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Abstract

Cell transformation assays (CTAs) are in vitro methods used in the prelimi-
nary assessment of the carcinogenic potential of substances. CTAs are promising
tests for cosmetic, food, and pharma companies because they are not only

quick-and-cheap, but also able to reduce animal-based testing. An assay has the
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simple structure of a randomized one-way experiment, where the experimental
factor is defined by 5 increasing concentrations. Different families of distribu-
tions have been proposed to evaluate the effect of a substance on counts of Type
I1T foci, but all models proposed so far do not consider differences in the num-
ber of viable cells and in the total number of foci occurring among Petri dishes.
In this article, a Bayesian structural causal model is proposed to distinguish
total, direct, and indirect effects of a carcinogen in CTA experiments. The rec-
ommended sample size is calculated by Monte Carlo simulation given the type
of effect and the magnitude to detect. An informative joint prior distribution
on parameters elicited for BALB/c 3T3 CTAs is exploited to obtain the posterior
distribution from each simulated dataset.
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1 | INTRODUCTION

Cell transformation assays (CTAs) are in vitro methods used to screen chemical substances for carcinogenic potential
while reducing animal-based testing.!> In a typical CTA experiment (Figure 1), a preliminary step is performed with
the aim of identifying five dose levels dy, d;, d», ds, d4 of a substance of interest characterized by an increasing degree of
toxicity:'(®**#) untreated negative control (d,), highest nontoxic dose (d;), median lethal dose (LD50, d4) and two further
intermediate dose levels, thus dy < d; < d, < d; < d4. In the second step of a CTA, 10 Petri dishes for each dose level,
d; € Qp, are seeded with activated cells, BALB/c 3T3 in this work,! and after 24 h they are treated for 72 h according to
the reference protocol. At 96 h from seeding (24 + 72), all Petri dishes are washed and the recovery step starts: it lasts for
5 weeks during which cells still alive-viable after treatment replicate, either with or without transformation. Transformed
cells loose contact inhibition therefore they quickly replicate piling up within areas of a Petri dish with recognizable
morphology, called foci. At the end of recovery, all Petri dishes are fixed and stained so that several foci eventually appear
as dark-blue spots (Figure 1, right) and they are classified according to size and morphology into Type I, Type II, and Type
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FIGURE 1 Time table of a CTA with an example of Petri dish after fixing and staining: dark-blue spots are foci, and some of them are
fully transformed foci (also called Type III). Time is expressed in hours, with the end of the experiment after 5 weeks

III foci. The experimental outcome is the number of fully transformed (Type III) foci visually scored within each Petri
dish at each dose level: this is the only class of foci that cause tumors when injected into rats.

The paramount importance of this class of experiments for cosmetic, food, and pharma companies is due to
the possibility of reducing animal-based testing and the overall time required to perform each test: 5 weeks instead
of 2 years are a substantial reduction of time in view of thousands chemicals yet to be tested.* CTAs are not
designed to fully replace the 2-year cancer bioassay test, but they may be useful in preliminary screening for car-
cinogenicity. One way to support wider adoption of CTAs in the industry is the definition of a statistical model
whose structure reflects the main features of a CTA, while accounting for differences of shape and variability
that may occur in the marginal distributions of observable counts across different experiments: transformation into
cancer is the result of several interacting mechanisms and complex multistep cell transitions involving specific
signaling.?

In the literature on in vitro toxicology, the one-way structure underlying many assays has been recognized and con-
trasts of means have been considered in the general linear model framework or using nonparametric techniques.> An
international expert group gathered at the European Centre for the Validation of Alternative Methods (ECVAM), formu-
lated recommendations about the statistical analysis suited to the specific features of CTA (BALB/c 3T3 system).%’ In
Hoffman et al.,? the most recent paper to our knowledge specifically dealing with the statistical methodology for BALB/c
3T3 CTA, the authors concluded that none of the approaches in use are suited to CTA data. They proposed two different
approaches instead, one based on the negative binomial generalized linear model, and another resorting to the general
linear model for Nishiyama-transformed counts.®® A crucial point in the analysis of fully transformed foci pertains to
the choice of a convenient family of probability distribution functions. In a recent work dealing with limitations of the
Nishiyama transformation and with the presence of underdispersion at low doses, counts of Type III foci have been
modeled through the discretization of continuous Beta latent variables to estimate causal effects while increasing model
flexibility.!® All models proposed so far do not consider differences in the number of viable cells and in the total number
of foci occurring among Petri dishes.

We maintain that an improved class of models may be achieved from the perspective of causal analysis, in particular
by developing a parametric Bayesian structural model that exploits protocol features and expert information. In CTAs, the
typical sample size at each dose level is 10 Petri dishes, thus parametric models are a convenient option because they have
the ability of extracting information from data very efficiently when the underlying assumptions, at least approximately,
hold. Prior information may be exploited not only by eliciting the expert degree of belief, but also by recognizing specific
features of the CTA protocol, like cell toxicity found at each dose level in the preliminary step: expert degree of belief about
the number of cells still viable-alive after treatment can be elicited. It is worth noting that the dose-response relationship
is not among the goals of the analysis, given the small number of dose levels and of dishes.

In this work, a parametric Bayesian structural causal model for BALB CTA experiments is proposed to improve
the description of the data generating process by considering the total number of foci and the viability of treated
cells besides the number of fully transformed foci. The proposed model enables mediation analysis, thus expres-
sions to calculate (natural) direct and indirect effects are presented and exploited to determine the sample size
required to reduce the expected uncertainty of estimated effects below a preassigned threshold, using Monte Carlo
simulation.

This article is structured as follows. In Section 2, we detail the Bayesian structural causal model and the proce-
dure for sample size determination. Results on sample size determination are reported and discussed in Section 3.
Section 4 contains concluding remarks and considerations on potential improvements of CTAs based on our
elaboration.
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FIGURE 2 Causal DAGs for a CTA experiment. A circle around a letter denotes a random variable, while a square indicates a quantity
under the control of the researcher (intervention variable). Left panel: DAG for (one batch) homogeneous experimental units. Right panel:
mixed graph for (multibatch) heterogeneous experimental units

2 | ABAYESIAN STRUCTURAL CAUSAL MODEL FOR BALB CTA
EXPERIMENTS

In this section, the proposed Bayesian structural causal model is detailed. We start from the definition of the causal
directed acyclic graph (Subsection 2.1), then the structural causal model is specified in a Bayesian parametric formulation
(Subsection 2.2), and the joint prior distribution on parameters is elicited for the class of CTA experiments based on
BALB/c 3T3 cell lines® (Subsection 2.3). Afterward, mediation analysis is described (Subsection 2.4) and sample size
determination is performed with the direct effect for a selected dose as target estimand (Subsection 2.5).

