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Abstract
Let E be an elliptic curve over Q attached to a newform f of weight 2 on 00(N ),
and let K be a real quadratic field in which all the primes dividing N are split. This
paper relates the canonical R/Z-valued “circle pairing” on E(K ) defined by Mazur
and Tate [MT1] to a period integral I ′( f, K ) defined in terms of f and K . The result-
ing conjecture can be viewed as an analogue of the classical Birch and Swinnerton-
Dyer conjecture, in which I ′( f, K ) replaces the derivative of the complex L-series
L( f, K , s) and the circle pairing replaces the Néron-Tate height. It emerges naturally
as an archimedean fragment of the theory of anticyclotomic p-adic L-functions de-
veloped in [BD], and has been tested numerically in a variety of situations. The last
section formulates a conjectural variant of a formula of Gross, Kohnen, and Zagier
[GKZ] for the Mazur-Tate circle pairing.
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0. Introduction
Let E be an elliptic curve over Q of conductor N . Fix a real quadratic field K ⊂ R,
and let εK > 1 denote the fundamental unit of K of positive norm. Write E(K )+(
resp., E(K )−

)
for the subgroup of the Mordell-Weil group E(K ) on which the gen-

erator of Gal(K/Q) acts as multiplication by 1 (resp., −1), so that E(K )+ = E(Q).
In [MT1, §3.5], Mazur and Tate define (under the assumption that K has class
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number one) a canonical Z-bilinear “circle pairing”

E(K )− × E(Q) −→ R/(Z · log εK ) (1)

and raise the question of what meaning can be ascribed to this pairing (cf. [MT1,
Remark 3.5.3]).

By the results of [W], [TW], and [BCDT], the elliptic curve E is known to be
modular. Let f be the associated normalised eigenform of weight 2 on 00(N ). This
paper formulates a conjecture relating the circle pairing of (1) to a period integral
I ′( f, K ) defined in terms of f and K . Conjecture 3.1 of Section 3 should be viewed as
an analogue of the classical Birch and Swinnerton-Dyer conjecture, in which I ′( f, K )

replaces the derivative of the complex L-series L( f, K , s) and the circle pairing re-
places the Néron-Tate height. It emerges naturally as an archimedean fragment of the
theory of anticyclotomic p-adic L-functions developed in [BD], and has been tested
numerically in a variety of situations, which are described in Section 4. Section 5 for-
mulates a conjectural variant of a formula of Gross, Kohnen, and Zagier [GKZ] for
the Mazur-Tate circle pairing whose proof would give strong evidence for Conjecture
3.1.

1. The circle pairing
For any place v of K , let Kv denote the completion of K at v, and let Ov (if v is
nonarchimedean) be the ring of integers of Kv . Let

Uv =

{
O×

v if v is nonarchimedean,

{1} if v is real.

Denote by Div0(E(Kv)) ×
· Div0(E(Kv)) the set of pairs of degree zero divisors on

E(Kv) with disjoint supports. The classical Néron-Tate canonical height on E(K ) is
defined in terms of the local Néron symbols

[ , ]v : Div0 (
E(Kv)

)
×
· Div0 (

E(Kv)
)

−→ K ×
v /Uv (2)

characterised uniquely (cf. [N, Théorème 3 and Remarque (d) following its proof]) by
the following properties.
(1) The function [ , ]v is biadditive and symmetric.
(2) For any principal divisor ( f ) and any divisor D with support disjoint from

that of ( f ),
[( f ), D]v = f (D) (mod Uv).

(3) The symbol [ , ]v is translation-invariant; that is,

[Dx
1 , Dx

2 ]v = [D1, D2] for all x ∈ E(Kv),

where Dx
i denotes the translate of the divisor Di by the point x .
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(4) For fixed D, the function x 7→ [(x)−(x0), D]v is bounded on bounded subsets
of E(Kv) − supp(D).

The symbol (2) is defined using arithmetic intersection theory on the Néron model of
E over Ov when v is nonarchimedean and using capacity theory (Green’s functions)
on E(Kv) when v is archimedean (cf. [N] and the discussion in [MT1, §§2, 3]).

Let A×

K ⊂
∏

v K ×
v denote the group of idèles of K . It is convenient to package

the local symbols [ , ]v in the obvious way into an idèlic symbol

[ , ] : Div0 (
E(K )

)
×
· Div0 (

E(K )
)

−→ A×

K /
( ∏

v

Uv

)
.

Consider the quotient CK := A×

K /
( ∏

v Uv

)
K × of the idèle class group of K . If ( f )

is a principal divisor on E(K ) and D is an arbitrary degree zero divisor with support
disjoint from that of ( f ), note that

[( f ), D] =
(

f (D)
)

belongs to K ×,

so that [ , ] descends to a CK -valued pairing

〈 , 〉 : E(K ) × E(K ) −→ CK .

