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ABSTRACT
Navigability is a distinctive features of graphs associated with artifi-

cial or natural systems whose primary goal is the transportation of

information or goods. We say that a graph G is navigable when an

agent is able to efficiently reach any target node in G by means of

local routing decisions. In a social network navigability translates

to the ability of reaching an individual through personal contacts.

Graph navigability is well-studied, but a fundamental question is

still open: why are some individuals more likely than others to be

reached via short, friend-of-a-friend, communication chains? In

this article we answer the question above by proposing a novel

centrality metric called the potential gain, which, in an informal

sense, quantifies the easiness at which a target node can be reached.

We define two variants of the potential gain, called the geometric
and the exponential potential gain, and present fast algorithms to

compute them. The geometric and the potential gain are the first

instances of a novel class of composite centrality metrics, i.e., cen-
trality metrics which combine the popularity of a node in G with

its similarity to all other nodes. As shown in previous studies, pop-

ularity and similarity are two main criteria which regulate the way

humans seek for information in large networks such as Wikipedia.

We give a formal proof that the potential gain of a node is always

equivalent to the product of its degree centrality (which captures

popularity) and its Katz centrality (which captures similarity).
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1 INTRODUCTION
Centrality metrics [28] provide a ubiquitous Network Science tool

for the identification of the “important” nodes in a graph. They have

been widely applied in a range of domains such as early detection of

epidemic outbreaks [11], viral marketing [25], trust assessment in

virtual communities [2], preventing catastrophic outage in power

grids [3] and analyzing heterogeneous networks [1].

The notion of importance of a node can be defined in a number of

ways [6–8, 30, 34]. Some centrality metrics define the importance

of a node i in a graph G as function of the distance of i to other

nodes in G: for instance, in Degree Centrality, the importance of i
is defined as the number of the nodes which are adjacent to i , i.e.
which are at distance one from i . Analogously, Closeness Centrality
[30] classifies as important those nodes which are few hops away

from any other node in G.

Another class of centrality metrics looks at walk/path structures in

G: a walk is a sequence of adjacent nodes;its length is defined as

the number of edges it contains; a path is a walk without repeated

edges and the shortest path connecting two nodes is also called its

geodesic path. For instance, the Betweenness Centrality [30] of i is
the ratio of the number дjl (i) of geodesic paths from any node j
to any node l which pass through the node i to the number дjl of
geodesic paths running from j to l and, thus, nodes with largest

betweenness centrality scores are those which intercept most of

the geodesic paths in G.

A further popular metric is Katz Centrality Score [22], which is

understood as the weighted number of walks terminating in i: here,
the weighting factor is inversely related to walk length and, thus,

long (resp., short) walks have a small (resp., large) weight.

For a suitable choice of the weighting factor, the Katz centrality

score converges to the Eigenvector Centrality [5, 8] or the popular

PageRank [8, 9].
To the best of our knowledge, however, there is no previous work

in which the centrality of a node is closely related to the notion of

navigability: roughly speaking, we say that G is navigable if it is

possible to successfully route a message to any node i in G via a

short chain of intermediary nodes, regardless of the node j which
generates the message.

Navigability is one of the most important features for a broad range

of natural and artificial systems which have the transportation of

information (e.g. a computer network) or the trade of goods (e.g. a

road network) as their primary purpose. In general, if the topology

of the graph G underlying the above mentioned systems would

be perfectly specified, then any source node i could discover all

shortest paths starting from (or terminating in) i and it could make
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use of the discovered paths to efficiently route messages.

In practice, nodes in G are often able to efficiently route messages

even if they do not have a global view of the topology of G, and this

has encouraged many researchers to seek a better understanding of

why graphs arising in real applications are navigable. Early studies

on graph navigability were inspired by the seminal work of Travers

and Milgram [33] on the “small world” property.

In a celebrated experiment, random-chosen Nebraska residents

were asked to send a booklet to a complete stranger in Boston.

Selected individuals were required to forward the booklet to any of

their acquaintances whom they deemed likely to know the recipient

or at least might know people who did. In some cases, the booklet

actually reached the target recipient by means, on average, of 5.2

intermediate contacts, thus suggesting an intriguing feature of hu-

man societies: in large, even planetary-scale, social networks, pairs

of individuals are connected through shorts chains of intermediaries
and ordinary people are able to uncover these chains [13, 17, 23, 26].

Several empirical studies have verified the small-world phenom-

enon in diverse domains such as metabolic and biological networks

[21], the Web graph [10], collaboration networks among scientists

[29] as well as social networks [13, 35].

