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Abstract
In this paper we show how to approximate the transition density of a CARMA(p, q) model

driven by means of a time changed Brownian Motion based on the Gauss-Laguerre quadrature.
We then provide an analytical formula for option prices when the log price follows a CARMA(p,
q) model. We also propose an estimation procedure based on the approximated likelihood density.

1 Introduction
The aim of this paper is to provide a simple approximation procedure for the transition density of
a Continuous Autoregressive Moving Average Model driven by a Time Changed Brownian Motion.
The Continuous Autoregressive Moving Average (CARMA hereafter) model with guassian transition
density was first introduced in [12] as a continuous counterpart of the well known ARMA process
defined in discrete time. Recently this model has gained a significant attention in literature due to
the relaxation of the gaussianity assumption.

A Lévy CARMA model has been proposed in [8] and the associated marginal distribution is allowed
to be skewed and fat-tailed. These features increase the appealing of these processes especially in mod-
eling financial time series [see for examples [10, 18] and references therein]. Indeed, in CARMA(p,q)
models it is possible to work directly with market data without being forced of considering an equally
spaced time grid necessary in discrete-time models like for example in ARMA(p,q) models.

The CARMA(p,q) process can be seen as a generalization of the Ornstein-Uhlenbeck process (OU).
The OU process is not sufficiently flexible for financial applications since its autocorrelation function
shows a monotonic decreasing (negative exponential) behaviour. In this context, the CARMA(p,q)
model seems to be useful as it is able to capture a more complex shape for the dependence structure
as discussed in [9]. The nice statistical and mathematical properties make this class of continuous
time models very suitable for modeling commodities [24, 6], interest rates [3], mortality intensity [16],
spot electricity prices [14] and temperature [7].

In order to apply the CARMA model on real data, for the evaluation of derivatives on commodities
and/or for the evaluation of insurance contracts, it is necessary to know the transition density of the
process. In the case of a CARMA(p,q) model where the driving noise is a Brownian motion, the
transition density is Gaussian. Therefore, an estimation procedure [see [27] for details] can be obtained
directly combining the Gaussian likelihood function with the Kalman Filter while for the pricing of
financial/insurance contracts we have to compute just the expected value of a transformation of a
Gaussian random variable. We refer for instance to the pricing formula for options on futures derived
in [25] where the log-spot price is a gaussian CARMA(p,q) process. Similar results are obtained for
interest rate derivatives [see [3] for details].

The main contribution of this paper is to propose a finite mixture of normals that approximates
the transition density of a Time Changed Brownian Motion CARMA(p,q) process (TCBm-CARMA
hereafter). This approximation increases the appealing of the CARMA model in practical applications
since, as a finite mixture of normals, it has a level of computational complexity similar to the gaussian
CARMA for estimation on real data and for evaluation of financial and insurance contracts. The

1



choice of a Time Changed Brownian Motion (TCBm) as a driving noise increases also the ability of
the CARMA to capture the statistical features of data. In the case of the TCBm-CARMA, our results
generalize in a straightforward manner the estimation procedure in [18] based on the Quasi-Gaussian
Likelihood (QGMLE) contrast function [see [31, 23] and reference therein for a complete discussion
of the QGMLE procedure]. Indeed we do not need a two step procedure but we are able to estimate
autoregressive, moving average and Lévy measure parameters at the same time. Pricing formulas
of financial contracts are again simple linear convex combinations of gaussian pricing formulas. For
instance for options written on futures we have a convex linear combination of pricing formulas in
[25].

The construction of our approximated transition density for a TCBm-CARMA(p,q) model is based
on two main components: the dyadic Riemann sum approximation of a stochastic integral [see [4] for
a complete discussion] and the Gauss-Laguerre quadrature [see [1] for more details]. The main idea
behind this approach is to approximate the distribution associated to the subordinator process at
unitary time with a discrete random variable where the realizations are the zeros of the Laguerre
polynomial with a fixed order and the corresponding probability is obtained using the Gauss-Laguerre
quadrature.
Based on our knowledge the first authors that applied this approach in two different situation are [21]
for a option pricing purpose and [19] for the estimation of the Variance Gamma distribution using
the EM-algorithm proposed by [11]. Several authors, recently have used the Laguerre polynomials
to derive approximated closed formulas for the pricing of financial contracts [see [29] and reference
therein] and insurance contracts [see [32] and reference therein] for some specific exponential Lévy
processes. A comparison of some numerical techniques including the Gauss-Laguerre quadrature for
pricing derivatives under an exponential Variance Gamma process has been presented in [2].

The paper is organized as follows. Section 2 reviews the Gauss-Laguerre approximation for a
Normal Variance Mean Mixture random variable. In Section 3 we extend the Gauss-Laguerre ap-
proximation to the case of the transition density of a TCBm-CARMA(p,q) model and we propose an
estimation method that maximizes the approximated likelihood function. In Section 4 we discuss how
to apply our approximated density in the evaluation of a transformation of the exponential TCBm-
CARMA(p,q) model. In particular we derive specific formulas for the futures term structure and for
option prices on futures. Section 5 concludes the paper.

2 Finite Approximation of the Density of a Normal Variance
Mean Mixture

First we recall the formal definition of a Normal Variance Mean Mixture discussed in [5]. A random
variable Y is a Normal Variance Mean Mixture if we have:

Y = µ+ θΛ + σ
√

ΛZ (1)

Z ∼ N (0, 1). Λ is a continuous positive random variable with an exponentially slowly density function
f (u) defined as:

f (u) = e−ϕ+uuλ−1Lθ (u)1{u≥0}, (2)
ϕ+ ≥ 0, Lθ (u) : [0,+∞)→ [0,+∞) function with slowly variation, i.e.:

lim
u→+∞

L (αu)
L (u) = 1.

In order to construct a discrete version of the random variable Λ, we use the Gauss-Laguerre quadra-
ture. Let f (x) be a function with support [0,+∞) such that∫ +∞

0
f (x) e−xdx < +∞,
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we have the follwing approximation:∫ +∞

0
f (x) e−xdx ≈

m∑
i=1

w (ki) f (ki) . (3)

ki is the i-th root of the Laguerre polynomial Lm (ki) and the weights w (ki) , i = 1, . . . ,m are:

w (ki) = ki

(m+ 1)2
L2
m+1 (ki)

.

We start from the moment generating function of the random variable Λ:

E
(
ecΛ
)

=
∫ +∞

0
ecue−ϕ+uuλ−1Lθ (u) du. (4)

Posing k = ϕ+u in (4), we get:

E
(
ecΛ
)

=
∫ +∞

0
e−kec

k
ϕ

(
k

ϕ

)λ−1
Lθ

(
k

ϕ

)
dk
ϕ

=
∫ +∞

0
e−k

ec
k
ϕ

k

(
k

ϕ

)λ
Lθ

(
k

ϕ

)
dk.

Applying the formula in (3), we have:

E
(
ecΛ
)
≈

m∑
i=1

e
c
(
ki
ϕ+

)
w (ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
.

