.23. GetEpsilons(G, k) returns the radii ε1, . . . , εk in time O(mα(m,n) +kn log n)
using O(k log n) seed queries.

4.D.2 Proof of Theorem 4.13
Theorem 4.13. Suppose C is (β, γ)-convex, and let R = log( 4

βγ ) dens(X). If only one
between β and γ is unknown, then we can recover C with a multiplicative overhead of O(R) in
both query cost and running time, plus O(k2R) scq queries and O(kR) seed queries. This
applies to each one of our algorithms (i.e., with radii that are identical or not, known or
unknown).

Proof. Suppose first β is unknown and γ is known. Recall that β ≤ 1. We make a succession
of guesses β̂ = 2−j for j = 0, 1, . . . . For each guess, we run our algorithm with β = β̂ and
look at the output clustering Ĉ. Clearly, if C is (β, γ)-convex, then C is (β̂, γ)-convex for any
β̂ ≤ β as well. Thus, as soon as β̂ ≤ β, our algorithm will return Ĉ = C. So, after each run,
we need only to check whether Ĉ = C, and stop in the affirmative case.

To check whether Ĉ = C, we do as follows. First, we check if |Ĉ| 6= |C|. If this is the case,
then the only possibility for Ĉ 6= C is that some cluster Ci intersects both Ĉ and X \ Ĉ, for
some cluster Ĉ ∈ Ĉ. Therefore, we take each cluster Ĉ ∈ Ĉ in turn. We then take any node
x ∈ Ĉ, and we learn the label of i with O(k) scq queries. Then, we invoke seed(X \ Ĉ, i).
If we get a node in return, we know that Ci has points in Ĉ and X \ Ĉ, and therefore Ĉ 6= C.
Otherwise, we continue to the next cluster. If the outputs of the seed are all nil, then we
deduce that Ĉ = C.

The process will stop with β̂ ≥ 1
2β, which happens after R = O(logM∗(βγ2 )) rounds.

Since M∗(βγ2 ) ≤
(

4
βγ

)dens(X), see Section 4.3, then logM∗
(
βγ
2

)
= O(dens(X) log

(
4
βγ

)
). At

each round, the algorithm uses k2 scq queries plus 2k seed queries. Thus, in total we use
O(k2R) scq queries and O(kR) seed queries. The case with γ is unknown and β is known
is symmetric.

4.E Supplementary material for Section 4.7

4.E.1 Running time with identical radii
We prove:

Theorem 4.24. RecoverClustering(X, ε,sss) runs in time O(k2(n+m)).
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Proof. First, recall from Section 4.7 that computing G = GX(ε) takes time O(n+m). Then,
each call to RecoverCluster(G, ε,sss, i) takes time O(k(n + m)) by Lemma 4.29. Since there
are k clusters, the claim follows.

In the rest of this appendix we prove Lemma 4.29, through a sequence of intermediate
steps.

Lemma 4.25. MBS(Z, ε, ui) runs in time O(n+m).

Proof. First, we construct G(βε) by thresholding G, which takes time O(n + m). Then,
we keep only the edges of G(βε) which have both endpoints in Z, which takes again time
O(n + m). Once we have GZ(βε), listing its connected components takes once again time
O(n+m).

Lemma 4.26. Given a simple Ci-prefixed path π, FindCutEdge(π) runs in time O(log n).

Proof. Straightforward, see Observation 4.1 and the code of FindCutEdge.

Lemma 4.27. CSeparator(G, ui, uj) runs in time O(n+m).

Proof. Computing dG(ui, x) and dG(uj , x) for all x ∈ G takes time O(n + m) using a BFS
from ui and uj . Thereafter, we can compute Z in time O(n). Running MBS(Z, ε, ui) takes
time O(n+m), see above. Finally, the loop at line 4 takes time O(n).

Lemma 4.28. In RecoverCluster(G, ε,sss, i), each call to FindNewSeed(G,Ri, ε, sss,u, i) takes
time O(k(n+m)). By adapting both algorithms, this can be reduced to O(n+m) while adding
at most an additive O(n+m) to the running time of each iteration of RecoverCluster.

Proof. Let us start with the O(k(n + m)) bound given by a “naive” implementation of
FindNewSeed. At line 1, we compute sss ∩ Ri in time O(k|Ri|) = O(kn) and perform
the check in constant time. At line 2, we make |u| ≤ k iterations. At each iteration
we compute Z in time O(n + m) with a BFS from u, then we run MBS(Z, ε, u) in time
O(n + m) by Lemma 4.25, and possibly we search for x ∈ Z \ Zi which takes time O(n).
Hence the entire loop of line 2 takes time O(k(n + m)). Finally, at line 6 we compute the
set {(x, y) ∈ Γ(Ri) : ∀u ∈ u : dG(u, x) ≥ 2

γ + 1}. To this end, we compute the set
{x ∈ Ri : ∀u ∈ u : dG(u, x) ≥ 2

γ + 1}, which takes time O(k(n + m)) using a BFS from u.
For each such x in this set, we list all its edges (x, y) ∈ E(G). If we find any such edge with
y /∈ Ri, we return y, else we return nil. Thus, this part takes O(k(n + m)). Therefore, a
single call to FindNewSeed takes time O(k(n+m)). Since FindNewSeed is called at most k
times, this gives a total running time of O(k2(n+m)).

Let us now see how to reduce to O(n+m) the running time of FindNewSeed, by adding
at most O(n+m) to each iteration of RecoverCluster. First, consider line 1 of FindNewSeed.
We keep sss updated so as to ensure that sss ∩ Ri = sss \ {si}. In this way, we can run line 1
in constant time. Towards this end, we modify RecoverCluster as follows. First, we store
si separately form sss in a dedicated variable. Second, after updating Gi and Ri at line 10
of RecoverCluster, we replace sss with sss ∩ Ri. This is done by taking an empty dictionary
sss′, taking every node x ∈ Ri, and adding x to sss′ if x ∈ sss. The whole operation takes time
O(n) by using dictionaries with O(1) time per lookup and update. Summarizing, we spend
an additional O(n) time at each iteration of RecoverCluster, and line 1 of FindNewSeed will
run in constant time.

Now consider the loop at line 2 of FindNewSeed. We modify RecoverCluster so as to keep
track of the set of nodes:

Z(u) = {x ∈ Ri \ Ci : ∃u ∈ u : dG(u, x) <
2

γ
+ 1}

Note that line 2 of FindNewSeed detects precisely if Z(u) 6= ∅, in which case it returns any
x ∈ Z(u). Thus, if we have Z(u), we can replace the entire block at line 2 with an equivalent
block that runs in time O(1). To keep track of Z(u), we initialize it to an empty set, using
a dictionary with O(1) lookup and access time. Then, after updating Gi and Ri at line 10,
we perform the following operations. First, we make RecoverCluster compute Z = Z(ui).
Second, we run MBS(Z, ε, ui) to obtain Zi(ui). Third, we compute Zi(ui) := Z(ui) \ Zi(ui).
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Fourth, we add Zi(ui) to Z(u). Finally, we keep in Z(u) only those x ∈ Z(u) such that
x ∈ Ri. This can be done by creating a new dictionary, adding to it each x ∈ Ri such that
x ∈ Z(u), and overwriting Z(u) with that dictionary, which requires time O(n) in total.
Therefore, we add O(n+m) to each iteration of RecoverCluster, and line 2 of FindNewSeed
will take time O(n).

Finally, we have line 6 of FindNewSeed. Here, we want to perform the check in time
O(n+m). To this end, at the beginning of the first iteration of RecoverCluster, we mark all
nodes of Ri as active. Then, at each iteration, after RecoverCluster has computed (ui, uj),
for all x ∈ Ri we compute dG(ui, x) and if dG(ui, x) < 2

γ + 1 then we change the mark of x to
inactive. This takes time O(n + m), using a BFS from ui. Then, at line 6 of FindNewSeed,
we only need to sweep over all x ∈ Ri and, if x is active, list its edges (x, y) until finding
y /∈ Ri (a check which takes again time O(1) by storing Ri as a dictionary). This gives a total
time bound of O(n+m) for the block at line 6, and once again we add only a O(n+m) to
each iteration of RecoverCluster.

The proof is complete.

Lemma 4.29. RecoverCluster(G, ε,sss, i) runs in time O(k(n+m)).

Proof. Computing Gi and Ri at any point along the algorithm takes time O(n+m). Consider
each iteration of the loop. By Lemma 4.28, we can make FindNewSeed(G,Ri, ε, sss,u, i) run in
time O(n+m) while increasing the overall running time of the iteration of RecoverCluster by
O(n+m). ShortestPath(G[Ri], si, sh) runs in time O(n+m), as it is simply a BFS on G[Ri].
FindCutEdge(π(si, sh)) runs in time O(log n), see Observation 4.26. Adding ui to u takes
constant time. CSeparator(G, ui, uj) runs in time O(n+m), see Lemma 4.27. Therefore each
iteration of RecoverCluster takes time O(n+m). At most k iterations are made, concluding
the proof.

4.E.2 Running time with different radii
Theorem 4.30. RecoverClustering2(X,εεε,sss) runs in time O(k2(n+m)).

Proof. Let us consider each one of the k iterations of the algorithm. To compute G∗, we
perform a BFS by ignoring any edge (x, y) ∈ G with d(x, y) > ε∗. The resulting runtime is
O(n+m). The seed part takes time O(k) = O(n), as does the construction of sss∗. The call
to RecoverCluster takes time O(k(n + m)) by Lemma 4.29. Writing Ĉi in the output takes
time O(n). Summing over all iterations gives the bound.

4.F Supplementary material for Section 2.7

4.F.1 Proof of Theorem 4.14
Theorem 4.14 (Dependence on dens(X).). Choose any β, γ ∈ (0, 1). There is a distribution
of (β, γ)-convex 2-clusterings C (Definition 4.1 or Definition 4.10), where n = |X| = 2dens(X)

is arbitrarily large, such that any algorithm (even randomized) needs Ω(2dens(X)) scq and/or
seed queries to recover C with constant probability. This holds even if β, γ, ε are known.

Proof. Let G = (X, E , d) where (X, E) is the complete graph on n nodes and d = 1, and let
C = (C1, C2) be a uniform random partition of X. We claim that any such C is (β, γ)-convex
according to both Definition 4.1 and Definition 4.10. Take indeed ε = 1 and let G = GX(ε).
The connectivity of G[C1] and G[C2] holds trivially (they are complete graphs). The local
metric margin holds as well, since any two distinct points x, y ∈ X satisfy d(x, y) = d > βd,
as β < 1. To see that geodesic convexity holds, too, note that for any x, y ∈ C1 we have
dG(x, y) ≤ 1 and any (simple) path between x and y that contains a point in X \ C1 has
length at least 2 > (1 + γ)dG(x, y). Finally, note that GX(ε′) is an independent set for any
ε′ < ε, proving that C is (β, γ)-convex according to Definition 4.10 as well.

Now, since C is chosen uniformly at random among all partitions of X, one can see
that Ω(n) scq or seed queries are necessary to recover C with constant probability. To
see this, note that as long as x has not been returned by some seed query or has not
bee queried via scq, then x belongs to one of C1 and C2 with equal probability. Finally,
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dens(X) = log2 µ(X) ≤ log2 n since µ(X) ≤ |X|. Thus n = 2dens(X), which proves the
thesis.

4.F.2 Proof of Theorem 4.15
Theorem 4.15 (Necessity of seeds.). Choose any β, γ ∈ (0, 1]. There is a distribution of
(β, γ)-convex 2-clusterings C (Definition 4.1 or Definition 4.10), where X ⊆ R2 with n = |X|
arbitrarily large and d the Euclidean distance, such that any algorithm (even randomized)
needs Ω(n) scq queries to recover C with constant probability if no seed nodes are given. This
holds even if γ, α, ε are known.

Proof. Let G = (X, E , d) where (X, E) is the complete graph and d(x, y) is the Euclidean
distance in R2. We let X = UP ∪ LOW, see Figure 4.F.1, where:

UP =

n/3⋃
j=1

{(2j, 1)}, LOW =

2n/3⋃
j=1

{(j, 0)}

Figure 4.F.1: the graph Gε(X) for ε = 1. All points are in C1, save for
the filled point in C2, chosen uniformly at random in UP.

Now choose a point z uniformly at random from UP, and set C1 = X \ {z} and C2 = {z}.
One can check that all properties of Definition 4.1 and Definition 4.10 are satisfied for ε = 1.
In particular, in GX(ε), no simple path between two points of C1 contains z. Hence, C is
(β, γ)-convex. Clearly, Ω(n) queries are needed to find z (which is equivalent to recovering
C) with constant probability, even if γ, α and the ε are known.

4.F.3 Proof of Theorem 4.16
Theorem 4.16 (Cost of learning the radii.). For any k ≥ 2, and any sufficiently large n,
there exists a distribution of (1/2, 1)-convex k-clusterings (Definition 4.1 or Definition 4.10)
on n points such that any algorithm (even randomized) needs Ω(k log n

k ) seed and/or scq
queries to learn the radii of all clusters with constant probability.

Proof. We start with the simpler case k = 2. Let G = (X, E , d) be a path with increasing
edge weights, that is:

X = [n] (4.25)
E = {(j, j + 1) : j = 1, . . . , n− 1} (4.26)

d(j, j + 1) = 1 +
βj

n
, (j, j + 1) ∈ E (4.27)

Choose j∗ uniformly at random in {2, . . . , n − 1}. We let C1 = {1, . . . , j∗}, and C2 =
{j∗, . . . , n}.

First, we prove that C1 and C2 are (β, γ)-convex with radii respectively ε1 = d(j∗− 1, j∗)
and ε2 = d(n − 1, n). Recall Definition 4.1. For the connectivity, clearly ρ(GC1

(ε1)) =
ρ(GC2

(ε2)) = 1. For the local metric margin, note that, by the choice of β and d, we have
d ≥ 1 but ε1, ε2 ≤ 3

2 . Thus, for any two distinct x, y ∈ X, we have d(x, y) > βmax(ε1, ε2).
Therefore the local metric margin is satisfied. For geodesic convexity, note that there is only
one edge between C1 and C2 in G, thus no simple path can exist between two points of one
cluster that intersects the other cluster. Thus, the properties of Definition 4.1 are satisfied
by ε1, ε2.

To show that Definition 4.10 is satisfied as well, we have to prove that ε1, ε2 are the smallest
such values; by Lemma 4.20 this implies that ε1 and ε2 are the radii of respectively C1 and
C2. To this end, simply note that ε1 = min{ζ : ρ(GC1(ζ)) = 1}, since d(j∗ − 1, j∗) = ε1
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and d(j, j + 1) ≤ ε1 for all j = 1, . . . , j∗ − 1. Similarly, ε2 = min{ζ : ρ(GC2
(ζ)) = 1}, since

d(n− 1, n) = ε2 and d(j, j + 1) ≤ ε1 for all j = j∗, . . . , n− 1.
Finally, we prove that any algorithm needs Ω(log n) queries to learn ε1. Clearly, if the

algorithm learns ε1 then it can also output the index j∗, which is a function of ε1. Therefore,
we show that finding j∗ requires Ω(log n) queries.

First, we show that seed is as powerful as scq. Consider any set of points U ⊆ X. Recall
that, when U ∩ Ci 6= ∅, seed(U, i) is allowed to return any node in U ∩ Ci. Therefore, we
let seed(U, i) return min(U ∩ Ci) if i = 1, and max(U ∩ Ci) if i = 2. Now, observe that
min(U ∩ C1) = minU and max(U ∩ C1) = maxU . Therefore, the output of seed(U, i) can
be emulated using scq. If i = 1, then we run scq(min(U), 1); if the response is +1, then we
return min(U), else we return nil. For i = 2, we do the same, but using max(U).

Therefore, seed and scq are equivalent in this case. Since each call to scq reveals at most
one bit of information, and j∗ is chosen uniformly at random in a set of cardinality Ω(n), we
need Ω(log n) in order to learn j∗ with constant probability.

In order to extend the construction to any k ≥ 2, simply take K = k
2 disjoint weighted

paths on n
K nodes each (without loss of generality we can assume k is even). Each such path

is weighted as in the construction above, with the weights of the h-th path all smaller than
the weights of the (h+1)-th path. For each path, we draw j∗ uniformly at random like above,
and form two clusters. The same proof used above shows that, to learn the radii of all clusters
with constant probability, any algorithm uses at least Ω(k log n

k ) queries.
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Chapter 5

Correlation Clustering with
Adaptive Similarity Queries

The scope of this chapter is to study the Correlation Clustering problem from the point of
view of query-based algorithms. We begin with a simple and efficient algorithm that obtain
a 3-factor approximation, plus an additive error term that depends on the query budget. We
show that this algorithm is essentially optimal in terms of the additive (query-dependent)
error. Second, we show that a slight modification of the algorithm obtains cluster recovery
guarantees. Third and finally, we prove information-theoretical bounds on the number of
queries necessary to guarantee a prescribed additive error.

5.1 Introduction
Clustering is a central problem in unsupervised learning. A clustering problem is typically
represented by a set of elements together with a notion of similarity (or dissimilarity) between
them. When the elements are points in a metric space, dissimilarity can be measured via a
distance function. In more general settings, when the elements to be clustered are members of
an abstract set V , similarity is defined by an arbitrary symmetric function σ defined on pairs of
distinct elements in V . Correlation Clustering (CC) Bansal et al. [2004] is a well-known special
case where σ is a {−1,+1}-valued function establishing whether any two distinct elements of
V are similar or not. The objective of CC is to cluster the points in V so to maximize the
correlation with σ. More precisely, CC seeks a clustering minimizing the number of errors,
where an error is given by any pair of elements having similarity −1 and belonging to the same
cluster, or having similarity +1 and belonging to different clusters. Importantly, there are no
a priori limitations on the number of clusters or their sizes: all partitions of V , including the
trivial ones, are valid. Given V and σ, the error achieved by an optimal clustering is known
as the Correlation Clustering index, denoted by OPT. A convenient way of representing σ
is through a graph G = (V,E) where {u, v} ∈ E iff σ(u, v) = +1. Note that OPT = 0 is
equivalent to a perfectly clusterable graph (i.e., G is the union of disjoint cliques). Since its
introduction, CC has attracted a lot of interest in the machine learning community, and has
found numerous applications in entity resolution Getoor and Machanavajjhala [2012], image
analysis Kim et al. [2011], and social media analysis Tang et al. [2016]. Known problems in
data integration Cohen and Richman [2002] and biology Ben-Dor et al. [1999] can be cast
into the framework of CC Wirth [2010].

From a machine learning viewpoint, we are interested in settings when the similarity
function σ is not available beforehand, and the algorithm must learn σ by querying for its
value on pairs of objects. This setting is motivated by scenarios in which the similarity
information is costly to obtain. For example, in entity resolution, disambiguating between
two entities may require invoking the user’s help. Similarly, deciding if two documents are
similar may require a complex computation, and possibly the interaction with human experts.
In these active learning settings, the learner’s goal is to trade the clustering error against the
number of queries. Hence, the fundamental question is: how many queries are needed to
achieve a specified clustering error? Or, in other terms, how close can we get to OPT, under
a prescribed query budget Q?
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5.1.1 Contributions
In this cahpter we characterize the trade-off between the number Q of queries and the cluster-
ing error on n points. The table below here summarizes our bounds in the context of previous
work. Running time and upper/lower bounds on the expected clustering error are expressed
in terms of the number of queries Q, and all our upper bounds assume Q = Ω(n) while our
lower bounds assume Q = O(n2).