2.1 | Causal DAG and assumptions

A directed acyclic graph (DAG) is a collection of vertices (nodes) linked by directed edges (arrows) such that any sequence
of equi-oriented edges (head-to-tail) does not visit the same node more than one time.!! Nodes are labels associated to
random variables evaluated on one experimental unit, here a Petri dish. We follow the common practice of avoiding
the distinction between labels and variables, thus, in Figure 2, D is the variable “dose level” of a substance, A is the
random variable “number of viable-alive cells” after treatment, T is the random variable “total number of foci”, either
fully transformed or not, and F is the random variable “number of fully transformed foci”: four variables are assessed on
each Petri dish included in a CTA.

DAGs are suited to represent a useful class of conditional independence relationships among random variables in
a qualitative way, a feature that characterizes the class of graphical models,'? but stronger relationships may be also
represented, as it happens in nonparametric structural causal models (NP-SCMs).!! Here, two nodes are linked by an
arrow, say D — A (Figure 2), because the intervention that sets the manifest variable D equal to d determines a change
in the distribution of A at least for some values in sample space Qp: this is an instance of direct causation at the con-
sidered granularity of representation. If the number of viable cells A after 72 h of treatment on a Petri dish is smaller
than the nominal value at seeding time, then a smaller number T of transformed foci is expected at the end of the
experiment (A — T), and, in turn, a smaller number F of fully transformed (Type III) foci will be observed (T — F).
Oriented edges D — T and D — F represent the action of both toxicity and transformation processes because they are
jointly determined by concentration and type of substance. In other terms, if the number of viable cells A is artificially
made constant, then different concentrations of substance promote early steps in cell transitions with different probabil-
ity, as well as they do with late steps toward full transformation. The square around D (Figure 2) emphasizes that this
variable is under the control of the researcher: random assignment of Petri dishes to dose levels is always performed in
CTAs.

The DAG in Figure 2, left panel, captures the hypothesized causal relationships among nodes D, A, T, F in a qualitative
way: the four nodes suffice to represent one experimental unit of a typical CTA performed using just one batch of reagents
and of cells. The causal DAG can be rewritten as a system of nonparametric structural equations, A = hu(d, Uya), T =
hr(d,a, Ur),and F = hg(d, t, Ur), where each endogenous variable is a deterministic function, A, of its parent variables in
the DAG and of one exogenous random variable, U, that may or may not be explicitly indicated in the DAG.1(sec.1-4:sec.7)
The exogenous random variables Uy, Ur, and Up, not shown in Figure 2, represent the action of all the other causes not
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explicitly considered in the model respectively on A, T, and F. For the intervention node D, the nonparametric equation
D = hp(Up) reduces to D = d;, where d; is the value fixed by manipulation.

The elicitation of deterministic functions and of the joint probability distribution on exogenous variables is a daunt-
ing task if the causal model does not stem from mechanistic explanations of cellular behavior at molecular level.
Here we avoided this exercise by considering the conditional probability distributions induced on each endogenous
variable,'1(¢¢14.2) a5 motivated hereafter. Firstly, our causal DAG (Figure 2, left panel) is Markovian, which means that
all common causes of any pair of variables in the DAG, whether measured or not, are also included in the DAG. Instead,
the mixed graph in Figure 2, right panel, is an example where some common causes of A, T, F are not explicitly consid-
ered, like the case of a lab protocol in which heterogeneous batches of cells are used in different Petri dishes. Secondly,
modularity of functions holds, thus the intervention operated on a given variable does not change how variables, other
than its children, behave. Finally, the factorization into the product of marginals follows from the Markovian condition on
random variables Uy, Ur, Up, that is, p(up, U, ur, ur) = [ [, p(ux), and univariate conditional distributions are induced
on endogenous variables D, A, T, F.11(theoreml.41) Bor example, A(d;) = ha(d;, Uy) is the notation for the random variable
A induced by the exogenous variable U, when the dose level of a chemical is equal to d;.

2.2 | Parametric Bayesian specification

A carefully selected parametric model may improve the quality of inference when the sample size is small, as it happens
for CTAs adopted in production. Expert degree of belief is a key ingredient to build effective statistical models,'* and
parametric Bayesian models are able to exploit such information in a quantitative way.

In Figure 2, left panel, random variables measured in one experimental unit (Petri dish) are shown. In what follows,
index i € {0,1,2, ... } refers to dose levels, with d; € Qp a specific dose, while index j = 1,2, ... refers to Petri dishes
treated at the same dose level i, thus Fj; is the random variable “number of fully transformed foci” in dish j at dose level
i. In what follows, we consider |Qp| = 5, because this is a very common number of dose levels selected in practice.

Parameters are indicated by Greek letters, for example, 6,4 is the vector of parameters required to specify the conditional
distribution of alive-viable cells. Constants, like the initial number of cells in each Petri dish, are indicated by letter c, for
example, ¢ = 10° is the typical number of cells initially seeded before treatment. All other parameters are unknown and
included into the model as random variables, and 6 = (84, 0r, OF) is the vector including all the parameters.

The joint distribution of random variables given D = d; is factorized according to the DAG in Figure 2:

plai, ti, fildi, 0) = Hp(aiﬂdi, 04) - p(tijldi, aij, O7) - p(fijldi, tij, OF), ¢Y)
J

where a; = (a1, aiz, -..), ti = (i1, iz, .- ), fi = (fi1, fiz, -..) are vectors collecting variables at the same dose level. The
joint distribution over doses is defined using (1):

Dy, tevs, favs |days, 0) = Hp(az, ti, fildi, 0), (2)
i

where v indicates that vectors over index i are considered, for example a.,» = (a;,a,, ... ).