It is to worth noting that
m∑
i=1

w (ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
≈
∫ +∞

0

e−k

k

(
k

ϕ+

)λ
Lθ

(
k

ϕ+

)
dk.

Using the substitution u = k
ϕ+

we get:

m∑
i=1

w (ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
≈
∫ +∞

0
e−ϕ+uuλ−1Lθ (u) du = 1,

therefore we have:

E
(
ecΛ
)
≈

m∑
i=1

e
c
(
ki
ϕ+

) w(ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
∑m
i=1

w(ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

) . (5)

The right hand side of the equation (5) can be seen as the moment generating function of a positive
random variable Λm with a finite support and defined as:

Λm =



u1 = k1
ϕ+

P (u1) =
w(k1)
k1

(
k1
ϕ+

)λ
Lθ
(
k1
ϕ+

)∑m

i=1
w(ki)
ki

(
ki
ϕ+

)λ
Lθ
(
ki
ϕ+

)
...

...

ui = ki
ϕ+

P (ui) =
w(ki)
ki

(
ki
ϕ+

)λ
Lθ
(
ki
ϕ+

)∑m

i=1
w(ki)
ki

(
ki
ϕ+

)λ
Lθ
(
ki
ϕ+

)
...

...

um = km
ϕ+

P (um) =
w(kn)
km

(
km
ϕ+

)λ
Lθ
(
km
ϕ+

)∑m

i=1
w(ki)
ki

(
ki
ϕ+

)λ
Lθ
(
ki
ϕ+

)

. (6)
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The next step is to consider a sequence of random variables Ym defined as:

Ym = µ+ θΛm +
√

ΛmZ, (7)

with Z ∼ N (0, 1) independent of Λm. For any m the density of Ym is a finite mixture of normal with
the following form:

fYm (y) =
m∑
i=1

φ(y, µ0 + µui, σ
2ui)P (ui) (8)

where φ(x, a, b) is a normal density at point x with mean a and variance b. Using the definition of Λm

fYm (y) =
m∑
i=1

φ

(
y, µ+ θ

ki
ϕ+

;σ2 ki
ϕ+

) w(ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
∑m
i=1

w(ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

) (9)

Applying the Gauss-Laguerre quadrature we get:

fYm (y) m→+∞−→
∫ +∞

0
φ

(
y, µ0 + µ

k

ϕ+
;σ2 k

ϕ+

)
e−k

k

(
k

ϕ+

)λ
Lθ

(
k

ϕ+

)
dk.

Substituting u = k
ϕ+

, we have:

fYm (y) m→+∞−→
∫ +∞

0
φ
(
y, µ0 + µu;σ2u

)
e−ϕ+uuλ−1Lθ (u) du.

The right-hand side is the density of the random variable in (1). Observe that approximation discussed
here can be applied in three wide applied distributions: Variance Gamma, Normal Inverse Gaussian,
Generalized Hyperbolic. In all cases, the density of the mixing random variable belongs to the class
defined in (2). Indeed we obtain the density of a Gamma random variable with shape α and rate β
parameters posing the following condition:

ϕ+ = β, λ = α, L(α,β) (u) = βα

Γ (α) ,

therefore the density in (8) approximate the density of a Variance Gamma random variable.
The density of an Inverse Gaussian IG(a, b) can be obtained from (1) by posing:

ϕ+ = b2

2 , λ = −1
2 , La,b (u) =

[
a√
2π

]
eab−

a2
2x .

In this case we obtain an approximation of the Normal Inverse Gaussian density using (8).
The Generalized Inverse Gaussian density with a > 0, b > 0 and p ∈ R is a special case of (1) when:

ϕ+ = α

2 , λ = p, La,b,p (u) =
(
a
b

) p
2

2Kp

(√
ab
)e− b

2u

where Kp (x) is a modified Bessel function of the second kind. Using (8) we approximate the density
of a Generalized Hyperbolic distribution.

Figure 1 shows the behavior of the analytic and approximated moment generating functions for
the Gamma, Variance Gamma, Inverse gaussian, Normal Inverse Gaussian model. To generate the
approximated moment generating function we use m = 40.

In Appendix 6.1 derive the Expectation Maximization algorithm for the approximated density in
(9).
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Figure 1: Comparison between theoretical and approximated moment generating function for a
Γ (1, 1), the corresponding symmetric Variance Gamma centered in zero, a IG(1, 1) and its associated
symmetric Normal Inverse Gaussian centered in zero.

3 Lévy CARMA(p,q) model.
In this section, we review the main features of Lévy CARMA(p,q) models. The CARMA model, firstly
introduced by [12] as a generalization in continuous time setup of the Gaussian ARMA model, has
recently gained a rapid development in different areas due to the substitution of the Brownian Motion
with a general Lévy process as driving noise [see [8] for a discussion of a CARMA model driven by a
Lévy process with finite second order moments].

The formal definition of a Lévy CARMA(p,q) model Yt with p > q ≥ 0 is based on the continuous
version of the state-space representation of an autoregressive moving average-ARMA(p,q) model:

Yt = b>Xt (10)

where Xt satisfies:
dXt = AXt−dt+ edZt. (11)

{Zt}t≥0 is a Lévy process. The matrix A with dimension p× p is defined as:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1


p×p

.

The vectors e and b with dimension p× 1 are defined as follows:

e = [0, 0, . . . , 1]>

e = [b0, 0, . . . , bp−1]>
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where bq+1 = . . . = bp−1 = 0. Given the initial point Xs, the solution of thee Eq. (11) is:

Xt = eA(t−s)Xs +
∫ +∞

0
eA(t−s)dZu, ∀t > s,

where eA =
+∞∑
h=0

1
h!A

h.

We report in the following the scale property of a CARMA(p,q) process. This property introduces a
constraint between the Lévy measure parameters and the moving average vector . Indeed it is possible
to introduce a new Lévy process Lt defined as:

Lt = 1
a
Zt, a > 0.

We also define the state process X ′t as:
X ′t = 1

a
Xt

and a new moving average vector b̃ = ab, the CARMA(p,q) process in (10) can be written equivalently
as:

Yt = b̃>X ′t
where X ′t satisfies the following Stochastic Differential Equations:

dX ′t = AX ′t−dt+ edLt.

As reported in [10], under the assumption that all eigenvalues λ1, . . . , λp of matrix A are distinct and
their real part is negative, we can write the CARMA(p,q) model as a summation of a finite number
of continuous autoregressive models of order 1, i.e. CAR(1) models. Therefore:

Yt = b>eA(t−s)Xs +
∫ +∞

0

p∑
i=1

[
α (λi) eλi(t−u)

]
Is≤u≤tdZu (12)

with α (z) = b(z)
a′(z) where a (z) and b (z) are polynomial functions defined as:

a (z) = zp + a1z
p−1 + . . .+ ap,

b (z) = b0 + b1z + . . .+ bp−1z
p−1.

Under the additional requirement of the existence of a cumulant generating function for Z1, the
conditional moment generating function of a CARMA(p,q) model Yt given the information at time
s < t is obtained:

Es
[
ecYt

]
= ecb

>eA(t−s)Xs exp
[∫ t

s

κ

(
c

p∑
i=1

[
α (λi) eλi(t−u)

])
du
]

(13)

with κ (c) = lnE
[
ecZ1

]
< +∞.