Expected clustering error Reference

3(lnn+ 1)OPT +O
(
n5/2/

√
Q
)

Cesa-Bianchi et al. [2012]
3OPT +O(n3/Q) Theorem 5.2 (see also Bonchi et al. [2013])

OPT +O
(
n5/2/

√
Q
)

Theorem 5.10
Õ
(
n3/Q

)
Theorem 5.10

Ω
(
n2/
√
Q
)

Theorem 5.11
OPT + Ω

(
n3/Q

)
Theorem 5.12

Our first set of contributions is algorithmic. We take inspiration from an existing greedy
algorithm, KwikCluster Ailon et al. [2008], that has expected error 3OPT but a vacuous
O(n2) worst-case bound on the number of queries. We propose a variant of KwikCluster,
called ACC, for which we prove several desirable properties. First, ACC achieves expected
clustering error 3OPT +O(n3/Q), where Q = Ω(n) is a deterministic bound on the number
of queries. In particular, if ACC is run with Q =

(
n
2

)
, then it becomes exactly equivalent to

KwikCluster. Second, ACC recovers adversarially perturbed latent clusters. More precisely,
if the input contains a cluster C obtained from a clique by adversarially perturbing a fraction
ε of its edges (internal to the clique or leaving the clique), then ACC returns a cluster Ĉ such
that E

[
|C ⊕ Ĉ|

]
= O

(
ε|C|+ n2/Q

)
, where ⊕ denotes symmetric difference. This means that

ACC recovers almost completely all perturbed clusters that are large enough to be “seen”
with Q queries. We also show, under stronger assumptions, that via independent executions
of ACC one can recover exactly all large clusters with high probability. Third, we show a
variant of ACC, called ACCESS (for Early Stopping Strategy), that makes significantly less
queries on some graphs. For example, when OPT = 0 and there are Ω

(
n3/Q

)
similar pairs,

the expected number of queries made by ACCESS is only the square root of the queries
made by ACC. In exchange, ACCESS makes at most Q queries in expectation rather than
deterministically.

Our second set of contributions is a nearly complete information-theoretic characterization
of the query vs. clustering error trade-off (thus, ignoring computational efficiency). Using
VC theory, we prove that for all Q = Ω(n) the strategy of minimizing disagreements on a
random subset of pairs achieves, with high probability, clustering error bounded by OPT +
O
(
n5/2/

√
Q
)
, which reduces to Õ

(
n3/Q

)
when OPT = 0. The VC theory approach can be

applied to any efficient approximation algorithm, too. The catch is that the approximation
algorithm cannot ask the similarity of arbitrary pairs, but only of pairs included in the random
sample of edges. The best known approximation factor in this case is 3(lnn + 1) Demaine
et al. [2006], which gives a clustering error bound of 3(lnn + 1)OPT + O

(
n5/2/

√
Q
)
with

high probability. This was already observed in Cesa-Bianchi et al. [2012] albeit in a slightly
different context.

We complement our upper bounds by developing two information-theoretic lower bounds;
these lower bounds apply to any algorithm issuing Q = O(n2) queries, possibly chosen in
an adaptive way. For the general case, we show that any algorithm must suffer an expected
clustering error of at least OPT + Ω

(
n3/Q

)
. In particular, for Q = Θ(n2) any algorithm

still suffers an additive error of order n, and for Q = Ω(n) our algorithm ACC is essentially
optimal in its additive error term. For the special case OPT = 0, we show a lower bound
Ω
(
n2/
√
Q
)
.

Finally, we evaluate our algorithms empirically on real-world and synthetic datasets.

5.2 Related work
Minimizing the correlation clustering error is APX-hard Charikar et al. [2005], and the best
efficient algorithm found so far achieves 2.06 OPT Chawla et al. [2015]. This almost matches
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the best possible approximation factor 2 achievable via the natural LP relaxation of the
problem Charikar et al. [2005]. A very simple and elegant algorithm for approximating CC is
KwikCluster Ailon et al. [2008]. At each round, KwikCluster draws a random pivot πr from
V , queries the similarities between πr and every other node in V , and creates a cluster C
containing πr and all points u such that σ(πr, u) = +1. The algorithm then recursively invokes
itself on V \C. On any instance of CC, KwikCluster achieves an expected error bounded by
3OPT. However, it is easy to see that KwikCluster makes Θ(n2) queries in the worst case
(e.g., if σ is the constant function −1). Our algorithms can be seen as a parsimonious version
of KwikCluster whose goal is reducing the number of queries.

The work closest to ours is Bonchi et al. [2013]. Their algorithm runs KwikCluster on
a random subset of 1/(2ε) nodes and stores the set Π of resulting pivots. Then, each node
v ∈ V \ Π is assigned to the cluster identified by the pivot π ∈ Π with smallest index
and such that σ(v, π) = +1. If no such pivot is found, then v becomes a singleton cluster.
According to [Bonchi et al., 2013, Lemma 4.1], the expected clustering error for this variant is
3OPT +O

(
εn2
)
, which can be compared to our bound for ACC by setting Q = n/ε. On the

other hand our algorithms are much simpler and significantly easier to analyze. This allows
us to prove a set of additional properties, such as cluster recovery and instance-dependent
query bounds. It is unclear whether these results are obtainable with the techniques of Bonchi
et al. [2013].

Another line of work attempts to circumvent computational hardness by using the more
powerful same-cluster queries (SCQ). A same-cluster query tells whether any two given nodes
are clustered together according to an optimal clustering or not. In Ailon et al. [2018a] SCQs
are used to design a FPTAS for a variant of CC with bounded number of clusters. In Saha
and Subramanian [2019a] SCQs are used to design algorithms for solving CC optimally by
giving bounds on Q which depend on OPT. Unlike our setting, both works assume all

(
n
2

)
similarities are known in advance. The work Mazumdar and Saha [2017b] considers the case
in which there is a latent clustering with OPT = 0. The algorithm can issue SCQs, however
the oracle is noisy: each query is answered incorrectly with some probability, and the noise is
persistent (repeated queries give the same noisy answer). The above setting is closely related
to the stochastic block model (SBM), which is a well-studied model for cluster recovery Abbe
and Sandon [2015]; Massoulié [2014]; Mossel et al. [2018]. However, few works investigate
SBMs with pairwise queries Chen et al. [2016]. Our setting is strictly harder because our
oracle has a budget of OPT adversarially incorrect answers.

A different model is edge classification. Here the algorithm is given a graph G with
hidden binary labels on the edges. The task is to predict the sign of all edges by querying
as few labels as possible Cesa-Bianchi et al. [2012]; Chen et al. [2014]; Chiang et al. [2014].
As before, the oracle can have a budget OPT of incorrect answers, or a latent clustering
with OPT = 0 is assumed and the oracle’s answers are affected by persistent noise. Unlike
correlation clustering, in edge classification the algorithm is not constrained to predict in
agreement with a partition of the nodes. On the other hand, the algorithm cannot query
arbitrary pairs of nodes in V , but only those that form an edge in G.

Preliminaries and notation. We denote by V ≡ {1, . . . , n} the set of input nodes, by
E ≡

(
V
2

)
the set of all pairs {u, v} of distincts nodes in V , and by σ : E → {−1,+1} the binary

similarity function. A clustering C is a partition of V in disjoint clusters Ci : i = 1, . . . , k.
Given C and σ, the set ΓC of mistaken edges contains all pairs {u, v} such that σ(u, v) = −1
and u, v belong to same cluster of C and all pairs {u, v} such that σ(u, v) = +1 and u, v
belong to different clusters of C. The cost ∆C of C is

∣∣ΓC∣∣. The correlation clustering index
is OPT = minC ∆C , where the minimum is over all clusterings C. We often view V, σ as a
graph G = (V,E) where {u, v} ∈ E is an edge if and only if σ(u, v) = +1. In this case, for
any subset U ⊆ V we let G[U ] be the subgraph of G induced by U , and for any v ∈ V we let
Nv be the neighbor set of v.

A triangle is any unordered triple T = {u, v, w} ⊆ V . We denote by e = {u,w} a generic
triangle edge; we write e ⊂ T and v ∈ T \ e. We say T is a bad triangle if the labels
σ(u, v), σ(u,w), σ(v, w) are {+,+,−} (the order is irrelevant). We denote by T the set of all
bad triangles in V . It is easy to see that the number of edge-disjoint bad triangles is a lower
bound on OPT.
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5.3 The ACC algorithm
We introduce our active learning algorithm ACC (Active Correlation Clustering).

Algorithm 15 ACC with query rate f
Parameters: residual node set Vr, round index r
1: if |Vr| = 0 then RETURN
2: if |Vr| = 1 then output singleton cluster Vr and RETURN
3: if r > df(|V1| − 1)e then RETURN
4: Draw pivot πr u.a.r. from Vr
5: Cr ← {πr} . Create new cluster and add the pivot to it
6: Draw a random subset Sr of df(|Vr| − 1)e nodes from Vr \ {πr}
7: for each u ∈ Sr do query σ(πr, u)

8: if ∃u ∈ Sr such that σ(πr, u) = +1 then . Check if there is at least a positive edge
9: Query all remaining pairs (πr, u) for u ∈ Vr \

(
{πr} ∪ Sr

)
10: Cr ← Cr ∪ {u : σ(πr, u) = +1} . Populate cluster based on queries
11: Output cluster Cr
12: ACC(Vr \ Cr, r + 1) . Recursive call on the remaining nodes

ACC has the same recursive structure as KwikCluster. First, it starts with the full instance
V1 = V . Then, for each round r = 1, 2, . . . it selects a random pivot πr ∈ Vr, queries the
similarities between πr and a subset of Vr, removes πr and possibly other points from Vr,
and proceeds on the remaining residual subset Vr+1. However, while KwikCluster queries
σ(πr, u) for all u ∈ Vr \{πr}, ACC queries only df(nr)e ≤ nr other nodes u (lines 6–7), where
nr = |Vr|− 1. Thus, while KwikCluster always finds all positive labels involving the pivot πr,
ACC can find them or not, with a probability that depends on f . The function f is called
query rate function and dictates the tradeoff between the clustering cost ∆ and the number
of queries Q, as we prove below. Now, if any of the aforementioned df(nr)e queries returns
a positive label (line 8), then all the labels between πr and the remaining u ∈ Vr are queried
and the algorithm operates as KwikCluster until the end of the recursive call; otherwise, the
pivot becomes a singleton cluster which is removed from the set of nodes. Another important
difference is that ACC deterministically stops after at most df(n)e recursive calls (line 1),
declaring all remaining points as singleton clusters. The intuition is that with good probability
the clusters not found within df(n)e rounds are small enough to be safely disregarded. Since
the choice of f is delicate, we avoid trivialities by assuming f is positive and smooth enough.
Formally:

Definition 5.1. f : N → R is a query rate function if f(1) = 1, and f(n) ≤ f(n + 1) ≤(
1 + 1

n

)
f(n) for all n ∈ N. This implies f(n+k)

n+k ≤ f(n)
n for all k ≥ 1.

We can now state formally our bounds for ACC.

Theorem 5.2. For any query rate function f and any labeling σ on n nodes, the expected
cost E[∆A] of the clustering output by ACC satisfies

E[∆A] ≤ 3OPT +
2e− 1

2(e− 1)

n2

f(n)
+
n

e
.

The number of queries made by ACC is deterministically bounded as Q ≤ ndf(n)e. In the
special case f(n) = n for all n ∈ N, ACC reduces to KwikCluster and achieves E[∆A] ≤ 3OPT
with Q ≤ n2.

Note that Theorem 5.2 gives an upper bound on the error achievable when using Q queries:
sinceQ = nf(n), the expected error is at most 3OPT+O(n3/Q). Furthermore, as one expects,
if the learner is allowed to ask for all edge signs, then the exact bound of KwikCluster is
recovered (note that the first formula in Theorem 5.2 clearly does not take into account the
special case when f(n) = n, which is considered in the last part of the statement).
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Proof sketch. Look at a generic round r, and consider a pair of points {u,w} ∈ Vr. The
essence is that ACC can misclassify {u,w} in one of two ways. First, if σ(u,w) = −1, ACC
can choose as pivot πr a node v such that σ(v, u) = σ(v, w) = +1. In this case, if the condition
on line 8 holds, then ACC will cluster v together with u and w, thus mistaking {u,w}. If
instead σ(u,w) = +1, then ACC could mistake {u,w} by pivoting on a node v such that
σ(v, u) = +1 and σ(v, w) = −1, and clustering together only v and u. Crucially, both cases
imply the existence of a bad triangle T = {u,w, v}. We charge each such mistake to exactly
one bad triangle T , so that no triangle is charged twice. The expected number of mistakes can
then be bound by 3OPT using the packing argument of Ailon et al. [2008] for KwikCluster.
Second, if σ(u,w) = +1 then ACC could choose one of them, say u, as pivot πr, and assign
it to a singleton cluster. This means the condition on line 8 fails. We can then bound the
number of such mistakes as follows. Suppose πr has cn/f(n) positive labels towards Vr for
some c ≥ 0. Loosely speaking, we show that the check of line 8 fails with probability e−c, in
which case cn/f(n) mistakes are added. In expectation, this gives cne−c/f(n) = O

(
n/f(n)

)
mistakes. Over all f(n) ≤ n rounds, this gives an overall O

(
n2/f(n)

)
. (The actual proof

has to take into account that all the quantities involved here are not constants, but random
variables).

5.3.1 ACC with Early Stopping Strategy
We can refine our algorithm ACC so that, in some cases, it takes advantage of the structure
of the input to reduce significantly the expected number of queries. To this end we see the
input as a graph G with edges corresponding to positive labels (see above). Suppose then
G contains a sufficiently small number O(n2/f(n)) of edges. Since ACC performs up to
df(n)e rounds, it could make Q = Θ(f(n)2) queries. However, with just df(n)e queries one
could detect that G contains O(n2/f(n)) edges, and immediately return the trivial clustering
formed by all singletons. The expected error would obviously be at most OPT +O(n2/f(n)),
i.e. the same of Theorem 5.2. More generally, at each round r with df(nr)e queries one can
check if the residual graph contains at least n2/f(n) edges; if the test fails, declaring all nodes
in Vr as singletons gives expected additional error O(n2/f(n)). The resulting algorithm is a
variant of ACC that we call ACCESS (ACC with Early Stopping Strategy). The pseudocode
can be found in the supplementary material.

First, we show ACCESS gives guarantees virtually identical to ACC (only, with Q in
expectation). Formally:

Theorem 5.3. For any query rate function f and any labeling σ on n nodes, the expected
cost E[∆A] of the clustering output by ACCESS satisfies

E[∆A] ≤ 3OPT + 2
n2

f(n)
+
n

e
.

Moreover, the expected number of queries performed by ACCESS is E[Q] ≤ n(df(n)e+ 4).

Theorem 5.3 reassures us that ACCESS is no worse than ACC. In fact, if most edges of
G belong to relatively large clusters (namely, all but O(n2/f(n)) edges), then we can show
ACCESS uses much fewer queries than ACC (in a nutshell, ACCESS quickly finds all large
clusters and then quits). The following theorem captures the essence. For simplicity we
assume OPT = 0, i.e. G is a disjoint union of cliques.

Theorem 5.4. Suppose OPT = 0 so G is a union of disjoint cliques C1, . . . , C` listed in
nondecreasing order of size. Let i′ be the smallest i such that

∑i
j=1 |ECj | = Ω(n2/f(n)), and

let h(n) = |Ci′ |. Then ACCESS makes in expectation E[Q] = O
(
n2 lg(n)/h(n)

)
queries.

As an example, say f(n) =
√
n and G contains n1/3 cliques of n2/3 nodes each. Then

for ACC Theorem 5.2 gives Q ≤ nf(n) = O(n3/2), while for ACCESS Theorem 5.4 gives
E[Q] = O(n4/3 lg(n)).
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5.4 Cluster recovery
In the previous section we gave bounds on E[∆], the expected total cost of the clustering.
However, in applications such as community detection and alike, the primary objective is
recovering accurately the latent clusters of the graph, the sets of nodes that are “close” to
cliques. This is usually referred to as cluster recovery. For this problem, an algorithm that
outputs a good approximation Ĉ of every latent cluster C is preferable to an algorithm that
minimizes E[∆] globally. In this section we show that ACC natively outputs clusters that
are close to the latent clusters in the graph, thus acting as a cluster recovery tool. We also
show that, for a certain type of latent clusters, one can amplify the accuracy of ACC via
independent executions and recover all clusters exactly with high probability.

To capture the notion of “latent cluster”, we introduce the concept of (1− ε)-knit set. As
usual, we view V, σ as a graph G = (V,E) with e ∈ E iff σ(e) = +1. Let EC be the edges in
the subgraph induced by C ⊆ V and cut(C, C̄) be the edges between C and C̄ = V \ C.

Definition 5.5. A subset C ⊆ V is (1−ε)-knit if
∣∣EC∣∣ ≥ (1−ε)

(|C|
2

)
and

∣∣cut(C, C̄)
∣∣ ≤ ε(|C|2

)
.

Suppose now we have a cluster Ĉ as “estimate” of C. We quantify the distance between C
and Ĉ as the cardinality of their symmetric difference,

∣∣Ĉ ⊕C∣∣ =
∣∣Ĉ \C∣∣+ ∣∣C \ Ĉ∣∣. The goal

is to obtain, for each (1− ε)-knit set C in the graph, a cluster Ĉ with |Ĉ ⊕ C| = O(ε|C|) for
some small ε. We prove ACC does exactly this. Clearly, we must accept that if C is too small,
i.e. |C| = o(n/f(n)), then ACC will miss C entirely. But, for |C| = Ω(n/f(n)), we can prove
E[|Ĉ ⊕C|] = O(ε|C|). We point out that the property of being (1− ε)-knit is rather weak for
an algorithm, like ACC, that is completely oblivious to the global topology of the cluster —
all what ACC tries to do is to blindly cluster together all the neighbors of the current pivot.
In fact, consider a set C formed by two disjoint cliques of equal size. This set would be close
to 1/2-knit, and yet ACC would never produce a single cluster Ĉ corresponding to C. Things
can only worsen if we consider also the edges in cut(C, C̄), which can lead ACC to assign the
nodes of C to several different clusters when pivoting on C̄. Hence it is not obvious that a
(1− ε)-knit set C can be efficiently recovered by ACC.

Note that this task can be seen as an adversarial cluster recovery problem. Initially, we
start with a disjoint union of cliques, so that OPT = 0. Then, an adversary flips the signs
of some of the edges of the graph. The goal is to retrieve every original clique that has
not been perturbed excessively. Note that we put no restriction on how the adversary can
flip edges; therefore, this adversarial setting subsumes constrained adversaries. For example,
it subsumes the high-probability regime of the stochastic block model Holland et al. [1983]
where edges are flipped according to some distribution.

We can now state our main cluster recovery bound for ACC.

Theorem 5.6. For every C ⊆ V that is (1 − ε)-knit, ACC outputs a cluster Ĉ such that
E
[
|C ⊕ Ĉ|

]
≤ 3ε|C|+ min

{
2n
f(n) ,

(
1− f(n)

n

)
|C|
}

+ |C|e−|C|f(n)/5n.

The min in the bound captures two different regimes: when f(n) is very close to n,
then E

[
|C ⊕ Ĉ|

]
= O(ε|C|) independently of the size of C, but when f(n) � n we need

|C| = Ω(n/f(n)), i.e., |C| must be large enough to be found by ACC.

5.4.1 Exact cluster recovery via amplification
For certain latent clusters, one can get recovery guarantees significantly stronger than the
ones given natively by ACC (see Theorem 5.6). We start by introducing strongly (1− ε)-knit
sets (also known as quasi-cliques). Recall that Nv is the neighbor set of v in the graph G
induced by the positive labels.

Definition 5.7. A subset C ⊆ V is strongly (1−ε)-knit if, for every v ∈ C, we have Nv ⊆ C
and |Nv| ≥ (1− ε)(|C| − 1).

We remark that ACC alone does not give better guarantees on strongly (1−ε)-knit subsets
than on (1− ε)-knit subsets. Suppose for example that |Nv| = (1− ε)(|C| − 1) for all v ∈ C.
Then C is strongly (1 − ε)-knit, and yet when pivoting on any v ∈ C ACC will inevitably
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produce a cluster Ĉ with |Ĉ ⊕ C| ≥ ε|C|, since the pivot has edges to less than (1 − ε)|C|
other nodes of C.