The proposed Bayesian model consists of three hierarchical levels defined by the causal DAG defined in Subsection 2.1.
The top level is made by the number of viable-alive cells that were modeled by choosing a smooth family of distributions
because a sudden jump of probability value at subsequent counts a and a + 1 is unlikely for viable cells, whichever a,
thus it is neither plausible that P[a + 1] >> P[a], nor that P[a + 1] << P[a]. Another important feature to address is that
counts are not larger than 1 x 10° cells, that is, the initial number of seeded cell within each Petri dish: at low or null
dose levels, the distribution of A is mostly concentrated on counts values close to 1 x 10° cells. Accordingly, the following
generalized logit transformation was adopted:

X

A ) = In (—) 3)

where A(x; c) is the analogous of the logit transformation for values of x ranging between 0 and c, rather than for values
ranging from 0 to 1, thus, for ¢ = 1, (3) equates to the logit function. The inverse of (3) is:
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exp()

1
Ao =c 1 + exp(l)

C))
with | € (—o0, +00). By recognizing the large size of the sample space of A and the order of magnitude of the expected
variability, a Normal likelihood function on the generalized logit scale was specified for the number of viable cells:

A
MAij;ca) =1n <#> ~ N(fai, 64,0), (3)
CaA —AiJ

where ¢4 = 1000 thousands cells; parameters p4; € R and o4; € R* play the role, respectively, of mean and standard
deviation of viable-alive cells on the generalized logit scale. It is worth noting that the choice of the Normal family
of distributions for transformed counts is not new in the literature, for example, it has been used after the Nishiyama
transformation,® but here alive-viable cells are modeled, instead of foci, and the generalized logit transformation
guarantees the respect of boundaries.

The total number of foci on a Petri dish is naturally bounded by the size of a standard Petri dish, whose diameter is
10 cm. Besides eliciting the maximum value of T over dose levels and alive cells, some anchoring during elicitation is
obtained from the comparison with dense packings of congruent circles in a circle,'* although foci are only approximately
circular, have different size and are well separated one from another, that is, scoring is performed only if they are not
confluent into one composite focus. Another option is to check extreme quantiles of an approximating distribution, like
the Poisson one, so that if the expected value of T at a given dose level is equal to 30 then the two quantiles 0.999 and 0.001
are respectively equal to 48 and 15. A rough calculation based on circular foci all of radius 0.67 cm and on the useful portion
of a Petri dish from its center, which has radius equal to 4.75 cm, provides an estimate of the maximum number of foci
equal to 4.752/0.67> = 50.26. In this estimate, differences of size and the distance among foci are not taken into account.
All things considered, including the evaluation of our expert, the sample space of T was defined as Qr = {0, 1, ... ,50}.
At level two, the likelihood of the total number of transformed foci is defined as a function of the number of viable-alive
cells through the following Normal kernel:

2
1/t— Hrij
pr(tlprij, o1,i) < exp {—— <—ld> } t=0,1, ... ,50, (6)
2 UT,i

where o7; € R* is the scale parameter at dose level i and yr;; the mode. An additive decomposition of xr;; on the logit
scale is introduced after considering its dependence on the number of alive cells:

Apr,ij, 50) = MAij, ca) + Az, 1) 7

with 4 defined in (3). Parameter 7; € (0, 1) is the dose-dependent transformation rate, that is, the number of transformed
cells over thousand viable cells. From (7), it follows that:

50 'AiJ'Ti

cal =) — A;;(1 = 279) (®)

HTij =

thus pr;; are entirely defined in terms of already defined quantities.
At the third level, the likelihood of the number of fully transformed foci is assumed to follow the binomial distribution
with sample size equal to the number of fully transformed foci:

F;; ~ Bin(¢y, Tij), ©)

where ¢); is a parameter representing the probability of full transformation at dose level i.

The proposed model is a flexible starting point open to refinement, especially as regards prior distributions. We do not
exclude the possibility that specific classes of substances exist for which simpler models and stronger prior information
work well: here a widely applicable model was developed by exploiting the common features of BALB/c 3T3 CTAs. Nev-
ertheless, the small sample size of typical CTAs makes the investigation of more general families of distributions difficult
outside specifically designed experiments. In our previous empirical investigations, the Poisson and the Negative Binomial
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families did not pass posterior predictive checks based on discrepancy measures. Secondly, here the quantitative con-
centration of the considered chemical was partitioned into discrete dose levels, in agreement with the recommendations
from the literature, which recognizes the limited number of observations and of distinct doses levels.®

2.3 | Elicitation of an informative joint prior distribution on parameters

The proposed Bayesian causal model at dose level i depends on parameters (¢4, 04, Ti, o1, ¢;). The CTA protocol pre-
scribes the presence of a negative control, i = 0, of one or few dose levels close to the no-observed-adverse-effect-level
(NOAEL), and the last dose level just above the median lethal dose that kills 50% of cells (LD50). Here, we detail our proce-
dure to elicit an informative joint prior distribution on parameters by considering a generic carcinogenic chemical under
testing in the typical case of five dose levels (d;, i =0, 1,2, 3,4). We assume that each parameter is a priori independent
of each other conditionally to the dose level, and the parameter vectors at different dose levels are a priori independent:

P(Hais Oais Tis 0T.is $i) = P(ua)P(oa)p(T)p(orp(ei) i=0,1,2,3,4. (10)
The elicitation has been performed through interview to an expert with 15 years of experience in BALB/c 3T3

CTA tests of genotoxic and nongenotoxic substances, either sampled from the environment or from pure stock of
chemicals.

2.3.1 | Prior distribution on p4;
Atdoselevel i =0, ... ,4, uncertainty on p,; is represented by a Normal distribution:

Hai ~ N(maj, sa4), (11)
where the elicitation of hyperparameters m,; and s,; was performed by asking to the expert the following question:
“Consider a large number of Petri dishes at the same dose level i. What are the first and the 99th percentiles of the
mean number of viable-alive cells per dish?”. Denote the requested percentiles as ag o1 ; and ag .99, respectively. We deter-
mined m,; and s4; by matching expected value and standard deviation of the Normal distribution with the first and
99th percentiles respectively equal to A(@g1.i,ca) and A(aggg;, ca). For dose level dy (the negative control), the expert
stated ago1; = 990 and agg9s; = 999.5. In this case, A(apo1i,ca) = 4.595 and A(agg9,ca) = 7.6, leading to m,; = 6.098
and s4; = 0.646. Values of hyperparameters of m4; and s4; at different dose levels were obtained in a similar way
(Table 1).