Once the state variable Xs is filtered from observable data, from a theoretical point of view, the
result in (13) can be used to compute the transition density from time s to time t by means of
the Fourier Transform because the characteristic function is obtained from the moment generating
function evaluated at iu.
In order to get an estimate of the state variable from the observed data Yt0 , Yt1 , . . . , Yti , . . ., it is
possible to use the approach discussed in [10] and recently implemented in [18]. As first step, the
vector X̂q,t containing the first q − 1 components of the state process Xt can be written in terms of
Yt−1 as follows:

dX̂q,t = BX̂q,t−dt+ eYt−1dt (14)
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where

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−b0 −b1 −b2 . . . −bq−1


p×p

and
eq = [0, . . . , 0, 1]> .

The remaining p − q components of Xt are obtained from the higher order derivatives of the first
component X0,t in the state vector, i.e.: Xt with respect to time:

Xj,t = ∂j−1X0,t

(∂t)j−1 , j = q, . . . , p− 1.

Combining the approach in [10] with the result in (13), it is possible to introduce an estimation
procedure of the Lévy CARMA(p,q) model based on the Maximum Likelihood method. This procedure
requires the numerical evaluation of two integrals, the first in the definition of the moment generating
function (13) and the second in the inversion formula of the characteristic function. In this section,
we show that in the case of a Time Changed Brownian motion, we can can approximate the density
using the Laguerre polynomials overcomung the numerical integration problems that arise in the
standard approach. We start considering the case of the Ornstein Uhlenbeck that does not require
the estimation of the state process then we move to the general CARMA(p,q) model.

3.1 Estimation of an Ornstein Uhlenbeck driven by a Time Changed Brow-
nian Motion.

Let (Ω,F ,F,P) be a filtered probability space where F = (Ft)t≥0 is a filtration, the process Yt
is a Time Changed Brownian Ornstein-Uhlenbeck (TCBm-OU hereafter) Yt satisfies the following
stochastic differential equation:

dYt = −aYt−dt+ dWΛt , Yt0 = y0. (15)

where WΛt is a Brownian Motion stopped by the subordinator process Λt. The solution of the SDE
in (15) is:

Yt = y0e
−a(t−t0) +

∫ t

t0

e−a(t−u)dWΛu .

It is worth noting that the distribution at time 1 of the process WΛt is a Normal Variance Mean
Mixture centered in zero. Defining the σ-field Gt0,t = σ

(
Ft0 ∪ σ

(
{Λu}u≤t

))
with t0 < t, we have:

WΛt −WΛt0 |Gt0,t ∼ N (0,Λt − Λt0) .

The σ-field Gt0,t is crucial for the construction of the approximated transition density of the TCBm-OU
process.

Proposition 3.1. Given the information associated to the σ-field Gt0,t, the conditional distribution
for Yt becomes1:

Yt |Gt0,t ∼ N
(
y0e
−a(t−t0),

∫ t

t0

e−2a(t−u)dΛu
)
. (16)

1Using the result in (16) and the interated expected value, we obtain the moment generating function of a TCBm-OU
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Let us define V tt0 as:

V tt0 =
∫ t

t0

e−2a(t−u)dΛu. (17)

We can approximate the integral in (17) with a left Riemann sum as follows:

V tt0 ≈ V
t
t0 (n) =

[2n(t−t0)]−1∑
k=0

e−2a(t−t0−k2−n) (Λt0+(k+1)2−n − Λt0+k2−n
)
. (18)

The increments Λt0+(k+1)2−n −Λt0+k2−n in (18) have a density of the shape in (2). Therefore we can
approximate these densities using the Laguerre polynomials. To this aim, we first introduce a discrete
random variable Uk:

Uk =


u1 P (u1)
...

...
um P (um)

that approximates the k − th increment Λt0+(k+1)2−n − Λt0+k2−n . The random variable V tt0 (n) can
be approximated introducing the new random variable V tt0 (n,m) defined using dyadic Riemann sums
reads:

V tt0 (n,m) =



[2n(t−t0)]−1∑
k=0

e−2a(t−t0−k2−n)u1 [2n (t− t0)]− 1, 0, . . . , 0 P[2n(t−t0)]−1 (u1)
...

...
[2n(t−t0)]−1∑

k=0
e−2a(t−t0−k2−n)uk n1, . . . , nm

m∏
i=1

Pni (ui)
...

...
[2n(t−t0)]−1∑

k=0
e−2a(t−t0−k2−n)um 0, . . . , 0, [2n (t− t0)]− 1 P[2n(t−t0)]−1 (um)

. (19)

Observe that the random variable V tt0 (n,m) has m[2n(t−t0)]−1 realizations. Denoting V tt0 (n,m, i) the
i−th realization of the random variable V tt0 (n,m) and P

[
V tt0 (n,m, i)

]
its probability, we obtain the

following approximated density:

fYt|Ft0 (y) =
m[2n(t−t0)]−1∑

i=1
φ
(
y, y0e

−a(t−t0), V tt0 (n,m, i)
)
P
[
V tt0 (n,m, i)

]
. (20)

To check the accuracy of this approximation, we compare the theoretical moment generating function
of an Ornstein-Uhlenbeck driven by a Variance Gamma model obtained through the result in [16]
with the moment generating function of the finite mixture of normals with density (20).
Figure 2 reports a graphical comparison of the theoretical and the approximated moment generating
function of a VG-CAR(1) with a = 0.25, t = 1

4 and t0. The interval [t0, t) has been divided into
subintervals of length ∆t = 2−6 ≈ 0.01562 and fixing m = 2 we get 65536 realizations of the random
variable V tt0 (n,m).

process. :

EFt0
[
E
[
ecYt |Gt0,t

]]
= ecy0e

−a(t−t0)
EFt0

[
e
c2
2

∫ t
t0
e−2a(t−u)dΛu

]
= e

cy0e
−a(t−t0)+

∫ t
t0
κΛ

(
c2
2 e
−2a(t−u)

)
du
.

where κΛ (u) = ln
[
E
(
euΛ1

)]
. The quantity e

cy0e
−a(t−t0)+

∫ t
t0
κΛ

(
c2
2 e
−2a(t−u)

)
du

is the moment generating function
of an TCBm-OU process and it can be alternatively obtained applying the result in [13].
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Figure 2: Comparison of theoretical and approximated moment generating function for a VG-CAR(1)
model

The result in (20) can be used to construct a Maximum Likelihood Estimation procedure. In the
following we perform a simulation and estimation study for the VG-CAR(1) model. As benchmark
we use the Quasi-Gaussian Likelihood method extended to the SDE driven by a standardized Lévy
noise introduced in [23]. We perform the following steps:

1. We simulate a sample for a VG-CAR(1) model where a = 0.25 while the distribution at time 1
of the subordinator process is Γ (1, 1). In the simulation we use the Euler-Maruyama method
with a frequency ∆t = 0.01.