So far, centrality metrics and navigability have been investigated

in parallel, yet their research tracks are disconnected. Thus, an

important (and still unanswered) direction of inquiry is the intro-

duction of centrality metrics that are related to the navigability of

a node, i.e., the ease at which it is possible to reach a target node i
regardless of the node j chosen as source node.

In this article we tackle the questions above by extending previ-

ous work by Fenner et al. [16] to the realm of social networks. The

main output of our research is an index, called the potential gain,
which ranks nodes in a network on the basis of their ability to find

a target.

The potential gain of a node i depends on the number of walks

wk (j, i) of length k that connect i with any other node j . The un-
derlying idea is that, for a fixed k, the larger wk (j, i), the higher
the chance that j will reach i, regardless of the specific navigation
strategy. In the computation of the potential gain, we take the small-

world phenomenon as axiomatic: we consider an agent that starts

from j and it looks for short walks to reach i .
We observe that the value a walk has for the agent will decreases

with its length k and there is a threshold length beyond which the

agent has to abandon that walk. To formalize the intuition above, we

introduce a weighting factor ϕ(k) which monotonically decreases

with k to penalize long walks.

We have developed two variants of the potential gain of [16],

namely:

• the geometric potential gain, in which ϕ(k) decays as δk ,
where δ is a parameter ranging between 0 and the inverse

of the spectral radius λ1 of G
1
, and

• the exponential potential gain, in which ϕ(k) decays in expo-

nential fashion.

Both the geometric and exponential gain of i can be thought as

the product of one index (Degree Centrality) related to the pop-
ularity of i and another (Katz Centrality score, for the geometric

1
The spectral radius of G is defined as the largest eigenvalue of the adjacency matrix

of G.

potential gain, and Communicability Index [4, 15] for the exponen-

tial potential gain) which reflects the degree of similarity of i with
all other nodes in the network. In this sense, the geometric and

the exponential potential gain are composite centrality metrics, i.e.,
they constitute a novel class of centrality metrics which combine

popularity and similarity to rank nodes in graphs. The combination

of popularity and similarity has proven to closely resemble the

way humans navigate large social networks [31] or attempt to lo-

cate information in large information networks such as Wikipedia

[18, 36, 37].

Our formalisation applies the Neuman series expansion [20] to

efficiently but accurately approximate both the geometric and expo-

nential gain. Both theoretical and experimental analysis show that

our approach is appropriate for accurately computing the geometric

and exponential potential gain in large real-life graphs consisting of

millions of nodes and edges, even with modest hardware resources.

We validated our approach on three large datasets: Facebook

(a graph of friendships among Facebook users), DBLP (a graph

describing scientific collaboration among researchers in Computer

Science) and YouTube (a graph mapping friendship relationships

among YouTube users). The experimental results will be in the full

version of this article.

2 BACKGROUND
In this section we introduce some basic terminology for graphs that

will be largely used throughout this article.

Let a graph G be an ordered pair G = ⟨N ,E⟩ where N is a set of

nodes, here also called vertices, and E = {⟨i, j⟩ : i, j ∈ V } is the set

of edges. As usual, G is undirected if edges are unordered pairs of

nodes and directed otherwise. In this article we will consider only

undirected graphs.

Also, let n = |V | be the number of nodes,m = |E | the number

of edges of G. For any given node i its neighborhood N(i) is the
set of nodes directly connected to it; its degree di is the number of

edges incident onto it, i.e., di = |N(i)|.
A walk of length k (with k a non-negative integer) is a sequence

of nodes ⟨i0, i1, . . . , ik ⟩ such that consecutive nodes are directly

connected: ⟨iℓ , iℓ+1⟩ ∈ E for ℓ ∈ [0..k − 1]. Also, we use the term

path for walks that do not have repeated vertices. A walk will be

closed if it starts and ends at the same node.

We will represent graphs by their associated adjacency matrix,
A, defined as usual with ai j = 1 if ⟨i, j⟩ ∈ E and 0 otherwise.

Sometimes we may slightly simplify notation with ai j = Ai j .

The adjacency matrix provides a compact formalism to describe

many graph properties: for instance, the matrix A2
where a2i j =∑n

k=1 aikak j , gives the number of walks of length two going from i

to j . Inductively, for any positive integerm, the matrix Am will give

the number of closed (resp., distinct) walks of lengthm between

any two nodes i and j if i = j (resp., if i , j) [12].
It is a well-know fact that the adjacency matrix of any undi-

rected graph is symmetric and, hence, all its eigenvalues λ1 ≥ λ2 ≥

. . . ≥ λn are real. The largest eigenvalue λ1 of A is also called its

principal eigenvalue or spectral radius of G. Moreover, the corre-

sponding eigenvectors v1, . . . , vn will form an orthonormal basis

in Rn [32]. Eigenpairs ⟨λi , vi ⟩ are formed by the eigenvalue λi and
the corresponding eigenvector vi .
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3 A MODEL OF NETWORK NAVIGABILITY
In this section we introduce our new centrality metrics, called the

geometric and exponential potential gain.