2.3.2 | Prior distribution on o4

The uncertainty on parameters o4;, i = 0,1, 2, 3,4 is here described by uniform distributions:

oai ~ Unif(uy 4, Uz a,), (12)

TABLE 1 Results of the elicitation of hyperparameters m,; and s4 ;

Dose Q.01,i Q.99 M@p.01,i5€Ca) Map.99,i5€Ca) my; SA,i

do 990.0 999.5 4.595120 7.600402 6.097761 0.645923
d; 980.0 999.5 3.891820 7.600402 5.746111 0.797082
d, 800.0 840.0 1.386294 1.658228 1.522261 0.058446
ds 640.0 680.0 0.575364 0.753772 0.664568 0.038345

d, 475.0 525.0 —0.100084 0.100084 0.000000 0.043022
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TABLE 2 Results of the elicitation of hyperparameters u; 4; and u, 4;

Dose my,; Qos,i Goo1i Oo99i  A@osi— Bo.ois€a)  A@osi+ Bogois€a)  Urai Uza,i

dy 6.097761 997.757 0.01 0.5 6.102240 6.350487 0.001925 0.108636
d; 5.746111 996.815 0.01 1.0 5.749266 6.123950 0.001356  0.162417
d, 1.522261 820.871 0.01 2.0 1.522329 1.535923 0.000029  0.005872
ds 0.664568 660.286 0.01 3.0 0.664613 0.677971 0.000019  0.005762
dy 0.000000 500.000 0.01 5.0 0.000040 0.020001 0.000017  0.008597

where u; 4; and u,4; represent the minimum and the maximum plausible values of 6,4;. The median number of
viable-alive cells for dose level i given the elicited value m, ; is equal to:

Cq - €Xp(My ;)
1+ exp(ma;)

(13)

-1
Qosi = A" (Mg, ca) =

the elicitation of o4 ; was performed by asking to the expert the following question: “Consider the average of a large num-
ber of Petri dishes at the same dose level i. Based on your previous statements, the median number of alive-viable cells per
dish is equal to ag 5;. At each dose level, how much should you increase (decrease) ao s; to reach the 99th (first) percentile
for the average number of alive-viable cells?”. The requested percentiles are agg9; = Qg5 + S0.99,; and Ao p1.i = 0.5 — 60.01.i
respectively. If we assume that A(A;;, c4) follows the Normal distribution with mean m,; and standard deviation ¢, the
minimum and the maximum plausible value of 6,4 ; are:

Maosi — 80.01,iCa) — M4

Urai= s
<0.01
Maos,i + 80.99,i,Ca) — My
Uppj = oo , (14)

where Zg 99 is the 99th percentile of the standard Normal distribution. The resulting values of hyperparameters u; 4; and
U, 4,; are shown in Table 2.

2.3.3 | Prior distribution on 7;

The distribution on parameter 7;, i =0, ... ,4 is assumed to follow a Normal distribution on the logit scale:

Mz, 1) = log <1L> ~ N(mj, ;). (15)
I

1

The elicitation of hyperparameters m,; and s, ; at each dose level i was anchored to a; 5, that is, the median number of
viable-alive cells at dose level i obtained from the elicited value m,; shown in (13). We asked to the expert the follow-
ing question: “Consider a large number of Petri dishes at the same dose level i. Consider the case in which the number
of alive-viable cells at dose level i is always equal to the median a; s, a value obtained in a previous step of the elicita-
tion. What are the first and the 99th percentiles for the average total number of transformed foci per dish?”. Denote the
requested percentiles as 01,7 and o .99 1, respectively. From (8), it follows that:

B urijca — Aij)
50A;j + prij(ca — 2Ai)

(16)

Ti

with c, the initial number of seeded cells. The first and 99th percentiles of the transformation rate z; are:

Ho.01,7,/(Ca — Qo5,0)
50 - o5 + Hoo1,1,i(Ca — 2+ Apsi)

70.01,i =
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TABLE 3 Results of the elicitation of hyperparameters m,; and s,

Dose my Qos,i Ho.01,T;i Ho.99,T,i ATo.01,51) ATo.99,51) m, S,i

dy 6.097761 997.757 0.1 1.2 —12.310367 —9.803170 —11.056769 0.538870
d; 5.746111 996.815 0.5 1.6 —10.341231 —9.155608 —9.748419 0.254825
d, 1.522261 820.871 5 13 —3.719486 —2.568230 —3.143858 0.247438
ds 0.664568 660.286 12 23 —1.817247 —0.824911 —1.321079 0.213282
dy 0.000000 500.000 22 38 —0.241162 1.152680 0.455759 0.299577

H0.99,T,i(C4 — Qo5,0)
50 - ags,; + Mo.99,1,i(Ca — 2 - Aps1)

an

70.99,i =

thus m,; and s.; are obtained by matching expected value and standard deviation of the Normal distribution to the first
and 99th percentiles, that is, 4(7o 01,5, 1) and A(zp.99,, 1). The resulting values of hyperparameters m.; and s, ; are shown in
Table 3.