To bypass this limitation, we run ACC several times to amplify the probability that every
node in C is found. Recall that V = [n]. Then, we define the id of a cluster Ĉ as the smallest
node of Ĉ. The min-tagging rule is the following: when forming Ĉ, use its id to tag all of
its nodes. Therefore, if uĈ = min{u ∈ Ĉ} is the id of Ĉ, we will set id(v) = uĈ for every
v ∈ Ĉ. Consider now the following algorithm, called ACR (Amplified Cluster Recovery).
First, ACR performs K independent runs of ACC on input V , using the min-tagging rule
on each run. In this way, for each v ∈ V we obtain K tags id1(v), . . . , idK(v), one for each
run. Thereafter, for each v ∈ V we select the tag that v has received most often, breaking
ties arbitrarily. Finally, nodes with the same tag are clustered together. One can prove that,
with high probability, this clustering contains all strongly (1 − ε)-knit sets. In other words,
ACR with high probability recovers all such latent clusters exactly. Formally, we prove:

Theorem 5.8. Let ε ≤ 1
10 and fix p > 0. If ACR is run with K = 48 ln n

p , then the following
holds with probability at least 1 − p: for every strongly (1 − ε)-knit C with |C| > 10 n

f(n) , the

algorithm outputs a cluster Ĉ such that Ĉ = C.

It is not immediately clear that one can extend this result by relaxing the notion of strongly
(1 − ε)-knit set so to allow for edges between C and the rest of the graph. We just notice
that, in that case, every node v ∈ C could have a neighbor xv ∈ V \ C that is smaller than
every node of C. In this case, when pivoting on v ACC would tag v with x rather than with
uC , disrupting ACR.

5.5 A fully additive scheme
In this section, we introduce a(n inefficient) fully additive approximation algorithm achieving
cost OPT + n2ε in high probability using order of n

ε2 queries. When OPT = 0, Q = n
ε ln 1

ε
suffices. Our algorithm combines uniform sampling with empirical risk minimization and is
analyzed using VC theory.

First, note that CC can be formulated as an agnostic binary classification problem with
binary classifiers hC : E → {−1,+1} associated with each clustering C of V (recall that E
denotes the set of all pairs {u, v} of distinct elements u, v ∈ V ), and we assume hC(u, v) = +1
iff u and v belong to the same cluster of C. Let Hn be the set of all such hC . The risk of
a classifier hC with respect to the uniform distribution over E is P(hC(e) 6= σ(e)) where e is
drawn u.a.r. from E . It is easy to see that the risk of any classifier hC is directly related to
∆C , P

(
hC(e) 6= σ(e)

)
= ∆C

/(
n
2

)
. Hence, in particular, OPT =

(
n
2

)
minh∈Hn P

(
h(e) 6= σ(e)

)
.

Now, it is well known —see, e.g., [Shalev-Shwartz and Ben-David, 2014b, Theorem 6.8]—
that we can minimize the risk to within an additive term of ε using the following procedure:
query O

(
d/ε2

)
edges drawn u.a.r. from E , where d is the VC dimension of Hn, and find the

clustering C such that hC makes the fewest mistakes on the sample. If there is h∗ ∈ Hn with
zero risk, then O

(
(d/ε) ln(1/ε)

)
random queries suffice. A trivial upper bound on the VC

dimension of Hn is log2 |Hn| = O
(
n lnn). The next result gives the exact value.

Theorem 5.9. The VC dimension of the class Hn of all partitions of n elements is n− 1.

Proof. Let d be the VC dimension of Hn. We view an instance of CC as the complete graph
Kn with edges labelled by σ. Let T be any spanning tree of Kn. For any labeling σ, we
can find a clustering C of V such that hC perfectly classifies the edges of T : simply remove
the edges with label −1 in T and consider the clusters formed by the resulting connected
components. Hence d ≥ n − 1 because any spanning tree has exactly n − 1 edges. On the
other hand, any set of n edges must contain at least a cycle. It is easy to see that no clustering
C makes hC consistent with the labeling σ that gives positive labels to all edges in the cycle
but one. Hence d < n.

An immediate consequence of the above is the following.

Theorem 5.10. There exists a randomized algorithm A that, for all 0 < ε < 1, finds a
clustering C satisfying ∆C ≤ OPT + O

(
n2ε
)
with high probability while using Q = O

(
n
ε2

)
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queries. Moreover, if OPT = 0, then Q = O
(
n
ε ln 1

ε

)
queries are enough to find a clustering

C satisfying ∆C = O
(
n2ε
)
.

5.6 Lower bounds
In this section we give two lower bounds on the expected clustering error of any (possibly
randomized) algorithm. The first bound holds for OPT = 0, and applies to algorithms using
a deterministically bounded number of queries. This bound is based on a construction from
[Cesa-Bianchi et al., 2015, Lemma 11] and related to kernel-based learning.

Theorem 5.11. For any ε > 0 such that 1
ε is an even integer, and for every (possibly

randomized) learning algorithm asking fewer than 1
50ε2 queries with probability 1, there exists

a labeling σ on n ≥ 16
ε ln 1

ε nodes such that OPT = 0 and the expected cost of the algorithm
is at least n2ε

8 .

Our second bound relaxed the assumption on OPT. It uses essentially the same con-
struction of [Bonchi et al., 2013, Lemma 6.1], giving asymptotically the same guarantees.
However, the bound of Bonchi et al. [2013] applies only to a very restricted class of algo-
rithms: namely, those where the number qv of queries involving any specific node v ∈ V is
deterministically bounded. This rules out a vast class of algorithms, including KwikCluster,
ACC, and ACCESS, where the number of queries involving a node is a function of the random
choices of the algorithm. Our lower bound is instead fully general: it holds unconditionally
for any randomized algorithm, with no restriction on what or how many pairs of points are
queried.

Theorem 5.12. Choose any function ε = ε(n) such that Ω
(

1
n

)
≤ ε ≤ 1

2 and 1
ε ∈ N. For

every (possibly randomized) learning algorithm and any n0 > 0 there exists a labeling σ on
n ≥ n0 nodes such that the algorithm has expected error E[∆] ≥ OPT + n2ε

80 whenever its
expected number of queries satisfies E[Q] < n

80 ε .

In fact, the bound of Theorem 5.12 can be put in a more general form: for any constant
c ≥ 1, the expected error is at least c · OPT + A(c) where A(c) = Ω(n2ε) is an additive
term with constant factors depending on c (see the proof). Thus, our algorithms ACC and
ACCESS are essentially optimal in the sense that, for c = 3, they guarantee an optimal
additive error up to constant factors.

5.7 Experiments
We verify experimentally the tradeoff between clustering cost and number of queries of ACC,
using six datasets from Mazumdar and Saha [2017b,a]. Four datasets come from real-world
data, and two are synthetic; all of them provide a ground-truth partitioning of some set V of
nodes. Here we show results for one real-world dataset (cora, with |V |=1879 and 191 clusters)
and one synthetic dataset (skew, with |V |=900 and 30 clusters). Results for the remaining
datasets are similar and can be found in the supplementary material. Since the original
datasets have OPT = 0, we derived perturbed versions where OPT > 0 as follows. First, for
each η ∈ {0, 0.1, 0.5, 1} we let p = η|E|/

(
n
2

)
where |E| is the number of edges (positive labels)

in the dataset (so η is the expected number of flipped edges measured as a multiple of |E|).
Then, we flipped the label of each pair of nodes independently with probability p. Obviously
for p = 0 we have the original dataset.

For every dataset and its perturbed versions we then proceeded as follows. For α =
0, 0.05, ..., 0.95, 1, we set the query rate function to f(x) = xα. Then we ran 20 independent
executions of ACC, and computed the average number of queries µQ and average clustering
cost µ∆. The variance was often negligible, but is reported in the full plots in the supple-
mentary material. The tradeoff between µ∆ and µQ is depicted in Figure 5.7.1, where the
circular marker highlights the case f(x) = x, i.e. KwikCluster.

The clustering cost clearly drops as the number of queries increases. This drop is partic-
ularly marked on cora, where ACC achieves a clustering cost close to that of KwikCluster
using an order of magnitude fewer queries. It is also worth noting that, for the case OPT = 0,
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Figure 5.7.1: Performance of ACC.

the measured clustering cost achieved by ACC is 2 to 3 times lower than the theoretical bound
of ≈ 3.8n3/Q given by Theorem 5.2.
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Appendix

5.A Probability bounds
We give Chernoff-type probability bounds that can be found in e.g. Dubhashi and Panconesi
[2009b] and that we repeatedly use in our proofs. Let X1, . . . , Xn be binary random variables.
We say that X1, . . . , Xn are non-positively correlated if for all I ⊆ {1, . . . , n} we have:

P[∀i ∈ I : Xi = 0] ≤
∏
i∈I

P[Xi = 0] and P[∀i ∈ I : Xi = 1] ≤
∏
i∈I

P[Xi = 1] (5.1)

The following holds:

Lemma 5.13. Let X1, . . . , Xn be independent or, more generally, non-positively correlated
binary random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any δ > 0,

we have:

P[X < (1− δ)E[X]] < e−
δ2

2 E[X] (5.2)

P[X > (1 + δ)E[X]] < e−
δ2

2+δE[X] (5.3)

5.B Supplementary Material for Section 3

5.B.1 Pseudocode of ACC
For ease of reference we report the pseudocode of ACC below.

Algorithm 16 ACC with query rate f
Parameters: residual node set Vr, round index r
1: if |Vr| = 0 then RETURN
2: if |Vr| = 1 then output singleton cluster Vr and RETURN
3: if r > df(|V1| − 1)e then RETURN
4: Draw pivot πr u.a.r. from Vr
5: Cr ← {πr} . Create new cluster and add the pivot to it
6: Draw a random subset Sr of df(|Vr| − 1)e nodes from Vr \ {πr}
7: for each u ∈ Sr do query σ(πr, u)

8: if ∃u ∈ Sr such that σ(πr, u) = +1 then . Check if there is at least a positive edge
9: Query all remaining pairs (πr, u) for u ∈ Vr \

(
{πr} ∪ Sr

)
10: Cr ← Cr ∪ {u : σ(πr, u) = +1} . Populate cluster based on queries
11: Output cluster Cr
12: ACC(Vr \ Cr, r + 1) . Recursive call on the remaining nodes

5.B.2 Proof of Theorem 1
We refer to the pseudocode above (Algorithm 15). We use Vr to denote the set of remaining
nodes at the beginning of the r-th recursive call, and we let nr = |Vr| − 1. Hence V1 = V and
n1 = n − 1. If the condition in the if statement on line 8 is not true, then Cr is a singleton
cluster. We denote by Vsing the set nodes that are output as singleton clusters.
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Let ΓA be the set of mistaken edges for the clustering output by ACC and let ∆A =
∣∣ΓA∣∣

be the cost of this clustering. Note that, in any recursive call, ACC misclassifies an edge
e = {u,w} if and only if e is part of a bad triangle whose third node v is chosen as pivot
and does not become a singleton cluster, or if σ(e) = +1 and at least one of u,w becomes a
singleton cluster. More formally, ACC misclassifies an edge e = {u,w} if and only if one of
the following three disjoint events holds:

B1(e): There exists r ≤ df(n−1)e and a bad triangle T ≡ {u, v, w} ⊆ Vr such that πr = v and
v 6∈ Vsing.

B2(e): There exists r ≤ df(n − 1)e such that u,w ∈ Vr with σ(u,w) = +1 and πr ∈ {u,w} ∩
Vsing.

B3(e): ACC stops after df(n−1)e rounds without removing neither u nor w, and σ(u,w) = +1.
Therefore the indicator variable for the event “e is mistaken” is:

{e ∈ ΓA} = {B1(e)}+ {B2(e)}+ {B3(e)}

The expected cost of the clustering is therefore:

E[∆A] =
∑
e∈E

P(B1(e)) +
∑
e∈E

P(B2(e)) +
∑
e∈E

P(B3(e)) (5.4)

We proceed to bound the three terms separately.

Bounding
∑
e∈E P(B1(e)). Fix an arbitrary edge e = {u,w}. Note that, if B1(e) occurs,

then T is unique, i.e. exactly one bad triangle T in V satisfies the definition of B1(e). Each
occurrence of B1(e) can thus be charged to a single bad triangle T . We may thus write∑

e∈E
{B1(e)} =

∑
e∈E
{(∃ r)(∃T ∈ T ) : T ⊆ Vr ∧ e ⊂ T ∧ πr ∈ T \ e ∧ πr 6∈ Vsing}

=
∑
T∈T
{(∃ r) : T ⊆ Vr ∧ πr ∈ T ∧ πr 6∈ Vsing}

≤
∑
T∈T
{AT }

where AT ≡
{

(∃ r) : T ⊆ Vr ∧ πr ∈ T
}
. Let us then bound

∑
T∈T P(AT ). Let T (e) ≡

{T ′ ∈ T : e ∈ T ′}. We use the following fact extracted from the proof of [Ailon et al.,
2008, Theorem 6.1]. If {βT ≥ 0 : T ∈ T } is a set of weights on the bad triangles such that∑
T∈T (e) βT ≤ 1 for all e ∈ E , then

∑
T∈T βT ≤ OPT. Given e ∈ E and T ∈ T , let FT (e) be

the event corresponding to T being the first triangle in the set T (e) such that T ∈ Vr and
πr ∈ T \e for some r. Now if FT (e) holds then AT holds and no other AT ′ for T ′ ∈ T (e)\{T}
holds. Therefore ∑

T∈T (e)

{AT ∧ FT (e)} = 1 .

If AT holds for some r0, then it cannot hold for any other r > r0 because πr0 ∈ T implies that
for all r > r0 we have πr0 6∈ Vr implying T 6⊆ Vr. Hence, given that AT holds for r0, if FT (e)
holds too, then it holds for the same r0 by construction. This implies that P

(
FT (e) | AT

)
= 1

3
because ACC chooses the pivot u.a.r. from the nodes in Vr0 . Thus, for each e ∈ E we can
write

1 =
∑

T∈T (e)

P
(
AT ∧ FT (e)

)
=

∑
T∈T (e)

P
(
FT (e) | AT

)
P(AT ) =

∑
T∈T (e)

1

3
P(AT ) . (5.5)

Choosing βT = 1
3P(AT ) we get

∑
T∈T P(AT ) ≤ 3OPT.

In the proof of KwikCluster, the condition
∑
T∈T (e) βT ≤ 1 was ensured by considering

events GT (e) = AT ∧ e ∈ ΓA. Indeed, in KwikCluster the events {GT (e) : T ∈ T (e)} are
disjoint, because GT (e) holds iff T is the first and only triangle in T (e) whose node opposite
to e is chosen as pivot. For ACC this is not true because a pivot can become a singleton
cluster, which does not cause e ∈ ΓA necessarily to hold.
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Bounding
∑
e∈E P(B2(e)). For any u ∈ Vr, let d+

r (u) =
∣∣ {v ∈ Vr : σ(u, v) = +1}

∣∣. We
have: ∑

e∈E
{B2(e)} =

1

2

∑
u∈V

df(n−1)e∑
r=1

{πr = u ∧ πr ∈ Vsing} d+
r (u) .

Taking expectations with respect to the randomization of ACC,

∑
e∈E

P
(
B2(e)

)
=

1

2

∑
u∈V

df(n−1)e∑
r=1

E
[
{πr = u ∧ πr ∈ Vsing} d+

r (u)
]

=
1

2

∑
u∈V

df(n−1)e∑
r=1

E
[
{πr ∈ Vsing} d+

r (u)
∣∣∣πr = u

]
P(πr = u)

For any round r, let Hr−1 be the sequence of random draws made by the algorithm before
round r. Then P

(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
d+
r (u) = 0 if either d+

r (u) = 0, or d+
r (u) ≥ 1 and

d−r (u) < df(nr)e. Otherwise,

P
(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
=

df(nr)e−1∏
j=0

d−r (u)− j
nr − j

≤
(
d−r (u)

nr

)df(nr)e

=

(
1− d+

r (u)

nr

)df(nr)e

(5.6)
where the inequality holds because d−r (u) ≤ nr. Therefore, when d+

r (u) ≥ 1 and d−r (u) ≥
df(nr)e,

E
[
{πr ∈ Vsing} d+

r (u)
∣∣∣πr = u, Hr−1

]
= P

(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
d+
r (u)

=

(
1− d+

r (u)

nr

)df(nr)e

d+
r (u)

=

(
1− d+

r (u)

nr

)df(nr)e

d+
r (u)

≤ exp

(
−d

+
r (u)df(nr)e

nr

)
d+
r (u)

≤ max
z>0

exp

(
−z df(nr)e

nr

)
z

≤ nr
edf(nr)e

≤ nr
ef(nr)

.

Combining with the above, this implies

∑
e∈E

P
(
B2(e)

)
≤ 1

2e

df(n−1)e∑
r=1

E
[

nr
f(nr)

]
≤ 1

2e

df(n−1)e∑
r=1

n

f(n)
≤ n

e

where we used the facts that nr ≤ n and the properties of f .

Bounding
∑
e∈E P(B3(e)). Let Vfin be the remaining vertices in Vr after the algorithm

stops and assume |Vfin| > 1 (so that there is at least a query left). Let nfin = |Vfin| − 1 and,
for any u ∈ Vfin, let d+

fin(u) =
∣∣ {v ∈ Vfin : σ(u, v) = +1}

∣∣. In what follows, we conventionally
assume Vr ≡ Vfin for any r > df(n− 1)e, and similarly for nfin and d+

fin. We have

∑
e∈E
{B3(e)} =

1

2

∑
u∈Vfin

d+
fin(u) ≤ 1

2

( ∑
u∈Vfin

nfin

df(nfin)e
+
∑
u∈Vfin

{
d+

fin(u) >
nfin

df(nfin)e

}
d+

fin(u)

)
.

Fix some r ≤ df(n − 1)e. Given any vertex v ∈ Vr with d+
r (v) ≥ nr

df(nr)e , let Er(v) be
the event that, at round r, ACC queries σ(v, u) for all u ∈ Vr \ {v}. Introduce the notation



Chapter 5. Correlation Clustering with Adaptive Similarity Queries 86

Sr =
∑
u∈Vr

{
d+
r (u) > nr

df(nr)e

}
d+
r (u) with Sr = Sfin for all r > df(n)e, and let δr = nr−nr+1

be the number of nodes that are removed from Vr at the end of the r-th recursive call. Then

δr ≥ {Er(πr)} d+
r (πr) ≥

{
d+
r (πr) >

nr
df(nr)e

}
{Er(πr)} d+

r (πr)

and

E[δr | Hr−1] ≥
∑
v∈Vr

{
d+
r (v) >

nr
df(nr)e

}
P
(
Er(v) | πr = v, Hr−1

)
P(πr = v | Hr−1)d+

r (v) .

Using the same argument as the one we used to bound (5.6),

P
(
Er(v) | πr = v, Hr−1

)
≥ 1−

(
1− d+

r (v)

nr

)df(nr)e

≥ 1−
(

1− 1

df(nr)e

)df(nr)e

≥ 1− 1

e

and P(πr = v | Hr−1) = 1
nr+1 for any v ∈ Vr, we may write

E[δr | Hr−1] ≥
(

1− 1

e

)
E[Sr | Hr−1]

nr + 1
≥
(

1− 1

e

)
E[Sr | Hr−1]

n
.

Observe now that
∑df(n−1)e
r=1 δr ≤ n1 − nfin ≤ n− 1 and Sr is monotonically nonincreasing in

r. Thus

n− 1 ≥
df(n−1)e∑
r=1

E[δr] ≥
1

n

(
1− 1

e

) df(n)e∑
r=1

E[Sr] ≥
df(n− 1)e

n

(
1− 1

e

)
E[Sfin]

which implies E[Sfin] ≤
(

e
e−1

) n(n−1)
df(n−1)e ≤

(
e
e−1

)n(n−1)
f(n−1) . By the properties of f , however,(

e
e−1

)n(n−1)
f(n−1) ≤

(
e
e−1

)
n2

f(n) . So we have

∑
e∈E

P
(
B3(e)

)
≤ 1

2

( ∑
u∈Vfin

E
[

nfin

f(nfin)

]
+ E[Sfin]

)
≤ 1

2

(
n2

f(n)
+

e

e− 1

n2

f(n)

)
as claimed.

