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ChEMBL A manually curated database of bioactive molecules with drug-like proper-

ties. It is maintained by the European Bioinformatics Institute, of the European
Molecular Biology Laboratory (EMBL), based at the Wellcome Trust Genome
Campus, Hinxton, UK. In the present work, it was used to retrieve the molecules
that compose the new data-set. 29, 48, 49, 95
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the learning process of a model (it is not automatically derived during the train-
ing process as the other parameters). 47, 64–66, 73, 80, 82, 83, 86, 87, 90, 91,
96

NGLview A viewer of 3D molecular structures and trajectories for the Jupyter envi-
ronment. 51, 97

OMEGA A popular conformer generation tool. It is based on a set of rules to generate
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∑
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∑
β2
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Chapter 1

�eoretical background

1.1 Molecular Dynamics
Molecular Dynamics (MD) is a simulation method for the analysis of the physical mo-
tions of atoms and molecules [1]–[7]. �e atoms and molecules are allowed to interact
for a �xed period of time, giving a view of the dynamic evolution of the system. �e
�rst-ever MD simulation is described in a May 1995 report of the Los Alamos Scienti�c
Laboratory, by Enrico Fermi, John Pasta, and Stanislaw Ulam, with the collaboration
of Mary Tsingou [8], [9]. A classical MD simulation is the resolution of Newton’s Laws
of Motion for a set of interacting particles. For a set of particles with starting positions
r and starting velocities v, the force f acting on the system is calculated as the negative
gradient of the potential energy U (r):

f(r) = −∇U (r) (1.1)

At each time frame, Equation 1.1 is calculated for every particle i of the system, in
order to obtain the positions ri and velocities vi :

dvi
dt =

1
mi

fi

dri
dt = vi

(1.2)

Where fi is the force applied to the i-th particle with massmi . �e same principles can
be applied to any system of interacting particles, but when doing MD, the particles
usually represent atoms, and the system describes one or more molecules. Classical
MD is suitable to study large systems, and it is typically used to simulate the motions
of biomolecules such as proteins or DNA [10]–[13]. �e starting positions ri(0) are usu-
ally obtained from structural �les (see subsection 6.2.2), such as the �les downloaded
from the Protein Data Bank (PDB). For disordered systems (such as water molecules),
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the positions can be generated randomly, or an ordered structure can be created and
then simulated until it is realistically disordered. �e starting velocities vi(0) are as-
signed to the atoms according to a Boltzmann distribution. �e atomic forces fi depend
on the choice of the force �eld (see below).

MD simulations are mainly used to predict equilibrium properties of the system,
for instance thermal properties, or the available conformations and their relevance in
the conformational ensemble. MD is also used to investigate the dynamics of phenom-
ena that could not be easily observed with experimental techniques, for instance the
kinetical mechanism of the enzymes.

1.2 Integration of the equations of motion
�e molecular systems of interest typically consist of a vast number of particles, and
it is impossible to determine the properties of such complex systems analytically; MD
simulation circumvents this problem by using numerical methods. However, long MD
simulations are mathematically ill-conditioned, generating cumulative errors in nu-
merical integration that can be minimized with proper selection of algorithms and
parameters, but not eliminated entirely.
�e simplest integrator is the Euler algorithm. It is of very straightforward implemen-
tation, but it is usually regarded as very inaccurate. It introduces large errors if the time
step used for integration is not much smaller than the smallest intrinsic time scale of
the system [7].

In the present work we opted for the “leap frog” algorithm as our integrator of
choice, since it is a very popular option among the algorithms usually employed in MD
simulations, and the default for Gromacs [14]. �e leap frog algorithm uses positions r
at time t and velocities v at time t− 1

2∆t . �e forces f(t) are determined by the positions
r(t), using the following relations:

v(t +
1
2∆t) = v(t −

1
2∆t) +

∆t

m
f(t)

r(t + ∆t) = r(t) + ∆tv(t +
1
2∆t)

(1.3)

�e algorithm has third order precision in r and is time-reversible. It can be easily be
modi�ed for the inclusion of constraints. It is considered the most suitable for general
purposes MD, when very high accuracy is not required.

�e typical integration step ∆t is 1 fs if the bond lenghts are free to change in the
course of the simulation. For normal simulations of big systems, the bond lenghts are
constrained, and the ∆t can go up to 2 fs, thus halving the number of simulation steps
(and the computational time), at the expense of a small loss in accuracy.
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1.3 �e force �eld
A simulation is always an approximation of reality. Even if a good integration algo-
rithm and an appropriate ∆t are chosen, the errors deriving from numerical integration
are inevitable. Beyond the integration errors, the neglection of quantum properties is
the physical inaccuracy that comes from the main approximation underlying the typi-
cal MD methods. In classical MD, the set of particles is described as a classical system,
thus neglecting the quantum properties. Each particle will be described by its three
spatial coordinates and by three velocity coordinates, instead that by a �eld, de�ned
in all points of space. Furthermore, the MD methods more used in the study of macro-
molecules just consider the atomic nuclei, the individual electrons are neglected. Ne-
glecting the quantum properties means that some interesting phenomena cannot be
studied by the classical approximation. For example, chemical reactions cannot be
studied, since chemical reactivity comes from the electrons.

�e quantum properties being neglected, it becomes necessary to recapitulate the
six classical coordinates (rx , ry , rz , vx , vy , vz) in an e�ective way, by introducing an
“e�ective potential”, usually called force �eld: a mean to implicitly include the main
quantum e�ects when calculating the forces acting on the particles using just the clas-
sical degrees of freedom. �ere is arbitrariness in this: many force �elds are available
in the literature [15]–[17]. Usually, each force �eld is developed whit a particular class
of molecules in mind. Many force �elds are optimized for use on biological molecules.

A force �eld is a mathematical expression describing the dependence of the energy
of a system on the coordinates of its particles. A force �eld consists of an analytical
form of the interatomic potential energy (the functional form) U (r), and a set of pa-
rameters entering into this form. �e parameters are typically obtained either from
ab initio or semi-empirical quantum mechanical calculations or by ��ing to experi-
mental data such as neutron, X-ray and electron di�raction, NMR, infrared, Raman
and neutron spectroscopy. Molecules are de�ned as a set of atoms held together by
simple harmonic forces. Ideally a functional form should be simple enough to be com-
puted e�ciently, but su�ciently detailed to reproduce the properties of interest of the
modeled system.

1.3.1 CHARMM27
Force �elds di�er in the degrees of complexity (the number and kinds of terms in the
functional form), the methods used to obtain the parameters, and the kinds of systems
that can be modeled. In the present work, we used CHARMM27 force �eld [18], be-
cause it was the most appropriate to model the system that we wanted to examine (see
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section 3.1). �e functional form of CHARMM27 is reported in Equation 1.4:

U (r) =
∑

bonds
Kb(b − b0)

2

+
∑
UB

KS (S − S0)
2

+
∑

angles
Kθ (θ − θ0)

2

+
∑

dihedrals
Kχ (1 + cos(nχ − δ ))

+
∑

impropers
Kφ(φ − φ0)

2

+
∑

non−bonded

ϵij

(
Rmin
ij

dij

)12

−

(
Rmin
ij

dij

)6 +
qiqj

edij



(1.4)

As most force �elds, the CHARMM27 includes bonded and non-bonded terms.
Bonded terms describe the intramolecular forces, whereas non-bonded terms describe
the intermolecular forces. �e intramolecular terms depend on the bond lenght b, the
distance between two covalently bonded atoms (1-3 distance) S , the valence angle θ ,
the dihedral (torsion) angle χ , and the improper angle φ. �e forces for bond lenght, 1-
3 distance, valence angle, and improper angle, depend on two parameters each: a force
constant K and an equilibrium value (b0, S0, θ0, and φ0). �e dihedral force depends on
three parameters: the force constant Kχ , the multiplicity n, and the phase angle δ .

CHARMM27 uses the most common terms for the intermolecular non-bonded in-
teractions: the Coulomb term for electrostatic forces, and the Lennard-Jones term for
the van der Waals forces. Both terms depend on the distance between two non-bonded
atoms, dij . �e Coulomb term has one parameter (for each atom): the atomic charge qi .
�e Lennard-Jones term has two parameters (for each pair of atoms): the well depth
ϵij and the minimum interaction radius Rmin

ij .
CHARMM27 is an advanced force �eld, developed a�er years of experience uti-

lizing previous force �elds. �e direct predecessor of CHARMM27 is CHARMM22.
CHARMM22 had some limitations, most importantly it overstabilized the A form of
DNA. In order to overcome the limitations, CHARMM27 was built with be�er pa-
rameters. �e new parameters are obtained with a more complex optimization proce-
dure, that take into account the intrinsic energetic properties of a set of model com-
pounds, and the overall conformational properties of DNA and RNA. �e target data-
set is mixed: it includes computed �antum Mechanical properties, and experimental
condensed phase properties. �e new parametes work well in a variety of environ-
ments, and CHARMM27 is a good general purpose force �eld for MD simulations of
biomolecules.
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1.3.2 TIP4P/Ice water model
�e majority of force �elds for biomolecules (including CHARMM27) only have pa-
rameters to describe proteins, DNA, RNA, and lipids. �e force �elds themselves do
not have parameters for water molecules. In reality, biomolecules are in aqueous en-
vironments. To describe biomolecular systems realistically, it is necessary to simulate
them in the presence of water. Many water models are available in the literature (and
in the most popular MD so�ware tools) [19]–[21]. Water models are generally inde-
pendent on the choice of the biomolecular force �eld. CHARMM27 was optimized to
be used with the very popular TIP3P water model, but it can be used successfully also
with other water models.

�e most popular water models are part of the Transferrable Intermolecular Po-
tential (TIP) family. TIP models describe a water molecule with three points (TIP3P),
four points (TIP4P)… Using more points to describe water molecules usually produces
a more accurate and realistic representation of the molecular system. In the present
work, we have used TIP4P/Ice: a water model based on TIP4P, but with new param-
eters that be�er describe the properties of liquid water at cold temperatures, and the
properties of water in the solid state (ice) .

All the TIP models have the same basic geometry: they have a dOH distance of
0.9572 A, and a θHOH angle of 104.52°. �e TIP models are rigid: dOH and θHOH do not
change in the course of the simulations. All TIP models have Lennard-Jones parameters
for the oxygen atom, and a positive atomic charge (the Coulomb parameter) qHfor the
hydrogen atoms. �e speci�c values for the Lennard-Jones and Coulomb parameters
vary among the TIP models. Since a water molecule is neutral, all TIP models also
have a negative charge, equal to −2qH, to counterbalance the hydrogen charges. For
TIP3P (the simplest TIP model), the negative charge is located on the oxygen atom.
For TIP4P, the negative charge is located on a point M, located at a distance dOM along
the θHOH bisector. �e distance dOM is another parameter of the water model. �e
TIP4P parameters are optimized to reproduce the vaporization enthalpy and density
of liquid water at room temperature. For this reason, TIP4P is suitable to simulate
aqueous environments at room temperature, and it is a very popular water model.

Since TIP4P was optimized to reproduce the properties of liquid water at room
temperature, it is not a very realistic model for water at cold temperatures, close to
the ice melting point. To simulate water at cold temperatures, a variation of the TIP4P
model was developed: the TIP4P/Ice model [22]. Instead of only reproducing water
properties at room temperature, TIP4P/Ice parameters were obtained to also �t the
melting lines and coexistence lines of di�erent ice forms. When used in simulations,
TIP4P/Ice gives a be�er phase diagram and be�er densities of several ice forms than
the other TIP models. TIP4P/Ice is suitable to simulate icy environments.
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1.4 Antifreeze proteins
�e production of Antifreeze Proteins (AFPs) is an important strategy organisms have
developed to thrive in cold ecosystems where there is a risk of freezing [23], [24]. �e
typical mechanism of action of AFPs is to bind to ice surfaces to control the sponta-
neous ice growth that would occur without AFPs. For this reason, AFPs that bind to
ice surfaces are o�en called Ice-Binding Proteins (IBPs).

�e structure of AFPs found in di�erent organisms is remarkably diverse, consider-
ing that AFPs share the same ligand [25]. �is diversity re�ects the independent origin
of AFPs on numerous occasions during the course of evolution. �e crucial activity of
AFPs is thermal hysteresis, the depression of the freezing point of water below the
melting point. Some AFPs have relatively weak thermal hysteresis activity, and help
organisms tolerate freezing through other processes, such as ice recrystallization in-
hibition.

�e AFPs with the simplest structure are the so called Type I AFPs [26]. Type I
AFPs are alanine-rich (> 60%), possess an high helical content, and contain 11-residue
repeat sequences that start with threonine. �e most well-studied protein in this group
is the liver-isoform from Winter Flounder (gene: HPLC6). �is Winter Flounder An-

Figure 1.1: Crystal structure and residue sequence of Winter Flounder AFP (gene:
HPLC6). Backbone colored by residue type, THR sidechains in evidence.

tifreeze Protein (wfAFP) has 37 residues. It contains three 11-amino acid repeats of the
sequence TX2NX7, where X is usually an alanine or another amino-acid that favours
α-helix formation. Conformational studies have shown that the protein is completely
α-helical, with the exception of the last unit which adopts a 310-helix conformation
[27]. �e N-terminal part of the protein is an elaborate cap structure, which is likely
to contribute to the stability of the helix. �is N-terminal cap consists of an ordered
network of eight hydrogen bonds involving the side chains of ASP1, THR2, SER4, and
ASP5 residues.

�e di�erent types of AFPs bind to di�erent interfaces of ice crystals. (Figure 1.2).
�e wfAFP binds to the 〈0112〉 axis on the pyramidal plane of the Ih ice form (the
ordinary ice) [27].

Computational studies have played an important role in explaining the mechanism
of action of the wfAFP. Most of the AFPs with an helical structure have two sides: a
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Figure 1.2: Di�erent AFPs bind to di�erent ice crystal planes, and present di�erent
levels of thermal hysteresis activity [24].

polar side, and an apolar one. It was originally thought that the polar side of wfAFP in-
teracted with ice. But computational studies have shown that the contrary is true [28].
�e hydrophobic side of the wfAFP can approach ice more closely, thus participating
in kinetic pinning leading to its antifreeze activity. On the other hand, the polar side
of the protein interacts with liquid water, thus helping to keep it in its liquid form.

1.5 Note
�e following chapters are taken from:
E. Gandini, M. Sironi, and S. Pieraccini, “Modelling of short synthetic antifreeze pep-
tides: Insights into ice-pinning mechanism,” Journal of Molecular Graphics and Mod-
elling, vol. 100, p. 107 680, Nov. 2020, issn: 1093-3263. doi: 10.1016/j.jmgm.
2020.107680
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Chapter 2

Introduction

Antifreeze Protein (AFP) are a class of structurally diverse proteins that protect dif-
ferent species of living organisms from fatally freezing in icy environments [24], [30].
AFPs depress the freezing point of water in a kinetic, non-colligative manner, caused
by AFP adsorption to speci�c surface planes of seed ice crystals [31]. Moreover, AFPs
inhibit Ostwald ripening recrystallization of ice, preventing the growth of larger crys-
tals and the concomitant shrinking of smaller ones [32]. �e action of AFPs is usually
rationalized with the adsorption-inhibition model. It assumes that proteins bind ir-
reversibly to ice thus arresting the growth of the crystal at supercooled conditions
through the creation of a metastable curved ice surface, according to the Kelvin e�ect
[33]. Because of their unique capability in controlling ice formation, AFPs are very at-
tractive for potential practical applications including food storage, anti-icing coatings
for vehicles and infrastructure, and cryopreservation of cells and tissues [34], [35].
�eir potential uses has prompted interest in research and led to numerous experi-
mental and computational studies [36]–[43]. However, the molecular complexity, the
limited availability and the consequent costs, hamper progress toward AFPs practical
application [23], [44], [45].

Many di�erent AFPs have been identi�ed and categorized according to their struc-
ture and their binding speci�city. Among them, Type I AFPs have been widely studied,
particularly the liver-isoform from Winter Flounder (gene: HPLC6). Winter Floun-
der Antifreeze Protein (wfAFP) is a monomeric, alanine-rich protein, composed of 37
residues, with three 11-residues repeats (TA2NA7). Even though the antifreeze e�ect
brought about by wfAFP is moderate when compared to that of other AFPs, it is ap-
pealing for practical applications because of its simple structure and relatively short
sequence. wfAFP mechanism of action was thoroughly studied both at the experi-
mental and computational level [26]–[28], [46]–[49]. It was demonstrated that wfAFP
binds preferentially along the 〈0112〉 axis of the pyramidal ice plane [50], [51]. �e hy-
drophobic face of wfAFP is presented to the pyramidal ice plane, and the interaction
mechanism is similar to the hydrophobic solvation e�ect [28].
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E�cient synthetic analogues mimicking the e�ects of AFPs are highly desirable.
�ree 12-residue analogues of wfAFP (Table 2.1) have been synthesized and success-
fully applied for the fabrication of anti-icing surfaces by Zhang et al. [35]. �e present
paper is focused on the application of Molecular Dynamics (MD) [1]–[7] based tech-
niques to investigate at the atomic level the antifreeze activity of the three aforemen-
tioned peptidic wfAFP analogues and to model their binding to ice surface and their
mechanism of action.

Peptide Sequence Molecular Weight
/ Da

Average
Freezing Temperature

/ °C
1–1 DTASDAAAAAAL 1047 -11.9
1–2 DTASDAKAAAEL 1162 -16.3
1–3 DTASDAFAAAAL 1123 -10.8

Table 2.1: Amino acid sequences of the three antifreeze peptides considered in the
present study. Residues that di�er from original wfAFP are underlined. �e table
also includes molecular weights, and reported average freezing temperatures of water
droplets on peptide-coated silicon wafers.

10



Chapter 3

Methods

3.1 Modeling of the peptides
�ree 12 residues peptides derived from wfAFP have been considered (Table 2.1). Pep-
tide 1–1 is composed of the �rst 12 residues of wfAFP. �e wfAFP crystal structure was
obtained from PDB ID 1WFA [27], [52]. �e relevant residues were kept, all the others
were manually removed. Peptides 1–2 and 1–3 present residue mutations that were
designed to improve their antifreeze properties [7]. In particular, for Peptide 1–2, Ala-
nine 7 was mutated to a Lysine, and Alanine 11 to a Glutamic Acid, in order to form an
intra-molecular saline bridge to increase helicity. For Peptide 1–3, Alanine 7 was mu-
tated to a Phenylalanine, in order to improve hydrophobic interactions with ice. �e
structural models of Peptides 1–2 and 1–3 were obtained through residue mutation
with UCSF Chimera Rotamer tool [53], [54].�e peptides were then protonated with
Gromacs 5.0.4 [14], and described with CHARMM27 force �eld [18]. �e CHARMM27
force �eld was chosen because it shows the best performance in modeling ice-protein
interactions along with the TIP4P/Ice water model [22], [55]. �e three antifreeze pep-
tides, and control peptides dodeca-Glycine (G12) and dodeca-Alanine (A12), were then
subjected to three kinds of simulations.