2.3.4 | Prior distribution on or;
Uncertainty about o7; is here modeled through a uniform distribution:

or; ~ Unif(uy 1, Uz 1),
where u; 7; and u, 7; represent the plausible lowest and highest values that or; can take. The elicitation of hyperpa-
rameters u; r; and u, 7; is anchored to the median value of 7 and A at dose level i, values already elicited as m,; and
mg

50 - exp(mA,i + mf’i)
1+ exp(mgy; + m;;) '

tosi = A" (ma; + my;, 50) =

(18)

The following question posed to the expert drove the elicitation: “Consider a large number of Petri dishes at the
same dose level i. Given the median value of the number of transformed foci per dish ;5 elicited in a previous step,
choose a non negative integer dr; and consider the interval defined by counts |t — #5;| < dr;: this interval represents
a plausible collection of counts for T (with probability above 0.75) that contains the median at dose level i. May you
state the minimum zr;,m, and the maximum value zr;mq that you may observe for the relative frequency of Petri
dishes whose total number of foci is not larger (in absolute value) than dr;?”. The elicited quantities refer to the
probability:

P(|t = pr;jl < dr) =77 19

With (7 7.i min, 71.i.max) the elicited interval for zr;. The implied values of hyperparameters u; r; and u, r; are then obtained
as the solution of:

Uy r,; = arg, Z prtltosi, W) = T imax |
t|t=prjl<dr;

Uy r; = arg, z pr(tltosi, W) = 7Timin (20)
tift—pr|<dp;

and they are shown in Table 4.
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TABLE 4 Results of the elicitation of hyperparameters u; 7; and u r;
Dose fo.s; dr T i, min T i,max Uy, Ui
dy 0.35 1 0.95 0.99 0.562815 0.736778
d; 0.90 1 0.85 0.99 0.364162 0.649950
d, 8.25 1 0.80 0.95 0.778991 1.179497
d; 17.08 2 0.80 0.95 1.305425 1.970565
dy 30.60 3 0.85 0.95 1.708549 2.372781
TABLE 5 Results of the elicitation of hyperparameters mp; and sg;
Dose Po.o1i Po.90,i Aeho.01,i,1) Ao.99,151) Mg SF,i
dy 0.01 0.99 —4.595120 4.595120 0.000000 1.975251
d; 0.01 0.99 —4.595120 4.595120 0.000000 1.975251
d, 0.10 0.99 —2.197225 4.595120 1.198948 1.459873
d; 0.15 0.99 —1.734601 4.595120 1.430259 1.360442
dy 0.20 0.99 —1.386294 4.595120 1.604413 1.285580
2.3.5 | Prior distribution on ¢;
The Normal family of distributions is exploited to describe the uncertainty on ¢;, i =0, ... ,4 on the logit scale:
- bi
A, 1) =1n =0 )" N(mgi, Sr ). (21)
— ®i

Elicitation of hyperparameters mp; and sp; was performed by asking to the expert the following question: “Consider a
large number of Petri dishes at the same dose level i all with the same value of observed total number of foci, say T;;
constant over i. What are the first and the 99th percentiles for the fraction of fully transformed foci per dish?”. Denote
the requested percentiles as ¢ 01,; and ¢o g9, respectively. Table 5 shows values of mp; and sp; computed by matching
expected value and standard deviation of the Normal distribution to the first and 99th percentiles, respectively computed

as A(¢o.o1,i, 1) and A(¢o.99,i, 1).

2.3.6 | Revision of the elicited joint prior distribution on parameters

The final step of the elicitation consisted in the inspection of the marginal distribution of the manifest variables A, T, and F
implied by the elicited joint prior distribution on parameters. At this purpose, marginal distributions were approximated
by a random sample of size 10,000. The expert did not find any implausible feature neither in graphical nor in numerical
summaries (Figure 3 and Table 6).

2.4 | Mediation analysis

Mediation analysis in a CTA experiment aims at evaluating the way a chemical determines changes in the outcome,
that is, the number of fully transformed foci. Changes in the outcome may be determined through different paths:
(1) increase/decrease of the number of alive-viable cells and of the total number of foci, which are mediating variables
determining the indirect effect; (2) increase/decrease in the number of fully transformed foci given the total number of
foci in a Petri dish, which represents the direct effect of a chemical on F. Here we denote the reference dose as d, because
negative control (water) is the typical choice to declare a chemical carcinogenic, but a foregoing dose d;_; as reference for
d; could also be of interest, for example, in the analysis of turning points.
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FIGURE 3 Distribution of a random sample of size 10,000 from the elicited joint prior distribution on parameters

The total effect (TE) of dose d;,i > 0, of a substance with respect to d is the combined result of all paths from D to
F:11,15,16(sec.4.5)

TE(do, d;) = E[hr(d;, hr(di, ha(di, ua), ur), ur)] — Elhr(do, hr(do, ha(do, ua), ur), ur)l, (22)

where deterministic functions hy, hr, hr were introduced in Section 2. The natural direct effect (NDE) and the natural
indirect effect (NIE) at dose d; are defined as:

NDE(do,d;) = E[hr(d;, hr(do, ha(do, ua), ur), up)] — E[hp(do, hr(do, ha(do, ua), ur), up)], (23)
NIE(do, d;) = Elhr(do, hr(d;, ha(d;, ua), ur), up)] — Elhp(do, hr(do, ha(do, ua), ur), up)], (24)

where, for example, hr(dy, hr(d;, ha(d;, ua), ur), up) cannot be experimentally measured because it pretends that treat-
ment d; is active in paths mediated by T, while d; is not active along path D — F.

The above equations are formulated in terms of nonparametric individual components, but our interest is on popula-
tion averaged effects, therefore estimates may be equivalently obtained using Pearl’s formulas.!®!8 The DAG in Figure 2,
left panel, satisfies the conditions for identifying natural effects,!” as the treatment is randomized and confounding of the
relationship between the mediators and the outcome is absent. In a CTA experiment, mediation effects implied by our
Bayesian structural causal model take the following forms (see the proof in the Appendix):

NDE(d.d;) = (¢ — ¢po) - E[T|D = dp], (25)
NIE(do,d;) = ¢ - {E[T|D = d;] — E[T|D = dp]}, (26)
TE(do, d;) = ¢; - E[T|D = d;] — ¢po - E[T|D = do]. (27)

In (25), NDE is null either if the fraction of fully transformed foci at each of the two dose levels is equal, or when the
average of the total number of foci is null at the reference dose level. The average of T in CTAs is typically above zero and
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TABLE 6 Quantiles of the distribution of a random sample of
size 10,000 from the elicited joint prior distribution on parameters

Number of viable-alive cells (A)

Dose 0% 25% 50% 75% 100%
do 973.3 996.6 997.8 998.6 999.8
d; 945.1 994.5 996.8 998.2 999.9
d, 786.8 815.0 820.9 826.7 848.7
ds 626.1 654.5 660.5 666.1 691.7
dy 456.5 492.7 500.0 507.0 541.3