2. We get a new trajectory by subsampling the data obtained at the previous point with a lower
frequency, i.e. ∆t = 1.

3. We estimate the parameters, using the data obtained in step 2, by maximizing the log-likelihood
constructed using the Laguerre approximation.

## b a Shape
## 0.2226184 0.9900000 --------- # YUIMA ESTIMATION QMLE BASED ON MASUDA
## 0.2394667 1.0822139 1.0501550 # Estimation Based on Gauss Laguerre Quadrature
## 0.2400000 1.0000000 1.0000000 # TRUE PARAMETERS

3.2 Estimation of a Gaussian CARMA(p,q) model.
In this section we review the literature for the estimation methods of CARMA(p,q) model driven by
a Brownian Motion. As discussed in [27], we have two different approaches for the estimation of a
Gaussian CARMA process. The first is based on the frequency domain representation of the CARMA
process. The estimated parameters are obtained by minimizing a distance between theoretical f (ω)
and empirical f̂ (ω) spectral density, for instance:

argmin
a1,...,ap b1,...,bq

∫ +∞

−∞

{
ln [f (ω)] + f̂ (ω)

f (ω)

}
dω
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Figure 3: Sample path of a VG-OU process.

where
f (ω) = b (iω) b (−iω)

2πa (iω) b (−iω) .

The alternative estimation approach is based on the time domain representation of the CARMA
process. In this case, the unobservable state process can be extrapolated using the Kalman filter
therefore we get the estimates for the model parameters by maximizing the loglikelihood function or
minimizing the least-squares error. A detailed description of the Kalman filter and the construction
of the gaussian loglikelihood function can be found in [18].

3.3 Estimation of a Lévy CARMA(p,q) model driven by a Time Changed
Brownian Motion.

Here we discuss how to estimate the CARMA(p,q) model when the driving noise is a Time Changed
Brownian Motion. In this case we propose two alternatives. The first approach combines the Kalman
Filter with the approximation transition density of the CARMA(p,q) process while the second use
the methodology for recovering noise with the estimation method discussed for the Normal Variance
Mean Mixture.

3.3.1 Lévy CARMA estimation using the approximated transition density

In order to obtain an approximated transition density for a CARMA(p, q) process we first need
to determine the conditional mean and the conditional variance of the state process Xt given the
information contained in the σ-field Gt0,t and the state process at Xt0 defined respectively as:

E [Xt |Gt0,t, Xt0 ] = eA(t−t0)Xt0 .

Var [Xt |Gt0,t, Xt0 ] =
∫ t

t0

eA(t−u)ee>eA>(t−u)dΛu.

Therefore the transition density of the CARMA(p,q) model Yt given Gt0,t and Xt0 is:

Yt |(Gt0,t, Xt0 ) ∼ N
(

b>eA(t−t0)Xt0 ,

∫ t

t0

beA(t−u)ee>eA>(t−u)b>dΛu
)

Defining the quantity V tt0 =
∫ t
t0

beA(t−u)ee>eA>(t−u)b>dΛu, the transition density of the
CARMA(p,q) process Yt given Xt0 can be written in the following form:

fYt|Xt0 (y) =
∫ +∞

0
ϕ
(
y; beA(t−t0)Xt0 , v

)
gV tt0

(v) dv, (21)

10



where ϕ
(
y, µ, σ2) is a normal density with mean µ and variance σ2; gV tt0 (v) is the density of V tt0 . As

done in Section 3.1, we approximate the integral in V tt0 with a left Reimann sum and we have:

V tt0 ≈ V
t
t0 (n,m) =



[2n(t−t0)]−1∑
k=0

beA(t−t0−k2−n)ee>eA>(t−t0−k2−n)b>u1 [2n (t− t0)]− 1, 0, . . . , 0 P[2n(t−t0)]−1 (u1)
...

...
[2n(t−t0)]−1∑

k=0
beA(t−t0−k2−n)ee>eA>(t−t0−k2−n)b>uk n1, . . . , nm

m∏
i=1

Pni (ui)
...

...
[2n(t−t0)]−1∑

k=0
beA(t−t0−k2−n)ee>eA>(t−t0−k2−n)b>um 0, . . . , 0, [2n (t− t0)]− 1 P[2n(t−t0)]−1 (um)

,

(22)
Thus fYt|Xt0 (y) can be approximated with the finite mixture density function f̂Yt|Xt0 (y) that reads:

f̂Yt|Xt0 (y) =
m[2n(t−t0)]−1∑

i=1
φ
(
y,b>eA(t−t0)Xt0 , V

t
t0 (n,m, i)

)
P
[
V tt0 (n,m, i)

]
, (23)

where V tt0 (n,m, i) denotes the i− th realization of the random variable V tt0 (n,m) in (22).
For the approximated loglikelihood fuction L̂ (θ) we need to infer the state process Xt. From the
estimated process X̂t, we can determine the optimal value for the parameter vector θ solving the
following optimization problem

θ = argmax
N∑
i=1

ln
[
f̂Yti |X̂ti−1

(yti)
]
.

In this paper we consider two alternatives for the estimation of the state process Xt: the Kalman
Filter and the filtering approach discussed in Section 3 and proposed in [10].

In the following table we compare the GQMLE approach discussed in [18] for a General Lévy
CARMA(p,q) model and our approaches. The labels GL-HF and GL-HFKF denote the Maximum Like-
lihood estimation method based on our approximated transition density, the only difference is related
to the method for filtering the state process from the observable data. In GL-HF case, the estimated
state process

{
X̂t

}
t≥0

is obtained using the dynamic in (14) [see [10] for more information] while in
GL-HFKF case the standard Kalman Filter is used.
## a1 a2 b0 b1 Shape Scale
## 1.35000000 0.05000000 0.20000000 1.00000000 1.00000000 1.00000000 # True Parameters
## 1.38164866 0.04634073 0.18808589 0.99993332 1.15596369 1.00265283 # GL-HF
## 1.31162953 0.04494326 0.19126241 0.98709469 1.12985742 1.01003225 # GL-HFKF
## 1.35175679 0.04813515 0.18653096 1.03154645 ---------- ---------- # GQMLE

4 Option Pricing in a Lévy CARMA(p,q) model.
In this section we discuss, using the approximated transition density, how to evaluate the expected
value of the transformation g (XT ) where XT can be a Normal Variance Mean Mixture or a CARMA
with a Time Changed Brownian Motion driving noise.

In the Normal Variance Mean Mixture case we discuss also the behaviour of the error term while in
the second case we analyze it by a comparison with the Monte Carlo simulation. The result here can
be applied to extend the option pricing formula for options on futures contracts proposed in [25] for
the gaussian CARMA model. This approach can be used also for the evaluation of the term structure
of futures.
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4.1 Normal Variance Mean Mixture
Starting from the formal definition of Normal Variance Mean Mixture in (1), we define the sequence
of function E [g (Xm

T ) |F0 ] as following:

m∑
i=1

E
[
g
(
µ+ θΛm +

√
ΛmZ

)
|F0,Λm = ui

]
P (ui) (24)

where Λm and P (ui) are defined in (6). The quantity
[
g
(
µ+ θΛn +

√
ΛnZ

)
|F0,Λn = ui

]
is the

expectation of a gaussian distribution with mean µ+ θΛn and variance Λn.
The formulas proposed in this section can be applied for the evaluation of the contingent claim

when the underlying is a transformation of a Time Change Brownian Motion. In the next section we
show a comparison of our approach with a Monte Carlo simulation when the log price is a Variance
Gamma process and the function g is the final payoff of a European Call Option.