3.2 Molecular Dynamics Simulations

3.2.1 Simulations in a water box
�e peptides were inserted into a cubic box of side 4.5 nm. �e box was solvated with
TIP4P/Ice [22] water molecules, and brought to charge neutrality with 1 M concentra-
tion of Na and Cl ions. �e system was then subjected to restrained relaxation and
NVT and NPT equilibration, at temperature 275 K and 1 bar pressure. A�er the equi-
librations, the structure restraints were removed, and the peptides were subjected to
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1.5 µs molecular dynamics simulations at NPT conditions.

Figure 3.1: Final frame of Peptide 1–2 water box simulation.

3.2.2 Simulations on a �xed-ice surface
A large unit cell of Ih proton-disordered ice was generated with GenIce tool [56]. A
2.5 nm thick slab of ice, exposing the pyramidal plane, was obtained with Vesta [57].
Peptide 1–1 was manually placed on the pyramidal plane along the 〈0112〉 axis, with
the hydrophobic residues facing ice [28]. Peptides 1–2 and 1–3 were generated in loco
through mutation with Chimera. �e ice-peptide systems were then inserted in 5.7 ×
5 × 16 nm box. Water molecules and ions were then added, but the last 5 nm of the box
in the Z direction were le� empty, in order to create an ice–peptide–water–vacuum
system, as described by Mochizuki et al. [58], and shown in Figure 3.3.

Restraints were added to the protein Cα atoms and to the ice oxygens, in order to
carry out system relaxations and NVT equilibrations at 275 K. A�erwards, the protein
restraints were removed, and the systems were subjected to 100 ns molecular dynamics
simulations.
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Figure 3.2: Views of Peptide 1–2 �xed-ice simulation �nal frame. Restrained ice is in
blue licorice representation. �e backbone is in orange tube representation, and side
chains are licorice colored by atom type. For simplicity, liquid water is not shown in
the picture (although present in the simulated system).
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3.2.3 Simulations on a growing-ice surface
�e ice–peptide–water–vacuum systems were prepared in the same way as described
above for the �xed ice simulations. In this new set of simulations, the NVT equili-
bration and the production molecular dynamics simulation were carried out at 248 K,
below the reported 270 K freezing point of TIP4P/Ice water model freezing point [22],
so that ice growth could be observed within the 850 ns long production trajectories. A
simulation without any peptide was included for control.

Figure 3.3: Views of the �nal frame of the growing-ice simulation of Peptide 1–2.
Restrained ice is in dark blue licorice representation, whereas ice that was formed
from unrestrained water during the simulation is in lighter blue licorice. Liquid water
molecules are represented as semi-transparent lines. Protein backbone is in orange
tube representation, and side chains are in licorice colored by atom types. Notice the
empty space (vacuum) on top of the water molecules on the right view.

14



3.3 Trajectory analysis
All structural renderings were performed with VMD [59]. Secondary structures were
calculated using DSSP [60] algorithm as implemented in MDTraj [61]. Structural RMSD,
radius of gyration, helix length and helicity were calculated with Gromacs rmsd, gy-
rate, and helix tools [14]. Root-Mean-Square Fluctuation (RMSF) calculations
were performed with MDAnalysis [62], [63]. Protein-Ice Contact Surface (PICS) were
calculated through Solvent-Accessible Surface Area (SASA) with MDAnalysis. �an-
ti�cation of ice formed during growing ice simulations was performed with CHILL+
algorithm [64]. All graphs were created with Python plo�ing libraries [65]–[67].

Principal Component Analysis (PCA) [68], [69] was applied to antifreeze and con-
trol peptides trajectories in the three sets of simulations. In order to apply PCA, for
each simulation set, we obtained the coordinates of Cα atoms throughout each pep-
tide trajectory, using Gromacs trjconv tool, and we aligned Cα geometries with
MDAnalysis. We then used ENCORE [70] to perform PCA on Cα trajectories of all
peptides, for each simulation set. ENCORE concatenates Cα trajectories of all peptides
(possible since every peptide has the same number of Cα atoms, twelve in this case),
and then applies PCA algorithm implemented in scikit-learn [71] to the concatenated
Cα coordinates. Since the Cα atoms trajectories are concatenated in a single coordi-
nate matrix, PCA algorithm calculates the Principal Components (PCs) that describe
the total conformational variance across all the peptides. When PCA is applied on
concatenated trajectories of di�erent peptides, the calculated PCs highlight conforma-
tional di�erences and similarities between the peptides. Each PC describes a certain
percentage of the total conformational variance across all trajectories. �e higher this
percentage variance, the most important is the global motion described by the PC.
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Chapter 4

Results and discussion

4.1 Analysis of water box simulations
�e water box set of simulations was tested for conformational stability and helicity
of the peptides, which in case of wfAFP is highly correlated with antifreeze activity
[24]. To test whether the peptides present the same characteristic helical structure
of the original wfAFP, secondary structures were calculated with the DSSP algorithm
throughout the trajectories (Figures A.3, A.4, and A.5). All the peptides present high
degrees of helicity. Peptide 1–2 is more helical than the other peptides, in good agree-
ment with reported circular dichroism spectra [35]. Moreover, four structural prop-
erties of the conformational ensembles of the antifreeze and control peptides (Radius
of Gyration, Structural RMSD, RMSD from ideal helix, helix length) were calculated
throughout the trajectories and are reported in Figure 4.1. �e four chosen proper-
ties are measures of conformational stability and resemblance of the peptides with an
ideal a helix. In particular, in agreement with experimental results, Peptide 1–2 shows
greater propensity for helical structure than Peptides 1–1 and 1–3. Cα atoms RMSF
were also calculated on water box trajectories (Figure A.6). Con�dence intervals are
2 × Standard Error of the Mean (SEM) calculated with bootstrapping [72], [73]. �e
residues of the three antifreeze peptides have low RMSF values, indicating limited �ex-
ibility. Peptide 1–2 has the lowest RMSFs.
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Figure 4.1: Distributions of four structural properties calculated throughout the water
box simulations.
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4.2 Analysis of �xed-ice simulations
RMSF values were also calculated for the �xed-ice simulations (Figure A.10): they are
even lower than in water box simulations, indicating that the presence of the ice surface
has a stabilizing e�ect on peptide conformations. RMSF values does not signi�cantly
di�er between antifreeze peptides in the �xed-ice simulations. �e antifreeze mecha-
nism and the nature of the ice-wfAFP interactions are the subject of many hypotheses
[26]. It is believed that both direct interactions between wfAFP with ice surface, and
interactions mediated by water molecules at ice-protein interface play a role in the
antifreeze activity.

Average PICS was calculated and results are presented in Figure 4.2. Residues with
high PICS values are the ones that interact more steadily with ice. THR2, ALA6 and
ALA10 interactions are relevant in all three peptides, in good agreement with the ob-
servations of Kun and Mastai [74]. Residue 7, which is an ALA for Peptide 1–1, a LYS
for Peptide 1–2, and a PHE for Peptide 1–3, also exhibits a large PICS for all the three
peptides, but it is signi�cantly larger for Peptide 1–2, suggesting that LYS side chain
favors the interaction. Close inspection of the trajectory reveals that the interaction is
brought about mostly by carbon atoms of the LYS side chain, and not by its positively
charged group, which interacts either with GLU11 or the solvent molecules, as shown
in Figure 3.2, which presents two di�erent views of the �nal trajectory frame of Pep-
tide 1–2 on �xed-ice. �e three antifreeze peptides remained �rmly a�ached to the ice
surfaces for the duration of the �xed-ice simulations, whereas non-antifreeze Peptide
G12, a�er few nanoseconds, starts to change its secondary structure and to detach from
the ice surface. Non-antifreeze Peptide A12 keeps its helical structure throughout the
�xed-ice simulation. Structural properties of the �ve peptides calculated throughout
the �xed-ice trajectories are reported in Figure A.9.
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Figure 4.2: Average PICS of antifreeze peptides with bootstrapped error bars, calculated
during �xed ice simulations. Residues which are di�erent among the peptides are
labeled XXX.
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4.3 Analysis of growing-ice simulations
In order to assess the ability of antifreeze peptides to inhibit ice growth, we performed
a set of simulations at temperature below the freezing point of TIP4P/Ice. Figure 3.3
presents di�erent views of the �nal trajectory frame of Peptide 1–2 growing-ice sim-
ulation. �e peptide is �rmly a�ached to the original restrained ice surface, and it
induces the formation of a curved ice front from the liquid water molecules in the
course of the simulation, as observed in previous computational studies [40], [75]. No
ice growth above the peptide is detected. �anti�cation of ice formed during growing
ice simulations was performed with CHILL+ algorithm [64], and results are shown in
Fig. 3(c). Ice starts growing immediately in control simulations performed without
peptide: all water is turned into ice a�er 150 ns. In simulation performed with non-
antifreeze peptide G12, ice starts growing more slowly, and the growth is complete
a�er 500 ns. Peptide G12 is completely enclosed in a block of ice formed by initially
liquid water. In presence of non-antifreeze Peptide A12, ice growth is slower, and it is
complete a�er 800 ns. Ice is not able to grow above the antifreeze peptides. �e total
quantity of ice formed with antifreeze peptides is around 10%, throughout the whole
850 ns simulations. Visual inspection of the growing ice trajectories along with the ap-
plication of CHILL+ algorithm con�rmed that the synthetic analogues of wfAFP can
shape ice surface inducing the formation of a curved ice front and consequently block
ice growth with a mechanism compatible with the Kelvin e�ect.
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Figure 4.3: Fraction of ice formed from unrestrained water throughout the growing-ice
simulations.
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4.4 PCA of conformational ensembles
Principal Component Analysis (PCA) is a general purpose statistical procedure [68],
[69] that has o�en been applied successfully to study molecular dynamics trajectories
[49], [73], [76]–[78]. When studying a series of similar peptides or proteins, it is in-
teresting to take into account the conformational e�ects that are induced by residue
mutations which can either conserve or modify the conformations of the protein under
consideration. In particular, for antifreeze proteins mutation analysis is very impor-
tant, since interactions with ice strongly depend on protein conformations [79], [80].
PCA is a useful technique to compare a series of same-length similar peptides or pro-
teins. In a single graph, it shows di�erences in the global motions that are caused by
residue mutations, and highlights structural peculiarities of the most e�ective peptides.

Figure 4.4: Cα coordinates projected onto the �rst two PCs of water box simulations.

In the present work, conformational ensembles of antifreeze peptides, and of non-
antifreeze peptides G12 and A12, were compared through PCA using the algorithm
as implemented in ENCORE [47]. �e so�ware concatenates Cα atoms coordinates
of all peptides throughout the trajectories in a single coordinate matrix, and performs
PCA. Figure 4.4 shows Cα atoms coordinates throughout the water box simulations
projected onto the �rst two Principal Components (PCs), that together account for
47% of the total motions. Antifreeze peptides, and non-antifreeze Peptide A12, cover
a similar area, thus con�rming that they explore a similar conformational ensemble.
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Figure 4.5: Cα coordinates projected onto the �rst two PCs of �xed-ice simulations.

Figure 4.6: Cα coordinates projected onto the �rst two PCs of growing-ice simulations.
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As expected, Peptide G12 covers a much larger area, since it does not have a preferred
secondary structure.

PCA was then applied to Cα coordinates throughout the �xed-ice simulations, and
results are shown in Figure 4.5. �e �rst two PCs account for 66% of the total motions,
which is more than the variance explained by the �rst two PCs in the water box simu-
lations, because of the stabilizing presence of the ice surface. Antifreeze peptides, and
control peptide A12, occupy an even smaller area compared to that covered by G12,
pointing out that most of the total variance explained by the two main PCs comes
from G12, whereas the antifreeze peptides are much stabilized by the presence of the
ice surface. Even though A12 is not an antifreeze peptide, Alanine residues are known
to interact with ice [28], [81]. So, A12 is stabilized by the ice surface, and its area is the
same size as that of antifreeze peptides.

Results of the application of PCA to growing-ice simulations are shown in Fig-
ure 4.6. �e variance explained by PC1 is 67%, whereas that explained by PC2 is 17%.
�e total motions explained by the �rst two PCs is 83%, even higher than the �xed
ice simulation, since now the ice growth further limits the conformational freedom of
Peptide G12. PC1 is responsible for the separation of G12 from antifreeze peptides,
whereas PC2 is able to di�erentiate between Peptide 1–2 and peptides 1–1 and 1–3.
Conformations representative of the extreme PC values were extracted from the tra-
jectories and reported onto the PC graph. PC1 separates a helical structure from a dis-
ordered structure. Interestingly, the much smaller global motion represented by PC2
separates a perfect helical structure from a helical structure with the C-term residues
outstretched. A close inspection of Peptide 1–2 structure with outstretched C-term
residues, suggests that the elongation may be brought about by GLU11 interaction
with liquid water. LEU12, though outstretched, is still interacting with the ice surface,
as well as the aliphatic carbons of LYS7, whereas the positively charged group of LYS7
side chain interacts with liquid water. Non-antifreeze Peptide A12 has PC1 values sim-
ilar to those of antifreeze peptides, thus con�rming that antifreeze peptides and A12
explore a similar conformational ensemble, and have similar secondary structures. On
the other hand, Peptide A12 has PC2 values similar to those of Peptide 1–2.
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Chapter 5

Conclusion

�ree synthetic analogues of wfAFP, which have shown experimentally measurable ice
growth inhibition activity, were the subject of computational modeling and simulation.
�ree simulation setups were devised, in order to analyze di�erent molecular proper-
ties that a�ect antifreeze activity. Simulations in a water box were able to reproduce
the experimentally observed conformational and secondary structure stability of the
three antifreeze peptides. Simulations on a �xed-ice surface pointed out the presence
of stabilizing interactions between the antifreeze peptides and an ice slab exposing
the pyramidal plane. Simulations on a growing-ice surface were able to reveal an ice-
growth blocking e�ect for the three antifreeze peptides. PCA of Cα atoms coordinates
pointed out di�erences in the global motions of antifreeze peptides from non-antifreeze
Peptide G12. Secondary structure of Peptide A12 is similar to that of anti-freeze pep-
tides, and PCA con�rmed that global motions of A12 are similar to those of antifreeze
peptides. Anyway, helical propensity is not, in itself, a guarantee of antifreeze activity
[79]. CHILL+measurements of ice formed during simulations con�rm that A12 is un-
able to block ice growth, even though it is structurally similar to antifreeze peptides.
When applied to the growing ice simulation, PCA was also able to extract a structural
pa�ern peculiar to the conformational ensemble of antifreeze Peptide 1–2 that will be
useful to design new synthetic analogues of wfAFP.

�e protocol that was described in this work is useful to analyze the conformational
properties and antifreeze activity of series of short peptides. Even though peptides
derived from wfAFP may not present the greatest antifreeze activity at low concen-
trations, their short chains and simple structures make them promising for large-scale
synthesis and practical applications.
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Chapter 6

�eoretical background

6.1 A brief introduction to cheminformatics
Cheminformatics (also popularly spelled chemoinformatics) is very broadly de�ned as
the application of information technology to chemistry. Cheminformatics encompass
the design, creation, organisation, storage, management, retrieval, analysis, dissemina-
tion, visualisation, and use of chemical information [82]. �e �eld of cheminformatics
include many well established techniques, the result of decades of scienti�c research
[83], [84]. �e methodologies and infrastructures most commonly used in cheminfor-
matics have been reported by Bunin et al. [85], and are listed below:

• Chemical data collection, analysis, and management.

• Data representation and communication.

• Database design and organization.

• Chemical structure and property prediction (including drug-likeness).

• Molecular similarity and diversity analysis.

• Compound or library design and optimization.

• Database mining.

• Compound classi�cation and selection.

• �alitative and quantitative structure-activity or structure-property relation-
ships.

• Information theory applied to chemical problems.
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• Statistical models and descriptors in chemistry.

• Prediction of in vivo compound characteristics.

In the present work, we will be focusing on molecular similarity analysis, and on the
creation of related statistical models. We will also manage the generation of the data-
set needed to build the statistical models. �is chapter is not meant to be a thorough
exposition of the fundamentals of cheminformatics. For that, there are excellent text-
books [84]–[87]. For a quick overview of the �eld of cheminformatics, I suggest the
one by Engel [88]. In the next sections, we will only present the theoretical background
that is strictly necessary to understand our research project on molecular similarity.

6.2 Molecular Representations

6.2.1 2D Representations
Before performing any kind of computer calculation on chemical entities, it is nec-
essary to represent such chemical entities in a format suitable for digital storage and
retrieval. Many organisations maintain databases of chemical compounds. Some of
these databases are publicly accessible, others are proprietary. Among the most pop-
ular publicly accessible databases, we wish to mention DrugBank [89]–[93], ChEMBL
[94]–[96], and the Protein Data Bank (PDB) [97]–[99].

An obvious way to digitally store chemical structures would be to save pictures of
the 2D molecular graphs (Figure 6.1). However, image �les have li�le values for chem-

Figure 6.1: Picture of a 2D molecular graph. �e writer’s favorite molecule is repre-
sented: ca�eine.

informatics. More appropriate representations are needed to store the molecules in
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Figure 6.2: Picture of a 3D structure of ca�eine.

databases for subsequent retrieval, and to perform calculations on the chemical struc-
ture. �e most common format to store molecular graphs for cheminformatics appli-
cations is the Simpli�ed Molecular-Input Line-Entry System (SMILES) [100]. SMILES
encode 2D representations of molecules as linear strings of alpha-numeric characters.
�e SMILES for ca�eine (the molecule represented in Figure 6.1) is:
“Cn1c(=O)c2c(ncn2C)n(C)c1=O”. Hydrogens are usually omi�ed (considered
implicit) in SMILES strings and 2D pictures.

In their simplicity, SMILES encode for chemical information such as atoms, their
chemical character, bonding pa�erns, branch points, and the presence of stereo cen-
ters. For a given molecule, there may be many valid SMILES strings. �e process of
generating a SMILES string for a molecule is not unique. In practice, the basic SMILES
are not used for database storage. SMILES strings are o�en ordered in a unique way,
for easier database retrieval and querying. �e process of giving the SMILES a unique
order is called canonicalization [101], [102].

In the present work we use the SMILES format as the main input for all chemin-
formatics calculations.

6.2.2 3D Representations
�e 2D molecular representations only which atoms are bonded together. �e 2D
molecular representations are very useful for database storage and retrieval, for simi-
larity analysis, and for the calculation of some chemical properties. In reality, molecules
are 3D objects, and their steric and electronic properties depend on how atoms can
be positioned in space to produce 3D structures (also called conformations). �e 3D
structures can be saved as image �les (Figure 6.2). For bigger molecules, a single image
would not be enough to view all the chemical components. Multiple images, captured
from di�erent angles, should be used. Even be�er, a 3D structure should be viewed
with an interactive tool that allows users to move and rotate the conformer.