Bounding the number of queries. In any given round, ACC asks less than n queries.
Since the number of rounds is at most df(n)e, the overall number of queries is less than
ndf(n)e.

KwikCluster as special case. One can immediately see that, if f(n) = n for all n, then
ACC coincides with KwikCluster and therefore the bound E[∆] ≤ 3OPT applies Ailon et al.
[2008].

5.B.3 Pseudocode of ACCESS

5.B.4 Proof of Theorem 2
We refer to the pseudocode of ACCESS (Algorithm 2).

Bounding E[∆A]. Let Gr be the residual graph at round r. The total clustering cost
∆A of ACCESS can be bounded by the sum of two terms: the clustering cost ∆1 of ACC
without round restriction (i.e. ACC terminating only when the residual graph is empty), and
the number of edges ∆2 in the residual graph Gr if r is the round at which ACCESS stops.
Concerning ∆1, the proof of Theorem 1 shows that E[∆1] ≤ 3OPT + n/e. Concerning ∆2,
we have two cases. If ACCESS stops at line 1, then obviously ∆2 ≤ 2n2/f(n). If instead
ACCESS stops at line 4, then note that for any k ≥ 0 the probability that such an event
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Algorithm 2 ACCESS with query rate f
Parameters: residual node set Vr, round index r
1: if

(|Vr|
2

)
≤ 2n2/f(n) then STOP and declare every v ∈ Vr as singleton

2: Sample the labels of d
(|Vr|

2

)
f(n)/n2e pairs chosen u.a.r. from

(
Vr
2

)
3: if no label is positive then
4: STOP and declare every v ∈ Vr as singleton
5: Draw pivot πr u.a.r. from Vr
6: Cr ← {πr} . Create new cluster and add the pivot to it
7: Draw a random subset Sr of df(|Vr| − 1)e nodes from Vr \ {πr}
8: for each u ∈ Sr do query σ(πr, u)

9: if ∃u ∈ Sr such that σ(πr, u) = +1 then . Check if there is at least an edge
10: Query all remaining pairs (πr, u) for u ∈ Vr \

(
{πr} ∪ Sr

)
11: Cr ← Cr ∪ {u : σ(πr, u) = +1} . Populate cluster based on queries
12: Output cluster Cr
13: ACCESS(Vr \ Cr, r + 1) . Recursive call on the remaining nodes

happens given that ∆2 = k is at most:

(
1− k(|Vr|

2

))
⌈
(|Vr|2 )f(n)/n2

⌉
≤ e−kf(n)/n2

Thus E[∆2] ≤ maxk≥1(ke−kf(n)/n2

) ≤ n2

ef(n) < 2n2/f(n).

Bounding E[Q]. The queries performed at line 1 are deterministically at most ndf(n)e.
Concerning the other queries (line 8 and line 10), we divide the algorithm in two phases: the
“heavy” rounds r where Gr still contains at least n2/(2f(n)) edges, and the remaining “light”
rounds where Gr contains less than n2/(2f(n)) edges.

Consider first a “heavy” round r. We see Gr as an arbitrary fixed graph: for all random
variables mentioned below, the distribution is thought solely as a function of the choices of
the algorithm in the current round (i.e., the pivot node πr and the queried edges). Now, let
Qr be the number of queries performed at lines 8 and 10), and Rr = |Vr| − |Vr+1| be the
number of nodes removed. Let πr be the pivot, and let Dr be its degree in Gr. Let Xr be the
indicator random variable of the event that σ(πr, u) = +1 for some u ∈ Sr. Observe that:

Qr ≤ df(|Vr| − 1)e+Xr(|Vr| − 1) and Rr = 1 +XrDr

Thus E[Qr] ≤ df(|Vr|−1)e+E[Xr]|Vr|, while E[Rr] = 1+E[XrDr]. However, Xr is monoton-
ically increasing in Dr, so E[XrDr] = E[Xr]E[Dr] + Cov(Xr, Dr) ≥ E[Xr]E[Dr]. Moreover,
by hypothesis E[Dr] ≥ 2

(
n2/(2f(n))

)
/|Vr| ≥ n/f(n). Thus:

E[Rr] ≥ 1 + E[Xr]E[Dr]

≥ 1 + E[Xr]
n

f(n)

≥ 1 + E[Xr]
|Vr|

f(|Vr|)

≥ 1 + E[Xr]
|Vr|

df(|Vr|)e

≥ E[Qr]

df(|Vr|)e

≥ E[Qr]

df(n)e
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But then, since obviously
∑
r Rr ≤ n:

E

 ∑
r heavy

Qr

 ≤ df(n)eE

 ∑
r heavy

Rr

 ≤ ndf(n)e

Consider now the “light” rounds, where Gr contains less than n2/(2f(n)) edges. In any such
round the expected number of edges found at line 2 is less than:

n2/f(n)

2
(|Vr|

2

) ⌈(|Vr|
2

)
f(n)/n2

⌉
(5.7)

However,
(|Vr|

2

)
> 2n2/f(n) otherwise ACCESS would have stopped at line 1, hence:⌈(

|Vr|
2

)
f(n)/n2

⌉
≤ 3

2

(
|Vr|
2

)
f(n)/n2 (5.8)

which implies that the expression in (5.7) is bounded by 3
4 . By Markov’s inequality this is

also an upper bound on the probability that ACCESS finds some edge at line 2, so in every
light round ACCESS stops at line 4 with probability at least 1

4 . Hence ACCESS completes
at most 4 light rounds in expectation; the corresponding expected number of queries is then
at most 4n.

5.B.5 Proof of Theorem 3
First of all, note that if the residual graph Gr contains O(n2/f(n)) edges, from r onward
ACCESS stops at each round independently with constant probability. The expected number
of queries performed before stopping is therefore O(n), and the expected error incurred is
obviously at most O(n2/f(n)).

We shall then bound the expected number of queries required before the residual graph
contains O(n2/f(n)) edges. In fact, by definition of i′, if ACCESS removes Ci′ , . . . , C`, then
the residual graph contains O(n2/f(n)) edges. We therefore bound the expected number of
queries before Ci′ , . . . , C` are removed.

First of all recall that, when pivoting on a cluster of size c, the probability that the cluster
is not removed is at most e−cf(n)/n. Thus the probability that the cluster is not removed after
Ω(c) of its nodes have been used as pivot is e−Ω(c2)f(n)/n. Hence the probability that any of
Ci′ , . . . , C` is not removed after Ω(c) of its nodes are used as pivot is, setting c = Ω

(
h(n)

)
and using a union bound, at most p = ne−Ω(h(n)2)f(n)/n. Observe that h(n) = Ω

(
n/f(n)

)
,

for otherwise
∑i′

j=1

(
Cj
2

)
= o
(
n2/f(n)

)
, a contradiction. Therefore p ≤ ne−Ω(h(n)). Note also

that we can assume h(n) = ω(lnn), else the theorem bound is trivially O(n2). This gives
p = O

(
ne−ω(lnn)

)
= o

(
1/ poly(n)

)
. We can thus condition on the events that, at any point

along the algorithm, every cluster among Ci′ , . . . , C` that is still in the residual graph has
size Ω

(
h(n)

)
; the probability of any other event changes by an additive O(p), which can be

ignored.
Let now k = `− i′+1, and suppose at a generic point k′ ≤ k of the clusters Ci′ , . . . , C` are

in the residual graph. Their total size is therefore Ω
(
k′h(n)

)
. Therefore O

(
n/k′h(n)

)
rounds

in expectation are needed for the pivot to fall among those clusters. Each time this happens,
with probability 1 − e−Ω(h(n))f(n)/n = Ω(1) the cluster containing the pivot is removed.
Hence, in expectation a new cluster among Ci′ , . . . , C` is removed after O

(
n/k′h(n)

)
rounds.

By summing over all values of k′, the number of expected rounds to remove all of Ci′ , . . . , C`
is

O

(
k∑

k′=1

n

k′h(n)

)
= O

(
n(lnn)/h(n)

)
Since each round involves O(n) queries, the bound follows.
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5.C Supplementary Material for Section 4

5.C.1 Proof of Theorem 4
Fix any C that is (1− ε)-knit. We show that ACC outputs a Ĉ such that

E
[
|Ĉ∩C|

]
≥ max

{(
1− 5

2
ε

)
|C| − 2

n

f(n)
,

(
f(n)

n
− 5

2
ε

)
|C|
}

and E
[
|Ĉ∩C̄|

]
≤ ε

2
|C| (5.9)

One can check that these two conditions together imply the first two terms in the bound. We
start by deriving a lower bound on E

[
|Ĉ ∩C|

]
for KwikCluster assuming |EC | =

(|C|
2

)
. Along

the way we introduce most of the technical machinery. We then port the bound to ACC,
relax the assumption to |EC | ≥ (1 − ε)

(|C|
2

)
, and bound E

[
|Ĉ ∩ C̄|

]
from above. Finally, we

add the |C|e−|C|f(n)/5n part of the bound. To lighten the notation, from now on C denotes
both the cluster and its cardinality |C|.

For the sake of analysis, we see KwikCluster as the following equivalent process. First, we
draw a random permutation π of V . This is the ordered sequence of candidate pivots. Then,
we set G1 = G, and for each i = 1, . . . , n we proceed as follows. If πi ∈ Gi, then πi is used as
an actual pivot; in this case we let Gi+1 = Gi \ (πi ∪Nπi) where Nv is the set of neighbors of
v. If instead πi /∈ Gi, then we let Gi+1 = Gi. Hence, Gi is the residual graph just before the
i-th candidate pivot πi is processed. We indicate the event πi ∈ Gi by the random variable
Pi:

Pi = {πi ∈ Gi} = {πi is used as pivot} (5.10)

More in general, we define a random variable indicating whether node v is “alive” in Gi:

X(v, i) = {v ∈ Gi} =
{
v /∈ ∪j<i :Pj=1 (πj ∪Nπj )

}
(5.11)

Let iC = min{i : πi ∈ C} be the index of the first candidate pivot of C. Define the random
variable:

SC = |C ∩GiC | =
∑
v∈C

X(v, iC) (5.12)

In words, SC counts the nodes of C still alive in GiC . Now consider the following random
variable:

S = PiC · SC (5.13)

Let Ĉ be the cluster that contains πiC in the output of KwikCluster. It is easy to see that
|C ∩ Ĉ| ≥ S. Indeed, if PiC = 1 then Ĉ includes C ∩ GiC , so |C ∩ Ĉ| ≥ PiCSC = S. If
instead PiC = 0, then S = 0 and obviously |C ∩ Ĉ| ≥ 0. Hence in any case |C ∩ Ĉ| ≥ S, and
E
[
|C ∩ Ĉ|

]
≥ E[S]. Therefore we can bound E

[
|C ∩ Ĉ|

]
from below by bounding E[S] from

below.
Before continuing, we simplify the analysis by assuming KwikCluster runs on the graph

G after all edges not incident on C have been deleted. We can easily show that this does
not increase S. First, by (5.11) each X(v, iC) is a nonincreasing function of {Pi : i < iC}.
Second, by (5.12) and (5.13), S is a nondecreasing function of {X(v, iC) : v ∈ C}. Hence, S is
a nonincreasing function of {Pi : i < iC}. Now, the edge deletion forces Pi = 1 for all i < iC ,
since any πi : i < iC has no neighbor πj : j < i. Thus the edge deletion does not increase S
(and, obviously, E[S]). We can then assume G[V \ C] is an independent set. At this point,
any node not adjacent to C is isolated and can be ignored. We can thus restrict the analysis
to C and its neighborhood in G. Therefore we let C̄ = {v : {u, v} ∈ E, u ∈ C, v /∈ C} denote
both the neighborhood and the complement of C.

We turn to bounding E[S]. For now we assume G[C] is a clique; we will then relax the
assumption to |EC | ≥ (1 − ε)

(
C
2

)
. Since by hypothesis cut(C, C̄) < εC2, the average degree

of the nodes in C̄ is less than εC2/C̄. This is also a bound on the expected number of edges
between C and a node drawn u.a.r. from C̄. But, for any given i, conditioned on iC − 1 = i
the nodes π1, . . . , πiC−1 are indeed drawn u.a.r. from C̄, and so have a total of at most iεC2/C̄
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edges towards C in expectation. Thus, over the distribution of π, the expected number of
edges between C and π1, . . . , πiC−1 is at most:

n∑
i=0

iεC2

C̄
P(iC − 1 = i) =

εC2

C̄
E[iC − 1] =

εC2

C̄

C̄

C + 1
< εC (5.14)

where we used the fact that E[iC − 1] = C̄/(C + 1). Now note that (5.14) is a bound on
C −E[SC ], the expected number of nodes of C that are adjacent to π1, . . . , πiC−1. Therefore,
E[SC ] ≥ (1− ε)C.

Recall that PiC indicates whether πiC is not adjacent to any of π1, . . . , πiC−1. Since
the distribution of πiC is uniform over C, P(PiC | SC) = SC/C. But S = PiCSC , hence
E[S | SC ] = (SC)2/C, and thus E[S] = E

[
(SC)2

]
/C. Using E[SC ] ≥ (1 − ε)C and invoking

Jensen’s inequality we obtain

E[S] ≥ E[SC ]2

C
≥ (1− ε)2C ≥ (1− 2ε)C (5.15)

which is our bound on E
[
|C ∩ Ĉ|

]
for KwikCluster.

Let us now move to ACC. We have to take into account the facts that ACC performs
f(|Gr|−1) queries on the pivot before deciding whether to perform |Gr|−1 queries, and that
ACC stops after f(n − 1) rounds. We start by addressing the first issue, assuming for the
moment ACC has no restriction on the number of rounds.

Recall that P(PiC | SC) = SC/C. Now, if PiC = 1, then we have SC − 1 edges incident on
πiC . It is easy to check that, if nr + 1 is the number of nodes at the round when πiC is used,
then the probability that ACC finds some edge incident on πiC is at least:

1−
(

1− SC − 1

nr

)df(nr)e
≥ 1− e−f(nr)

SC−1

nr ≥ 1− e−f(n)
SC−1

n (5.16)

and, if this event occurs, then S = SC . Thus

E[S | SC ] = P(PiC | SC)SC ≥
(

1− e−f(n)
SC−1

n

) S2
C

C
≥ S2

C

C
− SC

2n

f(n)C
(5.17)

where we used the facts that for SC ≤ 1 the middle expression in (5.17) vanishes, that
e−x < 1/x for x > 0, and that 1/x < 2/(x+ 1) for all x ≥ 2. Simple manipulations, followed
by Jensen’s inequality and an application of E[SC ] ≥ (1− ε)C, give

E[S] ≥ (1− ε)2C − (1− ε)C 2n

f(n)C
≥ (1− 2ε)C − 2

n

f(n)
(5.18)

We next generalize the bound to the case EC ≥ (1 − ε)
(
C
2

)
. To this end note that, since at

most ε
(
C
2

)
edges are missing from any subset of C, then any subset of SC nodes of C has

average degree at least

max

{
0, SC − 1−

(
C

2

)
2ε

SC

}
≥ SC −

εC(C − 1)

2SC
− 1 (5.19)

We can thus re-write (5.17) as

E[S | SC ] ≥ SC
C

(
1− e−f(n)

SC−1

n

)(
SC −

εC(C − 1)

2SC

)
(5.20)

Standard calculations show that this expression is bounded from below by S2
C

C −SC
2n

f(n)C −
εC
2 ,

which by calculations akin to the ones above leads to E[S] ≥ (1− 5
2ε)C − 2 n

f(n) .

Similarly, we can show that E[S] ≥
( f(n)

n − 5
2ε
)
C. To this end note that when ACC

pivots on πiC all the remaining cluster nodes are found with probability at least f(n)
n (this

includes the cases SC ≤ 1, when such a probability is indeed 1). In (5.17), we can then replace
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1−e−f(n)
SC−1

n with f(n)
n , which leads to E[S] ≥

( f(n)
n −

5
2ε
)
C. This proves the first inequality

in (5.9).
For the second inequality in (5.9), note that any subset of SC nodes has cut(C, C̄) ≤ ε

(
C
2

)
.

Thus, πiC is be incident to at most ε
SC

(
C
2

)
such edges in expectation. The expected number of

nodes of C̄ that ACC assigns to Ĉ, as a function of SC , can thus be bounded by SC
C

ε
SC

(
C
2

)
<

ε
2C.

As far as the O(Ce−Cf(n)/n) part of the bound is concerned, simply note that the bounds
obtained so far hold unless iC > df(n − 1)e, in which case ACC stops before ever reaching
the first node of C. If this happens, Ĉ = {πiC} and |Ĉ⊕C| < |C|. The event iC > df(n−1)e
is the event that no node of C is drawn when sampling df(n − 1)e nodes from V without
replacement. We can therefore apply Chernoff-type bounds to the random variableX counting
the number of draws of nodes of C and get P

(
X < (1 − β)E[X]) ≤ exp(−β2E[X]/2

)
for all

β > 0. In our case E[X] = df(n − 1)e|C|/n, and we have to bound the probability that X
equals 0 < (1− β)E[X]. Thus

P(X = 0) ≤ exp

(
−β

2E[X]

2

)
= exp

(
−β

2df(n− 1)e|C|
2n

)
Note however that df(n − 1)e ≥ f(n)/2 unless n = 1 (in which case V is trivial). Then,
choosing e.g. β >

√
4/5 yields P(X = 0) < exp

(
− |C|f(n)/5n

)
. This case therefore adds at

most |C| exp(−|C|f(n)/5n) to E[|Ĉ ⊕ C|].

5.C.2 Proof of Theorem 5
Before moving to the actual proof, we need some ancillary results. The next lemma bounds
the probability that ACC does not pivot on a node of C in the first k rounds.

Lemma 5.14. Fix a subset C ⊆ V and an integer k ≥ 1, and let π1, . . . , πn be a random
permutation of V . For any v ∈ C let Xv = {v ∈ {π1, . . . , πk}}, and let XC =

∑
v∈C Xv.

Then E[XC ] = k|C|
n , and P(XC = 0) < e−

k|C|
3n .

Proof. Since π is a random permutation, then for each v ∈ C and each each i = 1, . . . , k we
have P(πi = v) = 1

n . Therefore E[Xv] = k
n and E[XC ] = k|C|

n . Now, the process is exactly
equivalent to sampling without replacement from a set of n items of which |C| are marked.
Therefore, the Xv’s are non-positively correlated and we can apply standard concentration
bounds for the sum of independent binary random variables. In particular, for any η ∈ (0, 1)
we have:

P(XC = 0) ≤ P(XC < (1− η)E[XC ]) < exp
(
− η2E[XC ]

2

)
which drops below e−

k|C|
3n by replacing E[XC ] and choosing η ≥

√
2/3.

The next lemma is the crucial one.

Lemma 5.15. Let ε ≤ 1
10 . Consider a strongly (1 − ε)-knit set C with |C| > 10n

f(n) . Let
uC = min{v ∈ C} be the id of C. Then, for any v ∈ C, in any single run of ACC we have
P(id(v) = uC) ≥ 2

3 .

Proof. We bound from above the probability that any of three “bad” events occurs. As in the
proof of Theorem 4, we equivalently see ACC as going through a sequence of candidate pivots
π1, . . . , πn that is a uniform random permutation of V . Let iC = min{i : πi ∈ C} be the index
of the first node of C in the random permutation of candidate pivots. The first event, B1, is
{iC > df(n− 1)e}. Note that, if B1 does not occur, then ACC will pivot on πiC . The second
event, B2, is the event that πiC ∈ Vsing if ACC pivots on πiC (we measure the probability
of B2 conditioned on B̄1). The third event, B3, is {πiC /∈ P} where P = NuC ∩ Nv. If none
among B1, B2, B3 occurs, then ACC forms a cluster Ĉ containing both uC and v, and by the
min-tagging rule sets id(v) = minu∈Ĉ = uC . We shall then show that P(B1 ∪B2 ∪B3) ≤ 1/3.