4.1.1 Simulation Comparison

Figure 4 shows the behaviour of a European Call option price for varying value of n in the Gauss-
Laguerre approximation approach. In this example the model parameters are r = 0, θ = −0.5, α = 1,
β = 1, underlying price S0 = 1 and time to maturity T = 1.
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Figure 4: Comparison of prices obtained using Monte Carlo simulation and the Laguerre Option
pricing formula (24) for an ATM European Call option.

We analyze also the behaviour of the approximation for different strike levels in Figure 5 and for
varying Time to maturity in Figure 6. In the latter it is important to satisfy the condition αT ≥ 1
otherwise we need to use the Generalized Gauss Laguerre approximation due to the presence of a no
negligible singularity in the Mixing Gamma random Variable at point zero.
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Figure 5: Comparison of price obtained using Monte Carlo simulation and the Laguerre Option pricing
formula (24) for different levels of strike price.
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Figure 6: Comparison of prices obtained using Monte Carlo simulation and the Laguerre Option
pricing formula (24) for different levels of strike price.
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4.2 Time Changed CARMA process
We discuss here how to extend the general result in Section 4.1 for the Time Changed Brownian
Motion to the TCBm-CARMA process. The main idea is to use the approximation of V tt0 introduced
in Equation (21). The general pricing formula of the final payoff g (YT ) can be derived following the
same steps as in the previous section. The resulting formula reads:

E [g (YT ) |Ft0 ] =
m[2n(T−t0)]−1∑

k=1
E
[
g (Y m,nT )

∣∣Ft0 , V Tt0 = V Tt0 (m,n, k)
]
P
(
V Tt0 (m,n, k)

)
, (25)

where Y m,nT

∣∣Ft0 , V Tt0 = V Tt0 (m,n, k) ∼ N
(
b>eA(T−t0)Xt0 , V

T
t0 (m,n)

)
.

This result can easily find applications in different financial modeling topics such as the construction
of futures term structure, option pricing of bond pricing under the hypothesis that the dynamics of
the underlying follows a Time Change CARMA model.

4.2.1 Futures Term Structure with a TCBm CARMA(p,q) model

In the filtered probability space we assume that it exists an equivalent martingale measure Q ∼ P
exists. We also assume that the price St of the commodity asset follows an exponential TCBm-
CARMA(p,q) model under the measure Q defined as:

St = St0e
Yt ,

where Yt is a CARMA(p,q) model described in Section 3; the driving noise in a Time Change Brownian
motion i.e.

Lt = WΛt

where Wt is a Brownian Motion and Λt is an independent subordinator process with cumulant gener-
ating function kΛ (u) defined as:

kΛ (u) := ln
[
E
(
euΛ1

)]
.

Arbitrage theory is based on the assumption that price of a future should be equal to the expected
value of the price at maturity under the risk neutral measure Q. Therefore, the log future price with
maturity T ≥ t0 can be written as:

lnFTt0 = ln EQ [ST |Ft0 ] (26)

Defining the σ-field Gtt0 = σ
(
Ft0 ∪ σ

(
{Λu}u≤t

))
with t ≥ t0 we have:

WΛt −WΛt0

∣∣Gtt0 ∼ N (0,Λt − Λt0) .

Using the iterative property of the conditional expected value, equation (26) can be rewritten as:

lnFTt0 = ln EQ [EQ (ST | GTt0)|Ft0
]
. (27)

It is worth to notice that the random variable lnST
∣∣GTt0 is normally distributed. Therefore, we have

that:
EQ (ST | GTt0) = exp

(
lnSt0 + EQ [lnST |GTt0]+ 1

2VARQ [lnST |GTt0]) .
Then:

lnFTt0 = ln EQ
t

[
elnSt0 eEQ[lnST |GTt0 ]+ 1

2 VARQ[lnST |GTt0 ]|Ft0
]
, (28)

and rearranging:

lnFTt0 = lnSt0 + ln
[
EQ
(
eEQ[lnST |GTt0 ]+ 1

2 VARQ[lnST |GTt0 ]
)
|Ft0

]
. (29)
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At this stage, it is possible to introduce the conditional transition density of a CARMA(p,q) model
driven by a Time Changed Brownian Motion YT given GTt0 as:

YT
∣∣GTt0 ∼ N

(
b>eA(T−t0)Xt0 ,

∫ T

t0

b>eA(T−u)ee>eA>(T−u)bdΛu

)

Given this result, we obtain:

lnFTt0 = lnSt0 + ln
[
EQ
(
e

b>eA(T−t0)Xt0+ 1
2

∫ T
t0

b>eA(T−u)ee>eA>(T−u)bdΛu |Ft0
)]

. (30)

Simplifying:

lnFTt0 = lnSt0 + b>eA(T−t0)Xt0 + ln
[
EQ
(
e

1
2

∫ T
t0

b>eA(T−u)ee>eA>(T−u)bdΛu |Ft0
)]

. (31)

We use the following theorem proposed in [13] in order to evaluate the expected value in (31).

Theorem 4.1. Let Λt be a subordinator process with cumulant generating function kΛ (u) and f (u) :
[0,+∞)→ C be a complex left continuous function such that |Re (f)| ≤M then:

E
[
exp

(∫ +∞

0
f (u) dΛu

)]
= exp

(∫ +∞

0
kΛ (f (u)) du

)
.

Using the above theorem and the following property of the cumulant function

kΛ (u1A) = 1AkΛ (u)

we obtain the final result

lnFTt0 = lnSt0 + b>eA(T−t0)Xt0 +
∫ T

t0

kΛ

(
1
2b>eA(T−u)ee>eA>(T−u)b

)
du. (32)

The approximated transition density of the TCBm-CARMA(p,q) model gives the possibility of
evaluating the formulas in (32) in a easy way. By applying the general result in (25) we get the
following approximation:

lnFTt0 (m,n) = lnSt0 + b>eA(T−t0)Xt0 + ln
m[2n(T−t0)]−1∑

k=1
e

1
2V

T
t0 (m,n,k)P

(
V Tt0 (m,n, k)

)
A numerical comparison of the approximated formula with the pricing results obtained through

Monte Carlo simulation is reported below. The MC value is evaluated using 10.000 simulated tra-
jectories of a symmetric VG-CARMA(2,1) model with autoregressive parameters a1 = 1.4 a2 = 0.5,
moving average parameters b0 = 0.2 b1 = 1 and Gamma subordinator process (Λt)t≥0 with shape
parameter α = 1 and scale parameter β = 1. The simulated trajectories are obtained using the Eu-
ler discretization scheme for a Lévy CARMA(p,q) model as described in [18] on a regular grid with
∆t = T

200 where T is the maturity of the Future.
It is to worth to observe that since we have that αT < 1, we can use the Generalized Gauss Laguerre
Quadrature to avoid numerical issues that may arise due to the singularity at point 0.