Total number of transformed foci (T)

Dose 0% 25% 50% 75% 100%
do 0 0 0 1 7

d; 0 0 1 2 14

d, 2 7 8 10 17

ds 7 15 17 19 30

ds 13 28 31 33 45

Number of fully transformed foci (F)

Dose 0% 25% 50% 75% 100%
do 0 0 0 1 5

d; 0 0 0 1 11

d, 0 4 6 8 17

ds 0 10 13 16 26

dy 0 19 25 29 44

below 6 when the reference dose is water. The value of NIE in (26) is null either when the fraction of fully transformed foci
is null in the reference dose, or when the expected values E[T|D = d;] and E[T|D = d,] are equal, whatever the value of
¢o. With dj set to the negative control, ¢ is often not null and the difference in the expected value of T is large at high dose
levels. Large expected values of T in the negative control and at large dose levels entail the following benefits: (i) improved
estimates of ¢s; (ii) large values of NDE; (iii) a null NIE in a revised CTA protocol where E[T|D = d;] = E[T|D = do],
because TE is equal to NDE, thus the total effect also describes the direct effect of a chemical on the number of Type III
foci.

In a CTA experiment, NDE describes the ability of a chemical to promote all transformation steps toward full carcino-
genicity, while NIE is mostly about the ability of a chemical to activate only some (initial) steps of transformation that
increase the total number of foci.

2.5 | Sample size determination

In CTAs, a chemical is declared to be carcinogenic when the number of Type III foci, here called number of fully trans-
formed foci, is large at dose d;, i > 0, and small at d, (the negative control), as a result of a deeply activated transformation.
The interpretation is that the tested chemical was able to increase the number of fully transformed foci beyond the level
naturally present in BALB/c 3T3 cells. On these grounds, toxicologists are not currently interested in the total number of
foci because they do not cause tumors when injected into mice, a phenomenon possibly due to the occurrence of a limited
set of modifications in cells that originate these type of foci. From the joint prior distribution on parameters elicited in
Subsection 2.3, the implied distributions of TE, NDE, and NIE with respect to dy shown in Table 7 appear coherent with
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TABLE 7 Mean and quantiles of TE and NDE with respect to dose d, implied by the elicited
joint prior distribution on parameters (Monte Carlo approximation based on 100,000 draws)

Total effect (TE)

Dose Mean 2.5% 25% 50% 75% 97.5%
d; vs. dy 0.323 —0.776 —0.105 0.144 0.556 2.446
d, vs. dy 5.602 0.926 3.977 5.673 7.241 10.226
dz vs. dy 12.473 3.391 9.963 12.970 15.361 19.434
dy vs. dy 23.318 8.260 19.582 24.281 27.990 33.491

Natural direct effect (NDE)

Dose Mean 2.5% 25% 50% 75% 97.5%
dy vs. dy -0.03 —0.631 —0.152 —0.001 0.149 0.617
d, vs. dy 0.119 —0.366 —0.033 0.090 0.242 0.781
dz vs. dy 0.143 —0.304 —0.013 0.109 0.260 0.803
dy vs. dy 0.162 —0.258 0.000 0.124 0.271 0.843

Natural indirect effect (NIE)

Dose Mean 2.5% 25% 50% 75% 97.5%
dy vs. dy 0.329 —-0.534 —0.002 0.120 0.461 2.295
d, vs. dy 3.916 0.152 1.571 3.702 5.903 9.358
d3 vs. dg 8.317 0.332 3.438 8.127 12.781 18.144
dy vs. dy 15.015 0.606 6.238 14.789 23.244 31.812

the above described practice: mean values of NDE always close to zero, large mean values of NIE, and nonoverlapping
95% credibility intervals for TE at all dose levels, i > 0.

Nevertheless, we conjecture that NDE should be considered instead. Why should TE be recommended as causal esti-
mand if the only feature of interest is the increase in the number of Type III foci, whatever the total number of foci?
A large value of TE may be due to a large difference between the average values of T at d; and d, even if the differ-
ence ¢; — ¢ is small. A small difference ¢; — ¢ indicates that the considered chemical is not effective in promoting
the complete transformation of foci, thus such a chemical could be declared carcinogenic because it is strong in
enhancing the starting steps of transformation, although weak in completing all the essential steps toward full car-
cinogenicity. Thus, from now on, NDE will be the causal estimand and the target quantity considered in sample size
determination.

The optimal sample size in a CTA experiment is here defined as the minimum number of Petri dishes that must be
collected at the considered dose level so that the expected value of an objective function quantifying uncertainty is equal
or below the threshold defined by the toxicologist. In order to illustrate the approach, we consider an expected value of T
at dose levels dj equal to 4 and a difference of fractions ¢s — ¢po = 0.125, a small but relevant value. Then, from (25), we
obtain the target value NDE = 0.5. Here, we determine the expected value of the width of the 95% credibility interval for
NDE by Monte Carlo simulation.

Synthetic datasets may be simulated from a parametric model after assigning a numerical value to all elements of the
vector of model parameter 6. The selected target quantity is NDE = 0.5, which is a function of 6 and of the probability dis-
tribution of T, which also depends on 6. In other terms, several distinct values of § may lead to the value of NDE specified
by the expert. The collection of #s leading to NDE = 0.5 was found by means of a preliminary Monte Carlo simulation
in which 1 x 10° parameter values were randomly drawn from the joint prior distribution elicited in Subsection 2.3, then
the value of NDE was calculated for each sampled 6: 10 vector values {6, ... , 0]} produced an NDE value in the interval
0.5 + 1074, thus they were further exploited in the simulation of synthetic datasets.

A Monte Carlo simulation was performed as detailed in Algorithm 1 for values of sample size n = 10, 20, 30, 50 at
dose level d; with reference d,. Specifically, we simulated 100 synthetic datasets for each selected parameter value 67, k =
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1, ..., 10, and we performed a MCMC simulation for each generated dataset and the prior distribution in Subsection 2.3
to obtain the corresponding posterior distribution of model parameters and the implied value of NDE.