If |·| : CK −→ (R+)× denotes the homomorphism induced by the idèlic norm (which
is trivial on K × by the product formula), then the classical Néron-Tate canonical
height is given by the formula

〈P, Q〉N T := log(|〈P, Q〉|)

(cf. [MT1, Proposition 2.3.1]).
Let Cl(K ) and Cl+(K ) denote, respectively, the class group and narrow class

group of K , and denote by h and h+ their orders so that

h+
=

{
h if OK has a unit of negative norm,

2h otherwise.

Let C−

K ⊂ CK denote the kernel of the idèlic norm on CK . It is a compact group,
sitting in the middle of an exact sequence

0 −→ R/(Z · log εK )
α

−→ C−

K
β

−→ Cl+(K ) −→ 0,

where β is the canonical map that assigns to the idèle class c the corresponding narrow
ideal class, and α sends x to the class of the idèle (1, . . . , 1, ex , e−x ).

Let τ be the generator of Gal(K/Q), and let η : CK −→ C−

K be the homomor-
phism sending x to x/xτ . The information lost in the passage from 〈 , 〉 to 〈 , 〉N T is
encoded for the most part in the Mazur-Tate circle pairing

〈 , 〉circle : E(K ) × E(K ) −→ C−

K , defined by 〈P, Q〉circle = η(〈P, Q〉).
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The terminology arises from the fact that 〈 , 〉circle takes its values in C−

K , an extension
of a finite group by a circle. The Mazur-Tate circle pairing is a Z-bilinear form on
E(K ) satisfying the Galois equivariance property

〈Pτ , Qτ
〉circle = −〈P, Q〉circle.

In fact, the subspaces E(Q) and E(K )− are isotropic for 〈 , 〉circle; for if P and Q
belong to the same eigenspace for τ , then the idèle class 〈P, Q〉 is fixed by τ and
hence is in the kernel of η. (For further discussion of the Mazur-Tate circle pairing,
see [MT1], [MT2], [C], [B], [H].)

Let r+ and r− denote the ranks of E(Q) and E(K )−, respectively, and let
(P+

1 , . . . , P+

r+) and (P−

1 , . . . , P−

r−) denote bases for E(Q) and E(K )−, respectively,
modulo torsion. The pairing matrix attached to the Mazur-Tate circle pairing and to
the basis (P+

1 , . . . , P+

r+, P−

1 , . . . , P−

r−) of E(K ) ⊗ Q is of the form(
0r+ M
M t 0r−

)
,

where M is an (r+
× r−)-matrix with entries in C−

K given by

Mi j = 〈P+

i , P−

j 〉circle.

It is tempting to define the Mazur-Tate regulator in this context (or rather, a quantity
akin to its square root) by the formula

R1/2
circle

?
=

{
det(M) if r+

= r−,

0 otherwise.

But since the Mazur-Tate pairing matrix has entries in a product of a finite group by
a circle, which is not endowed with a ring structure, one is hard pressed to define its
determinant in a sensible way—the one notable exception arising when r+

= r−
= 1.

Thus we set

R1/2
circle =

{
〈P+

1 , P−

1 〉 if r+
= r−

= 1,

0 otherwise.

This definition (or lack thereof in the higher-rank case) reflects a difficulty in our
variant of the Birch and Swinnerton-Dyer conjecture which arises on two levels.
(1) On the arithmetic side, we are unable to propose an interesting definition of a

regulator for a pairing matrix whose entries take values in a circle group when
r+ or r− is at least 1.

(2) On the analytic side, as is seen in Section 2, the derived period I ′( f, K ) de-
fined there and playing the role of L ′( f, K , 1) is conjectured to vanish when
r+ or r− is strictly greater than one, and no obvious candidate for a higher
derived period playing the role of higher derivatives of L-series has emerged
from the formalism described in Section 2.
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2. Derived periods
Let

ω f := 2π i f (z) dz =

∑
n>0

anqn dq
q

, where q = e2π i z,

denote the 00(N )-invariant differential on H associated to f .
Assume in the rest of the article that the real quadratic field K satisfies the fol-

lowing:
the discriminant of K is prime to N . (3)

Definition 2.1
An algebra embedding

9 : K −→ M2(Q)

is said to be optimal (with respect to N ) if

9(K ) ∩ M0(N ) = 9(OK ),

where M0(N ) is the algebra of matrices with entries in Z which are upper-triangular
modulo N .

LEMMA 2.2
An optimal embedding of K of level N exists if and only if all the prime divisors of N
are split in K/Q.