See Table 1 for the futures term structure and Figures 7-10 for an analysis based on the number
of points m used in the approximation.

15



T Lag. MC Ub Lb
1
12 1.04697 1.04918 1.06285 1.03550
2
12 1.08293 1.08248 1.09719 1.06778
3
12 1.12130 1.12183 1.15005 1.09361
4
12 1.14691 1.14367 1.16442 1.12292

Table 1: Pricing results for a future contract using MC and the approximated formula based on the
Gauss-Laguerre quadrature.
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Figure 7: Future price with maturity 1 month.
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Figure 8: Future price with maturity 2 months.
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Figure 9: Future price with maturity 3 months.
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4.2.2 Futures Option Pricing formula in a TCBm CARMA(p,q) model

Here we discuss how to modify our general result in order to extend the result about the Futures
option prices in [25] for a Gaussian CARMA(p,q) model to the TCBm-CARMA(p,q) model. Here we
do not consider here the non-stationary factor Zt in equation (7) of [25] but we assume that the log
price is simply CARMA(p,q) model with gaussian innovations. We highlight the fact that extension
to the ABM-CARMA(p,q) model proposed in [25] is also straightforward in our context.

In [25] model the futures log Price has the following form:

lnF (t, T ) = b>A (t, T )Xt + 1
2b>B (t, T ) b

where
A (t, T ) = eA(T−t)

B (t, T ) =
∫ T

t

eA(T−u)ee>eA(T−u)du.

If we want to evaluate a European Call Option on the Futures price, we have to consider three points
in time: time t the day where we evaluate the contract derivative, time T0 > t the maturity of the
option contract and time TF > T0 the maturity of the underlying future contract. The price of the
call option at time t can be obtained using no arbitrage arguments as follows:

Ct = e−r(T0−t)EQ [[F (T0, TF )−K]+ |Ft
]
.

If the state process (Xt)t≥0 is driven by a Brownian Motion, the price is analytic and reads as follows:

Ct = e−r(T0−t) [F (t, TF ) Φ (d1)−KΦ (d2)]

where

d1,2 =
ln
(
F (t,TF )
K

)
± 1

2σ
2 (t, T0, TF )

σ (t, T0, TF ) .

The forward integrated variance is defined as:

σ2 (t, T0, TF ) = b>
[∫ T0

t

eA(TF−u)ee>eA>(TF−u)du
]

b.

To extend in our setup this result we use the sigma field GTFt therefore if the case of a TCBm-
CARMA(p,q) model we have:

Ct = e−r(T0−t)E
[
E
[
(F (T0, TF )−K)+

∣∣∣GTFt ]
|Ft
]

The internal expectation under GTFt is exactly the formula in [25] for a fixed value of the integrated
Variance:

E
[
(F (T0, TF )−K)+

∣∣∣GTFt ]
= E

[
(F (T0, TF )−K)+

∣∣Ft, σ2 (t, T0, TF )
]

where

σ2 (t, T0, TF )
∣∣∣GTFt = b>

[∫ T0

t

eA(TF−u)ee>eA>(TF−u)dΛu

]
b.

The conditional mean becomes:

E
[
(F (T0, TF )−K)+

∣∣Ft, σ2 (t, T0, TF ) = σ2 ] = F (t, TF ) Φ
(
d1,σ2

)
−KΦ

(
d2,σ2

)
.
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The Gauss-Laguerre quadrature can be used to construct the random variable σ2
m,n (t, T0, TF ) following

the same approach in (22). The generic kth realization of the random variable σ2
m,n (t, T0, TF ) has this

form:

σ2
m,n,k (t, T0, TF ) =

[2n(T0−t)]−1∑
k=0

b>eA(TF−t−k2−n)ee>eA>(TF−t−k2−n)buk (33)

with probability

P
(
σ2
m,n,k (t, T0, TF )

)
=

m∏
i=1

Pni (ui)

where ni is the times that the realization ui appears in the trajectory of the approximated subordi-
nators and we have this constraint:

m∑
i=1

ni = [2n (T0 − t)]− 1.

Now the pricing formula has the same representation in (25) where instead of the random variable
V Tt0 (n,m) that can be seen as an approximation of the spot integrated variance we have the Gauss
Laguerre approximation of the Forward Integrated Variance which realization are in (33).

The same result can be applied in a straightforward manner to the case of the European Put price
when the underlying is a Future contract. Indeed it is worth to notice the construction proposed in
this paper implies a Law convergence consequently the convergence of the formulas in (25) for the
TCBm-CARMA(p,q) model and in (24) for the Time Changed Brownian motion is ensured when
the function g is a bounded continuous function while for a lower-semi continuous function bounded
from below only a lower bound can be established. Therefore the convergence behavior is clear in
the case of the put option prices and to avoid issues due to this fact we perform the following steps.
We first use the Gauss-Laguerre approximation scheme for the Put option price. Then we obtain the
corresponding Call price using the put-call parity formula.

We report in the following Tables and figures the comparison between the Gauss-Laguerre and
MC prices for different call option prices.
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Figure 11: Option Call Price with Maturity 1 Month on a Future with maturity 2 Months
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K Gauss L MC UB LB
0.50000 0.59129 0.59324 0.60810 0.57838
0.55263 0.53957 0.54151 0.55635 0.52668
0.60526 0.48803 0.48998 0.50478 0.47517
0.65789 0.43668 0.43863 0.45340 0.42385
0.71053 0.38564 0.38759 0.40233 0.37285
0.76316 0.33489 0.33684 0.35154 0.32213
0.81579 0.28465 0.28659 0.30126 0.27193
0.86842 0.23499 0.23694 0.25156 0.22231
0.92105 0.18615 0.18810 0.20268 0.17352
0.97368 0.13859 0.14053 0.15507 0.12599
1.02632 0.09339 0.09534 0.10983 0.08084
1.07895 0.06907 0.07101 0.08539 0.05663
1.13158 0.06190 0.06384 0.07806 0.04963
1.18421 0.05653 0.05847 0.07253 0.04441
1.23684 0.05218 0.05413 0.06804 0.04022
1.28947 0.04850 0.05044 0.06421 0.03667
1.34211 0.04544 0.04739 0.06102 0.03376
1.39474 0.04282 0.04477 0.05827 0.03127
1.44737 0.04050 0.04245 0.05582 0.02907
1.50000 0.03842 0.04037 0.05362 0.02711