We computed the following three statistics for NDE with respect to datasets: (i) the average posterior mean, denoted
as m; (ii) the percentage of 95% posterior credibility intervals not containing value 0, denoted as z; (iii) the average width
of 95% posterior credibility intervals, denoted as w. Statistics m and z were computed to check the validity of the results
obtained by running Algorithm 1: as the sample size increases, m should converge to 0.5 and Z should converge to 100 to
indicate, respectively, consistency of the estimation and an increasing statistical power (i.e., Lindley’s test). The optimal
sample size for a given dose level is identified by comparing the value of statistic w at several different sample size values
with a threshold defined by the toxicologist.

Algorithm 1. Computation of statistics m, z, and w for the predicted natural direct effect (NDE) in a CTA experiment

Input:

« target value of NDE, e.g., NDE = 0.5;
« n: the considered sample size;
e d;,i>0: the considered dose level;

« J: the number of synthetic datasets to be simulated at the considered sample size n for eachparameter value 6y, e.g.,
J = 100.

Steps:

1. Selectvalueséy,...,0;, ..., 0y of model parameters among the 1 X 10° values sampled from the joint prior distribution
that provide the specified target value of NDE, e.g., NDE = 0.5;
2. Initialize M, Z and W as empty matrices with K rows and J columns.
Fork=1,...,K:
Forj=1,...,J:

W

- simulate a dataset Dy of size n given 97‘(‘;

« approximate the posterior distribution p( | Dy ;) byMarkov Chain Monte Carlo (MCMC) simulation with the prior
distribution elicited in Subsection 2.3;

« calculate the NDE for the current posterior distribution;

« set M in position (k, j) as the mean of NDE(d,, d;) with respect to p(@ | Dy);

+ compute the 95% credibility interval for NDE(dy, d;) with respect to p(¢ | Dy), denoted as Ij = (I k), 2 x;);
« set Z in position (k, j) as 1 if T ; does not contain value 0, otherwise as 0;

« set W in position (k,j) as I xj — L1 .

Output:

« m as the average of M;
« 7 as the average of Z;

« w as the average of W;

3 | RESULTS

In the elicitation of the joint prior distribution on parameters performed in Subsection 2.3, we considered five dose levels,
the minimum number recommended for CTAs, but d, and d; mostly provide information on the carcinogenic potential:
d; is a dose selected to bear almost no effect; toxicity at d4 kills half of the initial cells, and it may dominate and even
interfere with the carcinogenic transformation. For these reasons, we illustrate our method for sample size determination
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TABLE 8 Results of sample size determination for the natural direct effect
(NDE) of dose d; with respect to dose d (the negative control). The specified target
value of NDE is 0.5, and the results are based on 1000 synthetic datasets (100 for each
of the 10 parameter values implying NDE = 0.5 + 107%)

Statistic m

n Mean SD Median 2.5th perc. 97.5th perc.
10 0.404 0.124 0.391 0.188 0.673

20 0.445 0.098 0.438 0.266 0.651

30 0.459 0.083 0.460 0.299 0.629

50 0.475 0.066 0.472 0.355 0.609
Statistic z

n Mean SD Median 2.5th perc. 97.5th perc.
10 97.7 15.0 100.0 100.0 100.0

20 99.9 3.2 100.0 100.0 100.0

30 100.0 0.0 100.0 100.0 100.0

50 100.0 0.0 100.0 100.0 100.0
Statistic w

n Mean SD Median 2.5th perc. 97.5th perc.
10 0.475 0.076 0.467 0.346 0.644

20 0.367 0.055 0.362 0.275 0.476

30 0.310 0.046 0.308 0.229 0.393

50 0.247 0.037 0.248 0.183 0.309

Note: Statistic m: average posterior mean. Statistic z: percentage of 95% posterior credibility
intervals not containing value 0. Statistic w: average width of 95% posterior credibility intervals.

by focusing on dose level d; only. We investigated the following sample size values: n = 10, 20, 30, 50, because n = 10 is
the typical sample size of a CTA experiment and n = 50 is currently considered a large sample size.

A Markov chain Monte Carlo (MCMC) simulation was performed on each synthetic dataset generated as described
in Algorithm 1 using the Stan software with R,'° by means of the rstan package.?%?! In particular, a single chain was
run for each synthetic dataset, discarding the first 20,000 draws and keeping the following 40,000 thinned by 4. The
Geweke’s convergence diagnostic was always satisfactory.?? Algorithm 1 was executed on the Google Cloud Platform by
defining an instance in Compute Engine (https://cloud.google.com/compute/) with C2-standard-16 machine type made
by 16 virtual CPUs, 64 GB of RAM and a permanent disk of 100 GB (maximum used space 96% at sample size 50). By
running 10 Markov chains in parallel (one for each virtual CPU), the execution of Algorithm 1 took, at n = 10, 20, 30, and
50, respectively, 2h g4m shim 7h 37m and 13" 20™ (data available on request from the authors).

Results obtained from Algorithm 1, were checked for convergence of m to the specified target value NDE = 0.5. Since
the joint prior distribution on model parameters is highly informative and the specified target value NDE = 0.5 is little
likely a priori, bias is expected and indeed present, but it definitely decreases as the sample size increases (Table 8). There-
fore, we recommend a larger number of synthetic datasets, say 1000, to improve the precision of sample size determination
when the specified target value for NDE is a priori very unlikely, say less than our value of 0.5. Furthermore, longer MCMC
simulations could be needed in case of bad Markov chain mixing. Interestingly, our results show that n = 50, which is
currently considered a very large sample size in CTA experiments, does not guarantee an unbiased estimate of NDE when
its true value is 0.5 (Table 8).

For what concerns the statistic z, the mean value for n = 10 is 97.7, which increases to 99.9 for n = 20, and is equal to
100 for n = 30 or more. These findings indicate a very high chance of getting a significant estimate when the true NDE
value is 0.5, even with a sample size typically adopted in CTA experiments. The statistic w, that is, the average width
of 95% posterior credibility intervals, is our objective function for sample size determination: the higher is the statistic,
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the higher is uncertainty in the estimate of the considered mediation effect at a given sample size. As expected, the mean
of w decreases monotonically as the sample size increases. After eliciting from the toxicologist a maximum uncertainty
on NDE equal to 1/3, we calculated a sample size equal to 27 by linear interpolation, which is almost three times the
minimum size recommended in the literature and generally adopted in practice. It is worth noting that the sample size
found in this work depends not only on the selected effect size but also on the type of effect, that is, NDE, NIE or TE, thus
it is specific for such target.