Proof
If 9 is an optimal embedding with respect to N , then the map

o9 : OK −→ Z/NZ,

which to x associates the lower right-hand entry of 9(x) (taken modulo N ), is a ring
homomorphism; such a homomorphism can only exist, in light of assumption (3), if
all the primes dividing N are split in K/Q. Conversely, if this condition is satisfied,
then there is a cyclic ideal N of OK of norm N . Choose a Z-basis (e1, e2) of OK in
such a way that e1 belongs to N . The action of OK on itself by left multiplication,
expressed in this basis, yields the desired optimal embedding. More precisely,

9(α) =

(
a b
c d

)
, where

{
αe1 = ae1 + ce2,

αe2 = be1 + de2.
(4)

Motivated by Lemma 2.2, assume that

all primes dividing N are split in K/Q. (5)
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In that case one has
sign(E, K ) = 1, (6)

where sign(E, K ) denotes the sign in the functional equation for L(E, K , s). In par-
ticular, the Birch and Swinnerton-Dyer conjecture predicts that E(K ) has even rank
when assumption (5) holds.

Fix a ring homomorphism o0 : OK −→ Z/NZ (or what amounts to the same
thing, a cyclic ideal ker o0 of OK of norm N , or a choice of square root of Disc(K )

modulo N ).

Definition 2.3
The optimal embedding 9 is said to be oriented (with respect to the choice of o0) if
the homomorphism o9 associated to it as in the proof of Lemma 2.2 is equal to o0.

Note that if 9 is an oriented optimal embedding, then so is the conjugate embedding
α9α−1 for any α ∈ M0(N )×.

One may attach to an ideal class C of K an oriented optimal embedding 9C by
choosing a representative ideal c ∈ C of norm prime to N , choosing a Z-basis (e1, e2)

for c such that e1 belongs to c∩N , and defining 9 as in (4). The resulting embedding
is independent of the choice of c and (e1, e2) up to conjugation by M0(N )×, so that
the assignment C 7→ 9C sets up a bijection{

Ideal classes
of K

}
'

−→

{
Oriented optimal embeddings
of OK into M0(N )

}
/M0(N )×.

If C is a narrow ideal class, one may also insist that the basis of c be oriented, that is,
that

det
(

e1 τe1

e2 τe2

)
> 0.

Then 9C becomes well defined up to conjugation by 00(N ), the group of elements
of M0(N )× of positive determinant, and the assignment C 7→ 9C sets up a bijection

{
Narrow ideal classes
of K

}
'

−→


Oriented optimal
embeddings
of OK into M0(N )

 /00(N ).

Thanks to these identifications, the set of oriented optimal embeddings of OK into
M0(N ), taken up to conjugation by M0(N )× (resp., 00(N )), becomes a principal
homogeneous space for the action of Cl(K ) (resp., Cl+(K )). In particular, we have
the following.
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LEMMA 2.4
There are exactly h (resp., h+) distinct oriented optimal embeddings of K of level N ,
up to conjugation by M0(N )×

(
resp., 00(N )

)
.

We now associate to f and K a canonical derived period I ′( f, K ) ∈ C−

K whose value
is conjecturally related to the circle regulator of the previous section. The description
is simpler when K has narrow class number one, so we begin by treating this case,
postponing the general case to the end of the section.

Let 9 be any optimal embedding of K into M2(Q), which is unique up to conju-
gation in 00(N ), by Lemma 2.4. Let

γ9 := 9(εK ) ∈ 00(N ).

Choose an arbitrary base point x in the extended Poincaré upper half-plane H ∗
=

H ∪ P1(Q). To this data is associated the period integral

I9,x =

∫ γ9 x

x
ω f . (7)

It follows directly from the 00(N )-invariance of ω f that the period I9,x is indepen-
dent of the choice of x . Hence one may, when it is convenient, suppress the base point
x from the notation and set I9 := I9,x . A direct computation also shows that, if α

belongs to 00(N ), then

Iα9α−1 = Iα9α−1,x = I9,α−1x = I9 .

Hence I9 depends only on the 00(N )-conjugacy class of 9. Set

I ( f, K ) = I9 (8)

for any choice of optimal embedding 9 and base point x . By the assumption that K
has narrow class number one, this period does not depend on the choice of 9 thanks to
Lemma 2.4. Furthermore, this canonical period is related to special values of L-series
as follows.

LEMMA 2.5
The period I ( f, K ) vanishes if and only if L( f, K , 1) = 0.

Sketch of proof
A formula that is spelled out precisely in [P] (see also [GKZ, Chapter II]) implies that

I ( f, K )2 .
= L( f, K , 1),

where the symbol .
= denotes equality up to an explicit nonzero fudge factor. The result

follows from this.
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Assume henceforth that L( f, K , 1) = 0, so that

I ( f, K ) = 0. (9)

The group 9(K ×) acting by Möbius transformations on P1(C) has two fixed points
x9 and y9 in P1(R). Order these fixed points in such a way that γ9 has x9 as a
repulsive fixed point and y9 as an attractive fixed point.