Table 2: Comparison Call option prices on Futures with T0 = 1M and TF = 2M.
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Figure 12: Option Call Price with Maturity 2 Months on a Future with maturity 3 Months
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K Gauss L MC UB LB
0.50000 0.62469 0.63412 0.66088 0.60736
0.55263 0.57347 0.58291 0.60964 0.55617
0.60526 0.52263 0.53207 0.55877 0.50536
0.65789 0.47229 0.48173 0.50840 0.45506
0.71053 0.42261 0.43204 0.45868 0.40541
0.76316 0.37354 0.38298 0.40957 0.35639
0.81579 0.32525 0.33468 0.36123 0.30814
0.86842 0.27804 0.28747 0.31397 0.26098
0.92105 0.23225 0.24168 0.26813 0.21524
0.97368 0.18861 0.19805 0.22444 0.17166
1.02632 0.14833 0.15776 0.18409 0.13144
1.07895 0.12303 0.13247 0.15868 0.10626
1.13158 0.11087 0.12030 0.14637 0.09424
1.18421 0.10179 0.11123 0.13714 0.08531
1.23684 0.09453 0.10396 0.12973 0.07820
1.28947 0.08843 0.09786 0.12349 0.07223
1.34211 0.08315 0.09259 0.11808 0.06709
1.39474 0.07855 0.08799 0.11335 0.06263
1.44737 0.07451 0.08394 0.10918 0.05871
1.50000 0.07091 0.08035 0.10546 0.05523

Table 3: Comparison Call option prices on Futures with T0 = 2M and TF = 3M.
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Figure 13: Option Call Price with Maturity 1 month on a Future with maturity 3 months.
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Strike PriceLaguerre MC-mid MC-lwb MC-upb
0.50000 0.61870 0.61249 0.62156 0.60342
0.55263 0.56662 0.56042 0.56946 0.55138
0.60526 0.51475 0.50854 0.51755 0.49953
0.65789 0.46311 0.45690 0.46586 0.44793
0.71053 0.41178 0.40557 0.41449 0.39665
0.76316 0.36088 0.35467 0.36353 0.34581
0.81579 0.31031 0.30410 0.31291 0.29530
0.86842 0.26029 0.25409 0.26282 0.24535
0.92105 0.21092 0.20471 0.21339 0.19604
0.97368 0.16243 0.15623 0.16483 0.14762
1.02632 0.11522 0.10902 0.11756 0.10047
1.07895 0.07070 0.06449 0.07297 0.05601
1.13158 0.05450 0.04829 0.05660 0.03999
1.18421 0.04791 0.04170 0.04982 0.03359
1.23684 0.04311 0.03691 0.04484 0.02897
1.28947 0.03929 0.03308 0.04084 0.02531
1.34211 0.03623 0.03002 0.03763 0.02241
1.39474 0.03369 0.02748 0.03494 0.02001
1.44737 0.03147 0.02526 0.03259 0.01794
1.50000 0.02956 0.02335 0.03054 0.01615

Table 4: Comparison of Call option prices on Futures with T0 = 1 month and TF = 3 months.
We compute the price using the approximation procedure (PriceLaguerre) and compare it with Monte
Carlo prices (MC-mid, MC-lwb is the 5% quantile of MC simulations while MC-upb is the 5% quantile
of MC simulations).
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5 Conclusion
In this paper we propose an approximation procedure for the evaluation of the transition density
of a TCBm-CARMA(p,q) process that resultsto be a finite mixture of normals. Exploiting this
structure we obtain a simple estimation procedure and pricing formulas for financial contracts whose
value depend only on the value of the underlying at maturity modelled as an exponential TCBm-
CARMA(p,q). A possible extension of our proposed approximation methodology to the pricing of path
dependent contracts may be based on the result in [15] for the evaluation of the first passage time for
a Time Changed Brownian Motion. Indeed the process V tt0 has the same structure of a subordinator
while the TCBm-CARMA can be seen as a TCBm where the random time is the process V tt0 . This
could also give us the possibility to extend our approach to the evaluation of the density function
for the time-until death variable that is necessary for the evaluation of contracts with minimimum
guaranteed death benefit.
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processes. Journal of Business & Economic Statistics, 29(2):250–259, 2011.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal Of The Royal Statistical Society, Series B, 39(1):1–38, 1977.

[12] J. L. Doob. The elementary gaussian processes. Ann. Math. Statist., 15(3):229–282, 09 1944.

[13] E. Eberlein and S. Raible. Term structure models driven by general lévy processes. Mathematical
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[23] H. Masuda. Convergence of gaussian quasi-likelihood random fields for ergodic levy driven sde
observed at high frequency. The Annals of Statistics, 41(3):1593–1641, 2013.

[24] D. Nualart and W. Schoutens. Chaotic and predictable representations for Lévy processes.
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6 Appendix
6.1 EM algorithm
We derive the Expectation Maximization algorithm for the approximated density in (9). As a first
step we determine the complete-data log-likelihood function defined as:

L? (µ0, µ, σ, ϕ+, λ, θ) =
T∑
t=1

ln
[
φ
(
yt;µ0 + µUt;σ2Ut

)
P (Ut, ϕ+, λ, θ)

]
=

T∑
t=1

m∑
i=1

Dt,i ln
[
φ
(
yt;µ0 + µui;σ2ui

)
P (ui, ϕ+, λ, θ)

]
(34)

where Dt,i assumes value 1 when Ut = ui and 0 otherwise. Following the seminal work of [11],
we perform the Expectation-step (E-step henceforth) evaluating the conditional distribution of the
variables {Ut}t=1,...,T given the observed data. Applying the Bayes’ theorem we have:

P (Ut = ui |yt,Θh−1 ) =
φ
(
yt;µ0,h−1 + µh−1ui;σ2

h−1ui
)
P (ui, ϕ+,h−1, λh−1, θh−1)

m∑
i=1

φ
(
yt;µ0,h−1 + µh−1ui;σ2

h−1ui
)
P (ui, ϕ+,h−1, λh−1, θh−1)

where Θh−1 =
(
µ0,h−1, µh−1, σ

2
h−1, ϕ+,h−1, λh−1, θh−1

)
. The E-step consists of computing the condi-

tional expectation of L? (µ0, µ, ϕ+, λ, θ) in the following way:

E [L? (µ0,h, µh, σh, ϕ+,h, λh, θh)] =
m∑
i=1

T∑
t=1

ln
[
φ
(
yt;µ0,h + µhui;σ2

hui
)
P (ui, ϕ+,h, λh, θh)

]
P (Ut = ui |yt,Θh−1 ) .

Recalling that ui = ki
ϕ+

we get:

E
[
L?
(
µ0,h, µh, σh, ϕ+,h, λ, θ

)]
=

m∑
i=1

T∑
t=1

ln
[
φ

(
yt;µ0,h + µh

ki

ϕ+,h
;σ2
h

ki

ϕ+,h

)
P

(
ki

ϕ+,h
, ϕ+,h, λh, θh

)]
P

(
Ut =

ki

ϕ+,h−1
|yt,Θh−1

)

=
m∑
i=1

T∑
t=1

ln
[
φ

(
yt;µ0,h + µh

ki

ϕ+,h
;σ2
h

ki

ϕ+,h

)]
P

(
Ut =

ki

ϕ+,h−1
|yt,Θh−1

)

+
m∑
i=1

T∑
t=1

ln
[
P

(
ki

ϕ+,h
, ϕ+,h, λh, θh

)]
P

(
Ut =

ki

ϕ+,h−1
|yt,Θh−1

)
(35)

The Maximization-step (M-step henceforth) is based on the maximization of the quantity in (35), i.e.:

(µ0,h, µh, σh, ϕ+,h, λh, θh) = argmax
µ0,h, µh, σh
ϕ+,h, λh, θh

E [L? (µ0,h, µh, σh, ϕ+,h, λh, θh)] (36)

Using the following parametrization: {
µ = µ̃ϕ+
σ = σ̃

√
ϕ+

.