�e most basic format for storage of 3D structures is the XYZ �le format (extension
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.xyz). �e �rst line contains a number: the total number of atoms in the molecule.
�en, there is an empty line. Each of the other lines represent an atom. Each atom line
has four columns. �e �rst column on the le� is the atomic element. �e remaining
three columns are the X, Y, and Z coordinates. �e contents of the XYZ �le for a
conformer of ca�eine are reported in Figure 6.3.

24

C     -1.369306    2.818665    0.349239
N     -0.977497    1.435396    0.154315
C      0.326020    1.130840    0.067756
O      1.161996    2.059551    0.159214
C      0.811229   -0.141164   -0.115963
C     -0.117570   -1.163186   -0.216297
N      0.552330   -2.321669   -0.391800
C      1.884585   -2.065709   -0.406103
N      2.006830   -0.739997   -0.237137
C      3.274566   -0.047787   -0.192085
N     -1.432538   -0.841061   -0.127033
C     -2.397407   -1.906437   -0.231746
C     -1.856229    0.424238    0.053605
O     -3.088474    0.666073    0.129406
H     -0.616382    3.303244    1.000530
H     -1.320561    3.296620   -0.672150
H     -2.399802    2.924850    0.718100
H      2.661144   -2.820249   -0.532607
H      3.359321    0.509545    0.765991
H      4.129723   -0.741731   -0.292757
H      3.324808    0.749781   -0.990868
H     -1.928107   -2.852035    0.112995
H     -2.665915   -1.992301   -1.319857
H     -3.322765   -1.685476    0.340944

Figure 6.3: �e 3D structure of ca�eine in XYZ format.

�ere are more complex �le formats for 3D structures. Some �le formats can be used
to store multiple conformations of a given molecule, or even multiple molecules with
multiple conformations.
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In the present work, we did not have a preference for any particular �le format.
We mostly used the PDB [103] and MOL2 [104] formats for storage of 3D structures,
because they are the most common. We used the formats required by each speci�c
so�ware tool, and we converted between each format when needed (paying a�ention
to preserve all chemical information).

6.3 Conformer generation
�e problem of 3D molecular representation is challenging. Most molecules of interest
can adopt more than one low-energy conformation. For bigger molecules, the number
of accessible structures is very large. It is therefore necessary to take conformational
�exibility into account. �is usually means generating a set of conformations for a
given molecule. �e generated conformations should be a representative sample of all
the low-energy conformations of the molecule. In cheminformatics, the most impor-
tant conformations are the bioactive ones.

Many conformer generation tools and techniques are available [105], [106]. In the
present work, we have used OMEGA [107]. OMEGA is a popular choice for conformer
generation: its ability to produce realistic structures has been thoroughly tested [108]–
[111]. OMEGA was designed to provide a representative sample of the conformational
space of druglike molecules. �e OMEGA algorithm is divided in four steps:

1. Preparation of a fragment database: a large collection of commercialy available
compounds (in their 2D representations) is fragmented into continuous ring sys-
tems and small linear linkers. One or more 3D conformations are generated for
each fragment.

2. Generation of torsion library: by analysis of a set of experimental crystal struc-
tures (mostly from the PDB), a set of torsion rules is generated (with associated
common angles), in order to match every rotatable bond in small molecules with
at least a torsion.

3. Structure generation: an input 2D graph is fragmented in the same way as the
fragment database, and the fragments are reassembled into the parent molecule
using geometric and chemical rules.

4. Torsion driving: the rotatable bonds of the conformer generated in step 3 are
compared to the torsion library generated in step 2. �e appropriate angle val-
ues for each torsion in the conformer are noted. All possible conformers are
generated with all combinations of torsion angles.

5. Conformational sampling: step 4 generated a large amount of conformations,
many of which have very high energy due to internal clashes. Many of the con-
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formers from step 4 are redundant, since are similar to each other. In this last
step, the conformer energies are evaluated using the MMFF94 force-�eld [112].
High energy conformers (due to internal clashes) are discarded. Similar conform-
ers (based on an RMSD cuto�) are discarded (only the lowest energy conformer
in a set of similar conformers is kept).

�e OMEGA algorithm is available as a command line so�ware tool by OpenEye Sci-
enti�c [113].

6.4 Molecular similarity
Molecular similarity is a fundamental concept in cheminformatics [114]–[116]. It has
wide applications in chemical database searching [117], [118], and medicinal chemistry
[119], [120]. Molecular similarity applications are based on the so-called “Similarity
Principle”: similar molecules have similar properties and activities [121].

�e Similarity Principle is of course an oversimpli�cation. It is true only in a statis-
tical sense: in a given set of compounds, molecule-pairs with high calculated similarity
have, on average, more similar properties and activities than molecule-pairs selected at
random [122]. �ere are known situations where molecule-pairs with high similarity
measures exhibit very di�erent activities [123]. It should be noted that the reverse of
the Similarity Principle is not necessarily true: molecules that exhibit similar activities
could be very dissimilar.
�e Similarity Principle is nonetheless very useful, and molecular similarity has many
practical applications.

6.4.1 2D similarity
Molecular similarity is o�en a function of the 2D molecular graphs, and it is calculated
on molecular �ngerprints. �e most common types of �ngerprints are �xed-size arrays
of ones and zeros (i.e., binary arrays). For instance, two molecules A and B could have
�ngerprints FA = [1, 0, 1, 1, 0] and FB = [0, 0, 0, 1, 1]. Each element of the �ngerprints
encodes the presence (1) or absence (0) of a chemical feature. Many functions can be
used to calculate similarity on pairs of �ngerprints [124]. �e most common similarity
measure is the Tanimoto coe�cient [125], presented in Equation 6.1.

TA,B =
NA,B

NA + NB − NA,B
(6.1)

NA and NB are the number of 1 elements in the �ngerprints of molecules A and B,
respectively. NA,B is the number of 1 elements that are present in both moleculesA and
B. In our example, NA = 3, and NB = 2. NA,B = 1, since there is only a single 1 element
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in the same position in both �ngerprints (the fourth element). So, TA,B = 1
3+2−1 = 0.25

is the Tanimoto coe�cient for molecules A and B. �e Tanimoto coe�cient can have
values between 0 and 1, with higher values for more similar molecules.

�e interpretation of the Tanimoto coe�cient depend on the type of �ngerprint
that was used on the molecules. �ere are many algorithms for �ngerprint generation
[124]. Each algorithm parses the 2D molecular graphs in a speci�c way, and encodes
speci�c types of chemical features in the elements of the �ngerprint array. �e Tani-
moto coe�cients represent molecular similarity with respect to the types of chemical
features that are encoded in the �ngerprints.

�e 2D similarity measure used in the present work is the Tanimoto coe�cient
calculated on CDK Extended �ngerprints [126]–[128]. CDK Extended �ngerprints are
hashed �ngerprints [117], a type of �ngerprints that were �rst developed by Daylight
Chemical Information Systems [129]. Algorithms that generate hashed �ngerprints
calculate unique linear paths through a molecular graph, and encode them in the el-
ements of the �ngerprint array by applying a hash function. In most hashed �nger-
prints, only linear paths are considered. �e CDK Extended �ngerprint also considers
ring systems.

6.4.2 3D similarity
�e most common example of 3D similarity is pharmacophore similarity [117]. A phar-
macophore is a set of chemical features with their relative 3D spatial orientation. Usu-
ally, pharmacophores use a very broad and generic de�nition of chemical features (e.g.,
aromatic rings, ions, hydrogen bond donors and acceptors…).

In the present work, we have used the ROCS algorithm [130] for 3D similarity cal-
culations. ROCS considers pharmacophore similarity and molecular shape similarity.
Actually, the ROCS algorithm was �rst developed to only consider shape similarity
[131], pharmacophore similarity was included later.

Before considering shape similarity, it is necessary to understand what a volume
is. A volume is the integral of scalar �eld Equation 6.2. A scalar �eld is a function that
has a single number value (a scalar) at any point in space.

V =

∫
f (x ,y, z)dV (6.2)

�e scalar �eld f is also called the characteristic function of the volume V . For the
common understanding of volume (the “size” of an object), f has value 1 at any point
inside the object, and value 0 outside. But the scalar �eld f could also have di�erent
values, and we could still calculate the volume V . A volume is a contraction of the
information represented by the scalar �eld. For instance, two objects must have the
same volume in order to have the same shape, but two objects with the same volume
can have a di�erent shape.
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Figure 6.4: ROCS shape and pharmacophore surfaces of ca�eine, generated with
vROCS.

Given the de�nition of volume, an obvious measure of shape similarity (or more pre-
cisely, shape distance), would be:

D =

∫
[f (x ,y, z) − д(x ,y, z)]2dV (6.3)

f andд are the scalar �elds of two objects. �e distance D has higher values for objects
with very di�erent shape, and has value 0 for objects with identical shape. Any distance
measure D can be converted to a similarity measure S [125]:

S =
1

1 + D (6.4)

Similarity measures have higher values for more similar objects. Equation 6.3 can also
be expressed as:

D2 =

∫
f (x ,y, z)2dV +

∫
д(x ,y, z)2dV − 2

∫
f (x ,y, z)д(x ,y, z)dV

= I f + Iд − 2O f ,д

(6.5)

�is is the fundamental equation for shape comparison. It can be used for any kind of
scalar �elds, not only the scalar �elds corresponding to the common understanding of
“volume”. �e terms I f and Iд are the self-volume overlaps of �elds f and д, respec-
tively. O f ,д is the overlap between the scalar �elds of the two objects. �e I terms are
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independent of orientation. On the other hand, O f ,д depends on the relative orien-
tation of the two objects. Maximizing O f ,д (thus minimizing the square distance D2)
is equivalent to �nding the best overlay between the two objects. If the two objects
are molecules, this means aligning them by rotating and translating them, without
changing the internal coordinates (that specify the molecular shape).

I f , Iд, andO f ,д can also be used to calculate other types of similarity measures. �e
Tanimoto coe�cient in 3D space is:

Tf ,д =
O f ,д

I f + Iд −O f ,д
(6.6)

Note the resemblance to the 2D formulation of the Tanimoto coe�cient (Equation 6.1).
So far, the mathematical formulation has been pre�y straightforward. Molecules

would be represented as a set of spheres (one sphere for each atom), with a scalar �eld
having value 1 inside the sphere, and 0 outside. But the computational implementation
is di�cult and not very e�cient. �e di�culty arises from the fact that spheres of dif-
ferent atoms can overlap with each other: the intersection volume must not be counted
multiple times! �e computation becomes increasingly more complex and slow with
bigger molecules.
A breakthrough came with the work of Grant and Pickup [132]. �ey showed that if
one let go of the concept of the scalar �eld being binary, and instead use a sum of con-
tinuous functions, the sphere volume could be recovered with high accuracy. Radial
Gaussian functions were the function of choice:

f (r ) = e−wr
2 (6.7)

�e main advantage of Gaussian functions is that the overlap of two atomic Gaus-
sians produce another Gaussian function. �e speed of the algorithm greatly increased
by using Gaussians instead of spheres to calculate molecular volumes and to perform
alignments.

As mentioned earlier, ROCS do not only consider shape similarity, but also phar-
macophore similarity (called “color similarity” in the ROCS documentation). �e de-
fault chemical features (color features) considered by ROCS are: hydrogen bond donor
and acceptor, anion and cation, hydrophobic group, and ring. Other chemical features
could be speci�ed by the user. �e color features are represented by radial Gaussians,
just has the atoms during the shape similarity calculation.

�e ROCS algorithm is available as a command line so�ware tool by OpenEye Sci-
enti�c [133]. �ere is also a graphical so�ware that implements the ROCS algorithm,
vROCS. With vROCS, users can visualize the molecular shapes and pharmacophores,
and the alignments (Figure 6.4).
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6.5 Computational Models
An important goal of cheminformatics is the creation of models that relate struc-
tural features of molecules (descriptors) to their biological activity or to their physico-
chemical properties [134], [135]. �is sub�eld of cheminformatics is named �an-
titative Structure-Activity Relationship (if a biological activity is being modeled) or
�antitative Structure-Property Relationship (if a physico-chemical property is being
modeled), and it is abbreviated QSAR or QSPR. �e term QSAR is more general, and
we will be using it in the rest of this work.

�e scope of QSAR models is both theoretical and practical. From a theoretical
perspective, QSAR models contribute to a be�er understanding of the structural fea-
tures that result in interesting chemical activities. From a practical perspective, QSAR
models can be used to predict the activity of compounds for which an activity has
never been measured. Biological activities are usually expensive and complex to mea-
sure experimentally. On the other hand, the chemical descriptors used as input for the
QSAR models are usually very cheap and easy to obtain. �ey are usually calculated
by computers on 2D (but also 3D) molecular representations. QSAR models could even
be used to predict the activity of molecules that have never been synthesized.

�e quality of a QSAR model is highly dependent on the data-set that was used
to build the model (i.e., the training-set). �e prediction of the activity of molecules
outside the training-set is reliable only if the new molecules are similar to compounds
included in the training-set. Even if this criterion is met, QSAR models may fail [123].
�is problem is partly due to the excessive simplicity and in�exibility of the models
being used, or to the lack of proper techniques to evaluate the model performance
[136], [137].

It should be noted that the modeling tasks that are described in the present work
are di�erent from the typical QSAR problem. In the typical QSAR problem, the data-set
consists of a list of molecules. Each row of the data-set represents a single molecule,
each column represents a molecular descriptor. �ere is also a column for the “target
variable”: the activity being model (biological or physico-chemical). �e model relates
the molecular descriptor columns to the target variable (Figure 6.5). Models are usually
functions f that take as input a vector x (whose elements are the descriptors x1, x2…)
and calculate an activity y. �e model function f depends on a set of parameters, and
the parameters a�ect the calculated y. Simple models (e.g., linear models) usually de-
pend on few parameters, whereas very complex models (e.g., neural networks) depend
on many parameters. Models are built with an optimization algorithm, that minimizes
the error between the y calculated by the model and the true y in the training-set. �is
is accomplished by searching for the best set of model parameters.

�e computational models that we built in the present work are di�erent from the
typical QSAR models.
Typical QSAR models are regression models: the target variabley is a real-valued num-
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f (x1 , x2 , x3)→ y

Model:

{
0.116 0.016 0.458
0.876 0.929 0.088
0.454 0.091 0.259
0.548 0.550 0.329
0.528 0.068 0.387
0.831 0.091 0.520
0.171 0.240 0.121
0.653 0.690 0.297
0.584 0.263 0.778

x
1

x
2

x
3 y

0.034
0.288
0.608
0.644
0.450
0.606
0.171
0.569
0.020

X

Figure 6.5: General data modeling process. �e three columns x1, x2, and x3 are the
input features of a model f , that is built to predict the target variable y. In QSAR, the
input features are molecular descriptors, and the target variable is an experimentally
measured biological activity (or physico-chemical property). Each row contains the
descriptors and the activity of a single molecule.

ber (e.g., 3.2 or 0.58). �e task that we wanted to accomplish with computational mod-
els (similarity-prediction, see chapter 7) is a classi�cation task. So, we built classi�ca-
tion models: the target variable y is categorical (e.g., Male-Female, Yes-No, Car-Truck-
Bike). A real-valued variable can be easily converted into a categorical variable by ap-
plying thresholds. For instance, the real-valued variable “age of a person in years” can
be converted into the categories Child-Adult-Elderly by applying arbitrary thresholds.
Converting a real-valued target variable into a categorical target variable is sometimes
very helpful: well-de�ned categories are more easily interpretable by humans than
numbers.

�e other important di�erence between the models described in the present work
and the typical QSAR models is the input features. As we explained earlier, QSAR
models typically use molecular descriptors as input features, and each row contains
the descriptors for a single molecule. On the other hand, each row of the data-sets we
have used represents two molecules (a molecule-pair). �e input features are molecular
similarity measures. Each row contains the similarity measures for a molecule-pair.
�is choice of input features (and of data-set construction) was made because of the
particular task that we wanted to accomplish (similarity-prediction).

Among the many types of classi�cation models, we choose to use Logistic Regres-
sion (LogReg), Decision Tree (DT), and Random Forest (RF) models [138]–[142]. We
wanted to explore the ability of simple and relatively in�exible models such as LogReg,
and of more complex and �exible models such as DT. Simple models tend to under�t
the training-set: they are not able to represent complex pa�erns in the data. Complex
models tend to over�t the training-set: they memorize the noise in the data along-
side the meaningful pa�erns. �e distinction between simple and complex models is
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a well-known problem, called the bias-variance tradeo� (Figure 6.6) in the literature
[143]. So, we choose LogReg and DT models because they are at the extremes of the
bias-variance spectra. We also used RF models: they are designed to reduce the over-
��ing of DTs, and are usually a good compromise between bias and variance.
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Figure 6.6: Representation of the bias-variance tradeo� problem.
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Chapter 7

Introduction

An orphan drug is a medicinal product used to treat a rare disease that a�ects only a
small number of patients (the actual number of patients depends on the local legisla-
tions) [144]. Given the small number of patients a�ected by the rare disease, and the
high costs involved in modern drug discovery programs [145], [146], orphan drugs are
not an immediately a�ractive market for pharmaceutical companies.

To encourage pharmaceutical companies to develop orphan drugs, regulatory agen-
cies have brought forward legislations that provide a range of incentives. Such incen-
tives include grants, �nancial incentives, the possibility of an accelerated review, and
market exclusivity. Market exclusivity is arguably the most important incentive: un-
der the EU legislation, a pharmaceutical company that develops an orphan drug for a
speci�c rare disease is given a 10-year period of market exclusivity. During this pe-
riod no products that are considered similar to that orphan drug can be accepted or
authorized by any European regulatory competent authority. Orphan drugs have less
competition than conventional drugs, which encourages pharmaceutical companies to
invest in researching novel medicines for rare diseases.

Currently, there are many ways to de�ne whether two molecules are similar or
dissimilar. �e assessment of similarity between two drugs takes into account three
criteria: molecular structure, mechanism of action, and therapeutic indication. Two
drugs will be considered diverse if there are signi�cant di�erences in one or more of
the three aforementioned criteria. �us far, the European Medicines Agency (EMA)
has used majority voting on discretional judgments of similarity when assessing new
drugs for rare diseases. Similarity is an inherently subjective concept, which depends
on individual factors such as gender, age, state of mind, and previous experiences [147],
[148]. In general, chemical structure information is perceived di�erently by di�erent
individuals [149], but a fair level of consistency can be achieved using a wisdom of
crowds approach [150].

Automated procedures that quantitatively and objectively evaluate molecular sim-
ilarity are needed. Such an algorithm would not replace the current human-based
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processes used to evaluate applications for orphan drugs authorizations. Instead, it
would produce an useful quantitative input to be considered by the human experts
evaluating the application. Franco et al. have developed a computational procedure
that calculates the probability that a pair of molecules would be considered similar by
a crowd of experts [151], [152]. �e procedure is based on Logistic Regression (LogReg)
models [140], [141]. LogReg models are trained on Tanimoto coe�cients calculated on
di�erent 2D molecular �ngerprints. �e procedure successfully reproduced human as-
sessments of molecular similarity, both on the data set used to train the LogReg models
(the training-set), and on an external test-set.