For B1, we apply Lemma 5.14 by observing that iC > df(n−1)e corresponds to the event
XC = 0 with k = df(n− 1)e. Thus

P(iC > df(n− 1)e) < e−
df(n−1)e|C|

3n ≤ e−
f(n−1)

3n
10n
f(n) = e−

f(n−1)
f(n)

10
3 < e−3
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where we used the fact that n ≥ |C| ≥ 11 and therefore f(n− 1) ≥ 10
11f(n).

For B2, recall that by definition every v ∈ C has at least (1 − ε)c edges. By the same
calculations as the ones above, if ACC pivots on πiC , then:

P(πiC ∈ Vsing) ≤ exp
(
− f(n− 1)

n− 1
(1− ε)c

)
≤ exp

(
− f(n− 1)

n− 1

(
1− 1

10

) 10n

f(n)

)
≤ e−9

For B3, note that the distribution of πiC is uniform over C. Now, let NuC and Nv be the
neighbor sets of uC and v in C, and let P = NuC ∩ Nv. We call P the set of good pivots.
Since C is strongly (1 − ε)-knit, both uC and v have at least (1 − ε)c neighbors in C. But
then |C \ P | ≤ 2εc and

P(πiC /∈ P ) =
|C \ P |
|C|

≤ 2ε ≤ 1/5

By a union bound, then, P(B1 ∪B2 ∪B3) ≤ e−3 + e−9 + 1/5 < 1/3.

We are now ready to conclude the proof. Suppose we execute ACC independently K =
48dln(n/p)e times with the min-tagging rule. For a fixed v ∈ G let Xv be the number of
executions giving id(v) = uC . On the one hand, by Lemma 5.15, E[Xv] ≥ 2

3K. On the
other hand, v will not be assigned to the cluster with id uC by the majority voting rule
only if Xv ≤ 1

2K ≤ E[Xv](1 − δ) where δ = 1
4 . By standard concentration bounds, then,

P(Xv ≤ 1
2K) ≤ exp(− δ

2E[Xv]
2 ) = exp(−K

48 ). By setting K = 48 ln(n/p), the probability that
v is not assigned id uC is thus at most p/n. A union bound over all nodes concludes the
proof.

5.D Supplementary Material for Section 6

5.D.1 Proof of Theorem 8
We prove that there exists a distribution over labelings σ with OPT = 0 on which any
deterministic algorithm has expected cost at least nε2

8 . Yao’s minimax principle then implies
the claimed result.

Given V = {1, . . . , n}, we define σ by a random partition of the vertices in d ≥ 2 isolated
cliques T1, . . . , Td such that σ(v, v′) = +1 if and only if v and v′ belong to the same clique.
The cliques are formed by assigning each node v ∈ V to a clique Iv drawn uniformly at random
with replacement from {1, . . . , d}, so that Ti = {v ∈ V : Iv = i}. Consider a deterministic
algorithm making queries {st, rt} ∈ E . Let Ei be the event that the algorithm never queries
a pair of nodes in Ti with |Ti| ≥ n

2d > 5. Apply Lemma 5.16 below with d = 1
ε . This implies

that the expected number of non-queried clusters of size at least n
2d is at least d

2 = 1
2ε . The

overall expected cost of ignoring these clusters is therefore at least

d

2

( n
2d

)2

=
n2

8d
=
εn2

8

and this concludes the proof.

Lemma 5.16. Suppose d > 0 is even, n ≥ 16d ln d, and B < d2

50 . Then for any deterministic
learning algorithm making at most B queries,

d∑
i=1

P(Ei) >
d

2
.

Proof. For each query {st, rt} we define the set Lt of all cliques Ti such that st 6∈ Ti and
some edge containing both st and a node of Ti was previously queried. The set Rt is defined
similarly using rt. Formally,

Lt = {i : (∃τ < t) sτ = st ∧ rτ ∈ Ti ∧ σ(sτ , rτ ) = −1}
Rt = {i : (∃τ < t) rτ = rt ∧ sτ ∈ Ti ∧ σ(sτ , rτ ) = −1} .
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Let Dt be the event that the t-th query discovers a new clique of size at least n
2d , and let

Pt = max
{
|Lt|, |Rt|

}
. Using this notation,

B∑
t=1

{Dt} =

B∑
t=1

{Dt ∧ Pt < d/2}+

B∑
t=1

{Dt ∧ Pt ≥ d/2}︸ ︷︷ ︸
N

. (5.21)

We will now show that unless B ≥ d2

50 , we can upper bound N deterministically by
√

2B.
Suppose N > d

2 , and let t1, . . . , tN be the times tk such that {Dtk ∧ Ptk ≥ d/2} = 1. Now
fix some k and note that, because the clique to which stk and rtk both belong is discovered,
neither stk nor rtk can occur in a future query {st, rt}) that discovers a new clique. Therefore,
in order to have {Dt ∧ Pt ≥ d/2} = 1 for N > d

2 times, at least(
N

2

)
≥ d2

8

queries must be made, since each one of the other N−1 ≥ d
2 discovered cliques can contribute

with at most a query to making Pt ≥ d
2 . So, it takes at least B ≥ d2

8 queries to discover the
first d

2 cliques of size at least two, which contradicts the lemma’s assumption that B ≤ d2

16 .
Therefore, N ≤ d

2 .
Using the same logic as before, in order to have {Dt ∧ Pt ≥ d/2} = 1 for N ≤ d

2 times,
at least

d

2
+

(
d

2
− 1

)
+ · · ·+

(
d

2
−N + 1

)
queries must be made. So, it must be

B ≥
N∑
k=1

(
d

2
− (k − 1)

)
= (d+ 1)

N

2
− N2

2

or, equivalently, N2 − (d+ 1)N + 2B ≥ 0. Solving this quadratic inequality for N , and using

the hypothesis N ≤ d
2 , we have that N ≤ (d+1)−

√
(d+1)2−8B

2 . Using the assumption that
B ≤ d2

50 we get that N ≤
√

2B.
We now bound the first term of (5.21) in expectation. The event Dt is equivalent to

st, rt ∈ Ti for some i ∈ ¬Lt ∩ ¬Rt, where for any S ⊆ {1, . . . , d} we use ¬S to denote
{1, . . . , d} \ S.

Let Pt = P
(
· | Pt < d/2

)
. For L′, R′ ranging over all subsets of {1, . . . , d} of size strictly

less than d
2 ,

Pt(Dt) =
∑
L′,R′

∑
i∈¬L′∩¬R′

Pt
(
st ∈ Ti ∧ rt ∈ Ti

∣∣Lt = L′, Rt = R′
)
Pt(Lt = L′ ∧ Rt = R′)

=
∑
L′,R′

∑
i∈¬L′∩¬R′

Pt
(
st ∈ Ti

∣∣Lt = L′
)
Pt
(
rt ∈ Ti

∣∣Rt = R′
)
Pt(Lt = L′ ∧ Rt = R′)

(5.22)

=
∑
L′,R′

∑
i∈¬L′∩¬R′

1

|¬L′|
1

|¬R′|
Pt(Lt = L′ ∧ Rt = R′) (5.23)

=
∑
L′,R′

|¬L′ ∩ ¬R′|
|¬L′| |¬R′|

Pt(Lt = L′ ∧ Rt = R′)

≤ 2

d
. (5.24)

Equality (5.22) holds because Pt = max{Lt, Rt} < d
2 implies that there are at least two

remaining cliques to which st and rt could belong, and each node is independently assigned
to one of these cliques. Equality (5.23) holds because, by definition of Lt, the clique of st
is not in Lt, and there were no previous queries involving st and a node belonging to a
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clique in ¬Lt (similarly for rt). Finally, (5.24) holds because |¬L′| ≥ d
2 , |¬R

′| ≥ d
2 , and

|¬L′ ∩ ¬R′| ≤ min{|¬L′|, |¬R′|}. Therefore,

B∑
t=1

P
(
Dt ∧ Pt < d/2

)
≤

B∑
t=1

P
(
Dt | Pt < d/2

)
≤ 2B

d
.

Putting everything together,

E

[
B∑
t=1

{Dt}

]
≤ 2B

d
+
√

2B . (5.25)

On the other hand, we have

B∑
t=1

{Dt} =

d∑
i=1

({
|Ti| ≥ n

2d

}
− {Ei}

)
= d−

d∑
i=1

({
|Ti| < n

2d

}
+ {Ei}

)
(5.26)

Combining (5.25) and (5.26), we get that

d∑
i=1

P(Ei) ≥ d−
d∑
i=1

P
(
|Ti| < n

2d

)
− 2B

d
−
√

2B .

By Chernoff-Hoeffding bound, P
(
|Ti| < n

2d

)
≤ 1

d2 for each i = 1, . . . , d when n ≥ 16d ln d.
Therefore,

d∑
i=1

P(Ei) ≥ d−
2B + 1

d
−
√

2B .

To finish the proof, suppose on the contrary that
∑d
i=1 P(Ei) ≤ d

2 . Then from the inequality
above, we would get that

d

2
≥ d− 2B + 1

d
−
√

2B

which implies B ≥
(

2−
√

2
4

)2

d2 > d2

50 , contradicting the assumptions. Therefore, we must

have
∑d
i=1 P(Ei) >

d
2 as required.

5.D.2 Proof of Theorem 9
Choose a suitably large n and let V = [n]. We partition V in two sets A and B, where
|A| = αn and |B| = (1 − α)n; we will eventually set α = 0.9, but for now we leave it free
to have a clearer proof. The set A is itself partitioned into k = 1/ε subsets A1, . . . , Ak, each
one of equal size αn/k (the subsets are not empty because of the assumption on ε). The
labeling σ is the distribution defined as follows. For each i = 1, . . . , k, for each pair u, v ∈ Ai,
σ(u, v) = +1; for each u, v ∈ B, σ(u, v) = −1. Finally, for each v ∈ B we have a random
variable iv distributed uniformly over [k]. Then, σ(u, v) = +1 for all u ∈ Aiv and σ(u, v) = −1
for all u ∈ A \Aiv . Note that the distribution of iv is independent of the (joint) distributions
of the iw’s for all w ∈ B \ {v}.

Let us start by giving an upper bound on E[OPT]. To this end consider the (possibly
suboptimal) clustering C = {Ci : i ∈ [k]} where Ci = Ai ∪ {v ∈ B : iv = i}. One can check
that C is a partition of V . The expected cost E[∆C ] of C can be bound as follows. First,
note the only mistakes are due to pairs u, v ∈ B. However, for any such fixed pair u, v, the
probability of a mistake (taken over σ) is P(iu 6= iv) = 1/k. Thus,

E[OPT] ≤ E[∆0] <
|B|2

k
=

(1− α)2n2

k
(5.27)

Let us now turn to the lower bound on the expected cost of the clustering produced by an
algorithm. For each v ∈ B let Qv be the total number of distinct queries the algorithm
makes to pairs {u, v} with u ∈ A and v ∈ B. Let Q be the total number of queries made by
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the algorithm; obviously, Q ≥
∑
v∈B Qv. Now let Sv be the indicator variable of the event

that one of the queries involving v returned +1. Both Qv and Sv as random variables are a
function of the input distribution and of the choices of the algorithm. The following is key:

P(Sv ∧ Qv < k/2) <
1

2
(5.28)

The validity of (5.28) is seen by considering the distribution of the input limited to the
pairs {u, v}. Indeed, Sv ∧ Qv < k/2 implies the algorithm discovered the sole positive pair
involving v in less than k/2 queries. Since there are k pairs involving v, and for any fixed
j the probability (taken over the input) that the algorithm finds that particular pair on the
j-th query is exactly 1/k. Now,

P(Sv ∧ Qv < k/2) + P(S̄v ∧ Qv < k/2) + P(Qv ≥ k/2) = 1 (5.29)

and therefore

P(S̄v ∧ Qv < k/2) + P(Qv ≥ k/2) >
1

2
(5.30)

Let us now consider Rv, the number of mistakes involving v made by the algorithm. We
analyse E[Rv | S̄v ∧ Qv < k/2]. For all i ∈ [k] let Qiv indicate the event that, for some u ∈ Ai,
the algorithm queried the pair {u, v}. Let I = {i ∈ [k] : Qiv = 0}; thus I contains all i
such that the algorithm did not query any pair u, v with u ∈ Ai. Suppose now the event
S̄v ∧ Qv < k/2 occurs. On the one hand, S̄v implies that:

P(σ(u, v) = +1 | I) =

{
1/|I| u ∈ Ai, i ∈ I
0 u ∈ Ai, i ∈ [k] \ I (5.31)

Informally speaking, this means that the random variable iv is distributed uniformly over
the (random) set I. Now observe that, again conditioning on the joint event S̄v ∧ Qv < k/2,
whatever label s the algorithm assigns to a pair u, v with u ∈ Ai where i ∈ I, the distribution
of σ(u, v) is independent of s. This holds since s can obviously be a function only of I and
of the queries made so far, all of which returned −1, and possibly of the algorithm’s random
bits. In particular, it follows that:

P(σ(u, v) 6= s | I) ≥ min
{

1/|I|, 1− 1/|I|
}

(5.32)

However, Qv < k/2 implies that |I| ≥ k − Qv > k/2 = 2/ε > 2, which implies min{1/|I|, 1 −
1/|I|} ≥ 1/|I|. Therefore, P(σ(u, v) 6= s | I) ≥ 1/|I| for all u ∈ Ai with i ∈ I.

We can now turn to back to Rv, the number of total mistakes involving v. Clearly,
Rv ≥

∑k
i=1

∑
u∈Ai {σ(u, v) 6= s}. Then:

E[Rv |E] = E
[ k∑
i=1

∑
u∈Ai

{σ(u, v) 6= s}
∣∣∣ S̄v ∧ Qv < k/2

]
(5.33)

= E
[
E
[ k∑
i=1

∑
u∈Ai

{σ(u, v) 6= s}
∣∣∣ I] ∣∣∣ S̄v ∧ Qv < k/2

]
(5.34)

≥ E
[
E
[∑
i∈I

∑
u∈Ai

{σ(u, v) 6= s}
∣∣∣ I] ∣∣∣ S̄v ∧ Qv < k/2

]
(5.35)

≥ E
[
E
[∑
i∈I

∑
u∈Ai

1

|I|

∣∣∣ I] ∣∣∣ S̄v ∧ Qv < k/2
]

(5.36)

= E
[
E
[αn
k

] ∣∣∣ S̄v ∧ Qv < k/2
]

(5.37)

=
αn

k
(5.38)
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And therefore:

E[Rv] ≥ E[Rv | S̄v ∧ Qv < k/2] · P(S̄v ∧ Qv < k/2)

>
αn

k
· P(S̄v ∧ Qv < k/2)

This concludes the bound on E[Rv]. Let us turn to E[Qv]. Just note that:

E[Qv] ≥
k

2
· P(Qv ≥ k/2) (5.39)

By summing over all nodes, we obtain:

E[Q] ≥
∑
v∈B

E[Qv] ≥
k

2

(∑
v∈B

P(Qv ≥ k/2)
)

(5.40)

E[∆] ≥
∑
v∈B

E[Rv] >
αn

k

(∑
v∈B

P(S̄v ∧ Qv < k/2)
)

(5.41)

to which, by virtue of (5.30), applies the constraint:(∑
v∈B

P(Qv ≥ k/2)
)

+
(∑
v∈B

P(S̄v ∧ Qv < k/2)
)
> |B|1

2
=

(1− α)n

2
(5.42)

This constrained system gives the bound. Indeed, by (5.40), (5.41) and (5.42), it follows that
if E[Q] < k

2
(1−α)n

4 = (1−α)nk
8 then E[∆] > αn

k
(1−α)n

2 = α(1−α)n2

4k . It just remains to set α and
k properly so to get the statement of the theorem.

Let α = 9/10 and recall that k = 1/ε. Then, first, (1−α)nk
8 = nk

80 = n
80 ε . Second, (5.27)

gives E[OPT] < (1−α)2n2

k = n2

100k = εn2

100 . Third,
α(1−α)n2

4k = 9n2

400k = 9εn2

400 > E[OPT]+ εn2

80 . The
above statement hence becomes: if E[Q] < n

80ε , then E[∆] > E[OPT] + εn2

80 . An application
of Yao’s minimax principle completes the proof.

As a final note, we observe that for every c ≥ 1 the bound can be put in the form
E[∆] ≥ c · E[OPT] + Ω(n2ε) by choosing α ≥ c/(c+ 1/4).



97

Chapter 6

Robust Unsupervised Learning via
L-statistic Minimization

The scope of this chapter is to study (a notion) of robustness in the context of unsupervised
learning. We start defining a notion of outliers and show how to leverage this notion by using
a L-statistic minimization algorithm. This notion assumes that the perturbing distribution
is characterized by larger losses relative to a given class of admissible models. We then
analyze the proposed method and bound its reconstruction error relative to the underlying
unperturbed distribution. As a byproduct, we prove uniform convergence bounds for several
popular model classes in unsupervised learning, a result which may be of independent interest.

6.1 Introduction
Making learning methods robust is a fundamental problem in machine learning and statistics.
In this chapter we proposes an approach to unsupervised learning which is resistant to un-
structured contaminations of the underlying data distribution. As noted by Hampel [Hampel,
2001], “outliers" are an ill-defined concept, and an approach to robust learning, which relies
on rules for the rejection of outliers [see Ord, 1996, and references therein] prior to processing
may be problematic, since the hypothesis class of the learning process itself may determine
which data is to be regarded as structured or unstructured. Instead of the elimination of
outliers – quoting Hampel “data that don’t fit the pattern set by the majority of the data"
– in this chapter we suggest to restrict attention to “a sufficient portion of the data in good
agreement with one of the hypothesized models”.

To implement the above idea, we propose using L-estimators [Serfling, 1980], which are
formed by a weighted average of the order statistics. That is, given a candidate model, we
first rank its losses on the empirical data and than take a weighted average which emphasizes
small losses more. An important example of this construction is the average of a fraction of
the smallest losses. However, our observations apply to general classes of weight functions,
which are only restricted to be non-increasing and in some cases Lipschitz continuous.

We highlight that although L-statistics have a long tradition, a key novelty is to use them
as objective functions based on which to search for a robust model. This approach is general
in nature and can be applied to robustify any learning method, supervised or unsupervised,
based on empirical risk minimization. We focus on unsupervised learning, and our analysis
includes kmeans clustering, principal subspace analysis and sparse coding, among others.

6.1.1 Contributions
We make the following contributions:

• A theoretical analysis of the robustness of the proposed method (Theorem 1). Under
the assumption that the data-distribution is a mixture of an unperturbed distribution
adapted to our model class and a perturbing distribution, we identify conditions under
which we can bound the reconstruction error, when the minimizer of the proposed objec-
tive trained from the perturbed distribution is tested on the unperturbed distribution.

• An analysis of generalization (Theorems 4–6). We give dimension-free uniform bounds in
terms of Rademacher averages as well as a dimension- and variance-dependent uniform
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bounds in terms of covering numbers which can outperform the dimension-free bounds
under favorable conditions.

• A meta-algorithm operating on the empirical objective which can be used whenever
there is a descent algorithm for the underlying loss function (Theorem 9).

The chapter is organized as follows. In Section 6.2 we give a brief overview of unsupervised
(representation) learning. In Sections 6.3 to 6.5 we present and analyze our method. In
Section 6.6 we discuss an algorithm optimizing the proposed objective and in Section 6.7
we present numerical experiments with this algorithm for kmeans clustering and principal
subspace analysis, which indicate that the proposed method is promising. Proofs can be
found in the supplementary material.