As we will see, they share a common physical interpretation which

is based on the notion of graph navigability: roughly speaking, we

say that a graph G is navigable if, for any target node i in G, it

is possible to reach i via short paths/walks, independently of the

node j (called the source) from which we choose to start exploring

G from.

In the light of previous research on graph navigability, we infor-

mally define the navigability score of a node i as a measure of the

“easiness” with which it is possible to reach i independently of the

source node j. In this way, the navigability score of a node can be

interpreted as a centrality metric.
To define the navigability score we borrow some ideas from

previous work by Fenner et al. [16], who formulated the problem of

identifying a “good” pagep fromwhich a user should start exploring

the Web. A page p is classified as a good starting point if it satisfies

the following criteria: (1) it is relevant, i.e. the content of p closely

matches user’s information goals, (2) the page p is central, i.e., the
distance of p to other Web pages in the Web graph is as low as

possible and (3) the page p is connected, in the sense that p is able

to reach a maximum number of other pages via its outlinks.

A key difference between the approach of Fenner et al. [16] and the
current one is that they defined the navigability score for i as the
ability of i of acting as the source node for reaching all the other

nodes. In our setting, instead, we think of the node i as the target
node we wish to reach.

So, let us fix a source node j and a target node i and provide an

estimate τ (j, i) of how “easy” it will be for i to be reached if we

choose j as source node. Intuitively, the larger the number of walks

from j to i , the easier it is for i to be reached from j; in addition, we

assume that the task of exploring a graph is costly and such cost

increases as the length of the walks/paths we use for exploration

purposes increases. Therefore, shorter walks should be preferred

to longer ones.

By combining the requirements above, we obtain:

τ (j, i) =
+∞∑
k=1

ϕ(k) ·wk (j, i) (1)

here wk (j, i) is the number of walks of length k going from j to
i and the non-increasing function ϕ(k) acts as penalty for longer

walks. If we sum over all possible source nodes j , we obtain a global

centrality index p(i) for i:

p(i) =
∑
j ∈N

τ (j, i). (2)

In analogy to Fenner et al. [16, 27], we will call p(i) the potential
gain of i .
Depending on the choice of the penalty function ϕ(·) we obtain
two variants of the potential gain, namely the geometric and the

exponential potential gain (see Section 3.1).

3.1 The geometric and exponential potential
gain

Given the above specifications, we first define the potential gain in

matrix notation. For the base case, consider walks of length k=1, i.e.,
direct connections. Only the neighbours of a node i will contribute
to the potential gain of i, which leads to the trivial conclusion that,

at k = 1, nodes with the largest degree are also those ones with the

largest potential gain.

We define the vector p such that pi = p(i) for every node i:

p = ϕ(1) · A × 1. (3)

If we include walks of length two, then we have to consider the

squared adjacency matrixA2
. So, we add a contribution ϕ(2) ·A2×1

to the potential gain.

By induction, nodes capable of reaching from i through walks

of length up to k provide a contribution to the potential gain equal

to ϕ(k) · Ak × 1. By summing over all possible values of k we get

to the following expression for p:

p = ϕ(1)A × 1 + ϕ(2)A2 × 1 + . . . + ϕ(k)Ak × 1 + . . .

=

+∞∑
k=1

(
ϕ(k)Ak × 1

)
=

(
+∞∑
k=1

ϕ(k)Ak

)
× 1

To attenuate the effect of the walks’ length, we will consider two

weighting functions, namely:

(1) Geometric: ϕ(k) = δk−1 with δ ∈ (0, 1). So we define the

geometric potential gain, g:

g =
(
A + δA2 + . . . + δk−1Ak + . . .

)
× 1 (4)

(2) Exponential: ϕ(k) = 1

(k−1)! . So we define the exponential
potential gain, e:

e =
(
A + A2 + . . . +

1

(k − 1)!
Ak + . . .

)
× 1 (5)

4 POTENTIAL GAIN AS CENTRALITY
The geometric and the exponential potential gain introduced above

yield a ranking of network nodes and, therefore, it is instructive

to compare them with popular centrality metrics. Recall that we

defined the spectral radius λ1 of A as the largest eigenvalue of A.
As for the geometric potential gain, if we let δ < λ−1

1
, the follow-

ing expansion holds:

g =
(
A + δA2 + . . . + δk−1Ak + . . .

)
× 1

= A ×

(
I + δA + . . . + δk−1Ak−1 + . . .