From now on we will call “similarity-prediction” the computational prediction of
human assessments of molecular similarity. We will call “similarity-prediction models”
all kinds of models that perform similarity-prediction.

�e procedure was simple and e�ective, but it has room for improvements, as the
authors of the original work themselves suggested. For instance, the Tanimoto simi-
larity could be calculated on other kinds of molecular representations, which encoded
3D structural information of the molecules. �is possibility was explored by Franco
et al. in their second work on the subject [152]: the LogReg models were trained on
proprietary 3D molecular �ngerprints by MOE [153]. Such 3D molecular �ngerprints
performed worse than the simpler 2D counterparts. �at type of 3D molecular �nger-
prints compresses the 3D structural information to a �ngerprint, which is a 1D vector.
�is may be the cause of the ine�ectiveness of the 3D molecular �ngerprints for this
particular application.

Other more advanced techniques can be used to encode 3D structural information
of a molecule, and to calculate similarity between a pair of molecules. Such techniques
should encode important structural information of the molecules, such as their shape
and the spatial orientation of pharmacophoric groups. A perfect example of similarity
measure which takes into account molecular shape and orientation of pharmacophoric
groups is TanimotoCombo by ROCS [130], [133], [154]. Contrary to simple 3D �nger-
prints, ROCS do not compress 3D molecular information: the information is held in
a 3D numerical tensor, and the similarity measure is calculated on a pair of such 3D
tensors.
A di�erent approach would be that of VolSurf descriptors [155], [156]. �e VolSurf
approach is based on Molecular Interaction Fields (MIFs). A MIF is a 3D tensor that
describes the spatial variation of the interaction energy between a molecule and a cho-
sen probe [157], [158]. VolSurf uses MIFs to calculate a set of relevant physico-chemical
properties. Similarity measures can be calculated on vectors of VolSurf properties.
For these reasons, ROCS and VolSurf can be more e�ective in capturing 3D molecular
similarity than simple 3D �ngerprints. �ey can be used to complement information
provided by 2D �ngerprints, and to possibly improve models that predict the outcomes
of similarity voting.
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�e aim of this project is not only to develop new computational models based on
3D molecular similarity, but to investigate the decision-making process of human ex-
perts asked to assess the similarity of a pair of molecules. Do human experts only take
into consideration the 2D molecular graph, or do they also consider the 3D conform-
ers? What about di�cult and borderline cases, where 2D and 3D molecular similarity
measures do not agree? Will experts agree with each other? It is our belief that a be�er
understanding of the human decision making process will provide important informa-
tion to agencies that rely on human similarity judgments for the assessment of orphan
drug status. It will also help in developing new algorithmic tools that support human
experts, to provide clearer and less biased judgements. Such tools could also be used
by pharmaceutical companies to perform preliminary virtual screenings of molecules
that are suitable to receive the orphan drug status.
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Chapter 8

Methods

8.1 �e original training-set
�e �rst set of models that we developed is based on the training-set originally cre-
ated by Franco et al. [151]. �ey selected 1068 drug-like molecules from DrugBank 3.0
[91], and computed ECFP4 �ngerprints [159] on each molecule. �ey calculated Tan-
imoto similarity on each pair of molecular �ngerprints. �ey then selected 100 pairs
of molecules, which covered the widest and most uniform spread of Tanimoto values.
�is set of 100 pairs of molecules was evaluated by several individuals involved in Euro-
pean, American, Taiwanese, and Japanese regulatory authorities. In total, 143 experts
evaluated the 100 pairs of molecules. �e experts were asked to evaluate whether each
pair of molecules was composed by similar (Yes) or dissimilar (No) molecules. Franco
et al. collected the expert evaluations, and for each pair of molecules, calculated the
fraction of experts which considered the pair to be similar or dissimilar. If the frac-
tion of expert that considered a pair of molecules to be similar was ≥ 0.5, Franco et al.
considered the pair to be similar, otherwise the pair was considered dissimilar. �is
training-set of 100 pairs of molecules, accompanied by expert evaluations, was kindly
made publicly available (Table S1 of article [151]).

Franco et al. calculated a variety of �ngerprints on each molecule in the training-
set. �ey then calculated Tanimoto coe�cients based on all �ngerprints for all the 100
pairs of molecules. �ey used the Tanimoto coe�cients to build similarity-prediction
LogReg models.

8.2 �e original test-set
Franco et al. tested the LogReg models created with the training-set on an external test-
set. �is data-set was con�dentially provided to Franco et al. by EMA’s Commi�ee for
Medicinal Products for Human Use (CHMP). It consisted of 100 pairs of molecules.
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Each pair of molecules was composed by an existing orphan drug for a speci�c rare
disease, and by another molecule that was submi�ed for approval as a treatment for the
same rare disease. Each pair of molecules was accompanied by the CHMP evaluation
of new molecule proposed for the treatment.

�e molecules included in the test-set are quite di�erent from the ones in the
training-set [151]. Compounds in the test-set are signi�cantly larger than compounds
in the training-set. But most importantly, of the 100 molecule-pairs in the test-set,
89 of them had been judged to be non-similar pairs with only 11 judged to be simi-
lar pairs, whereas the training-set contained near-equal numbers of the two types of
molecule-pair.

�e use of an external test-set to evaluate prediction models is universally consid-
ered a best practice [137], [139]. We asked CHMP to provide us con�dential access for
the original test-set used by Franco et al. EMA’s CHMP kindly approved our request,
but at the time of writing we have not yet received the whole data-set. We will not be
able to evaluate our models in the same way that Franco et al. did.

To follow the best practices and evaluate the models on an unseen data-set, we will
employ a procedure that we will call cross-test. We will use the new data-set (see below
sections about the creation of the new data-set) to evaluate models built on the original
training-set. Vice versa, we will use the original training-set to evaluate models built
on the new data-set.

Cross-testing is a valid procedure to evaluate similarity-prediction models. �e
original training-set as well as the new data-set were speci�cally built to include a
diverse set of molecules, and to represent a wide spectrum of molecular-similarity
instances. So using one data-set to test models built on the other data-set is a good
way to evaluate the performance on di�cult and interesting molecule-pairs.

8.3 Modeling the original training-set

8.3.1 �e 2D protocol
We reproduced similarity-prediction models based on open source 2D �ngerprints
that were described by Franco et al. [152]. We will call these models “2D similarity-
prediction models”.

�e protocol to build 2D similarity-prediction models begins with the preprocess-
ing of original SMILES using RDKit [160] and MolVS [161]. SMILES strings are stan-
dardized. �en, the counterions are removed, and the remaining species neutralized.
We then validated all preprocessed molecules with MolVS, and visually checked them.
We computed all 2D �ngerprints available in RDKit and CDK [126], [127], and calcu-
lated Tanimoto coe�cients on each pair of molecules, with each 2D �ngerprint.
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8.3.2 �e MOE 3D protocol
We developed a new 3D protocol based on MOE so�ware, that uses force �eld MMFF94x,
and cosine similarity calculated on vectors of standardized VolSurf descriptors [155],
[156]. VolSurf descriptors were chosen because they convert MIFs in relevant physical-
chemical properties. VolSurf descriptors are independent of conformational sampling
and alignment [155], resulting in a more straightforward protocol. �e protocol starts
with SMILES preprocessing using the Wash command, with a neutral protonation
state, and by preserving chirality information. We then generated a minimized con-
former for each molecule using the Energy Minimize command, with chirality preser-
vation and optimal orientation of OH groups. We calculated VolSurf descriptors for
each unique molecule in the dataset. We then applied standard scaling on each Vol-
Surf descriptor, using all the unique molecules in the dataset. Cosine similarity be-
tween each pair of molecules is then calculated on vectors of standardized VolSurf
descriptors: we will call this value “VolSurf Similarity”.

8.3.3 �e OpenEye 3D protocol
We developed another 3D protocol based on OpenEye so�ware. �e protocol starts
with SMILES preprocessing using Filter command (included in OMEGA so�ware [113])
with an empty �lter �le (so molecules are just preprocessed, but no molecule is dis-
carded). We use OMEGA classic algorithm to generate up to 200 conformers for each
molecule. Conformers generated by OMEGA are ready to use, since OMEGA was de-
signed to sample the conformational space around solid-state structures of drug-like
molecules [107]. For each pair of molecules, we use ROCS to perform all possible con-
former alignments, and to calculate similarity scores for each alignment. �en, we
keep the TanimotoCombo score corresponding to the best alignment, for each pair of
molecules.

8.3.4 Training of similarity-prediction models
We used scikit-learn [71] to build similarity-prediction models using the original training-
set. We used Tanimoto coe�cients calculated on all available open source �ngerprints
as input features for the 2D similarity-prediction models. We will focus on models
built using CDK Extended �ngerprint [126]–[128], which was considered the best �n-
gerprint by Franco et al. [152].
We used cosine similarity calculated on vectors of standardized VolSurf descriptors as
input feature for similarity-prediction models for the MOE 3D protocol. For OpenEye
3D protocol, the input feature of similarity-prediction models is the TanimotoCombo
score of best conformer alignment for each pair of molecules.
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Using the aforementioned input features for the 2D and 3D protocols, we built Lo-
gReg similarity-prediction models. From now on, we will call “single-feature models”
the similarity-prediction models built using just one input feature from one protocol.
�e 2D model based on CDK Extended �ngerprint and the OpenEye 3D model based
on TanimotoCombo were successful in the similarity-prediction task on the original
training-set: they successfully reproduced human assessments of molecular similarity
(see Results Chapter). On the other hand, the model built using the input feature from
the MOE 3D protocol showed poor similarity-prediction power. �e MOE 3D protocol
was not considered for further modeling.

We then built models based on the two most promising input features: the Tani-
moto coe�cient calculated on CDK Extended �ngerprint (Tanimoto CDK Extended),
and TanimotoCombo. We will call these models double-feature models. �ey combine
the predictive power of a 2D and a 3D feature. We built LogReg double-feature mod-
els, introducing L1 and L2 regularization. We also built more complex double-feature
models: Decision Tree (DT), and Random Forest (RF) models [138]–[142].
We built two sets of double-feature models. A �rst set of double-feature models were
built with default hyperparameters from scikit-learn (default double-feature models).
For the second set of double-feature models (tuned double-feature models), we �ne-
tuned the hyperparameters with grid search using 10-fold cross-validation (CV) [140],
[162].

�e hyperparameter tuning was performed in order to reduce over��ing of the
models. For the basic LogReg model, there was no hyperparameter to tune. For LogReg
models with L1 and L2 regularization, we tuned the regularization strength hyperpa-
rameter. For DT, we tuned the maximum depth of the tree, the minimum number of
samples required to split an internal node, and the minimum number of samples neces-
sary to be at a leaf node. For RF, we tuned the same hyperparameters that were tuned
for DT, and additionally the number of trees in the forest.

8.3.5 Model Performance Evaluation
We evaluated the similarity-prediction models using a variety of performance metrics
for classi�cation problems [163]. �e most easy-to-understand metric is the number of
samples that a model correctly classi�es (Ncorrect). Since we will be focusing on data-
sets that are composed by 100 samples (the original training-set and the new data-set,
but also the original con�dential test-set that we have not yet received), Ncorrect can
be considered the percentage of correctly classi�ed samples (a metric that is usually
called “Accuracy”). But such a simple metric, although easily understandable and inter-
pretable, has many limitations [163]. For instance, it does not take into consideration
the class probability calculated by the model, and the fact that di�erent probability
thresholds can be used.

To overcome these limitations of the Ncorrect metric, we also used other popular
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metrics for performance evaluation: the Area Under the Receiver Operating Charac-
teristic curve (AUROC), the Average Precision (AveP), the Log Loss (Llog), and the Brier
score (LBrier). AUROC and AveP values are between 0 and 1, the higher the be�er. Llog
and LBrier, on the other hand, are “loss metrics”, meaning that a be�er model will have
a lower value. �ese metrics are be�er than Ncorrect in representing the overall perfor-
mance of a classi�er.

8.4 Creation of new data-set
We created a new data-set of human assessments of molecular similarity, to train new
similarity-prediction models. We wanted to include a diverse set of molecules with
known bioactivity, but that not necessarily possessed drug-like properties. So we de-
cided to focus on molecules that targeted three well-known biological targets: HERG
[164], 5HT2B [165], and CYP2D6 [166]. HERG and 5HT2B are anti-targets, whereas
CYP2D6 is a liver metabolic protein. �ese receptors are well-known in the medic-
inal chemistry community, and bioactivity data is abundant. To make sure that all
molecules had known bioactivity, we included only molecules for which an inhibition
constant Ki [167] was measured. �e creation of the new data-set consisted of two
parts: the initial selection of molecule-pairs to be included, and the assessment of their
similarity by experts through an online survey.

8.4.1 Selection of molecule-pairs
We queried ChEMBL 27 database of bioactive compounds [94]–[96] for molecules tar-
geting HERG, 5HT2B, or CYP2D6. We only selected molecules for which a Ki value
was measured. We selected 1307 compounds that targeted HERG, 1299 compounds
that targeted 5HT2B, and 155 compounds that targeted CYP2D6. �ese initial lists of
compounds still included some duplicate entries for each target. We used RDKit to
calculate InChiKey [168], [169] values for each compound, and considered identical all
compounds that shared the same InChiKey. We then applied the following rules on all
subsets of identical compounds (for each target separately):

• If there are more than two identical compounds, apply Dixon’s test [170] on their
pChEMBL values, remove outlier entries, and keep �rst compound in subset with
median pChEMBL value.

• If there are two identical compounds calculate the absolute di�erence of their
pChEMBL values.

– If the absolute di�erence is ≥ 1, drop both compounds.
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– Otherwise, keep the �rst of the two compounds, with mean pChEMBL
value.

pChEMBLis a standardized measure of bioactivity of the ChEMBL database, suitable
for comparing database entries and performing outlier detection [95].
A�er removal of duplicate molecules and outliers with the aforementioned procedure,
we were le� with 1201, 1172, and 115 unique molecules that target HERG, 5HT2B, and
CYP2D6 respectively. We calculated the absolute di�erence of pChEMBL values for
each molecule pair. We will call this quantity “pChEMBL distance”.

We applied the 2D protocol to all compounds of the three targets, calculating Tan-
imoto CDK Extended between each unique pair of molecules. Of all unique molecules,
2 5HT2B compounds and 2 CYP2D6 compounds did not pass the preprocessing step of
the 2D protocol, and were excluded from the next steps.
We then applied the OpenEye 3D protocol. Few molecules did not pass the OMEGA
conformer generation step of the protocol: we were le� with 1198, 1168, and 111 unique
molecules for target HERG, 5HT2B, and CYP2D6 respectively. We would have had to
perform ROCS calculations on 717003, 681528, and 6105 molecule-pairs for the three
targets respectively.
�e ROCS step of the protocol would have taken a huge amount of time: we roughly es-
timated 30 thousand hours using a single CPU (longer than the duration of the writer’s
PhD scholarship!). So we randomly selected 3000 molecule-pairs for each target, and
performed ROCS alignment and scoring between all conformers of each of the 9000
total molecule-pairs. �is step took around 6 days using a single CPU.

We created an initial data-set with 9000 rows (one for each randomly selected
molecule-pair subjected to the ROCS calculation). �is data-set included Tanimoto
CDK Extended and TanimotoCombo values for each row. To classify molecules as ei-
ther similar or dissimilar in 2D and in 3D, we used an approach based on a similarity
threshold with a small bu�er region, similar to the one described by Ehrman et al.
[171]. We classi�ed a molecule-pair as similar in 2D if Tanimoto CDK Extended ≥
0.7, and as similar in 3D if TanimotoCombo ≥ 1.4. Such thresholds are popularly used
for the two similarity measures [172]–[174]. In order to avoid an extreme sensitivity
to small molecular di�erences around the thresholds [171], we used a 0.05 and a 0.1
bu�er region for Tanimoto CDK Extended and TanimotoCombo, respectively. So we
classi�ed a molecule-pair as dissimilar in 2D if Tanimoto CDK Extended ≤ 0.65, and
as dissimilar in 3D if TanimotoCombo ≤ 1.3.

We then divided the 9000 molecule-pairs data-set in 4 subsets: pairs that are simi-
lar in 2D and in 3D (sim2D,sim3D), pairs that are similar in 2D and dissimilar in 3D
(sim2D,dis3D), pairs that are dissimilar in 2D and similar in 3D (dis2D,sim3D), and
pairs that are dissimilar in 2D and dissimilar in 3D (dis2D,dis3D). Of the original 9000
molecule-pairs, 177 were classi�ed as sim2D,sim3D, 54 as sim2D,dis3D, 97 as dis2D,sim3D.
Since the 9000 molecule-pairs were randomly selected, the vast majority of them are
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dissimilar in 2D and in 3D: 8540 were classi�ed as dis2D,dis3D. �e subsets contain
8868 molecule-pairs in total; 132 pairs fell in the bu�er zones, and could not be cat-
egorized as either similar or dissimilar in 2D or 3D: they were excluded from further
steps.

Subsets sim2D,sim3D, sim2D,dis3D, and dis2D,sim3D are small enough to be visually
inspected. We visually inspected them with DataWarrior [175], and manually selected
25 molecule-pairs from each subset. Since subset dis2D,dis3D was too big for visual
inspection, we randomly selected 25 pairs from it.
We thus obtained a data-set with 100 molecule-pairs, containing 25 pairs from each
similarity subset. �is data-set contains 50 simple molecular similarity instances, where
both the 2D and the 3D similarity measures agree on the similarity or dissimilarity of
a molecule-pair. �e data-set also contains 50 complex molecular similarity instances,
where the 2D and 3D similarity measures disagree.

8.4.2 �e survey
�e data-set with 100 molecule-pairs (belonging to four similarity subsets) was created
to be subjected to similarity assessment by human experts. �e original training-set
by Franco et al. contained molecule-pairs selected on the basis of only a 2D similarity
measure. Our data-set was created selecting molecules based on a 2D (Tanimoto CDK
Extended) and a 3D (TanimotoCombo) similarity measures. So we included 3D repre-
sentation of the molecules, alongside classical 2D graph representations, in order to let
the experts consider both aspects in their assessments.
A static 2D molecular graph is su�cient to represent the 2D structure of a molecule. On
the other hand, a static 3D picture would be insu�cient, since some parts of a molecule
would be hidden. We wanted the 3D representations to be interactive: human experts
should be free to rotate, translate, and zoom the 3D representations, to observe all parts
of a molecule, and to focus on the parts that they deem more important.