The problem in (36) becomes:

argmax
µ0,h, µh, σh
ϕ+,h, λh, θh

m∑
i=1

T∑
t=1

ln
[
φ

(
yt;µ0,h + µ̃hki; σ̃

2
h
ki

)]
P

(
Ut =

ki

ϕ+,h−1

∣∣yt,Θh−1

)
+

m∑
i=1

T∑
t=1

ln

[
P

(
ki

ϕ+,h
, ϕ+,h, λh, θh

)]
P

(
Ut =

ki

ϕ+,h−1

∣∣yt,Θh−1

)
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that can be split as follows:

argmax
µ0,h,µh,σh

H1 (µ0,h, µh, σh) :=
m∑
i=1

T∑
t=1

ln
[
φ
(
yt;µ0,h + µ̃hki; σ̃2

hki
)]

P
(
Ut = ki

ϕ+,h−1
|yt,Θh−1

)
(37)

argmax
ϕ+,h,λh,θh

H2 (ϕ+,h, λh, θh) :=
m∑
i=1

T∑
t=1

ln
[
P
(

ki
ϕ+,h

, ϕ+,h, λh, θh

)]
P
(
Ut = ki

ϕ+,h−1
|yt,Θh−1

)
(38)

6.2 Gauss Laguerre Quadrature
In this section we review some results about the Gauss-Laguerre quadrature necessary to understand
the behavior of our approximation scheme. We refer to [26, 28, 1] for a complete discussion about this
quadrature.
Let f (x) be a continuous function on the support [0,+∞) and let the integral

∫ +∞
0 f (x) e−xdx < +∞

be finite with f be 2m differentiable. Then we have:∫ +∞

0
e−xf (x) dx =

m∑
i=1

ω (ui) f (ui) +Rm

where

Rm = (m!)2

(2m)!f
(2m) (ε) , ε ∈ (0,+∞).

6.3 Generalized Gauss Laguerre Quadrature
The Generalized Gauss-Laguerre quadrature can be applied in the presence of non negligible singu-
larity at x = 0. Following [26], let f (x) be a non-negative continuous function such that ω (x) f (x) is
a monotonically non negative not increasing in (0,+∞) where ω (x) = xαe−x, α > −1,

f (x) ≤ ex

xα+1+ρ

for some ρ > 0 then, if the function f (x) is 2n differentiable, the Generalized Gauss-Laguerre quadra-
ture has the following form:∫ +∞

0
ω (x) f (x) dx =

m∑
i=1

ω (ui) f (ui) +Rm,

with ω (ui) = Γ(m+α)ui
m!(m+α)[Lαm−1(ui)]2 and Lαm (x) is the generalized Laguerre polynomial.

The residual term Rm can be written as:

Rm = m!Γ (m+ α+ 1)
(2m)! f (2m) (ε) , ε ∈ (0,+∞) .

A standard example where it is necessary to use the Generalized Gauss-Laguerre quadrature is
the numerical evaluation of the moment generating function of a Gamma random variable with shape
parameter α ∈ (0, 1). The usage of the Generalized Gauss Laguerre is due to the fact that, in this
case, we have a singularity at x = 0; the requirements described in this section can be easily checked
and the error term can be evaluated due to smooth condition of the exponential function. For the
case of α ≥ 1 the standard Gauss Laguerre quadrature described in the previous section can be easily
applied.
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6.4 Error computation in the option pricing formula in the case of NVMM
It is worth to notice that the formula in (24) can be written as:

m∑
i=1

E
[
g
(
µ+ θΛm +

√
ΛmZ

)
|F0,Λm = ui

]
P (ui) = Am

Bm

where:

Am =
m∑
i=1

E
[
g
(
µ+ θΛm +

√
ΛmZ

)
|F0,Λm = ui

] ω (ki)
ki

(
ki
ϕ+

)λ
Lθ

(
ki
ϕ+

)
, ki = uiϕ+

and

Bm =
m∑
j=1

ω (kj)
kj

(
kj
ϕ+

)λ
Lθ

(
kj
ϕ+

)
.

We analyze the term Am as m→ +∞, by Gauss - Laguerre Quadrature we have:

lim
m→+∞

Am =
∫ +∞

0
E
[
g
(
µΛ + θΛT +

√
ΛTZ

)
|F0,ΛT = k

]( k

ϕ+

)λ
Lθ (k/ϕ+)

k
dk, (39)

where the integral in the right hand is exactly the expectation of the function g (YT ) where YT is
a normal variance mean mixture (it is enough to solve the integral using the substitution k

ϕ+
= u).

Denoting with A the integral in (39), we have the following result due to the standard Gauss-Laguerre
quadrature:

A = Am +Rm (Am)

where the remaining term has the following form:

Rm (Am) = (m!)2

(2m)!∂
2m

[
E
[
g
(
µT + θΛT +

√
ΛTZ

)
|F0,ΛT = ε

]( ε

ϕ+

)λ
Lθ (ε/ϕ+)

ε

]
, ε ∈ (0,+∞) .

A discussion about the behaviour of the remaining term Rm (Am) can be found in [20]. The author
proved, under mild conditions, the geometric convergence for a Gauss-Laguerre quadrature for a func-
tion that can be written as a power series [see [22, 30] for a complete discussion and generalizations].

We analyze the behaviour of term Bm that:

lim
m→+∞

Bm =
∫ +∞

0

(
k

ϕ+

)λ
Lθ (k/ϕ+)

k
dk. (40)

Using the substitution u = k
ϕ+

, the integral is equal to one because the integrand function is the
density in (2). Denoting with B the integral in (40) we have

B = Bm +Rm (Bm) .

The remaining term Rm (Bm) has the following form:

Rm (Bm) = (m!)2

(2m)!∂
2m

[(
ε

ϕ+

)λ
Lθ (ε/ϕ+)

ε

]
, ε ∈ (0,+∞)

We are now able to establish the error term behaviour of our approximation approach for the normal
variance mean mixture. The result presented here holds when we have a no negligible singularity at
x = 0 but the result for this type approximation can easily to generalize to case of the singularity at
x = 0 using the Generalized Gauss-Laguerre quadrature.
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We define the error term Rm as:

Rm := E [g (YT ) |F0 ]− E [g (Y mT ) |F0 ]

= Am +Rm (Am)
Bm +Rm (Bm) −

Am
Bm

= Am +Rm (Am)
Bm +Rm (Bm) −

Am
Bm +Rm (Bm) + Am

Bm +Rm (Bm) −
Am
Bm

(41)

Noting that Rm (Bm) + Bm = 1, we have

Rm = Rm (Am)− Am
Bm
Rm (Bm)

Therefore
|Rm| ≤ |Rm (Am)|+

∣∣∣∣AmBm
∣∣∣∣ |Rm (Bm)| .
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