6.1.2 Previous Work
Some elements of our approach have a long tradition. For fixed models the proposed empirical
objectives are called L-statistics or L-estimators. They have been used in robust statistics
since the middle of the last century [Lloyd, 1952] and their asymptotic properties have been
studied by many authors [see Serfling, 1980, and references therein]. Although influence
functions play a certain role, our approach is somewhat different from the traditions of robust
statistics. Similar techniques to ours have been experimentally explored in the context of clas-
sification [Han et al., 2018] or latent variable selection [Kumar et al., 2010]. [Cuesta-Albertos
et al., 1997] give a special case of our method applied to k-means with hard threshold. The
method is analyzed with the lenses of different robustness properties in [Garcia-Escudero and
Gordaliza, 1999]. Finite sample bounds, uniform bounds, the minimization of L-statistics
over model classes and the so called risk based-objectives however are more recent develop-
ments [Maurer and Pontil, 2018, 2019; Lee et al., 2020], and we are not aware of any other
general bounds on the reconstruction error of models trained from perturbed data. A very
different line of work for robust statistics are model-independent methods available in high
dimensions [Elmore et al., 2006; Fraiman et al., 2019]. Although elegant and very general,
these depth-related pre-processing methods may perform sub-optimally in practice, as our
numerical experiments indicate. Similar data-generating assumption are adopted in Robust
estimation, a related line of work where the goal is to identify the parameters of a target
distribution up to a small error. In this context, strong parametric assumptions are made
on the target distributions and the learning problems involves typically simpler model classes
such as, mean and covariance estmations. In constrast, we focus allows for non-parametric
distributions and more complex model classes as singletons, subspaces and linear operators.
Please refer to [Diakonikolas and Kane, 2020] for an up-to-date survey on the results and
the techniques employed to derive efficient algorithms for robust estimation. Finally, we note
that previous work on PAC learning [e.g. Angluin and Laird, 1987] has addressed the problem
of learning a good classifier with respect to a target, when the data comes from a perturbed
distribution affected by unstructured noise. Similarly to us, they consider that the target
distribution is well adapted to the model class.

6.2 Unsupervised Learning
Let S be a class of subsets of Rd, which we call the model class. For S ∈ S define the
distortion function dS : Rd → [0,∞) by1

dS (x) = min
y∈S
‖x− y‖2 for x ∈ Rd. (6.1)

We assume that the members of S are either compact sets or subspaces, so the minimum in
(6.1) is always attained. For instance S could be the class of singletons, a class of subsets of
cardinality k, the class of subspaces of dimension k, or a class of compact convex polytopes
with k vertices2.

1In most parts our analysis applies also to other distortion measures, for example omitting the square in
(6.1). The chosen form is important for generalization bounds, when we want to bound the complexity of the
class {x 7→ dS (x) : S ∈ S} for specific cases.

2In these cases the set S is the image of a linear operator on a prescribed set of code vectors, see [Maurer
and Pontil, 2010]. Our setting is more general, e.g. it includes non-linear manifolds.
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We write P (X ) for the set of Borel probability measures on a locally compact Hausdorff
space X . If µ ∈ P

(
Rd
)
, define the probability measure µS ∈ P ([0,∞)) as the push-forward of

µ under dS , that is, µS (A) = µ ({x : dS (x) ∈ A}) for A ⊆ [0,∞). Now consider the functional
Φ : P ([0,∞))→ [0,∞) defined by

Φ (ρ) =

∫ ∞
0

rdρ (r) , ρ ∈ P. (6.2)

Then Φ (µS) = EX∼µ [dS (X)] is the expected reconstruction error, incurred when coding
points by the nearest neighbors in S. The measures µS ∈ P ([0,∞)) and the functional Φ
allow the compact and general description of several problems of unsupervised learning as

min
S∈S

Φ (µS) = min
S∈S

EX∼µ [dS (X)] . (6.3)

Denote with S∗ = S∗ (µ) a global minimizer of (6.3). Returning to the above examples, if
S is the class of singleton sets, then S∗ (µ) is the mean of µ. If it is the class of subsets of
cardinality k, then S∗ (µ) is the optimal set of centers for kmeans clustering. If S is the class
of k-dimensional subspaces, then S∗ (µ) is the principal k-dimensional subspace.

An important drawback of the above formulation is that the functional Φ is very sensitive
to perturbing masses at large distortions R. In the tradition of robust statistics [see e.g. Ham-
pel, 1974; Serfling, 1980] this can be expressed in terms of the influence function, measuring
the effect of an infinitesimal point mass perturbation of the data. Let δR be the unit mass at
R > 0, then the influence function

IF (R; ρ,Φ) :=
d

dt
Φ
(
(1− t)ρ+ tδR

)∣∣∣∣
t=0

(6.4)

= R− Φ (ρ) ,

can be arbitrarily large, indicating that even a single datapoint could already corrupt S∗ (µ).
To overcome this problem, in the next section we introduce a class of robust functional based
on L-statistics.

6.3 Proposed Method
Our goal is to minimize the reconstruction error on unperturbed test data, from perturbed
training data. Specifically, we assume that the data we observe comes from a perturbed
distribution µ that is the mixture of an unperturbed distribution µ∗, which is locally concen-
trated on the minimizer S∗ = S∗ (µ∗), and a perturbing distribution ν which is unstructured
in the sense that it does not concentrate on any of our models3. Figure 6.3.1 depicts such a
situation, when S is the set of singletons and d = 1.

S∗

Figure 6.3.1: Densities of the unperturbed distribution µ∗ (light green)
with high local concentration on the optimal model S∗, the perturbing dis-
tribution ν (light red) without significant concentration, and the observable

mixture µ = (1− λ)µ∗ + λν∗ (black) at λ = 0.6.

We wish to train from the available, perturbed data a model Ŝ ∈ S, which nearly minimizes
the reconstruction error on the unperturbed distribution µ∗. To this end we exploit the

3This is in contrast with the assumptions made in adversarial learning, where the goal is to increase
robustness against adversarial worst-case perturbations [see e.g. Lee and Raginsky, 2018].
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assumption that the unperturbed distribution µ∗ is much more strongly concentrated at S∗
than the mixture µ = (1− λ)µ∗+λν is at models S away from S∗ in terms of reconstruction
error.

The key observation is that if the mixture parameter λ is not too large, the concentration
of µ∗ causes the cumulative distribution function of the losses for the optimal model FµS∗ :
r 7→ µS∗ [0, r] to increase rapidly for small values of r, until it reaches the value ζ = FµS∗ (r∗),
where r∗ is a critical distortion radius depending on S∗. Thus, when searching for a model,
we can consider as irrelevant the remaining mass 1−ζ = µS∗ (r∗,∞), which can be attributed
to ν and may arise from outliers or other contaminating effects. To achieve this, we modify
the functional (6.2) so as to consider only the relevant portion of data, replacing Φ (µS) by

ζ−1

∫ F−1
µS

(ζ)

0

rdµS (r) . (6.5)

Intuitively, the minimization of (6.5) forces the search towards models with the smallest
truncated expected loss. Among such models there is also S∗, whose losses have the strongest
concentration around a small value and then leading to a very small value r∗ for F−1

µS∗
(ζ).

More generally, since the choice of the hard quantile-thresholding at ζ is in many ways an
ad hoc decision, we might want a more gentle transition of the boundary between relevant
and irrelevant data. Let W : [0, 1] → [0,∞) be a bounded weight function and define, for
every ρ ∈ P [0,∞),

ΦW (ρ) =

∫ ∞
0

rW (Fρ (r)) dρ (r) .

We require W to be non-increasing and zero on [ζ, 1] for some critical mass ζ < 1. The
parameter ζ must be chosen on the basis of an estimate of the amount λ of perturbing data.
Note that if W is identically 1 then Φ1 = Φ in (6.2), while if W = ζ−11[0,ζ] then ΦW is the
hard thresholding functional in (6.5).

We now propose to “robustify" unsupervised learning by replacing the original problem
(6.3) by

min
S∈S

ΦW (µS) , (6.6)

and denote a global minimizer by S† ≡ S† (µ).
In practice, µ is unknown and the search for the model S† has to rely on finite data. If

µ̂ (X) = 1
n

∑n
i=1 δXi is the empirical measure induced by an i.i.d. sample X = (X1, ..., Xn) ∼

µn, then the empirical objective is the plug-in estimate

ΦW (µ̂ (X)S)

=
1

n

n∑
i=1

dS (Xi)W

(
1

n
|{Xj : dS (Xj) ≤ dS (Xi)}|

)

=
1

n

n∑
i=1

dS (X)(i)W

(
i

n

)
, (6.7)

where dS (X)(i) is the i-th smallest member of {dS (X1) , ..., dS (Xn)}.
The empirical estimate ΦW (µ̂ (X)S) is an L-statistic [Serfling, 1980]. We denote a mini-

mizer of this objective by

Ŝ (X) = arg min
S∈S

ΦW (µ̂ (X)S) . (6.8)

In the sequel we study three questions:

1 If the underlying probability measure is a mixture µ = (1− λ)µ∗+λν of an unperturbed
measure µ∗ and a perturbing measure ν, and S† = S† (µ) is the minimizer of (6.6),
under which assumptions will the reconstruction error Φ

(
µ∗S†
)
incurred by S† on the

unperturbed distribution approximate the minimal reconstruction error Φ (µ∗S∗)?

2 When solving (6.6) for a finite amount of data X, under which conditions can we
reproduce the behavior of S† by the empirical minimizer Ŝ (X) in (6.8)?
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3 How can the method be implemented and how does it perform in practice?

6.4 Resilience to Perturbations
Before we address the first question we make a preliminary observation in the tradition of
robust statistics and compare the influence functions of the functional Φ1 to that one of the
proposed ΦW with bounded W , and W (t) = 0 for ζ ≤ t < 1. While we saw in (6.4) that for
any ρ ∈ P ([0,∞)) the influence function IF (R; ρ,Φ) = R − Φ (ρ) is unbounded in R, in the
case of ΦW we have, for any R ∈ Rd, that

IF (R; ρ,ΦW ) ≤ IFmax (ρ,W )

:=

∫ F−1
ρ (ζ)

0

W (Fρ (r))Fρ (r) dr.

Notice that the right hand side is always bounded, which already indicates the improved
robustness of ΦW [Hampel, 1974]. The upper bound IFmax on the influence function plays
also an important role in the subsequent analysis.

Returning now to the data generating mixture µ = (1− λ)µ∗ + λν, where µ∗ ∈ P
(
Rd
)

is the the ideal, unperturbed distribution and ν ∈ P
(
Rd
)
the perturbation, we make the

following assumption.
Assumption A. There exists S0 ∈ S, δ > 0, β ∈ (0, 1− λ) and a scale parameter

r∗ > 0 (in units of squared euclidean distance), such that for every model S ∈ S satisfying
Φ (µ∗S) > Φ

(
µ∗S0

)
+ δ we have FµS (r) < βFµ∗S0

(r) for all r ≤ r∗.
Assumption A does not depend so much on the richness of S (which will be relevant to

generalization) but on the concentration properties of µ∗ and ν (see the extreme example
in the supplement). Loosely speaking the assumption prescribes that, under the perturbed
distribution µ, any model S with a large reconstruction error on µ∗, should have its losses
far less concentrated than the losses of S0 for small values of r (any r ≤ r∗). It generally
helps if the perturbing distribution ν has a bounded density with a small bound, so that its
contributions to FµS (r) remain small for small values of r. Illustrating examples, which apply
to the cases of k-means clustering and principal subspace analysis are given in Figures 6.3.1
and 6.4.1.

We now state the main result of this section.

Theorem 6.1. Let µ∗, ν ∈ P
(
Rd
)
, µ = (1− λ)µ∗ + λν, and λ ∈ (0, 1) and suppose there

are S0, r∗, δ > 0 and β ∈ (0, 1 − λ), satisfying Assumption A. Let W be nonzero on a set
of positive Lebesgue measure, nonincreasing and W (t) = 0 for t ≥ ζ = FµS0 (r∗). Then
IFmax (µS0 ,W ) > 0, and if any S ∈ S satisfies

ΦW (µS)− ΦW (µS0
) ≤

(
1− β

1−λ

)
IFmax(µS0 ,W ) (6.9)

then we have that Φ (µ∗S) ≤ Φ
(
µ∗S0

)
+ δ. In particular we always have that Φ

(
µ∗S†
)
≤

Φ
(
µ∗S0

)
+ δ.

We close this section by stating some important conclusions of the above theorem.

1. A simplifying illustration of Theorem 6.1 for principal subspace analysis is provided by
Figure 6.4.1. The distributions µ∗ and ν are assumed to have uniform densities ρ (µ∗)
and ρ (ν) supported on dark red and light red areas of the unit disk respectively. Suppose
β = ρ (ν) /ρ (µ∗) < 1− λ, let r∗ = sin2 (π/ρ (µ∗)) and δ = 4r∗. If Φ (µ∗S) > Φ (µ∗S∗) + δ
then the direction of the subspace S does not intersect the black part of the unit circle
and therefore FµS (r) ≤ βFµ∗

S∗
(r) for all r ≤ r∗. Thus Assumption A is satisfied and

consequently, if W (t) = 0 for t ≥ FµS∗ (r∗), then S† must intersect the black part of
the unit circle and Φ

(
µ∗S†
)
≤ Φ (µ∗S∗) + δ. Refer also to Figure 6.4.1 for an illustration.

2. The generic application of this result assumes that S0 = S∗ (µ∗), but this is not required.
Suppose S is the set of singletons and µ∗ is bimodal, say the mixture of distant standard
normal distributions, and λ = 0 for simplicity. Clearly there is no local concentration
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S∗

S

Figure 6.4.1: Illustration of Theorem 6.1 for d = 2 and k = 1 in the case
of PSA. The target distribution (dark gray) is concentrated on the subspace
S∗, while the perturbing distribution (light gray) does not concentrate well

on any individual subspace.

on the midpoint S∗ (µ∗), but there is on each of the modes. If S0 is the mean of the
first mode and ζ is sufficiently small, then S† can be near the mean of the other mode,
because it has comparable reconstruction error. In this way the result also explains
the astonishing behavior of our algorithm in clustering experiments with mis-specified
number of clusters. Refer also to Figure 6.7.1 (top right) for an illustration.

3. The conditions on W prescribe an upper bound on the cutoff parameter ζ. If the cutoff
parameter ζ is chosen smaller (so that W (t) = 0 for t ≥ ζ � FµS∗ (r∗)), the required
upper bound in (6.9) decreases and it becomes more difficult to find S satisfying the
upper bound. This problem becomes even worse in practice, because the bounds on the
estimation error also increase with ζ, as we will see in the next section.

6.5 Generalization Analysis
Up to this point we were working with distributions and essentially infinite data. In practice
we only have samples X ∼ µn and then it is important to understand to which extend we
can obtain the conclusion of Theorem 6.1, when S is the minimizer of the empirical robust
functional ΦW (µ̂ (X)S). This can be settled by a uniform bound on the estimation error for
ΦW .

Proposition 6.2. Under the conditions of Theorem 6.1 with X ∼ µn we have that

P
{

Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
≥ P

{
2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤
(

1− β

1− λ

)
IFmax (µS∗ ,W )

}
.

The left hand side is the probability that the minimization of our robust L-statistic objec-
tive returns a δ-optimal model for the target distribution µ∗. The right hand side goes to 1
as n grows. As we show next, this is due to the fact that the class {µS} enjoys a uniform con-
vergence property with respect to the functional ΦW . Particularly, we present three uniform
bounds that control the rate of decay of the same estimation error |ΦW (µS)− ΦW (µ̂S (X))|.

The first two bounds are dimension-free and rely on Rademacher and Gaussian averages
of the function class {x 7→ d (x, S) : S ∈ S}. Bounds for these complexity measures in the
practical cases considered can be found in [Maurer and Pontil, 2010; Lee and Raginsky, 2019;
Vainsencher et al., 2011]. Our last bound is dimension dependent but may outperform the
other two if the variance of the robust objective is small under its minimizer. All three bounds
require special properties of the weight function W .
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For this section we assume µ ∈ P
(
Rd
)
to have compact support, write X =support(µ)

and let F be the function class

F = {x ∈ X 7→ d (x, S) : S ∈ S} .

We also set Rmax = supf∈F ‖f‖∞.
The first bound is tailored to the hard-threshold ζ−11[0,ζ]. It follows directly from the

elegant recent results of [Lee et al., 2020]. For the benefit of the reader we give a proof in the
appendix, without any claim of originality and only slightly improved constants.

Theorem 6.3. Let W = ζ−11[0,ζ] and η > 0. With probability at least 1 − η in X ∼ µn we
have that

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤ 2

ζn
EXR (F ,X) +

Rmax

ζ
√
n

(
2 +

√
ln (2/η)

2

)
,

where R (F ,X) is the Rademacher average

R (F ,X) = Eε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]

with independent Rademacher variables ε = (ε1, ..., εn).

The next bound requires boundedness and a Lipschitz property for the weight function
W which can otherwise be arbitrary. We define the norm ‖W‖∞ = supt∈[0,1] |W (t)| and
seminorm ‖W‖Lip = inf {L : ∀t, s ∈ [0, 1] , W (t)−W (s) ≤ L |t− s|} .

Theorem 6.4. For any η > 0

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))|

≤
2
√
π
(
Rmax ‖W‖∞ + ‖W‖Lip

)
n

EXG (F ,X)

+Rmax ‖W‖∞

√
2 ln (2/η)

n

where G (F ,X) is the Gaussian average

G (F ,X) = Eγ

[
sup
S∈S

n∑
i=1

γid (Xi, S)

]
,

with independent standard normal variables γ1, ..., γn.

Our last result also requires a Lipschitz property for W and uses a classical counting
argument with covering numbers for a variance-dependent bound.

Theorem 6.5. Under the conditions of the previous theorem, with probability at least 1− η
in X ∼ µn we have that for all S ∈ S

|ΦW (µS)− ΦW (µ̂S (X))|

≤
√

2VSC +
6Rmax

(
‖W‖∞ + ‖W‖Lip

)
C

n

+
‖W‖∞Rmax√

n
,
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where VS is the variance of the random variable ΦW (µ̂S (X)), and C is the complexity term

C = kd ln
(

16n ‖S‖2 /η
)

if S is the set of sets with k elements, or convex polytopes with k vertices and ‖S‖ =
supx∈S∈S ‖x‖, or

C = kd ln
(
16nR2

max/η
)

if S is the set of set of k-dimensional subspaces.

We state two important conclusion from the above theorems.

1. Our bounds decrease at least as quickly as n−1/2 lnn. However, the bound in the
last theorem may be considerably smaller than the previous two if n is large and the
unperturbed distribution is very concentrated. The last term, which is of order n−1/2

does not carry the burden of the complexity measure and decays quickly. The second
term contains the complexity, but it decreases as n−1. It can be shown from the Efron-
Stein inequality [see e.g. Boucheron et al., 2013, Theorem 3.1] that the variance VS of
our L-statistic estimator is at most of order n−1, so the entire bound is at most of order
n−1/2 lnn. On the other hand Vs can be very small. For example, if the unperturbed
distribution is completely concentrated at S∗ and ζ is chosen appropriately VS∗ = 0
and, apart from the complexity-free last term the decay is as n−1 lnn.

2. The above bounds implies our method recovers a δ-optimal (w.r.t. µ∗) model with
probability at least equal to 1− exp(−n).

Finally, we highlight that the above uniform bounds may be of independent interest. For
example, consider the case that the test data also come from the perturbed distribution.
In such a situation one might be interested in evaluating the performance of the learned
model only on data that fit the model class, i.e. ΦW (µS). These bounds guarantee that by
minimizing the empirical robust functional, one also get good performances on future data
from the same distribution.

6.6 Algorithms
In this section we present our algorithm for (approximately) minimizing the robust L-statistic
ΦW (µ̂(X)S) w.r.t. model S ∈ S. Throughout we assume W non-increasing and fixed, and to
simplify the notation we use the shorthand Φ̂S(X) ≡ ΦW (µ̂(X)S).

6.6.1 General Algorithm
Let x = (x1, . . . , xn) be a realization of X ∼ µn, consider the following function of S ∈ S

Φ̂S(x) =
1

n

n∑
i=1

W

(
π(i)

n

)
dS(xi) (6.10)

where π is the ascending ordering of the dS(x)(i) and notice that minimizing (6.10) is equiv-
alent to minimize (6.7). Let p any fixed element in Symn

4 and let

φS(x, p) =
1

n

n∑
i=1

W

(
p(i)

n

)
dS(xi).

In the following we will leverage the following property of φS .

Lemma 6.6. For any S ∈ S and any p ∈ Symn, if π is the ascending ordering of the dS(xi)s,
then φS(x, p) ≥ φS(x, π) = Φ̂S(x).