Franco et al. used MarvinSketch 5.5 to generate the 2D graph representations of
the molecules that were subjected to similarity assessments by experts [176]. For each
molecule-pair, the 2D graphs were not necessarily aligned to each other. �e alignment
can a�ect the similarity assessment of di�erent experts: some experts would perform
the alignment in their minds, and some other experts would not. When judging the
similarity between two objects it is advisable to place them in a way that maximizes
their overlap [147]. So we wanted the 2D graph representations, and the initial posi-
tions of the 3D interactive representations, to be aligned in a standard way that maxi-
mized the overlap between each molecule-pair, thus reducing the noise of the similarity
assessments.
We used RDKit to calculate the Maximum Common Subgraph (MCS) of each molecule-
pair. We then aligned both molecules in each pair to their MCS, and generated 2D graph
representations a�er the alignment. �e 2D graph representations were saved on disk
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as SVG image �les.
�e ROCS step of the OpenEye 3D protocol produced, for each molecule-pair, a MOL2
�le [104] containing the best alignment of OMEGA conformers. MOL2 �les with con-
formations of two di�erent molecules were not suitable to visualize two molecules
side-by-side. And even though conformers in the ROCS output were aligned, they did
not appear well-centered in the molecular visualization tool of choice, NGLview [177],
[178]. For each molecule-pair, we computed the transformation matrix required to
align the principal axes of the biggest molecule to the X, Y, Z axes. We then applied
the transformation matrix to both conformers of the molecule-pair. �is transforma-
tion preserved the ROCS alignments, made the conformers appear well-centered in the
NGLview windows. We then saved the conformers in two separate PDB �les [103] for
each molecule-pair.

An online survey was the best way to obtain expert similarity assessments on
molecular representations that followed the aforementioned principles. We programmed
a web application that delivered the survey. �e application was created with Voilà
[179], a tool to convert Jupyter notebooks [180] in standalone web applications. �e
application started by asking users to recognize a randomly generated word (a simple
captcha problem), to make sure that the survey was not a�acked by malicious actors.
Users were then presented the conditions of the survey: that they would be presented
5 pairs of molecules, and that they would be asked to judge whether they considered
each pair to be similar or dissimilar. �ey were also informed that the survey should
take about 5 minutes to complete, that there were no right or wrong answers, and
that their anonymity was guaranteed. Users that accepted the conditions were im-
mediately presented the �rst molecule-pair. For each user, we randomly selected 5
molecule-pairs. Users could be a�ected in their assessments by the relative positions
of the 2D and 3D representation. We did not want the results to be biased by this fact,
so each users was either shown the 2D representations above the 3D representations
of a molecule-pair, or the other way around. Users were randomly assigned to one of
the two treatments. An example of the appearence of the survey is shown in Figure 8.1.
Users were free to interact with the 3D representations, generated by the application
as NGLView Jupyter widgets. Users were free to return to the initial position of the 3D
representation by clicking a “Reset 3D Views” bu�on, below the 3D representations.
Users had to express a similarity assessment for each of the 5 molecule-pairs that they
were presented. �e application did not allow users to proceed in the survey without
answering. A�er users answered the 5 questions about molecular similarity, they were
asked about their academic quali�cation. �e application stored answers only of users
that completed the survey: they had to answers the 5 molecular similarity questions,
and the question about academic quali�cation.

�e web application was served on the Heroku Cloud Application Platform [181].
We sent invitations to take part to the survey to 69 chemistry departments and insti-
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Figure 8.1: Screenshot of the initial view of a similarity question in the survey. �e 3D
representations are interactive, and could be reset to the initial view.
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tutions worldwide (Table 8.1). �e survey was available on Heroku from 2021-04-14 to
2021-06-28.
�e results of the survey were automatically stored by the web application on a private
PostgreSQL [182] database available through Heroku. �e results were queried, aggre-
gated, and locally stored using a Python script based on SQLAlchemy [183]. A�er the
survey was completed, and the Heroku web application was shut down, we used the
new data-set to train the same groups of single-feature and double-feature models that
were built using the original training-set.

Institution Invitation Date
Università degli Studi di Milano-Bicocca 2021-04-14
Politecnico di Milano 2021-04-15
Università degli Studi di Torino 2021-04-26
Università degli Studi di Genova 2021-04-26
Università degli Studi di Pavia 2021-04-14
Università degli Studi di Padova 2021-04-27
Università degli Studi di Udine 2021-04-29
Università degli Studi di Trieste 2021-04-28
Università degli Studi di Ferrara 2021-04-28
Università di Bologna 2021-04-29
Università degli Studi di Modena e Reggio Emilia 2021-05-03
Università degli Studi di Parma 2021-04-29
Università di Pisa 2021-05-05
Università degli Studi di Firenze 2021-05-04
Università degli Studi di Siena 2021-05-04
Università degli Studi di Roma “La Sapienza” 2021-05-11
Università degli Studi di Roma “Tor Vergata” 2021-05-11
Università degli Studi di Perugia 2021-05-03
Università degli Studi dell’Aquila 2021-05-03
Università degli Studi di Napoli “Federico II” 2021-05-10
Università degli Studi di Bari “Aldo Moro” 2021-05-05
Università degli Studi di Sassari 2021-05-04
Università degli Studi di Palermo 2021-05-06
Università degli Studi di Catania 2021-05-05
Università degli Studi di Messina 2021-05-06
Institute of Chemistry and Biochemistry / Berlin 2021-05-13
Department of Chemistry / Hamburg 2021-05-17
Institute of Pharmacy / Berlin 2021-05-13
Jagiellonian University in Kraków 2021-05-17
Universidade Nova de Lisboa 2021-05-17
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Institute of Biochemistry / Cologne 2021-05-17
Institute of Organic Chemistry / Cologne 2021-05-17
Institute of �eoretical Chemistry / Cologne 2021-05-17
Chemistry in Pharmaceutical Sciences / Madrid 2021-05-18
Biochemistry and Molecular Biology / Madrid 2021-05-18
Faculty of Chemistry / Barcelona 2021-05-20
Scienze del Farmaco / Milano 2021-05-26
Department of Chemistry / Delhi 2021-06-01
University of Frankfurt 2021-06-03
University of Edinburgh 2021-06-08
University of Toronto 2021-06-09
University of Sydney 2021-06-09
University of Melbourne 2021-06-10
University of Cambridge 2021-06-10
University of Leicester 2021-06-11
University of Oxford 2021-06-14
University of Copenhagen 2021-06-14
KTH Royal Institute of Technology / Stockholm 2021-06-14
University of British Columbia 2021-06-14
Beijing Normal University 2021-06-14
University of Mumbai 2021-06-14
University of Bangalore 2021-06-14
University of No�ingham 2021-06-15
Carnegie Mellon University / Pi�sburgh 2021-06-15
University of Tokyo 2021-06-15
University of Hong Kong 2021-06-15
University of Vienna 2021-06-15
Vrije Universiteit Brussel 2021-06-15
University of Oslo 2021-06-16
IIQ / University of Seville 2021-06-16
Seoul National University 2021-06-16
University of Munich 2021-06-16
Zhejiang University 2021-06-16
Harvard University 2021-06-21
Massachuse�s Institute of Technology 2021-06-21
University of Berkeley 2021-06-21
Yale University 2021-06-21
Moscow State University 2021-06-21
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Saint Petersburg University 2021-06-22

Table 8.1: Chemistry departments and institutions that were invited to participate in
the molecular similarity survey.
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Chapter 9

Results and discussion

9.1 Performance of single-featuremodels on the orig-
inal training-set

In order to easily compare the new 3D similarity-prediction models with the 2D models
developed by Franco et al., we recreated the similarity-prediction LogReg models based
on open source �ngerprints [152] (see subsection 8.3.4 for description of how all models
were built). For simplicity, we will focus on the best 2D model: the one based on
Tanimoto CDK Extended.
�alitatively speaking, Tanimoto CDK Extended values are highly correlated with the
percentage of human experts that considered a molecule-pair to be similar (Figure 9.1).
�e probabilities predicted by the Tanimoto CDK Extended LogReg model are visually
a good �t for the human assessments of similarity. For a quantitative evaluation of the
similarity-prediction model, we measured its performance on the original training-set
with a variety of classi�cation metrics (Table 9.1).

Ncorrect AUROC AveP Llog LBrier

Tanimoto CDK Extended 93 0.988 0.987 0.133 0.045
VolSurf Similarity 76 0.821 0.808 0.514 0.168
TanimotoCombo 91 0.970 0.963 0.211 0.065

Table 9.1: Performance of single-feature models on the original training-set.

�e Tanimoto CDK Extended single-feature model is very successful in the similarity-
prediction task. It correctly predicted 93 out of 100 molecule-pairs. �e other metrics
also present good values. AUROC and AveP are very high, almost their maximum
value of 1. LBrier is pre�y low, almost 0.
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Figure 9.1: LogReg curve of original Tanimoto CDK Extended single-feature model.

�e LogReg model based on the VolSurf Similarity calculated with the MOE 3D
protocol is shown in Figure 9.2. We can qualitatively observe that the VolSurf Similar-
ity is correlated with the human assessments of similarity: the correlation is not very
strong, and many data points are far away from the modeled LogReg curve. We con-
�rm this qualitative observation by considering performance metrics calculated on the
original training-set (Table 9.1). �e model correctly predicted only 76 molecule-pairs,
compared to the 93 correct predictions by the Tanimoto CDK Extended model. �e
other performance metrics are not bad, but they are de�nitely worse than the metrics
for the Tanimoto CDK Extended model. �ese results were expected, considering that
VolSurf descriptors were not developed to perform similarity calculations. �ey are
an excellent tool for 3D-QSAR modeling, since each VolSurf descriptor is an easily in-
terpretable scalar quantity obtained from the whole MIF tensor. But the calculation of
physical properties from the MIFs is conceptually similar to the information compres-
sion that caused the original 3D models by Franco et al. to perform badly. So, VolSurf
descriptors are not ideal for the similarity-prediction task, and will not be considered
further.

�e LogReg model based on TanimotoCombo values calculated with the Open-
Eye 3D Protocol is shown in Figure 9.3. TanimotoCombo is highly correlated with
human assessments of molecular similarity. Data points are well ��ed by the mod-
eled LogReg curve. �e quantitative performance metrics are also good (Table 9.1).
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Figure 9.2: LogReg curve of VolSurf Similarity model.
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Figure 9.3: LogReg curve of original TanimotoCombo single-feature model.

58



�e TanimotoCombo model correctly predicted 91 molecule-pairs, compared to the 93
correct predictions by the Tanimoto CDK Extended model. �e other metrics are also
good, comparable to the values obtained by the Tanimoto CDK Extended model (which
remains the best single-feature model).

TanimotoCombo is a similarity measure suitable for the similarity-prediction task.
It can be considered as a 3D extension of Tanimoto CDK Extended. �e CDK Extended
�ngerprint encode the presence of substructural pa�erns within a molecule. So, Tani-
moto CDK Extended is a measure of the similarity of substructural pa�erns in a pair of
molecules. �is feature is similar to the chemistry alignments performed by ROCS, and
included in TanimotoCombo values. �is information is “translated” from the 2D to
the 3D space when transitioning from Tanimoto CDK Extended to TanimotoCombo.
TanimotoCombo values also store another crucial information of 3D structures: the
molecular shape.

9.2 Comparing 2D and 3D models
�e Tanimoto CDK Extended and TanimotoCombo models predicted di�erently six
molecule-pairs, whose ID are 31, 48, 54, 60, 72, and 94 (see the original training-set in
Table S1 of [151]). Of the six molecule-pairs that were di�erently predicted, two were
correctly predicted by the TanimotoCombo model (IDs 48 and 60), whereas the other
four were correctly predicted by the Tanimoto CDK Extended model.

Figure 9.4 includes the 2D graphs, the OMEGA conformers, and the ROCS colored
shape surfaces (generated with vROCS tool) of molecule-pair 60. 81.1% of experts con-
sidered molecule-pair 60 to be similar, based on 2D representations. Molecule-pair 60
has a Tanimoto CDK Extended of 0.538: the model calculated a similarity probability of
23.4%, so the pair was classi�ed as dissimilar. On the other hand, the TanimotoCombo
value for molecule-pair 60 is 1.601, and the model calculated a similarity probability of
92.3%, thus correctly classifying the pair as similar. Since the molecules in pair 60 are
quite small, Tanimoto CDK Extended value is a�ected by the presence few di�erent
groups. But the experts recognized that the two molecules have a similar sca�old and
similar features. �is similarity was correctly captured by TanimotoCombo: the molec-
ular shapes and the relative positions of chemical features overlap well (Figure 9.4).

Figure 9.5 includes the 2D graphs, the OMEGA conformers, and the ROCS colored
shape surfaces of molecule-pair 72. 66.4% of experts considered pair 72 to be similar:
the majority considered the pair similar, but it is not a clear-cut decision, since a quite
large amount of experts (33.6%) considered the pair dissimilar. �e Tanimoto CDK Ex-
tended value for pair 72 is 0.738, and the model classi�ed pair 72 as similar with very
high probability (97.6%). �e TanimotoCombo for pair 72 is 1.299, and with a calcu-
lated similarity probability of 36.4%, the pair was classi�ed as dissimilar by the model.
Even though the Tanimoto CDK Extended model classi�ed correctly pair 72, the high
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similarity probability does not capture the ambiguity of the situation. �e Tanimoto
CDK Extended measure considers the molecules to be similar because they have sim-
ilar basic functional groups. But the relative positions of such functional groups are
not identical, and this is captured by the ROCS colored shape surfaces Figure 9.5.

Figure 9.6 includes the 2D graphs, the OMEGA conformers, and the ROCS colored
shape surfaces of molecule-pair 94. Experts classi�ed the molecule-pair as dissimilar,
but it was not a clear-cut decision: 46.1% of votes for similarity, and 53.9% of votes for
dissimilarity. With a Tanimoto CDK Extended value of 0.513, and a very low calcu-
lated similarity probability of 14.3%, the 2D model classi�ed pair 94 as dissimilar. �e
3D protocol produced a TanimotoCombo score of 1.381 for pair 94, thus calculating a
similarity probability of 56.7%, and classifying the pair as similar. �e TanimotoCombo
model classi�ed pair 94 incorrectly, but the calculated similarity probability be�er cap-
tures the ambiguity of the situation. �e Tanimoto CDK Extended value for pair 94 is
quite low, because both molecules have an aromatic ring, with di�erent chemical fea-
tures. In this instance, ROCS recognized that the two molecules have a quite similar
shape, and that some features are in the same relative position in 3D space (Figure 9.6).

We have found that Tanimoto CDK Extended and TanimotoCombo models pro-
duce comparable results, but that their predictions are di�erent for some interest-
ing molecule-pairs. �e TanimotoCombo model can classify a molecule-pair correctly
where the Tanimoto CDK Extended model failed (e.g., molecule-pairs 48 and 60). �e
TanimotoCombo model can capture the ambiguity of borderline cases (e.g., molecule-
pairs 72 and 94).
TanimotoCombo values are a good input feature for the similarity-prediction task. It
can be used with other e�ective 2D input features to improve model performance on
the similarity-prediction task.
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Figure 9.4: 2D graph, 3D conformers, and ROCS surfaces of molecule-pair 60.
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Figure 9.5: 2D graph, 3D conformers, and ROCS surfaces of molecule-pair 72.
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Figure 9.6: 2D graph, 3D conformers, and ROCS surfaces of molecule-pair 94.
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9.3 Performance of double-featuremodels on the orig-
inal training-set

We built double-feature similarity-prediction to test whether TanimotoCombo values
could be used with Tanimoto CDK Extended to improve the performance of similarity-
prediction models. �e combination of Tanimoto CDK Extended and TanimotoCombo
creates a nice separation between the similar and dissimilar molecule-pairs in the orig-
inal training-set (Figure 9.7). Similarity-prediction models can take advantage of this
separation to improve the quality of their predictions.
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Figure 9.7: �e original training-set plo�ed in 2D/3D similarity space.

Performance metrics of double-feature models trained with default hyperparameters
(default double-feature models) are reported in Table 9.2. �e double-feature default
models include a basic LogReg model with no regularization, LogReg models with
L1 and L2 regularization, a DT, and a RF. �e basic LogReg model and the L1 and
L2 models correctly predicted 95 molecule-pairs, an improvement with respect to the
93 correct predictions of the best single-feature model (the Tanimoto CDK Extended
model, Table 9.1). �e more advanced performance metrics of these double-feature
models are slightly worse than those of the single-feature Tanimoto CDK Extended
model: the use of two input features may have caused some over��ing. �e best of
the three double-feature models based on LogReg is the L1 model: it correctly predicts
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Ncorrect AUROC AveP Llog LBrier

LogReg 95 0.983 0.980 0.240 0.062
L1 95 0.988 0.986 0.167 0.046
L2 95 0.983 0.980 0.240 0.062
DT 100 1.000 1.000 0.000 0.000
RF 100 1.000 1.000 0.038 0.008

Table 9.2: Performance of default double-feature models on the original training-set.

95 molecule-pairs, and has performance metrics comparable to the single-feature Tan-
imoto CDK Extended model. �e L1 regularization can be an e�ective technique to
improve double-feature similarity-prediction models.

�e DT and RF models are apparently much be�er than the models based on Lo-
gReg Table 9.2. �ey make 100% correct predictions on the original training-set, and
their other performance metrics are almost perfect. But it is known that DT models
(and to a lesser degree, RF models) are prone to over��ing [139]–[142]. �e high de-
grees of freedom of these models make them able to memorize the whole training-set,
thus performing very well on the training-set, but poorly on unseen data.

Hyperparameter grid search with CV is the most common technique to improve
model performance on unseen data. We applied the technique to build double-feature
models with tuned hyperparameters (tuned double-feature models). �e performance
of models with best hyperparameters is reported in Table 9.3 (the basic LogReg model
with no regularization is not included, since it does not have hyperparameters).

Ncorrect AUROC AveP Llog LBrier

L1 95 0.988 0.986 0.179 0.048
L2 95 0.982 0.978 0.452 0.135
DT 99 1.000 1.000 0.014 0.005
RF 95 0.991 0.988 0.132 0.037

Table 9.3: Performance of tuned double-feature models on the original training-set.

�e tuned double-feature L1 and L2 models correctly predicted 95 molecule-pairs, just
as their default double-feature counterparts (Table 9.2). Tuning the L1 model slightly
improved the other performance metrics on the training-set. On the other hand, per-
formance metrics of the L2 model got slightly worse a�er hyperparameter tuning. A
small performance decrease a�er hyperparameter tuning is normal: a model trades
some speci�c knowledge of the training-set for be�er predictions on unseen data.

�e DT and RF models have worse performance a�er hyperparameter tuning (Ta-
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ble 9.3). �is con�rms that default DT and RF models were over��ing on the training-
set (Table 9.2). �e DT correctly predicts 99 molecule-pairs, and has almost perfect
scores for all the other advanced metrics. Even a�er hyperparameter tuning, the DT is
probably over��ing. �e only way to know for sure is to test it on unseen data. �e RF
model has more reasonable performance. It correctly predicts 95 molecule-pairs. �e
other performance metrics are very good: they are so far the best among all models (ex-
cept the obviously over�t models). Since RF models have been designed to reduce the
over��ing of DTs, it is reasonable to assume that the RF similarity-prediction model
that we tuned is not over�t. But to be sure of that, and to con�rm that the tuned RF
model is the best similarity-prediction model, it is necessary to test it on unseen data.