4 | CONCLUDING REMARKS

CTAs are relatively cheap and fast tests when compared with in vivo tests to perform the preliminary screening on car-
cinogenicity of compounds. In order to find the minimum sample size to adopt in a CTA experiment and to overcome
the limitations of some statistical approaches proposed in the literature, we developed a causal DAG which improves the
description of the data-generating process and supports mediation analysis. A parametric Bayesian causal model was built
by exploiting the main features of the BALB/c CTA protocol, then an informative joint prior distribution on parameters
was elicited from an expert. Afterward, we derived the expression of mediation effects for CTAs and performed Monte
Carlo simulations to determine the sample size required to reduce the expected uncertainty of estimates below a preas-
signed threshold. Our algorithm may accommodate several different choices of target estimand, but we provided some
arguments in favor of the natural direct effect (NDE). Sample size determination was illustrated for a target value of NDE
equal to 0.5.

Users of the proposed model should be aware of some limitations. The current model formulation does not address
the case in which the same CTA is replicated with different batches of cells and/or reagents, for example, in different lab-
oratories. Similarly, a protocol extension in which Petri dishes are seeded using different batches of cells and/or reagents
is not currently covered. The mixed graph in Figure 2, right panel, accounts for the inherent heterogeneity of cell lines
and serum that may determine confounding between mediators and the outcome. Another limitation pertains to the
transition of a cell toward cancer, a change of state that was implicitly assumed always to pass through non-Type III foci:
this feature has not yet been confirmed by experiments focused on measurements at molecular level, thus it would be
interesting to extend the proposed model to also include these events. Last, despite that we elicited an informative prior
distribution on parameters that should encompass the whole set of substances that may be tested, refinements of the
proposed prior distributions might be considered for chemicals belonging to specific classes of compounds, for example,
genotoxic substances.

In the last few years, the improvement of the basic BALB CTA protocol lost momentum. One direction of research
dealt with the automation of visual scoring to reduce subjectivity during the attribution of foci to Type I, IT, III classes.?32*
Other authors modified the basic BALB CTA by adding substances of therapeutic interest, then they combined the BALB
CTA with several endpoint applications for protein analysis as a tools to elucidate cancer mechanism at higher resolution.’
Current interest is mostly devoted toward the creation of a panel of tests covering multiple biological traits to be jointly
considered as an integrated approach for the testing and assessment (IATA) of chemical nongenotoxic carcinogens.?

We envision several areas of future research related to Balb CTA. Firstly, the code implementing our Monte Carlo
algorithm is not currently optimized neither for speed nor for memory usage, thus larger simulations may benefit from
improvements in these directions. Secondly, in our elicitation with the toxicologist, we found that NDE is often very small
and even null at each dose level. A revision of the CTA protocol could be considered by toxicologists to obtain a very high
T and a very low F in the negative control (water), in order to improve the estimate of NDE and therefore the declaration
of carcinogenicity. Thirdly, a model with higher level of granularity where single cells are experimental units deserves
attention because molecular features (e.g., mRNA and metabolites) and inter/intracellular signals are the fundamental
determinants of cell survival, transformation and complete transformation. This level of description still represents a
challenge for the available lab techniques. Fourthly, the proposed Bayesian model could be also of interest outside the
considered causal framework, especially after marginalization with respect to T and A in order to obtain a flexible class of
probability distributions for F. Such marginalized model is potentially able to explain atypical samples of counts where
the within-dose sample variance of F is not only substantially smaller than the mean at the same dose, but sometimes
even null.!® Indeed, specifically designed experiments involving dozens of known carcinogens are needed to evaluate the
utility of this marginalized model, as well as the generality of the family of distributions employed in the proposed causal
model. As fifth and last place, elicitation from a panel of experts seems a natural way to support IATA, an increasing line
of research,? and it seems also useful to gather beliefs maturated in experiments on widely different classes of substances.
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Finally, we offer a new challenge to the toxicologist: is the magnitude of NDE correlated with any useful feature
pertaining carcinogenicity in humans? We conjecture that NDE is a better candidate than TE in this sense, as NDE better
describes the ability of a chemical to cause deep alterations of cell metabolism, not just enhanced replication. If this
should not be the case, then “able to deeply alter metabolism” is the event on which causal inference could alternatively
be directed. !’
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APPENDIX 1. COMPUTATION OF MEDIATION EFFECTS

The natural direct effect (NDE) of dose level d; with respect to dose level dj is:

NDE(do.d;) = Z/{E[F|D =d,A=a,T=t]-E[FID=dy,A=a,T=1]}patD=do) - da
t
a

= 2(¢i — o) - t/P(t|D =dop,A=a)-p(a|D=do)-da
t

a

= ¢ ) t-p(t|D = do) — o ) ¢ - p(t|D = do)
t t

= ¢:E[T|D = do] — ¢oE[T|D = dj]
= (¢i — ¢o)E[T|D = do]. (A1)

The natural indirect effect (NIE) of dose level d; with respect to dose level dj is:

NIE(do, d;) = Z/E[FlD =dp,A=a,T=t]-{patD=d)-patlD=dy}da
t
a

= Zd’o ‘ f/{P(f|D =d;,A=a)-p(a|D=d;) - p(t|D=dy,A=a) palD=d)}-da
t
= Yt {p(t|D = dy) — p(t|D = do)}
t
= ¢o{E[T|D = d;] — E[T|D = do]}. (A2)
The total effect (TE) of dose level d; with respect to dose level dj is:

TE(do, d;) = E[F|do(D = d;)] — E[F|do(D = dy)]

= Z/«m-r-p<t|D=di,A=a)-p<a|D=di>-da
t

- Z/¢o-t-p(t|D=do,A=a>-p<a|D=do>-da
t

=i ).t-p(t|D=d;)— - Y.t p(t|D = do)
t t

= ¢E[T|D = di] — ¢oE[T|D = do]. (A3)
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