We need also the following definition.
4Here Symn denotes the set of all n! permutations over n objects.
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Definition 6.7. A mapping D : S × Sn → S is a Descent Oracle for φS iff for any S ∈ S
and any p ∈ Symn, φD(S,p)(x, p) ≤ φS(x, p).

The algorithm attempts to minimize (6.10) via alternating minimization of φS . At the
beginning, it picks an initial model S0 and sort the induced losses in ascending order, i.e. pick
the optimal permutation π0. Then it starts iterating this two steps by first calling the descent
oracle D(St, πt) and then sorting the induced losses. At each step either the permutation πt
or the model St are fixed. Pseudo-code is given in Algorithm 3.

Algorithm 3 RobustUnsupervisedLearning(x)

1: Pick any S0 ∈ S;
2: π0 ← argminp∈Symn

φS0
(x, p);

3: for t = 1, . . . , T do
4: St ← D(St−1, πt−1);
5: πt ← argminp∈Sn φSt(x, p);

6: return ST ;

Indeed, at each step the algorithm first finds a descending iteration St+1 of φSt(x, πt) and
then sort the losses according to πt+1, an operation that by Lemma 6.6 cannot increase the
value of φSt+1

. Thus the following holds.

Theorem 6.8. Algorithm 3 is a descent algorithm for the problem of minimizing (6.10), i.e.
for any t, Φ̂St+1

(x) ≤ Φ̂St(x).

This algorithm is general and to apply it to a specific learning problem an implementation
of the descent oracle is needed. The efficiency of Algorithm 3 depends upon such oracle. In the
following we show two descent oracles for the cases of kmeans and psa. On the negative side
notice that in the case of kmeans when W is the identity, the problem reduces to finding the
optimal kmeans solution, a problem which is known to be hard (further hardness evidence
are provided in the supplement). Thus, in the general case, it is not possible to solve our
empirical problem optimally. Our algorithms, are a first step towards the design of methods
with provable approximation guarantees.

k-Means Clustering (KMEANS). In this case S is the set of all possible k-tuples of
centers in Rd and dS(x) = minc∈S ‖x− c‖22. Keeping fixed the permutation p, we consider as
descent oracle the following Lloyd-like update for the centers. Each center c ∈ S induces a
cluster formed by a subset of training points xi, i ∈ I which are closer to c than every other
center (breaking ties arbitrarily). The overall loss of representing point in I with c is∑

i∈I
W

(
p(i)

n

)
‖xi − c‖22.

This loss is minimized at

ĉ =
1∑

i∈IW
(
p(i)
n

)∑
i∈I

W

(
p(i)

n

)
xi,

so the following holds.

Proposition 6.9. Given S and p, the mapping that for every c ∈ S returns the ĉ defined
above is a descent oracle for kmeans and its runtime is O(nkd).

The resulting algorithm can is a generalization of the method proposed in [Chawla and
Gionis, 2013].

Principal Subspace Analysis (psa). In this case S is the set of all possible d×k matrices
U such that U>U = Id, dS(x) = ‖x− UU>x‖22 and

φU (x, p) =

n∑
i=1

W

(
p(i)

n

)
‖x− UU>xi‖22.
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Given p, it is easy to see that the above function is minimized at the matrix Û formed by stack-
ing as columns the k eigenvectors of

∑n
i W

(
p(i)
n

)
xix
>
i associated to the top k eigenvalues,

so the following holds.

Proposition 6.10. Given U and p, the mapping that returns the Û defined above is a descent
oracle for PSA and its runtime is O(min{d3 + nd2, n3 + n2d}).

6.7 Experiments
The purpose of the numerical experiments is to show that:

• Our algorithms for psa and kmeans outperform standard SVD, kmeans++ and the
Spherical Depth method (SD) in presence of outliers, while obtain similar performances
on clean data.

• Our algorithms on real data are not too sensitive to the parameters of the weight
function. In particular, we show that there exist a wide-range of ζ values such that
using the hard-threshold function leads to good results.

• In the case of kmeans our method is able to accurately reconstruct some of the true
centers even when the value of k is miss-specified. This matches the second remark
after Theorem 1.

Implemented Algorithms. For kmeans++ we used the sklearn implementation fed with
the same parameters for the maximum number of iterations T and the initializations r we
used for our method. Notice that T is only an upper bound to the number of iterations,
the algorithms stop when the difference between the current objective value and the previous
one is smaller than 10−7. To set r we used the largest value before diminishing returns were
observed. For standard PSA we compute the SVD of

∑
i xix

>
i . The SD method is a general

purpose pre-processing technique that is applied on the data before performing kmeans and
PSA [see e.g. Elmore et al., 2006; Fraiman et al., 2019]. This method computes a score for
each point in the dataset by counting in how many balls, whose antipodes are pairs of points
in the data, it is contained. The 1 − ζn points with the smallest scores are discarded. If
the data contain n points, the methods needs to check O(n2) balls for each of the n point
resulting in a runtime of O(n3). For scalability on real data, we implemented a randomized
version of this method that for each point only check M balls picked uniformly at random
from the set of all possible balls and used M = O(n); the resulting runtime is O(n2). In the
following we refers to our methods as RKM and RPSA respectively. All experiments have
been run on an standard laptop equipped with an Intel i9 with 8 cores each working at 2,4
GHz and 16 GB of RAM DDR4 working at 2,6 GHz.

6.7.1 KMEANS Clustering
Synthetic Data. We run two experiments with artificial data in R2. In the first experiment,
we generated 300 inliers from 3 isotropic truncated Gaussians (100 points each) with variance
0.1 along both axis and mean (−3, 0), (0, 1) and (3, 0) respectively. We then corrupt the
data adding 100 points from a fourth isotropic truncated Gaussian centered at (−1,−5) with
variance 5 along both axis. For both RKM and kmeans++ we T = 10 and r = 30. We
initialized rkm with uniform centers and set ζ = 0.75, the same ζ is used for SD. Results
are shown in Figure 6.7.1 top left, where it is possible to see that while rkm recovers the
true centers, SD and kmeans++ both fail badly placing one centers in the middle of the
two clusters and the other close to the mean of the perturbing distribution. In the second
experiment, we generated 300 points from the same 3 inliers Gaussians and set the algorithms
with k = 2 and ζ = 0.6, while T and r are as above. Results are shown in the top right of
Figure 6.7.1, where it is possible to see that kmeans++ and SD – although to a lesser extend
– wasted a center to merge 2 clusters, while RKM correctly recovers 2 out of the 3 centers.
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Figure 6.7.1: Experiments for kmeans on synthetic data (top row) and
real data (bottom row).

Real Data. In the synthetic experiments we choose ζ according to the exact fraction of
outliers, a quantity which is usually unknown in practice. Here we show that there is a
wide range of values for ζ such that RKM performs better than kmeans++. We used the
Fashion-MNIST dataset which consists of about 70000 28 × 28 images of various types of
clothes splitted in a training set of 60000 images and a test set of 10000 images. Specifically,
there are 10 classes in the dataset: t-shirts, trousers, pullover, dresses, coats, sandals, shirts,
sneakers, bags and ankle boots. The training data were generated by sampling 1000 points,
from the training set, each from the sneakers and the trousers classes as inliears, and 250
points from each other class as outliers. The resulting fraction of outliers is about 0.5. The
test data consist of all the sneakers and the trousers in the test set and has size of about
2000. We run the algorithms with T = 50, r = 30,M = 4000, k = 2 and ζ in the range [0.4, 1].
Results are shown in the bottom row of Figure 6.7.1. In the lower left, it is possible to see
that the centers learned by RKM at the optimal threshold value ζ = 0.5 look good, while
the centers found by SD and kmeans++ are affected by the outliers. Specifically, the such
centers arise from the overlap of multiple classes. One center suffers from the effect of the
other two shoes classes (sandald and boots) as witnessed by the elongated background area,
while the other is affected by the clothes classes (most noticeably, the coats) as suggested by
background shadow. As for the reconstruction error, RKM outperforms SD uniformly over
the range of considered values of ζ.

6.7.2 Principal Subspace Analysis
Synthetic Data. We run a synthetic experiment with artificial data in R2. We generate
50 points from the uniform distribution over [−1, 1] × [−0.1, 0.1] as inliers and 50 points for
the uniform distribution over R++ ∪R−− ∩B(0, 1)5 as outliers. We run RPSA with T = 50,
r = 30, ζ = 0.5 and initialize U as a normalized Gaussian matrix. We set k = 1 for all

5Here with R++ and R−− we denote the top right and the bottom left orthant of R2.
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Figure 6.7.2: Experiments for PSA on synthetic data (top) and real data
(bottom).

algorithms. Results are shown in the top plot of Figure 6.7.2 where it is possible to see that
the principal subspace learned by RPSA is not affected by the outliers, as opposed to SD and
PSA.

Real Data. Similarly to the case of kmeans, we tested our method on real data for a range
of values of ζ. We used again the same setting as before on the Fashion-MNIST dataset. We
run the algorithms we T = 50, r = 5, M = 4000, k = 2 and ζ in the range [0.4, 1]. Results
are shown in the bottom plot of Figure 6.7.2, where it is possible our algorithm outperforms
both PSA and does better than SD.
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Appendix

6.A Statistical Properties of the Proposed Method
We first analyze some basic properties of the functional ΦW . The following is easily seen to
be an alternative definition of ΦW .

KW (t) =

∫ t

0

W (u) du

and
ΦW (ρ) =

∫ ∞
0

rdKW (Fρ (r)) for ρ ∈ P ([0,∞)) .

From this we find

Lemma 6.11. For ρ1, ρ2 ∈ P and W bounded

ΦW (ρ1)− ΦW (ρ2) = −
∫ ∞

0

(KW (Fρ1 (r))−KW (Fρ2 (r))) dr, (6.11)

and
d

dt
ΦW ((1− t) ρ1 + tρ2) =

∫ ∞
0

W
(
F(1−t)ρ1+tρ2 (r)

)
(Fρ1 (r)− Fρ2 (r)) dr.

Proof. Since members of P have finite first moments we have for any ρ ∈ P that rρ (r,∞)→ 0
as r →∞, so

lim
r→∞

r (KW (Fρ1 (r))−KW (Fρ2 (r))) ≤ ‖W‖∞ lim
r→∞

r |ρ2 (r,∞)− ρ1 (r,∞)| = 0,

and the formula (6.11) follows from integration by parts. Thus for arbitrary ρ ∈ P

ΦW ((1− t) ρ1 + tρ2)− ΦW (ρ) = −
∫ ∞

0

(KW ((1− t)Fρ1 (r) + tFρ2 (r))−KW (Fρ (r))) dr.

Taking the derivative w.r.t. t and using the chain rule and K ′W = W gives the second
identity.

We now analyze the influence function of the functional ΦW .

Lemma 6.12. Let R ∈ [0,∞), ρ ∈ P ([0,∞))
(i) If W is nonnegative, bounded and W (t) = 0 for t ≥ ζ and ζ < 1 then

IF (R; ρ,ΦW ) ≤ IFmax (ρ,W ) :=

∫ F−1
ρ (ζ)

0

W (Fρ (r))Fρ (r) dr.

(ii) If ζ > 0, W = ζ−11[0,ζ], ρ is non-atomic and F−1
ρ (ζ) (ρ) = F−1

ρ (ζ) = F−1
ρ (ζ). Then

IC (R; ρ,ΦW ) =

{
ζ−1

(
R+ (ζ − 1)F−1

ρ (ζ)
)
− ΦW (ρ) if 0 ≤ R ≤ F−1

ρ (ζ)
F−1
ρ (ζ)− ΦW (ρ) if F−1

ρ (ζ) < R

≤ F−1
ρ (ζ)− ΦW (ρ) .

Proof. (i) In the second conclusion of Lemma 6.11, letting ρ2 = δR and taking the limit t→ 0
we obtain the influence function

IF (R; ρ,ΦW ) =

∫ ∞
0

W (Fρ (r)) (Fρ (r)− FδR (r)) dr.
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Part (i) follows.
(ii) From Lemma 6.11 we get

d

dt
Φ ((1− t) ρ+ tδR) (t = 0) = ζ−1

∫ F−1
ρ (ζ)

0

(
Fρ (r)− 1[R,∞) (r)

)
dr

= ζ−1

(∫ F−1
ρ (ζ)

0

Fρ (r) dr −
∫ F−1

ρ (ζ)

0

1[R,∞) (r) dr

)
.

From integration by parts the first term in parenthesis is ζ
(
F−1
ρ (ζ)− ΦW (ρ)

)
. The second

term is zero if F−1
ρ (ζ) < R, otherwise it is F−1

ρ (ζ) − R. This gives the identity. For the
inequality observe that R ≤ F−1

ρ (ζ) implies ζ−1
(
R+ (ζ − 1)F−1

ρ (ζ)
)
≤ F−1

ρ (ζ).

6.A.1 Resilience to Perturbations
We prove Theorem 1.

Lemma 6.13. Let S, S∗ ∈ S, µ ∈ P
(
Rd
)
, and suppose that there exists r∗ > 0 and α ∈ (0, 1)

such that

∀r ∈ (0, r∗) , FµS (r) ≤ αFµS∗ (r) . (6.12)

If W is nonzero on a set of positive Lebesgue measure, nonincreasing and W (t) = 0 for all
t ≥ FµS∗ (r∗) then

ΦW (µS)− ΦW (µS∗) ≥ (1− α)

∫ r∗

0

W (FµS∗ (r))FµS∗ (r) dr = (1− α) IFmax (µS∗ ,W ) > 0.

Proof. By Lemma 6.11 and the fundamental theorem of calculus

ΦW (µS)−ΦW (µS∗) =

∫ ∞
0

(∫
[0,1]

W (sFµS (r) + (1− s)FµS∗ (r)) ds

)
(FµS∗ (r)− FµS (r)) dr.

Suppose first r∗ ≤ r. If W > 0 then sFµS (r) + (1− s)FµS∗ (r) < FµS∗ (r∗) ≤ FµS∗ (r) and
therefore FµS (r) < FµS∗ (r∗), so the integrand is positive, or else W = 0. For a lower bound
we can therefore restrict the integration in r to the interval [0, r∗).

If r < r∗ then by (6.12) sFµS (r)+(1− s)FµS∗ (r) < FµS∗ (r) ≤ FµS∗ (r∗) soW (sFµS (r) + (1− s)FµS∗ (r)) ≥
W (FµS∗ (r)), since W is nonincreasing. The conclusion follows from (6.12).

We restate Assumption A and Theorem 1.
Assumption A. There exists S0 ∈ S, δ > 0, β ∈ (0, 1− λ) and a scale parameter

r∗ ∈ (0, 1) (in units of squared euclidean distance), such that for every model S ∈ S satisfying
Φ (µ∗S) > Φ

(
µ∗S0

)
+ δ we have FµS (r) < βFµ∗S0

(r) for all r ≤ r∗.

Theorem 6.14. Let µ∗, ν ∈ P
(
Rd
)
, µ = (1− λ)µ∗ + λν, and λ ∈ (0, 1) and suppose there

are S0, r∗, δ > 0 and 0 < β < 1 − λ, satisfying Assumption A. Suppose that W is nonzero
on a set of positive Lebesgue measure, nonincreasing and W (t) = 0 for t ≥ ζ = FµS0 (r∗).

Proof. Let S, S0 ∈ S and assume that Φ (µ∗S) > Φ
(
µ∗S0

)
+ δ. Then for r ≤ r∗ Assumption A

implies FµS (r) ≤ βFµ∗S0
(r) ≤ β

1−λFµS0 (r), and the conditions on W also imply that W = 0

on [FµS∗ (r∗) , 1]. Thus Lemma 6.13 with a = β/ (1− λ) < 1 gives

ΦW (µS)− ΦW (µS0) ≥
(

1− β

1− λ

)
IFmax (µS0 ,W ) > 0.

Thus, if ΦW (µS)−ΦW (µS0
) <

(
1− β

1−λ

)
IFmax (µS0

,W ), we must have Φ (µ∗S) ≤ Φ
(
µ∗S0

)
+

δ. The condition (6.12) is clearly always satisfied by the minimizer S† (µ) of ΦW (µS).
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An additional example. We conclude this section with an example to demonstrate that
Assumption A does not depend so much on the richness of S (which will be relevant to
generalization) but on the concentration properties of µ∗ and ν. Let S =

{
S ⊆ Rd

}
, µ∗ be

supported in a ball of diameter ε, ν have any bounded density and λ ∈ (0, 1) be arbitrary.
Then for any δ > ε2 we can find r∗ > 0, such that Assumption A holds with arbitrary
β ∈ (0, 1).

Proof. Let δ > ε2 and β ∈ (0, 1) be arbitrary and S0 be an arbitrary set containing the
support of µ∗, so that Φ

(
µ∗S0

)
= 0. Let B be the ball containing the support of µ∗. Assume

Φ (µ∗S) > Φ
(
µ∗S0

)
+ δ = δ and suppose that x ∈ S. This implies ‖x− y‖ >

√
δ − ε > 0 for all

points in B. The first term in FµS (r) = (1− λ)Fµ∗S (r)+λFνS (r) is zero for all r <
(√

δ − ε
)2

and the second increases continuously from r = 0 because of the bounded density. We can

therefore find r∗ <
(√

δ − ε
)2

such that FµS (r) = λFνS (r) < β = βFµ∗S0
(r) for all r ≤ r∗.

Thus A holds for arbitrary λ and β.

6.A.2 Generalization
A second application of Lemma 6.11 gives a Lipschitz property of ΦW relative to the Wasser-
stein and Kolmogorov metrics for distributions with bounded support.

Lemma 6.15. For ρ1, ρ2 ∈ P with support in [0, Rmax] and ‖W‖∞ <∞

ΦW (ρ2)− ΦW (ρ1) ≤ ‖W‖∞ dW (ρ1, ρ2)

and
ΦW (ρ2)− ΦW (ρ1) ≤ Rmax ‖W‖∞ dK (ρ1, ρ2) .

Here dW (ρ1, ρ2) = ‖Fρ1 − Fρ2‖1 is the 1-Wasserstein distance and dK (ρ1, ρ2) = ‖Fρ1 − Fρ2‖∞
the Kolmogorov-Smirnov distance.

Proof. From (6.11) and Hoelder’s inequality we get

ΦW (ρ1)− ΦW (ρ2) = −
∫ ∞

0

(∫ Fρ1 (r)

Fρ2 (r)

W (u) du

)
dr ≤ 2 ‖W‖∞

∫ ∞
0

|Fρ1 (r)− Fρ2 (r)| dr.

We can bound the integral either by ‖Fρ1 − Fρ2‖1 = dW (ρ1, ρ2), which gives the first inequal-
ity, or by∫ Rmax

0

|Fρ1 (r)− Fρ2 (r)| dr ≤ ‖Fρ1 − Fρ2‖∞
∫ Rmax

0

dr = RmaxdK (ρ1, ρ2) ,

which gives the second inequality.

The Lipschitz properties imply estimation and bias bounds for the plug-in estimator.

Corollary 6.16. Let ρ ∈ P with support in [0, Rmax] and ‖W‖∞ <∞ and suppose that ρ̂ is
the empirical measure generated from n iid observations R = (R1, ..., Rn) ∼ ρn

ρ̂ (R) =
1

n

n∑
i=1

δRi .

Then (i)

P {|ΦW (ρ)− ΦW (ρ̂ (R))| > t} ≤ 2 exp

(
−2nt2

R4
max ‖W‖

2
∞

)
.

and (ii)

ΦW (ρ)− E [ΦW (ρ̂ (R))] ≤
Rmax ‖W‖∞√

2n
.
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Proof. (i) By Lemma 6.15 and the Dvoretzky-Kiefer-Wolfowitz Theorem in the version of
Massart [Massart, 1990]

P {|ΦW (ρ)− ΦW (ρ̂ (R))| > t} ≤ P
{
dK (ρ, ρ̂ (R)) >

t

Rmax ‖W‖∞

}
≤ 2 exp

(
−2nt2

R2
max ‖W‖

2
∞

)
.