9.4 Comment on the selection of newmolecule-pairs
�e 2D/3D similarity landscape a�er the application of thresholds described in subsec-
tion 8.4.1 is presented in Figure 9.8. As could be expected, there is a correlation between
Tanimoto CDK Extended and TanimotoCombo. �e vast majority of molecule-pairs
(8540) are of course dissimilar in 2D and 3D (dis2D,dis3D), since we randomly selected
the 9000 pairs that were processed with the 2D and 3D protocols, and that are plo�ed in
the �gure. �ere are also many pairs (177) that are similar in 2D and 3D (sim2D,sim3D).
�ere are 54 pairs that are similar in 2D and dissimilar in 3D (sim2D,dis3D), and 97 pairs
that are dissimilar in 2D and similar in 3D (dis2D,sim3D). A total of 132 molecule-pairs
fell in the bu�er zones, and could not be classi�ed as either similar or dissimilar in 2D
or 3D: their data points are not shown in Figure 9.8.

100 data points from Figure 9.8 were selected (as described in subsection 8.4.1), and
are shown in Figure 9.9. �e �gure also includes some representative molecule-pairs
from the four similarity subsets.
�e dis2D,dis3D subset includes two main types of molecule-pairs. Some pairs are dis-
similar in 2D and in 3D because they are of very di�erent size. �e dis2D,dis3D subset
also includes molecule-pairs that are of comparable sizes, but with di�erent chemical
functionalities and shapes. �e dis2D,sim3D subset includes molecule-pairs with simi-
lar size, shape, and relative orientation of functional groups, but with somewhat di�er-
ent chemical functionalities. �e sim2D,dis3D subset include molecule-pairs whose 2D
graph is fairly similar: they are of similar size, and have similar chemical functionali-
ties placed in di�erent positions of the basic sca�old. �eir diversity is more apparent
when observing their 3D representations. Finally, the sim2D,sim3D subset includes
molecules that are highly similar in 2D and in 3D: they are of similar size, with similar
sca�olds, similar chemical functionalities in similar positions.

�e 100 molecule-pairs represented in Figure 9.9 are the ones included in the sur-
vey, and subjected to assessments by voluntary users with experience in chemistry
(see subsection 8.4.2).
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Figure 9.8: Classi�cation of molecules as similar or dissimilar according to Tanimoto
CDK Extended and TanimotoCombo values.
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Figure 9.9: 2D/3D similarity landscape of molecule-pairs included in the survey. �e
2D graphs of some representative molecule-pairs are included.
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9.5 Results of the survey
A total of 518 users clicked the invitation link for the survey, and passed the simple
captcha problem that con�rmed that they were humans and that they were really will-
ing to participate in the survey (Figure 9.10). 27 users (5.4% of total users) passed the
captcha probelm, but did not accept the conditions. 58 users (11.5% of total users) ac-
cepted the conditions and started answering the questions, but did not complete the
survey. �e survey was completed by 418 users (83.1% of total users). Only the an-
swers of users who completed the survey were stored, and were considered for further
analysis.
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Figure 9.10: Number of users that participated in the survey.

�e last question that was answered by the users was about their academic title.
Of the 418 users that completed the survey, 70 (16.7%) were PhD Students, 31 (7.4%)
were Postdocs, 257 (61.5%) were Professors or Researchers Figure 9.11. �e remaining
60 users (14.4%) reported to not possess any of the aforementioned academic titles.

We collected a total of 2090 molecule-pair similarity assessments, since each of
the 418 users who completed the survey had to assess the similarity of 5 molecule-
pairs. Each user was presented 5 randomly selected molecule-pairs, so each of the
100 molecule-pairs received a di�erent number of assessments (9.12). It is not impor-
tant that all molecule-pairs are assessed the same number of times: we only needed
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Figure 9.11: Academic title of users who completed the survey.

each molecule-pair to receive a su�cient number of answers so that the similarity as-
sessment was statistically signi�cant. �e lowest number of assessments was 11, for
molecule-pair 9. Molecule-pairs 19 and 72 received the most assessments (30 assess-
ments each). On average, each molecule-pair received 21 assessments. �e number of
assessments received by each molecule-pair is reported in Figure B.1.
Another important requirement for the outcome of the survey was that the four sim-
ilarity subsets received a similar number of answers. Users had to express their judg-
ments on simple similarity scenarios (molecule-pairs in subsets sim2D,sim3D and dis2D,dis3D)
and on more ambiguous situations (molecule-pairs in subsets sim2D,dis3D and dis2D,sim3D).
�is requirement was achieved, as shown in Figure 9.13.

�e calculated similarity subsets (subsection 8.4.1) are in excellent agreement with
the similarity assessments by survey users (Figure 9.14). Molecule-pairs in the sim2D,sim3D
subset are considered similar by a high percentage of users (81.7% on average). On the
other hand, users considered molecule-pairs belonging to the dis2D,dis3D subset as
dissimilar (92.0% on average). As we expected, users did not agree very strongly on
the similarity of molecules in the sim2D,dis3D and dis2D,sim3D subsets (55.5 and 50.7%
respectively).
�e same results are shown with greater detail in Figure 9.15, that includes the distri-
butions of assessed similarity percentages in each calculated similarity category (sim-
ilarity and dissimilarity percentages for each molecule-pair are shown in Figure B.2).

69



10 13 16 19 22 25 28 31
Number of Answers

0

5

10

15

20

25

30

Nu
m

be
r o

f P
ai

rs
2090 total answers

Figure 9.12: Distribution of number of assessments by molecule-pair.
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Figure 9.13: Number of assessments for each similarity subset.
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Figure 9.14: Percentage of molecule-pairs considered similar and dissimilar in each
calculated similarity subset.
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Two molecule-pairs (56 and 61) were judged similar by all the survey users. �ey be-
long to the sim2D,sim3D group. Eight molecule pairs (76, 81, 85, 86, 87, 93, 95, and 97)
were considered dissimilar by all the users. �ey belong to the dis2D,dis3D group. �e
highest similarity assessment for a molecule-pair in the dis2D,dis3D subset was 25.0%
for pair 78. �e lowest similarity assessment for a molecule-pair in the sim2D,sim3D
subset was 61.9% for pair 67. �e majority of molecule-pairs in the sim2D,dis3D and
dis2D,sim3D subsets obtained similarity assessments between 40 and 60% (Figure 9.15).
We consider similarity assessments between 40 and 60% as “uncertain similarity as-
sessments”: survey users did not strongly agree on the similarity or dissimilarity of
a molecule-pair, if that pair received a similarity assessment between 40 and 60%. 22
molecule-pairs received similarity assessments in the 40–60% range. 13 of them belong
to the sim2D,dis3D subset, and the remaining 9 to the dis2D,sim3D subset.
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Figure 9.15: Distributions of molecule-pairs considered similar in each calculated sim-
ilarity subset.

All molecules in the sim2D,sim3D subset were considered similar by the majority of
users, and all molecules in the dis2D,dis3D subset were considered dissimilar by the ma-
jority of users. �e assessments of molecule-pairs in the sim2D,dis3D and dis2D,sim3D
subsets were more varied. As we mentioned earlier, the majority of molecule-pairs
in the sim2D,sim3D and dis2D,sim3D subsets fell in the “uncertain range” of 40–60%
similarity. Similarity assessments in the sim2D,dis3D group range from the 28.6% of
pair 50, to the 76.2% of pair 31. Similarity assessments in the dis2D,sim3D subset are

72



even more varied (biggest box in Figure 9.15): they range from the 9.5% of pair 11 to
the 85.7% of pair 10.

When selecting the molecule-pairs to be assessed through the survey by users with
experience in chemistry, we wanted to obtain a new data-set that contained di�erent
scenarios in molecular similarity. So we assigned the molecule-pairs in four subsets
based on the 2D/3D threshold approach described in subsection 8.4.1, and we manually
selected 25 pairs from each subset. �e survey results matched our expectations. �e
assessments by survey users are in very good agreement with our classi�cation of
molecule-pairs in the four subsets. We obtained a new data-set with many di�cult
and borderline similarity situations.

9.6 �e new training-set
�e new data-set was then used to train single-feature and double-feature similarity-
prediction models (as described in subsection 8.3.4). We built the same families of
models that we built with the original training-set, using the same input features, the
same algorithms, and the same hyperparameter tuning procedures. �e new data-set
contains the percentage of humans that considered each molecule-pair to be similar.
�is feature was used to classify molecule-pairs as either similar or dissimilar, using
majority voting (a 50% similarity threshold, as Franco et al. did in their original work
[151]). �e new training-set is well balanced: it contains 55 similar and 45 dissimilar
molecule-pairs. As we expected, the similarity labels are not spread uniformly across
the four subsets (Figure 9.16).
All the 25 dis2D,dis3D molecule-pairs are classi�ed as dissimilar, and all the 25 sim2D,sim3D
pairs are classi�ed as similar. �e majority of sim2D,dis3D molecule-pairs are classi-
�ed as similar (18 out of 25), with only 7 pairs being classi�ed as dissimilar. On the
other hand, molecule-pairs in the dis2D,sim3D subset are uniformly distributed across
classes: 13 are classi�ed as dissimilar, and 12 as similar.

�ese preliminary results tell us a lot about the correlation between human simi-
larity assessments and the 2D and 3D similarity measures (Tanimoto CDK Extended
and TanimotoCombo). If the similarity measures agree on the similarity or dissimilar-
ity of a molecule-pair, also the humans agree with each other. For more ambiguous
molecule-pairs, were the 2D and 3D similarity measures do not agree, human assess-
ments are far less predictable. If the 2D similarity measure is high and the 3D similarity
measure is low, humans tend to rely more on the 2D graph representation, and to agree
with the 2D similarity measure (that is a numerical extrapolation of the 2D graphs).
�is is the case for molecule-pairs in the sim2D,dis3D subset. On the other hand, if
the 2D similarity measure is low and the 3D similarity measure is high, molecule-pairs
have an equal chance of being classi�ed as similar or dissimilar by majority voting.
�is is the case for the dis2D,sim3D subset. Some users consider the 3D interactive
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Figure 9.16: Number of molecule-pairs classi�ed as similar or dissimilar for each cal-
culated similarity subset.
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representations, and other users only consider the 2D graphs. Most people with ex-
perience in chemistry are familiar with 2D molecular graphs: they are a molecular
representation that is taught very early in chemistry courses. Even if 3D structures are
a more realistic representation of molecules (molecules are 3D objects!), 3D interactive
representations are quite obscure for some chemists. We assume that the vast majority
of chemists understand what a 3D representation is, and know how to interact with it
and how to interpret it. But when given the not-so-common task of assessing molecu-
lar similarity, most chemists probably reverted to using the simple 2D graphs that they
learned early-on in their careers.
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Figure 9.17: �e new training-set plo�ed in 2D/3D similarity space.

Figure 9.17 presents the 2D/3D similarity landscape of the new training-set. Com-
pare it to the landscape of the original training-set (Figure 9.7). Most data points of
the original training-set are on the diagonal of Tanimoto CDK Extended - Tanimo-
toCombo plot. �e 2D and 3D similarity measures separate well the two similarity
classes obtained by majority voting. �is explains why models performed well on the
similarity-prediction task on the original training-set. On the other hand, only data
points of the “simple” sim2D,sim3D and dis2D,dis3D subsets are on the diagonal of
the new similarity landscape (Figure 9.17). �e similarity classes of the “borderline”
sim2D,dis3D and dis2D,dis3D subsets are not well separated by the 2D and 3D similar-
ity measures. Solving the similarity-prediction task on the new training-set is clearly
much more complex.
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9.7 Performance of single-featuremodels on the new
training-set

�e LogReg curves of new single-feature and double-feature models qualitatively show
that both the Tanimoto CDK Extended and TanimotoCombo values are correlated with
the percentage of human experts that considered a molecule-pair to be similar, in the
new training-set (Figures 9.18 and 9.19). But, even visually, the performance of the new
single-featuremodels on their training-set is worse than that of the original models on
their training-set (Figures 9.1 and 9.3). More data points of the new training-set are far
from the modeled LogReg curve. �is con�rms that the new training-set poses a more
complex similarity-prediction task than the original training-set.
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Figure 9.18: LogReg curve of new Tanimoto CDK Extended single-feature model.

�antitative performance metrics of single-feature models on the new training-set
are reported in Table 9.4. Since the new training-set is more complex than the original,
the new models have overall worse performance than the ones based on the original
training-set (Table 9.1). �e original Tanimoto CDK Extended model made 93 correct
predictions on its training-set, whereas the new model only made 81 correct predic-
tions. �e other more advanced performance metrics are accordingly worse.
�e TanimotoCombo model had, on the original training-set, a predictive power com-
parable to that of the Tanimoto CDK Extended model (Table 9.1). On the other hand,
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Figure 9.19: LogReg curve of new TanimotoCombo single-feature model.

Ncorrect AUROC AveP Llog LBrier

Tanimoto CDK Extended 81 0.920 0.937 0.378 0.122
TanimotoCombo 70 0.845 0.877 0.488 0.167

Table 9.4: Performance of single-feature models on the new training-set.
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the new TanimotoCombo model performed de�nitively worse than the Tanimoto CDK
Extended model on the new training-set (Table 9.4). �e new TanimotoCombo model
only made 70 correct predictions. All the other performance metrics are signi�cantly
worse than those of the new Tanimoto CDK Extended model. Everything considered,
the performance of the new TanimotoCombo model is not bad per-se. �e advanced
performance metrics of the new TanimotoCombo model are be�er than those of the
VolSurf Similarity model on the original training-set (Table 9.1). �e new Tanimoto-
Combo model has predictive power for the similarity-prediction task. So, we looked
further into the reasons behind the poorer performance of the TanimotoCombo model
on the new training-set.

9.8 Comparing new 2D and 3D models
We calculated the percentage of correct predictions by the two new single-feature mod-
els, for each of the four similarity subsets (Figure 9.20). �e Tanimoto CDK Extended
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Figure 9.20: Percentage of correct predictions by the single-feature Tanimoto CDK
Extended and TanimotoCombo models, for each calculated similarity subset.

and TanimotoCombo models were perfectly able to predict the similarity classes in
the sim2D,sim3D and dis2D,dis3D subsets (100% correct predictions). All the predic-
tion errors occur for molecule-pairs in the sim2D,dis3D and dis2D,sim3D subsets. On

78



the dis2D,sim3D subset, both the Tanimoto CDK Extended and TanimotoCombo mod-
els performed poorly: 52 and 48% correct predictions each (almost coin tosses!). On
the other hand, the Tanimoto CDK Extended model performed reasonably well on the
sim2D,dis3D subset (72% correct predictions), whereas the TanimotoCombo model per-
formed very poorly on the same subset (32%). �is con�rms what we pointed out in
section 9.6: when in doubt, humans tend to consider only the 2D molecular graphs,
whose similarity is correlated with the Tanimoto CDK Extended values. �is explains
why Tanimoto CDK Extended values are a be�er predictor than TanimotoCombo for
di�cult cases of the similarity-prediction task.

9.9 Performance of double-featuremodels on thenew
training-set

Both Tanimoto CDK Extended and TanimotoCombo single-feature models demon-
strated predictive power on the new training-set. �e combination of Tanimoto CDK
Extended and TanimotoCombo features can create be�er similarity-prediction mod-
els. We used the new training-set to build the same types of double-feature models
that were successful on the original training-set, and we evaluated their performance.
�e performance metrics of double-feature models trained with default scikit-learn hy-
perparameters is reported in Table 9.5.

Ncorrect AUROC AveP Llog LBrier

LogReg 83 0.910 0.927 0.390 0.122
L1 84 0.924 0.936 0.335 0.108
L2 83 0.910 0.927 0.390 0.122
DT 100 1.000 1.000 0.000 0.000
RF 100 1.000 1.000 0.086 0.017

Table 9.5: Performance of default double-feature models on the new training-set.

All the default double-feature LogReg models correctly predict more molecule-pairs
than the single-feature models (Table 9.4), but are worse than the default double-
feature models built and evaluated on the original training-set (Table 9.2). When
considering the more advanced performance metrics, only the LogReg model with
L1 regularization is be�er than the best single-feature model (the Tanimoto CDK Ex-
tended model). �e default double-feature DT and RF models correctly predict 100%
of molecule-pairs in the new training-set, and have almost perfect values for the other
metrics. �is actually means that they are probably over��ing.

To reduce over��ing and improve model performance on unseen data, we applied
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the same hyperparameter tuning procedure that we used for the original models. Per-
formance metrics of the new tuned double-feature models is reported in Table 9.6.

Ncorrect AUROC AveP Llog LBrier

L1 84 0.924 0.936 0.342 0.109
L2 83 0.921 0.934 0.323 0.107
DT 89 0.921 0.925 0.306 0.092
RF 93 0.968 0.971 0.223 0.071

Table 9.6: Performance of tuned double-feature models on the new training-set.

A�er hyperparameter tuning, the L1 model correctly predicts 84 molecule-pairs, just
as the default L1 model. �e advanced performance metrics of the tuned L1 model are,
on the other hand, slightly worse. A performance decrease a�er hyperparameter tun-
ing is normal: the tuning procedure is done in order to improve model performance on
unseen data. Also the L2 model correctly predicts the same number of molecule-pairs
(83) a�er tuning. But the advanced performance metrics of the L2 model became be�er
a�er tuning. L2 has be�er Llog and LBrier than L1, but its AUROC and AveP are slightly
worse than L1.
A�er tuning, the DT correctly predicts 89 molecule-pairs: more than the L1 and L2
models. �e advanced performance metrics of the DT are comparable to those of L1
and L2: slightly be�er Llog and LBrier, slightly worse AUROC and AveP. �e RF model is
the best tuned model: it correctly predicts 93 molecule-pairs, and it has the best values
for all the advanced performance metrics.
As expected, the DT and RF models became worse a�er hyperparameter tuning: the
default hyperparameters for DT and RF evidently caused over��ing. �e only way to
understand if the models are stil over��ing the new training-set, is to test them on
unseen data. For this reason, we used the cross-test procedure.

9.10 Cross-testing

9.10.1 Original models on new data-set
We employed the cross-test approach (see section 8.2) and used the new data-set to
evaluate all models that were built on the original training-set (Table 9.7). Ncorrect is
the most important metric when evaluating models on an external test-set: it is the
value that we want our models to predict. We also reported all the other advanced
performance metrics to have a clearer picture, and to help us in selecting the best
models when in doubt.
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�e single-feature Tanimoto CDK Extended model is one of the best performers. It
correctly predicted 81 molecule-pairs (the best Ncorrect is 83). It has the best AUROC
and AveP. Llog and LBrier for the Tanimoto CDK Extended model are also decent, but
they are not among the best values.
�e single-feature TanimotoCombo model is the worst overall performer. It correctly
predicted the least molecule-pairs among all models (69). �e TanimotoCombo model
also has poor values for the advanced performance metrics. TanimotoCombo by itself
cannot be used to build a model on the original training-set that is successful on the
new data-set. When used alongside Tanimoto CDK Extended, TanimotoCombo can
improve model performance on unseen data.