)
× 1

= A × (I − δA)−1 × 1

in which we make use of the Neuman series [20](
I + . . . + δk−1Ak−1 + . . .

)
= (I − δA)−1 . (6)

At this point, the term (I − δA)−1 × 1 is exactly the Katz cen-
trality score [22, 24], a popular centrality metric that defines the

importance of a node as a function of its similarity with other nodes
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in G. Hence, we can say that the geometric potential gain combines

two kind of contributions: popularity, as captured by node degree,

and similarity as captured by Katz’s similarity score.

It is also instructive to consider what happens for extreme values

of δ : if δ → 0, then the geometric potential gain tends to A × 1,
i.e., it coincides with degree. In contrast, if δ → 1

λ1
, then the Katz

centrality score converges to eigenvector centrality [5], another

popular metric adopted in Network Science. Boldi et al. [6–8, 34]

show that the Katz Centrality score is also strictly related to the

PageRank. More specifically, the PageRank vector p coincides with

the Katz Centrality score provided that the adjacency matrix A is

replaced by its row-normalized version A:

p = (1 − α)
+∞∑
k=0

α iA
i
× 1 (7)

Here, the parameter α is the so-called PageRank damping factor. Let
us now concentrate on the exponential potential gain. We rewrite

Equation 5 as follows:

e =
(
A + A2 + . . . +

1

(k − 1)!
Ak + . . .

)
× 1

= A ×

(
I + A + . . . +

1

k!
Ak + . . .

)
× 1

= A × exp(A) × 1

where exp(A) =
∑+∞
k=1

1

k !A
k
is the exponential of A [19].

The exponential of a matrix has been used to introduce other

centrality scores such as communicability or subgraph centrality
[5, 14].

Specifically, exp (A)i j measures how easy is to send a unit of

flow from a node i to a node j and vice versa. Such a parameter

is known as communicability and it can be regarded as a measure

of similarity between a pair of nodes. Communicability has been

successfully used to discover communities in networks [14]. The

product exp(A) × 1 yields a centrality metric which defines the

importance of a node as function of its ability to communicate with

all other nodes in the network. In turn, the diagonal entry exp (A)ii
of the matrix exponential defines a further centrality metric called

subgraph centrality [15]. As a result of the rewriting above, we

clearly see exponential potential gain as dependent on two factors:

popularity of i (i.e., its degree) and similarity of i with all other

nodes in the network.

The computation of the geometric (resp., exponential) potential

gain for all nodes in G needs the specification of the full adjacency

matrix A; in this sense, the geometric and the exponential potential

gain should be considered as global centrality metrics, on par with

the Katz centrality score and Subgraph centrality.

5 CONCLUSIONS
We have introduced the potential gain, an index to rank nodes in

graphs that captures the ability of a node to act as a target point for

navigation within the network. We have defined two variants of the

potential gain, the geometric and exponential potential gain. We

then proposed two iterative algorithms that compute the geomet-

ric and exponential potential gain and proved their convergence.

We evaluated the scalability of our algorithms on three real large

datasets.

We have discovered connections between the geometric potential

gain and other, well-known, centrality metrics; GPG provides a new,

mixed global-local centrality measure. Indeed, the PG as a centrality

index has several merits:

• it unifies Katz and Communicability into a single framework;

• in its definition in terms of the PG it allows us to provide

novel and efficient approximations of these indices;

• it provides an instance of a novel class of composite indices,

in this case DC*Katz, and

• as each vertex has clear visibility of its neighbours, the reali-

sation that PG is a combination of local (Degree) and global

(Katz) centrality makes complete sense, in our opinion.

It is also possible that these results will open the door to a new

interpretation of social phenomena related to Travers-Milgram’s

“small world” experiment [33].

One question that could be discussed at this point is which of

the two new measures could be considered the best analysis tool

large networks. Early experimental results indicate different rates

of convergence but no clear “winner.”

From a computational standpoint, the geometric potential gain is

clearly superior. So, for the analysis of very large networks and/or

modest hardware resources it is the navigability score of choice. One

practical difference however remains. The exponential potential

gain is parameter-free and can be applied directly. On the other

hand, the geometric potential gain is parametric in δ thus it requires

a careful tuning of the algorithm.

Another topic for future work is investigation on the relationship

between network robustness and network navigability. To this

end, we intend to design an experiment in which graph nodes are

ranked on the basis of their geometric/exponential potential gain

and then are progressively removed from the graph. Basic properties

about graph topology, such as the number and size of connected

components shall be re-evaluated upon node deletion. We also plan

to study how adding edges can increase the geometric/exponential

potential gain of a target group of nodes.
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