(ii) Let R′ = (R1, ..., Rn) be iid to R. Then

ΦW (ρ)− E [ΦW (ρ̂ (R))] ≤ ‖W‖∞ E [dW (ρ1, ρ̂ (R))]

= ‖W‖∞ ER

∫ Rmax

0

∣∣∣∣∣ER′

[
1

n

∑
i

1[R′i,∞) (t)

]
−

[
1

n

∑
i

1[Ri,∞) (t)

]∣∣∣∣∣ dt
≤
‖W‖∞
n

∫ Rmax

0

ERR′

∣∣∣∣∣∑
i

(
1[R′i,∞) (t)− 1[Ri,∞) (t)

)∣∣∣∣∣ dt
≤
‖W‖∞
n

∫ Rmax

0

(
ERR′

∑
i

(
1[R′i,∞) (t)− 1[Ri,∞) (t)

)2
)1/2

dt

=
‖W‖∞√

n

∫ Rmax

0

(
ER1R′1

(
1[R′1,∞) (t)− 1[R1,∞) (t)

)2
)1/2

dt

by Jensens inequality and independence. But the expectation is just twice the variance of
the Bernoulli variable 1[R1,∞) (t), and therefore at most 1/2. The result follows.

Rephrasing part (i) of this corollary in terms of confidence windows we have, for any δ > 0
with probability at least 1− δ that

|ΦW (ρ)− ΦW (ρ̂ (R))| ≤ Rmax ‖W‖∞

√
ln (2/δ)

2n
.

For the weight function W = ζ−11[0,ζ] the bound on the estimation error scales with ζ−1,
which is not surprising, since we only consider a fraction ζ of the data. So for decreasing
ζ the functional becomes more robust (because the influence Rζ decreases) but it becomes
more difficult to estimate.

Restatement of Proposition 2.

Proposition 6.17. Assume the conditions of Theorem 1. Then

P
{

Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
≥ P

{
2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
.

Proof.

ΦW

(
µŜ(X)

)
− ΦW (µS∗) ≤

(
ΦW

(
µŜ(X)

)
− ΦW

(
µ̂Ŝ(X) (X)

))
+
(

ΦW

(
µ̂Ŝ(X) (X)

)
− ΦW (µ̂S† (X))

)
+ (ΦW (µ̂S† (X))− ΦW (µS†)) + (ΦW (µS†)− ΦW (µS∗)) .

The second term and the last term are negative by the minimality properties of Ŝ (X) and
S†. The remaining terms are bounded by 2 supS∈S |ΦW (µS)− ΦW (µ̂S (X))|. Thus

P
{

2 sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
≤ P

{
ΦW

(
µŜ(X)

)
− ΦW (µS∗) ≤

(
1− β

1− λ

)
ICmax (µS∗ ,W )

}
≤ P

{
Φ
(
µ∗
Ŝ(X)

)
≤ Φ (µ∗S∗) + δ

}
,

where the last inequality follows from Theorem 1.
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Lemma 6.18. If W = ζ−11[0,ζ] with ζ < 1, then for ρ ∈ P ([0, Rmax))

ΦW (ρ) = sup
λ∈[0,Rmax]

{
λ− ζ−1

∫ ∞
0

max {λ− t, 0} dρ (t)

}
Proof. Integration by parts gives∫ ∞

0

max {λ− t, 0} dρ (t) =

∫ λ

0

Fρ (t) dt = λFρ (λ)−
∫ λ

0

tdρ (t) .

The maximum of λ − ζ−1
∫ λ

0
Fρ (t) dt is attained at ζ = Fρ (λ), which shows λ ≤ Rmax, and

substitution gives

sup
λ∈R

{
λ− ζ−1

∫ ∞
0

max {λ− t, 0} dρ (t)

}
= λ− ζ−1

(
λFρ (λ)−

∫ λ

0

tdρ (t)

)

= ζ−1

∫ F−1
ρ (ζ)

0

tdρ (t) =

∫ ∞
0

tζ−11[0,ζ] (Fρ (t)) dρ (t)

= ΦW (ρ) .

Restatement of Theorem 3.

Theorem 6.19. Let W = ζ−11[0,ζ] and η > 0. With probability at least 1− η in X ∼ µn we
have that

sup
S∈S
|ΦW (µS)− ΦW (µ̂S (X))| ≤ 2

ζn
EXR (F ,X) +

Rmax

ζ
√
n

(
2 +

√
ln (2/η)

2

)
,

where R (F ,X) is the Rademacher average

R (F ,X) = Eε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]
with independent Rademacher variables ε = (ε1, ..., εn).

Proof. Using Lemma 6.18 we get with independent Rademacher variables ε = (ε1, ..., εn)

E
[

sup
S∈S

ΦW (µS)− ΦW (µ̂S (X))

]
≤ ζ−1EX

[
sup

λ∈[0,Rmax],S∈S

∫ ∞
0

max {λ− t, 0} dµ̂S (X) (t)−
∫ ∞

0

max {λ− t, 0} dµS (t)

]

= ζ−1EX

[
sup

λ∈[0,Rmax],S∈S

1

n

n∑
i=1

max {λ− d (Xi, S) , 0} − EX∼µ [max {λ− d (X,S) , 0}]

]

=
1

ζn
EXX′

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

(max {λ− d (Xi, S) , 0} −max {λ− d (X ′i, S) , 0})

]

=
1

ζn
EXX′ε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi (max {λ− d (Xi, S) , 0} −max {λ− d (X ′i, S) , 0})

]

≤ 2

ζn
EXε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi max {λ− d (Xi, S) , 0}

]

≤ 2

ζn
EXε

[
sup

λ∈[0,Rmax],S∈S

n∑
i=1

εi (λ− d (Xi, S))

]
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≤ 2

ζn
EXε

[
sup
S∈S

n∑
i=1

εid (Xi, S)

]
+

2

ζn
Eε

[
sup

λ∈[0,Rmax]

λ

n∑
i=1

εi

]

≤ 2

ζn
EXR (F ,X) +

2Rmax

ζ
√
n
.

Here the third identity is a standard symmetrization argument, the second inequality the
triangle inequality, followed by the contraction inequality for Rademacher averages, since
t → max {t, 0} is a contraction. Then we used the triangle inequality again. Now let Ψ (X)
be the random variable supS∈S ΦW (µS) − ΦW (µ̂S (X)). It then follows from Lemma 6.15
and the bounded difference inequality that with probability at least 1 − η we have Ψ (X) ≤
EΨ (X) + ζ−1Rmax

√
ln (1/η) / (2n).

Combined with above bound on EΨ (X) this completes the proof.

Theorem 4 follows directly from Theorems 2 and 5 in [Maurer and Pontil, 2019] and from
the bias bound, Corollary 6.16 (ii).

Restatement of Theorem 5.

Theorem 6.20. Under the conditions of the previous theorem, with probability at least 1− η
in X ∼ µn we have that for all S ∈ S

|ΦW (µS)− ΦW (µ̂S (X))| ≤
√

2VSC +
6Rmax

(
‖W‖∞ + ‖W‖Lip

)
C

n
+
‖W‖∞Rmax√

n
,

where VS is the variance of the random variable ΦW (µ̂S (X)), and C is the complexity term

C = kd ln
(

16n ‖S‖2 /η
)

if S is the set of sets with k elements, or convex polytopes with k vertices and ‖S‖ =
supx∈S∈S ‖x‖, or

C = kd ln
(
16nR2

max/η
)

if S is the set of set of k-dimensional subspaces.

Proof. For any fixed S ∈ S the L-statistic x ∈ Xn 7→ fS (x) := ΦW (µ̂S (x)) is
(
Rmax ‖W‖∞ , Rmax ‖W‖Lip

)
-weakly interacting (see [Maurer and Pontil, 2018]) and therefore satisfies the following ver-
sion of Bernstein’s inequality (see [Maurer et al., 2019], [Maurer and Pontil, 2018]): For
η ∈ (0, 1/e) with probability at least 1− η in X ∼µn we have

E [fS ]− fS (X) ≤
√

2VS ln (1/η) +Rmax

(
2 ‖W‖∞

3
+

3 ‖W‖Lip
2

)
ln (1/η)

n
,

where E [fS ] and VS are expectation and variance of the random variable fS (X) = ΦW (µ̂S (X))
respectively. We will make this bound uniform with a covering number argument.

Define a pseudo metric dX on S by

dX (S1, S2) = sup
x∈X
|d (x, S1)− d (x, S2)| .

It follows from Lemma 6.15 that for every x ∈Xn we have

fS1
(x)− fS2

(x) ≤ ‖W‖∞ dW (µ̂S1
(x) , µ̂S2

(x)) ≤ ‖W‖∞ dX (S1, S2) .

In particular |E [fS1
]− E [fS2

]| ≤ ‖W‖∞ dX (S1, S2) and

√
VS1
−
√
VS2

= ‖fS1
− E [fS1

]‖L2(µn) − ‖fS2
− E [fS2

]‖L2(µn)

≤ ‖fS1
− fS2

‖L2(µn) + |E [fS1
]− E [fS2

]| ≤ 2 ‖W‖∞ dX (S1, S2) .

Now let N = N (S, dX , ε) be the corresponding minimal covering number of S with dX -balls
of radius ε, and let S0 ⊆ S be such that ∀S ∈ S, ∃S′ ∈ S0 with dR (S, S′) < 1/n and |S0| ≤ N .
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Then, abbreviating Rmax

(
2 ‖W‖∞ /3 + 3 ‖W‖Lip /2

)
with C, with probability at least 1− η

in X that for every S ∈ S

E [fS ]− fS (X) ≤ E [fS′ ]− fS′ (X) +
2 ‖W‖∞

n
≤
√

2VS′ ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

n

=
√

2VS ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

n
+
(√

VS′ −
√
VS

)√
2 ln (N/η)

≤
√

2VS ln (N/η) +
C ln (N/η) + 2 ‖W‖∞

√
2 ln (N/η) + 2 ‖W‖∞

n
.

In the first inequality we used uniform approximation of fS by fS′ , where S′ is the nearest
neighbour of S in S0. The next line combines Bernstein’s inequality with a union bound over
S0. Finally we again approximate

√
VS′ by

√
VS .

Next we bound the covering numbers N (S, dX , 1/n), which we do separately for the case
of uniformly bounded S and PSA. In case of the mean, k-means or sparse coding is easy to
see that for S1, S2 ∈ S and any two respective enumerations xi and yi or enumerations of the
extreme points

dX (S1, S2) ≤ 2 ‖S‖H (S1, S2) ≤ 2 ‖S‖max
i
‖xi − yi‖ .

It follows that N (S, dX , 1/n) can be bounded by the covering number of a ball of radius ‖S‖2
in a kd-dimensional Banach space. Use the standard result of Cucker and Smale [Cucker and
Smale, 2002] we have

N (S, dX , 1/n) ≤
(

8n ‖S‖2
)kd

.

For PSA we can use unit vectors spanning the subspaces and instead of ‖S‖2 we have the
maximal squared norm in the support, so

N (S, dX , 1/n) ≤
(

8n ‖X‖2
)kd

.

kd ln
(

8n ‖S‖2 /η
)
.

Putting it all together and adding the bias bound ΦW (µS)−E [ΦW (µ̂S (X))] ≤ ‖W‖∞Rmax/
√
n

(Corollary 6.16 (ii)) we get

ΦW (µS)− ΦW (µ̂S (X))

≤
√

2σ2 (ΦW (µ̂S (X))) kd ln
(

8n ‖S‖2 /η
)

+
Rmax

(
6 ‖W‖∞ +

3‖W‖Lip
2

)
kd ln

(
8n ‖S‖2 /η

)
n

+
‖W‖∞Rmax√

n

The result follows from elementary estimates and algebraic simplifications.

6.B Algorithms
Restatement of Lemma 6.

Lemma 6.21. For any S ∈ S and any p ∈ Symn, if π is the ascending ordering of the
dS(xi)s, then φS(x, p) ≥ φS(x, π) = Φ̂S(x).

Proof. Writing w (i) = W
(
π(i)
n

)
and zi = dS

(
xπ(i)

)
it is enough to show that the identity

permutation is a minimizer of

r (p) =

n∑
i=1

w (p (i)) zi for p ∈ Symn
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This follows from the following claim, which we prove by induction:
For k ∈ {1, ..., n} there is for every p ∈ Symn some p′ ∈ Symn such that r (p′) ≤ r (p)

and p′ (j) = j for all 1 ≤ j < k. The case k = 1 holds trivially. If the claim holds for any
k ≤ n − 1 then there is q ∈ Symn such that r (q) ≤ r (p) and q (j) = j for all 1 ≤ j < k. If
q (k) = π (k) then the claim for k + 1 clearly holds by defining p′ := q. If q (k) 6= k note first
that both q (k) > k and q−1 (k) > k. Then define p′ (j) := q (j) except for p′ (k) := k and
p′
(
q−1 (k)

)
:= q (k). Then p′ (j) = j for all 1 ≤ j < k + 1 and

r (p′)− r (p) ≤ r (p′)− r (q) = (w (k)− w (q (k)))
(
zk − zq−1(k)

)
≤ 0,

because the first term is non-negative (since w is non-increasing) and the second non-positive.
So r (p′) ≤ r (p) which proves the claim for the case k + 1 and completes the induction.

Theorem 6.22. Minimizing Φ̂S(x) for the case of kmeans when k = 1 and W is the hard
threshold is NP-Hard.

Proof. Notice that minimizing the Φ̂S(x) in the case of kmeans is equivalent to minimize the
following function of a subset C ⊆ X of size bznc

L(C) =
1

n

∑
x∈C
‖xi − µC‖22

where µC = mean(C) and return µC . In what follow we will consider L(C) as actually L(C)n
in order to remove the constant factor outside the objective and simplify the notation. The
following lemma enables us to rewrite L(C) in terms of pairwise distances.

Lemma 6.23. Let C ⊆ X, then

L(C) =
1

2|C|
∑
x,y∈C

‖x− y‖22. (6.13)

Proof. Let X and Y two i.i.d. random variables supported on C, then

E[‖X − Y ‖22] = E[‖X‖22] + E[‖Y ‖22]− 2E[〈X,Y 〉]
= E[‖X‖22] + E[‖X‖22]− 2E[‖E[X]‖22]

= 2E[‖X‖22]− 2E[‖E[X]‖22] = 2E[‖X − E[X]‖22].

Now assume X and Y are independent samples from the uniform distribution on C, then

E[‖X − E[X]‖22] =
1

|C|
∑
x∈C
‖x− µC‖22

= E[‖X − Y ‖22]/2 =
1

2|C|2
∑
x,y∈C

‖x− y‖22

from which the thesis follows.

We recall the definition of NP-hardness for optimization problems.

Definition 6.24. A computational problem Π is said NP-hard (optimization) if and only if
the related decision problem ΠD is NP-hard. Assume Π is defined as the problem of minimizing
a function fX(µ) defined by an input instance X if the minimum exists, then ΠD is defined
as the problem of determining, given in input X and a rational number c, whether there exist
an assignment to the variables µ such that fX(µ) ≤ q.

In order to show hardness of an optimization problem Π, it is enough to show hardness of
the related decision problem ΠD. For this reason, the following will be useful.

Definition 6.25. decision robust 1-means
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Dataset k RKM SD k-means++

FMNIST 2 25.98 33.17 34.39
EMNIST 2 38.41 37.78 40.29
cifar10 4 31.07× 104 96.42× 105 95.57× 105

Victorian 5 1.64 1.66 1.76
Iris 1 0.32 3.71 4.75

Table 6.B.1: Experimental results for the case of k-means clustering. In
all the experiments ζ = 0.5. In each row, the performance in bold corre-

sponds to the winning algorithm.

Input: Points X = {x1, . . . , xn} ⊂ Rd, an integer h and a rational number c.

Output: Yes if there exist a C ⊆ X such that |C| = h and L(C) ≤ c, No otherwise.

To prove the theorem we will reduce n/2-clique to the decision version robust 1-means
via a polynomial time algorithm. Since n/2-clique is NP-complete, hardness for robust
1-means will follow.

Definition 6.26. n/2-clique

Input: A simple undirected connected graph G = (V,E) with |V | = n.

Output: Yes if G contains a clique of size n/2, No otherwise.

Given an instance of n/2-clique in the form of a graph G = (V,E) with n vertices, we
create an instance of robust 1-means ΠD(G) which is equivalent to G. Let A denote the
symmetric n×n adjacency matrix of G, i.e. Aij = 1 iff (i, j) ∈ E otherwise Aij = 0. Consider
the graph embedding given by the map φ : V → Rn such that φ(i) = Ai: + nei, where Ai:
denotes the i-th row of A and ei denotes the i-th vector of the canonical basis of Rn. Given
G we build an instance of robust 1-means by setting X = {φ(1), . . . , φ(n)}, h = n/2 and
c = m(2n2−3n), where we set m =

(
n
2

)
as a shortcut. Notice that it takes O(n) to build such

instance. The following lemma finishes the proof by showing the aforementioned equivalence.

Lemma 6.27. G is a Yes instance iff ΠD(G) is a Yes instance.

Proof. Assume that G is a Yes instance, i.e. G contains at least clique of size n/2. Notice
that for any (i, j) ∈ E it holds that

‖φ(i)− φ(j)‖22 ≤ (n− 1)2 + (n− 1)2 = 2n2 − 4n+ 2 ≤ 2n2 − 3n

while for any (i, j) /∈ E it holds

‖φ(i)− φ(j)‖22 ≥ 2n2.

If {c1, . . . , cn/2} are the vertices in the clique, the cost L(C), by Lemma 6.23, of the subset
C = {φ(c1), . . . , φ(cn/2)} is at most c, since in such clique contains exactly m edges.

Now suppose that ΠD(G) admits a cost of at most c. Lets denote by C the subsets of X
achieving such cost, then the associated vertices must form a clique otherwise at least one of
the m distance will be larger than 2n2 leading to a cost larger of c.

Thus if we could solve in polynomial time decision robust 1-means we could solve in
polynomial time n/2-clique.



Chapter 6. Robust Unsupervised Learning via L-statistic Minimization 118

6.C Experiments
In this section we discuss the additional experimental results we obtained with our method
in the case of k-means clustering. We tested RKM, SD and standard k-means++ with the
ζ = 0.5, r = 30, and T = 100. Due to its cubic runtime, SD is slow even on moderate-sized
datasets. Thus, we considered the randomized version of SD with M equals to the size of
the training set. For this method, we repeated each experiment 5 times and reported the
average reconstruction error on the test data (standard deviations resulted to be negligible in
all cases).

In the following we describe each dataset, but Fashion MNIST whose experiment has
already been described in the main body.

EMNIST. This dataset consists of about 814000 28 × 28 images of digits, lowercase and
uppercase letters from the English alphabet arranged in 62 classes. The training data were
generated by sampling 1000 0s and 1000 1s as inliers and sampling 33 points from each other
class as outliers. We used k = 2 clusters. The test data consist of all the 0s and 1s in the test
set and has a size of about 2000.

cifar10. The dataset consists of about 60000 100 × 100 images from 10 classes: airplanes,
cars, trucks, ships, dogs, cats, frogs, horses, birds and deer. The training data were generated
by sampling 1000 points from each of the vehicle classes as inliers and 300 points from each
of the animal classes as outliers. We used k = 4 clusters. The test data consist of all the
vehicle images from the test set and has size of about 4000.

Victorian. This dataset consists of 4500 texts from 45 authors of English language from
Victorian Era, 100 texts from each author. The data have been processed as in [Ahmadian
et al., 2019] and is made of 10 features. The training data were generated by sampling 50
points from each of one of the first 5 authors in the dataset as inliears and 5 points from each
other class as outliers. We used k = 5. The test data consist of the remaining 50 points from
each of the inlier authors and has a size of about 250.

Iris. This dataset consists of 150 records of iris flowers. Each record contains 4 features:
sepal length, sepal width, petal length and petal width. There classes. The training data
were generated by sampling 30 points from the iris-setosa class as inliear and 15 points from
each other class as outliers. We used k = 1. Since the training set is small sized, we used
exact version for SD. The test data consist of all the remaining iris-setosa points and has a
size of about 20.
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