Ncorrect AUROC AveP Llog LBrier

single-feature
Tanimoto

CDK Extended 81 0.920 0.937 0.620 0.153

TanimotoCombo 69 0.845 0.877 0.741 0.235

default
double-feature

LogReg 73 0.884 0.912 0.390 0.130
L1 81 0.916 0.930 0.328 0.111
L2 73 0.884 0.912 0.390 0.130
DT 82 0.812 0.776 6.217 0.180
RF 83 0.889 0.907 0.395 0.130

tuned
double-feature

L1 78 0.910 0.926 0.342 0.116
L2 76 0.877 0.907 0.518 0.168
DT 81 0.811 0.776 6.224 0.183
RF 72 0.866 0.877 0.410 0.140

Table 9.7: Models built on original training-set and evaluated on new data-set.

�e original default double-feature models are the best, when tested on the new
data-set. �e default RF model correctly predicted 83 molecule-pairs: it is the best of
the original models for the most important metric. Its AUROC and AveP are good, but
they are worse than those of Tanimoto CDK Extended and L1 models. Its Llog and LBrier
are among the best values.
Interestingly, the default DT model performed quite well, even though its training-set
performance showed it was over��ing (Table 9.2). �e default DT correctly predicts
82 molecule-pairs. Its advanced metrics are quite bad compared to those of the other
models, especially Llog.
Among the default double-feature LogReg models, L1 is the clear winner. It predicts 81
molecule-pairs correctly. It has the best Llog and LBrier values, and its AUROC and AveP
values are among the best. On the other hand, the basic LogReg with no regularization,
and the L2 model, are bad performers. �ey only make 73 correct predictions, and their
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advanced metrics are worse than those of L1.
�e hyperparameter tuning based on cross-validation on the original training-set

did not successfully improve model performance on the new data-set. All the tuned
double-feature models have worse performance than the same models with default
hyperparameters. �is means that recurrently spli�ing the original training-set in a
training-set and validation-set, and taking the hyperparameters that performed best
on the validation-sets, did not improve ability of the models to generalize outside of
the training-set. �is is a further con�rmation that the original training-set and the
new data-set contain very di�erent examples of molecular similarity, and that the new
data-set contains more di�cult and borderline cases that are not expressed well by
models built on the original training-set.

�e models built on the original training-set performed on the new data-set sig-
ni�cantly worse than the models that were trained and evaluated on the new data-set
(Tables 9.4, 9.5, 9.6).

9.10.2 New models on original training-set
We used the original training-set to evaluate all models that were built on the new
training-set (Table 9.8). All new models performed well on the original training-set.
Both the single-feature models have good performance: they correctly predict 92 molecule-
pairs, and have good advanced metrics (advanced metrics of the Tanimoto CDK Ex-
tended model are be�er than those of the TanimotoCombo model).

�e combination of Tanimoto CDK Extended and TanimotoCombo values improved
performance of default double-feature LogReg models. �e best default double-feature
model is L1: it makes 95 correct predictions (the highest Ncorrect, also achieved by tuned
L1 and L2 models). Its advanced metrics are be�er than those of the single-feature
models and of the other default double-feature models. �e default L1 model is closely
followed by the basic LogReg and by the L2 models, that make 93 correct predictions.
As expected, the new DT and RF models performed poorly on the original training-set,
since they were over��ing their training data (Table 9.5).

�e hyperparameter tuning signi�cantly improved the performance of the L2 model.
�e tuned L2 model is the overall best model, considering the number of correct pre-
diction (95) and the advanced metrics. Performance of the L1 model did not change
signi�cantly a�er hyperparameter tuning.
�e performance of the DT improved signi�cantly a�er tuning, whereas the perfor-
mance of the RF slightly decreased. �e DT and RF are still the worst performers, even
a�er hyperparameter tuning.

�e new models, when evaluated on the original training-set, have shown a per-
formance comparable to that of the models that were trained and evaluated on the
original training-set (Tables 9.1, 9.2, 9.3).
�e cross-test procedure that we developed was successful in telling which models
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Ncorrect AUROC AveP Llog LBrier

single-feature
Tanimoto

CDK Extended 92 0.988 0.987 0.213 0.056

TanimotoCombo 92 0.970 0.963 0.330 0.092

default
double-feature

LogReg 93 0.988 0.986 0.282 0.072
L1 95 0.988 0.987 0.202 0.052
L2 93 0.988 0.986 0.282 0.072
DT 82 0.815 0.780 6.217 0.180
RF 91 0.966 0.967 0.253 0.077

tuned
double-feature

L1 95 0.988 0.987 0.215 0.055
L2 95 0.988 0.986 0.172 0.046
DT 86 0.868 0.863 0.369 0.116
RF 90 0.963 0.961 0.255 0.083

Table 9.8: Models built on new training-set and evaluated on original training-set.

only performed well on their training-set, and which models also performed well on
unseen data. Models that were built on the original training-set generally had poorer
performance on the new data-set. On the other hand, models built on the new data-
set performed well also on the original training-set, with performances comparable to
models that were actually built on the original training-set. �e combination of Tan-
imoto CDK Extended and TanimotoCombo input features improved the performance
of the new models on unseen data. �e tuning procedure signi�cantly improved the
new models, whereas models built on the original training-set performed worse a�er
hyperparameter tuning. Among the new models, the simple ones based on LogReg are
the best performers in cross-testing: the tuned double-feature L2 model is the overall
best. �e more complex DT and RF models performed worse than the LogReg models
when cross-testing on the original training-set.

�ese results demonstrate that the new data-set is richer than the original training-
set. Models built on the new data-set are able to perform well in more molecular sim-
ilarity scenarios than models built on the original training-set.

9.11 Prediction of uncertain similarity assessments
So far we have only built binary classi�cation models, that predicted a molecule-pair
to be either similar or dissimilar. �e target variable that the models were trained to
predict was the majority voting on molecular similarity: if more than 50% of experts
considered a molecule-pair to be similar, the molecule-pair was labeled as similar, oth-
erwise it was labeled as dissimilar. �is is in line with EMA practice: opinions at EMA
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are accepted by majority.
In the original work by Franco et al. [151] it was noted that a high number of

molecule-pairs fell in the “gray zone” of molecular-similarity assessments. �e major-
ity of experts considered these molecule-pairs to be similar or dissimilar, but it was not
a strong majority: there was also a signi�cant amount of experts of the contrary opin-
ion. We choose the new molecule-pairs with that in mind. We wanted a new data-set
with molecule-pairs that would receive mixed judgments by the experts. We reached
our goal (see section 9.5).

�e “trustworthiness” of the predictions of a model can be gauged by consider-
ing the calculated probability. All the algorithms that we used to build similarity-
prediction models accompany their prediction with a probability. Actually, the models
calculate a probability �rst, then convert the probability to a predicted class using an
internal threshold, usually of 50%. For instance, a molecule-pair that is classi�ed as
similar can be accepted with con�dence if, the calculated probability is 90%, and can
be taken with a grain of salt if the calculated probability is only 51%.

Could we build more useful models? Could models be trained to actually recognize
molecule-pairs that receive mixed judgments by the experts? To answer this question,
we modi�ed the similarity-prediction task from a binary to a ternary classi�cation
problem. We labeled molecule-pairs that were judged similar by more than 60% of
experts as similar. We labeled molecule-pairs that were judged similar by less than
40% of experts (i.e., judged dissimilar by more than 60% of experts) as dissimilar. We
considered the range of 40-60% similarity assessments as the “gray zone”, and labeled
all molecule-pairs in that range as uncertain. �is is the only change in the training-set
sets: the target variable, that now has three instead of two possible outcomes. We used
the same molecule-pairs, and the same input features (Tanimoto CDK Extended and
TanimotoCombo). We built the same types of classi�cation models that were used for
the binary similarity-prediction task to solve the new ternary classi�cation problem.

�e binary similarity-prediction task is by itself a di�cult classi�cation problem,
since human judgments do not correlate with calculated similarity for every single
molecule-pair. We expected the new ternary similarity-prediction task to be even more
di�cult: if it is hard to model human judgment, it is even harder to model human
indecision! Also, from a merely technical perspective, three classes are harder to model
than just two.

9.11.1 Performance on the original training-set
Figure 9.21 shows the familiar similarity landscape of the original training-set, now
colored based on the ternary labels. �e majority of molecule-pairs are either labeled
as similar (41) or dissimilar (48) based on the aforementioned thresholds. Only 11 pairs
fell in the 40-60% “gray zone” and were labeled as uncertain. �e binary similarity-
prediction problem was well balanced, since around half the molecule-pairs were la-
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Figure 9.21: �e original training-set plo�ed in 2D/3D similarity space with ternary
labels.

Ncorrect AUROC AveP Llog LBrier

Tanimoto CDK Extended 82 0.934 0.902 0.407 0.249
TanimotoCombo 77 0.926 0.909 0.433 0.265

Table 9.9: Ternary classi�cation performance of single-feature models on the original
training-set.

Not Similar Uncertain Similar
Tanimoto CDK Extended 91.7 81.8 70.7
TanimotoCombo 89.6 54.5 68.3

Table 9.10: Percentages of correct predictions by the ternary classi�cation single-
feature models on the original training-set.

85



beled as similar, and the other half as dissimilar. �e new ternary similarity-prediction
problem, on the other hand, is unbalanced: there are fewer samples with the uncertain
label than with the similar and dissimilar labels. With scikit-learn [71], it was easy to
solve this issue, by assigning to each class a weight inversely proportional to the num-
ber of samples in that class, during the de�nition of models. �is e�ectively improves
model performance on the uncertain class. �e performance metrics of single-feature
models built and evaluated on the original training-set are reported in Table 9.9. �e
Tanimoto CDK Extended model makes 5 correct predictions more than the Tanimoto-
Combo model, and also has be�er values for the other performance metrics.

For the ternary models, other than the usual performance metrics that were used
to evaluate the binary models, we calculated the percentages of correct predictions for
each class, with respect to the number of samples that actually belong to each class.
�is information is important, to be sure that the models are actually predicting all the
classes, and not just the most frequent classes. In the special classi�cation problem
that is the ternary similarity-prediction task, we are particularly interested in models
that perform well in predicting the uncertain molecule-pairs. Both the single-feature
models make correct predictions across the three classes. �ey do not only predict
the majority classes (similar and dissimilar). Table 9.10. �e Tanimoto CDK Extended
model predicts the uncertain molecule-pairs with high accuracy (81.8%). On the other
hand, the TanimotoCombo model performs well on the similar and dissimilar classes,
but it correctly predicts only 54.5% of the uncertain molecule-pairs.

�e combination of Tanimoto CDK Extended and TanimotoCombo input features
did not improve the default double-feature models based on LogReg (Table 9.11). �e
basic LogReg, the L1, and the L2 models have worse performance than the Tanimoto
CDK Extended single-feature model (Table 9.9). �e L1 model is slightly be�er than
the basic LogReg and the L2 models. �e more complex DT and RF models are over-
��ing, as was the case for the binary models.
Only the L1 model correctly predicts uncertain molecule-pairs with high success (81.8%,
see Table 9.12). �e other models based on LogReg perform reasonably well on the sim-
ilar and dissimilar classes, but perform very poorly on the uncertain class. �e default
double-feature DT and RF should not be taken into consideration at this stage, since
they are over��ing.

�e hyperparameter tuning improved the total number of correct predictions by
the L1 and L2 models (Table 9.13). �e improvement of Ncorrect came at the expense
of the advanced performance metrics. �e fact that hyperparameter tuning improved
Ncorrect while worsening the advanced metrics is easily explained by looking at the
percentages of correct predictions for each class (Table 9.14). �e improvement in
Ncorrect only occurred for the most frequent classes (similar and dissimilar), whereas
the uncertain class is not modeled well.
�e DT and RF models are probably still over��ing at this stage, but the only way to
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Ncorrect AUROC AveP Llog LBrier

LogReg 78 0.935 0.901 0.485 0.269
L1 79 0.942 0.907 0.398 0.232
L2 78 0.935 0.901 0.485 0.269
DT 100 1.000 1.000 0.000 0.000
RF 100 1.000 1.000 0.078 0.031

Table 9.11: Ternary classi�cation performance of default double-feature models on the
original training-set.

Not Similar Uncertain Similar
LogReg 91.7 45.5 70.7
L1 91.7 81.8 63.4
L2 91.7 45.5 70.7
DT 100.0 100.0 100.0
RF 100.0 100.0 100.0

Table 9.12: Percentages of correct predictions by the ternary classi�cation default
double-feature models on the original training-set.

know for sure is to evaluate them on unseen data.
�e ternary similarity-prediction models, in general, performed very poorly on the

original training-set (even though they were built on it). �e original training-set was
not created to be used for this kind of classi�cation task, so these results were expected.
�e only model that performed well on the ternary similarity-prediction task was the
single-feature Tanimoto CDK Extended model. �e combination of Tanimoto CDK
Extended and TanimotoCombo input features did not improve the performance on the
task. �e hyperparameter tuning worsened the ability of double-feature models to
predict uncertain molecule-pairs.

Ncorrect AUROC AveP Llog LBrier

L1 83 0.915 0.890 0.560 0.316
L2 87 0.864 0.882 1.039 0.627
DT 100 1.000 1.000 0.000 0.000
RF 98 0.999 0.995 0.085 0.044

Table 9.13: Ternary classi�cation performance of tuned double-feature models on the
original training-set.
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Not Similar Uncertain Similar
L1 93.8 45.5 80.5
L2 95.8 0.0 100.0
DT 100.0 100.0 100.0
RF 100.0 90.9 97.6

Table 9.14: Percentages of correct predictions by the ternary classi�cation tuned
double-feature models on the original training-set.

9.11.2 Performance on the new training-set
Figure 9.22 shows the 2D/3D similarity landscape of the new data-set, with the new
ternary labels. �e new data-set contains 35 dissimilar, 43 similar, and 22 uncertain
molecule-pairs. �e new data-set contains twice as many uncertain molecule-pairs
than the original training-set. �e classes of the new data-set are more balanced than
those of the original training-set. During modeling, we still applied the weighting to
further improve balancing.

As expected, the sim2D,sim3D and dis2D,dis3D subsets contain only similar and
dissimilar molecule-pairs. �e uncertain molecule-pairs are only in the sim2D,dis3D
and dis2D,sim3D subsets: they contain 13 and 9 uncertain pairs, respectively. �e
sim2D,dis3D subset also contains 9 similar and 3 dissimilar pairs, and the dis2D,sim3D
subset also contains 9 similar and 7 dissimilar pairs.

As always, we built and evaluated single-feature models on the new training-set
(Table 9.15). �ey do not perform very well on the new training-set, and their perfor-
mance is de�netively worse than that of the single-feature models built and evaluated
on the original training-set (Table 9.9). �e new ternary single-feature models also fail
in predicting the uncertain molecule-pairs (Table 9.16). �e Tanimoto CDK Extended
and TanimotoCombo models only predict 54.5% and 50% of uncertain molecule pairs,
respectively.

Ncorrect AUROC AveP Llog LBrier

Tanimoto CDK Extended 76 0.886 0.827 0.675 0.372
TanimotoCombo 70 0.863 0.788 0.771 0.419

Table 9.15: Ternary classi�cation performance of single-feature models on the new
training-set.

�e models based on LogReg bene�t by the combination of the Tanimoto CDK
Extended and TanimotoCombo input features (Table 9.17). �e default double-feature
models based on LogReg make more correct predictions, and have be�er metrics than
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Figure 9.22: �e new data-set plo�ed in 2D/3D similarity space with ternary labels.

Not Similar Uncertain Similar
Tanimoto CDK Extended 85.7 54.5 79.1
TanimotoCombo 74.3 50.0 76.7

Table 9.16: Percentages of correct predictions by the ternary classi�cation single-
feature models on the new training-set.
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the single-feature models (Table 9.15). Most importantly, these default double-feature
models make more correct predictions in the uncertain class (Table 9.18), that is the
most interesting class for the ternary similarity-prediction task. On the other hand,
the combination of the 2D and 3D input features did not improve the models built and
evaluated on the original training-set (Tables 9.11 and 9.12).
As always, the DT and RF models with default hyperparameters are over��ing.

Ncorrect AUROC AveP Llog LBrier

LogReg 77 0.913 0.840 0.619 0.344
L1 77 0.917 0.845 0.530 0.299
L2 77 0.913 0.840 0.619 0.344
DT 100 1.000 1.000 0.000 0.000
RF 100 1.000 1.000 0.127 0.051

Table 9.17: Ternary classi�cation performance of default double-feature models on the
new training-set.

Not Similar Uncertain Similar
LogReg 77.1 81.8 74.4
L1 85.7 77.3 69.8
L2 77.1 81.8 74.4
DT 100.0 100.0 100.0
RF 100.0 100.0 100.0

Table 9.18: Percentages of correct predictions by the ternary classi�cation default
double-feature models on the new training-set.

�e hyperparameter tuning slightly made the L1 model do one correct prediction
more, at the expense of worse advanced performance metrics (Table 9.19). On the other
hand, the L2 model made one correct prediction less, and have performance metrics
comparable to those of the default L2 model. �e tuned L1 model makes fewer correct
predictions on the uncertain class (Table 9.20). �e tuned L2 model correctly predicts
the same amount of uncertain molecule-pairs. �e hyperparameter tuning did not im-
prove the L1 and L2 models on the new training-set. �e purpose of hyperparameter
tuning is to improve performance on unseen data, so we will evaluate the tuned mod-
els on the original training-set using cross-test.
�e DT and RF models, a�er tuning, have very good metrics, and make many cor-
rect predictions on the uncertain class. In order to make sure that they are no longer
over��ing, we will evaluate them on the original training-set.
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Ncorrect AUROC AveP Llog LBrier

L1 78 0.888 0.821 0.691 0.389
L2 76 0.911 0.843 0.640 0.357
DT 82 0.953 0.894 0.372 0.227
RF 86 0.974 0.956 0.343 0.198

Table 9.19: Ternary classi�cation performance of tuned double-feature models on the
new training-set.

Not Similar Uncertain Similar
L1 85.7 63.6 79.1
L2 74.3 81.8 74.4
DT 88.6 86.4 74.4
RF 80.0 81.8 93.0

Table 9.20: Percentages of correct predictions by the ternary classi�cation tuned
double-feature models on the new training-set.

9.11.3 Cross-testing
Original models on the new data-set

�e performance metrics of models that were built on the original training-set and
evaluated on the new data-set are reported in Table 9.21. In general, models that were
built on the original training-set do not perform very well on the new data-set. During
cross-test, these models make less correct predictions than the models that were built
on the new training-set (Tables 9.15, 9.17, and 9.19). Also the advanced metrics are
worse. �e hyperparameter tuning did not improve the performance of double-feature
models on the new data-set. �e tuned L1 and L2 are worse than their counterparts
with default hyperparameters. �e tuning process did not prevent the DT and RF
models from over��ing.

�e only models that make good predictions on the uncertain class are the default
double-feature models based on LogReg (Table 9.22). �ey correctly predict 81.8% of
uncertain molecule-pairs in the new data-set. single-feature models built on the orig-
inal training-set correctly predict around half of the uncertain molecule-pairs of the
new data-set. Tuned double-feature models make even less correct predictions on the
uncertain class.
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Ncorrect AUROC AveP Llog LBrier

single-feature
Tanimoto

CDK Extended 75 0.882 0.818 0.850 0.377

TanimotoCombo 67 0.832 0.772 1.200 0.516

default
double-feature

LogReg 73 0.886 0.818 0.648 0.371
L1 70 0.886 0.812 0.617 0.359
L2 73 0.886 0.818 0.648 0.371
DT 67 0.703 0.569 11.398 0.660
RF 65 0.887 0.813 0.693 0.409

tuned
double-feature

L1 66 0.809 0.761 0.796 0.464
L2 67 0.777 0.752 1.053 0.636
DT 67 0.703 0.569 11.398 0.660
RF 71 0.811 0.735 5.781 0.427

Table 9.21: Ternary models built on original training-set and evaluated on new data-
set.

Not Similar Uncertain Similar

single-feature
Tanimoto

CDK Extended 85.7 50.0 79.1

TanimotoCombo 74.3 45.5 72.1

default
double-feature

LogReg 77.1 81.8 65.1
L1 74.3 81.8 60.5
L2 77.1 81.8 65.1
DT 88.6 9.1 79.1
RF 91.4 0.0 76.7

tuned
double-feature

L1 74.3 31.8 76.7
L2 85.7 0.0 86.0
DT 88.6 9.1 79.1
RF 88.6 4.5 90.7

Table 9.22: Percentages of correct predictions by ternary models built on original
training-set and evaluated on new data-set.
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New models on the original training-set

�e models built on the new training-set performed well on the original training-set.
(Table 9.23). �eir performance metrics (Ncorrect and the advanced metrics) are compa-
rable to those of the models that were built and evaluated on the original training-set
(Tables 9.9, 9.11, and 9.13). �e tuning process improved the Ncorrect of the new double-
feature models on the original training-set. On the other hand, the tuning process
did not improve the cross-test performance of models that were built on the origi-
nal training-set (Table 9.21). When considering Ncorrect and the advanced metrics, the
models based on LogReg are be�er than the DT and RF models.

When considering the correct predictions on the uncertain class, the best mod-
els are the single-feature Tanimoto CDK Extended model, and the tuned DT model
(Table 9.24). �ey correctly predict 81.8% of uncertain molecule-pairs in the origi-
nal training-set. �e double-feature models based on LogReg had be�er performance
metrics than these two models, but only predict 45.5% molecule-pairs of the uncertain
class, that is the most interesting class in ternary similarity-prediction problems. �e
double-feature models based on LogReg are be�er at predicting similar and dissimi-
lar molecule-pairs. A good compromise between overall performance and ability to
predict the uncertain class is the tuned RF model. It correctly predicts 63.6% of un-
certain molecule-pairs. �e single-feature Tanimoto CDK Extended model is another
solid performer in this regard.

�e cross-testing of ternary similarity-prediction models con�rmed that the new
data-set is richer than the original training-set, and that it can be used to train models
that perform well on unseen data. As we pointed out earlier, the ternary similarity-
prediction task is inherently very di�cult, and the performance of ternary models is,
on average, worse than that of binary models. Using the new training-set, we were
able to build good models for the ternary similarity-prediction task. �ese had good
performance and were able to predict uncertain molecule-pairs with high accuracy.
We also found out that the two characteristics are not necessarily correlated: models
that have very good performance metrics may be bad at predicting the uncertain class,
and vice versa.
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Ncorrect AUROC AveP Llog LBrier

single-feature
Tanimoto

CDK Extended 78 0.934 0.907 0.485 0.277

TanimotoCombo 76 0.908 0.893 0.577 0.332

default
double-feature

LogReg 87 0.936 0.914 0.497 0.268
L1 85 0.937 0.905 0.390 0.216
L2 87 0.936 0.914 0.497 0.268
DT 66 0.719 0.641 11.743 0.680
RF 80 0.897 0.881 0.467 0.277

tuned
double-feature

L1 86 0.929 0.906 0.582 0.316
L2 88 0.934 0.912 0.523 0.283
DT 72 0.873 0.848 1.371 0.446
RF 79 0.911 0.894 0.457 0.274

Table 9.23: Ternary models built on new training-set and evaluated on original
training-set.

Not Similar Uncertain Similar

single-feature
Tanimoto

CDK Extended 85.4 81.8 68.3

TanimotoCombo 77.1 45.5 82.9

default
double-feature

LogReg 93.8 45.5 90.2
L1 93.8 45.5 85.4
L2 93.8 45.5 90.2
DT 79.2 45.5 56.1
RF 85.4 36.4 85.4

tuned
double-feature

L1 93.8 45.5 87.8
L2 93.8 45.5 92.7
DT 87.5 81.8 51.2
RF 89.6 63.6 70.7

Table 9.24: Percentages of correct predictions by ternary models built on new training-
set and evaluated on original training-set.
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Chapter 10

Conclusion

We embarked upon our journey by asking ourselves some questions about molecular
similarity. How do humans perform molecular similarity assessments? Do chemists
consider that molecules are 3D objects, or do they only observe the 2D graphs that they
are presented? If given realistic 3D representations, will chemists consider it, or will
they still rely on the 2D graphs? Can 3D measures of molecular similarity be useful
in modeling majority voting of molecular similarity? And what is the best way to �nd
molecule-pairs that would be hard to judge by experts?

We started from the data and models by Franco et al. We built improved similarity-
prediction models by combining the best 2D �ngerprint with a 3D similarity measure
that has never been used for this kind of task: TanimotoCombo. We then explored
the 2D/3D similarity landscape in the biggest open database of bioactive compounds,
ChEMBL. We developed a new protocol to select sets of molecule-pairs with shared
molecular similarity a�ributes. Most importantly, we wanted to �nd molecule-pairs
that would not be easily classi�ed as similar or dissimilar by expert evaluators. We
then used open source Python tools to develop a web survey on 2D and 3D molec-
ular similarity. �e molecule-pairs that we selected were assessed by chemists in 69
universities worldwide. It was the �rst time that a survey on 2D and 3D molecular
similarity was ever made. �e survey results con�rmed our expectations about what
the molecular similarity assessments would be, based on the calculated similarity mea-
sures. We then used the new data-set to build the same similarity-prediction models
that were successful on the original training-set by Franco et al.. As we expected, we
found out that the new data-set contained more di�cult and borderline molecular-
similarity cases than the original training-set. �e new data-set was a very di�cult
similarity-prediction modeling task. We used a new validation procedure that used
a data-set to evaluate models that were built on another data-set, thus assessing the
relative quality of the two data-sets to build similarity-prediction models, and the ex-
tent of similarity pa�erns that they contained. We called this procedure cross-testing.
�rough cross-testing, we con�rmed that the new data-set is richer than the original
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one, and that models trained on the new data-set perform be�er on unseen data. �e
new data-set is be�er for model generalizability.
By evaluating our models, we con�rmed that the LogReg algorithm (and its variants
for multiple input features variants) is very e�ective for the similarity-prediction task.
LogReg even surpasses the more complex DT and RF models. DT and RF had never
been used for similarity-prediction, and we found out that they are prone to over�t-
ting, and they usually fail on data other than the training-set. A good hyperparameter
tuning procedure is crucial to ensure that models perform well on unseen data.

So far, we had only considered the binary similarity-prediction task: molecule-
pairs could only be labeled as similar or dissimilar based on majority voting, and the
models would only predict these two possibilities. But in the course of our work, we
had found many molecule-pairs that did not receive clear-cut similarity assessments
by the majority of experts. We wanted to model human indecision about molecular
similarity. So, we added a new possible label to molecule-pairs: “uncertain”, and we
used the original training-set and the new data-set to build models that solved this
ternary similarity-prediction task. It was the �rst time that this kind of molecular
similarity problem was addressed. Even though the ternary similarity-prediction task
is more di�cult than the classical binary task, we were able to build some successful
models. We also found out that the performance metrics that are useful to assess the
quality of binary similarity-prediction models do not necessarily correlate with the
ability to predict uncertain molecule-pairs in the ternary task. �e ternary similarity-
prediction modeling process is still at its dawn, and many improvements can be made.

All models (binary and ternary) can bene�t from hyperparameter tuning. We used
the most common algorithm to �nd the optimal hyperparameters of a model: grid-
search. More advanced approaches can be used: from random search in the hyper-
parameter space [184], to Bayesian optimization procedures [185]. We used the sim-
ple 10-fold cross-validation to evaluate the hyperparameters, but other schemes can
be devised. For instance, the ternary similarity-prediction models could bene�t from
validation-sets with an higher presence of the uncertain class.
All machine-learning models bene�t from more data, and most importantly, from more
diverse data. �e more complex models especially bene�t from bigger data-sets. �e
pair selection procedure that we devised was successful in obtaining interesting molecule-
pairs that represented di�erent molecular similarity scenarios. �e web survey was an
e�ective approach to obtain molecular similarity assessments on a big scale. �e pair
selection procedure and the web survey approach can be used to obtain more molecu-
lar similarity data, to build be�er models, and to achieve an ever deeper understanding
of the human rational and irrational molecular similarity evaluation process.
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Appendix A

Antifreeze peptides supplements

�e following materials are taken from the Supplementary Information of:
E. Gandini, M. Sironi, and S. Pieraccini, “Modelling of short synthetic antifreeze pep-
tides: Insights into ice-pinning mechanism,” Journal of Molecular Graphics and Mod-
elling, vol. 100, p. 107 680, Nov. 2020, issn: 1093-3263. doi: 10.1016/j.jmgm.
2020.107680
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A.1 Water box simulations

Figure A.1: Final frame of Peptide 1–1 water box simulation.
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Figure A.2: Final frame of Peptide 1–3 water box simulation.

Figure A.3: Secondary structures calculated with DSSP algorithm throughout Peptide
1–1 water box simulation.
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Figure A.4: Secondary structures calculated with DSSP algorithm throughout Peptide
1–2 water box simulation.

Figure A.5: Secondary structures calculated with DSSP algorithm throughout Peptide
1–3 water box simulation.
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Figure A.6: RMSF calculated on antifreeze peptides water box trajectories.
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A.2 Fixed-ice simulations

Figure A.7: Views of Peptide 1–1 �xed-ice simulation �nal frame.

104



Figure A.8: Views of Peptide 1–3 �xed-ice simulation �nal frame.

Figure A.9: Distributions of four structural properties calculated throughout the �xed-
ice simulations.
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Figure A.10: RMSF calculated on antifreeze peptides �xed-ice trajectories.
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A.3 Growing-ice simulations

Figure A.11: Views of the �nal frame of the growing-ice simulation of Peptide 1–1.
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Figure A.12: Views of the �nal frame of the growing-ice simulation of Peptide 1–3.

Figure A.13: Distributions of four structural properties calculated throughout the
growing-ice simulations.
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Figure A.14: RMSF calculated on antifreeze peptides growing-ice trajectories.
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Appendix B

Detailed survey results
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Figure B.1: Number of times each molecule-pair was assessed by survey users.
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Figure B.2: Percentage of survey users that considered each molecule-pair to be similar
or dissimilar.
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Appendix C

�e new data-set

�e new data-set is reported in Table C.1. Each row corresponds to a molecule-pair.
We report the Tanimoto CDK Extended and TanimotoCombo similarity measures, the
similarity subset (see subsection 8.4.1), the percentage of survey users that considered
the molecule-pair to be similar, and the number of answers received by the molecule-
pair. �e complete new data-set also contains SMILES strings for the two molecules of
each molecule-pair. But SMILES strings can be quite long, they would not be forma�ed
nicely, and they are not very useful on printed page or on PDF �les. �erefore, SMILES
strings are not reported in Table C.1.

�e complete new data-set (with SMILES strings and conformers) is available as a
CSV �le (more useful for cheminformatics) in a GitHub repository:
https://github.com/enricogandini/paper similarity prediction/
�e repository also contains the source code, data, and instructions needed to host the
web-app on Heroku and erogate the survey.

Table C.1: �e new data-set — calculated similarity measures and assessed similarity
percentages.

Pair ID
Tanimoto

CDK
Extended

Tanimoto
Combo Subset Similarity

Percentage

Number
of

Answers
1 0.567 1.989 dis2D,sim3D 81.8 22
2 0.532 1.782 dis2D,sim3D 56.2 16
3 0.549 1.778 dis2D,sim3D 38.1 21
4 0.559 1.764 dis2D,sim3D 75.0 20
5 0.453 1.757 dis2D,sim3D 65.2 23
6 0.626 1.757 dis2D,sim3D 41.2 17
7 0.467 1.752 dis2D,sim3D 80.0 15
8 0.522 1.704 dis2D,sim3D 65.5 29
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9 0.388 1.674 dis2D,sim3D 72.7 11
10 0.620 1.660 dis2D,sim3D 85.7 21
11 0.275 1.629 dis2D,sim3D 9.5 21
12 0.328 1.627 dis2D,sim3D 50.0 26
13 0.323 1.582 dis2D,sim3D 15.8 19
14 0.482 1.579 dis2D,sim3D 45.5 22
15 0.591 1.562 dis2D,sim3D 65.0 20
16 0.320 1.519 dis2D,sim3D 41.2 17
17 0.422 1.502 dis2D,sim3D 30.0 20
18 0.603 1.460 dis2D,sim3D 44.8 29
19 0.369 1.459 dis2D,sim3D 26.7 30
20 0.608 1.454 dis2D,sim3D 48.0 25
21 0.645 1.454 dis2D,sim3D 78.6 14
22 0.200 1.450 dis2D,sim3D 36.8 19
23 0.349 1.444 dis2D,sim3D 55.0 20
24 0.538 1.437 dis2D,sim3D 46.2 26
25 0.386 1.412 dis2D,sim3D 37.5 16
26 0.878 1.191 sim2D,dis3D 75.0 16
27 0.859 1.292 sim2D,dis3D 65.5 29
28 0.858 1.232 sim2D,dis3D 68.4 19
29 0.848 1.137 sim2D,dis3D 47.8 23
30 0.830 1.271 sim2D,dis3D 50.0 22
31 0.826 1.127 sim2D,dis3D 76.2 21
32 0.802 1.275 sim2D,dis3D 38.1 21
33 0.774 1.060 sim2D,dis3D 64.3 14
34 0.773 0.990 sim2D,dis3D 60.0 20
35 0.772 1.058 sim2D,dis3D 59.3 27
36 0.769 1.092 sim2D,dis3D 64.7 17
37 0.767 1.133 sim2D,dis3D 66.7 21
38 0.765 1.099 sim2D,dis3D 58.8 17
39 0.763 1.052 sim2D,dis3D 70.6 17
40 0.743 1.292 sim2D,dis3D 56.2 16
41 0.740 1.119 sim2D,dis3D 59.1 22
42 0.738 1.090 sim2D,dis3D 54.5 22
43 0.737 1.007 sim2D,dis3D 36.8 19
44 0.717 1.112 sim2D,dis3D 57.1 21
45 0.716 1.142 sim2D,dis3D 47.6 21
46 0.712 1.033 sim2D,dis3D 52.2 23
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47 0.707 1.232 sim2D,dis3D 47.4 19
48 0.706 1.011 sim2D,dis3D 50.0 18
49 0.705 1.248 sim2D,dis3D 40.0 20
50 0.701 1.288 sim2D,dis3D 28.6 21
51 1.000 1.980 sim2D,sim3D 95.7 23
52 1.000 1.946 sim2D,sim3D 81.2 16
53 0.966 1.897 sim2D,sim3D 86.4 22
54 0.963 1.826 sim2D,sim3D 92.0 25
55 0.959 1.985 sim2D,sim3D 90.5 21
56 0.959 1.984 sim2D,sim3D 100.0 23
57 0.951 1.897 sim2D,sim3D 72.0 25
58 0.950 1.894 sim2D,sim3D 71.4 21
59 0.947 1.914 sim2D,sim3D 75.9 29
60 0.943 1.976 sim2D,sim3D 90.5 21
61 0.929 1.902 sim2D,sim3D 100.0 21
62 0.923 1.748 sim2D,sim3D 85.7 21
63 0.916 1.915 sim2D,sim3D 68.8 16
64 0.912 1.972 sim2D,sim3D 62.5 16
65 0.909 1.812 sim2D,sim3D 88.0 25
66 0.904 1.565 sim2D,sim3D 62.5 16
67 0.892 1.700 sim2D,sim3D 61.9 21
68 0.888 1.864 sim2D,sim3D 88.9 18
69 0.878 1.838 sim2D,sim3D 76.5 17
70 0.875 1.657 sim2D,sim3D 75.0 16
71 0.872 1.733 sim2D,sim3D 78.9 19
72 0.870 1.716 sim2D,sim3D 83.3 30
73 0.860 1.752 sim2D,sim3D 73.7 19
74 0.811 1.742 sim2D,sim3D 81.5 27
75 0.760 1.738 sim2D,sim3D 83.3 18
76 0.179 0.443 dis2D,dis3D 0.0 22
77 0.184 0.564 dis2D,dis3D 3.6 28
78 0.193 0.696 dis2D,dis3D 25.0 16
79 0.206 0.589 dis2D,dis3D 4.8 21
80 0.216 0.837 dis2D,dis3D 11.1 18
81 0.230 0.894 dis2D,dis3D 0.0 23
82 0.240 0.760 dis2D,dis3D 18.8 16
83 0.241 0.862 dis2D,dis3D 6.2 16
84 0.242 0.934 dis2D,dis3D 16.0 25
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85 0.250 0.529 dis2D,dis3D 0.0 28
86 0.254 0.777 dis2D,dis3D 0.0 25
87 0.268 0.780 dis2D,dis3D 0.0 22
88 0.288 0.674 dis2D,dis3D 17.2 29
89 0.290 0.886 dis2D,dis3D 16.7 18
90 0.292 0.870 dis2D,dis3D 7.7 26
91 0.299 0.888 dis2D,dis3D 23.1 26
92 0.302 0.769 dis2D,dis3D 5.6 18
93 0.305 0.796 dis2D,dis3D 0.0 19
94 0.333 0.758 dis2D,dis3D 11.1 18
95 0.335 0.750 dis2D,dis3D 0.0 25
96 0.400 0.741 dis2D,dis3D 4.0 25
97 0.401 0.625 dis2D,dis3D 0.0 18
98 0.406 0.657 dis2D,dis3D 16.7 24
99 0.414 0.762 dis2D,dis3D 12.5 16
100 0.546 0.922 dis2D,dis3D 5.9 17
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