Under assumption (9) it becomes natural to consider the derived period integral

I ′
9,x =

∫ γ9 x

x
log

( z − x9

z − y9

)
ω f . (10)

To analyse the dependence of this quantity on the choice of base point x ∈ H ∗, note
that

I ′
9,x − I ′

9,y =

∫ y

x
log

( z − x9

z − y9

)
ω f −

∫ γ9 y

γ9 x
log

( z − x9

z − y9

)
ω f .

Performing the change of variable w = γ −1
9 z in the second term, and noting that(γ9w − x9

γ9w − y9

)
= ε2

K
·

(w − x9

w − y9

)
,

yields

I ′
9,x − I ′

9,y = 2 log εK ·

∫ y

x
ω f . (11)

Thus the value of I ′
9,x depends strongly on the choice of x . One resolves this ambi-

guity by requiring that

the base point x belong to P1(Q) ⊂ H ∗. (12)

A theorem of Manin [M] and Drinfeld asserts that the subgroup of C generated by the
expressions of the form

∫ y
x ω f , where x and y belong to P1(Q), is a lattice 3 f which

is commensurable to the Néron lattice of E . This result is crucial in our definition of
the derived period for it implies the following.

LEMMA 2.6
The natural image of I ′

9,x in C/23 f log εK is independent of the choice of x ∈ P1(Q).
Furthermore, it depends only on the 00(N )-conjugacy class of 9.

Proof
The first assertion follows directly from (11). By a slight abuse of notation, we may
therefore denote by I ′

9 the natural image of I ′
9,x in C/23 f log εK for any choice of

base point x ∈ P1(Q). To prove the second assertion, let α =
(

a b
c d

)
be an element of

00(N ). Then a direct calculation shows that

I ′

α9α−1,αx − I ′
9,x = cα · I ( f, K ), (13)
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where
cα = log

(αz − αx9)(z − y9)

(αz − αy9)(z − x9)
= log

( cy9 + d
cx9 + d

)
(14)

is a constant independent of z. It follows from (9) that

I ′

α9α−1 = I ′
9 (mod 23 f · log εK ). (15)

It is useful to supplement (15) by the following equation, which describes the variation
of I ′

9 under conjugation of 9 by an element α ∈ M0(N )× − 00(N ) of determinant
−1:

I ′

α9α−1 = Ī ′
9 (mod 23 f · log εK ). (16)

Lemmas 2.4 and 2.6 make it possible (under the narrow class number one hypothesis)
to associate to f and K a canonical derived period

I ′( f, K ) ∈ C/(3 f · log εK ),

defined as the natural image of I ′
9,x , for any choice of optimal embedding 9 of OK

in M0(N ) and of base point x ∈ P1(Q).
Let �+ be the real period attached to f , defined as the unique positive generator

of the lattice 3 f ∩ R.

LEMMA 2.7
The period I ′( f, K ) is fixed under complex conjugation. Its image in C/(3 f · log εK )

belongs to the subgroup R/(�+
· log εK ).

Proof
Let ε ∈ O×

K be a unit of negative norm (which can be chosen, for instance, so that
ε2

= εK ), and let α = 9(ε) ∈ M0(N )×. Since α commutes with 9(K ×), we have

α9α−1
= 9; hence I ′

α9α−1 = I ′
9 (mod 23 f · log εK ).

The result now follows from (16).

Let sign(E, Q) = ±1 denote the sign in the functional equation of the L-series
L(E/Q, s). This sign is known to be the negative of the eigenvalue of the Atkin-
Lehner involution acting on ω f .

LEMMA 2.8
If sign(E, Q) = 1, then I ′( f, K ) = 0.
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Proof
Let αN =

( 0 −1
N 0

)
be the matrix in terms of which the Atkin-Lehner involution is

defined. Since αN normalises 00(N ), the embedding αN 9α−1
N is also an optimal em-

bedding of K of level N . A direct computation using the change of variables formula
and the fact that wN f = − f shows that

I ′

αN 9α−1
N

= −I ′
9 (mod 23 f · log εK ). (17)

Observe that αN 9α−1
N , although it is an optimal embedding, is not oriented; more

precisely, its orientation corresponds to the choice of the ideal ¯N = τN rather than
N . Hence αN 9α−1

N is 00(N )-conjugate to the embedding 9 ′
= 9 ◦ τ . Note that

γ9 ′ = γ −1
9 , so that (x9 ′, y9 ′) = (y9 , x9). Hence

I ′

αN 9α−1
N

= I ′

9 ′ =

∫ γ −1
9 x

x
log

( z − y9

z − x9

)
ω f (18)

=

∫ γ9 x

x
log

( z − x9

z − y9

)
ω f = I ′

9 (mod 23 f · log εK ).

The result follows after comparing (17) and (18).

Because of Lemma 2.8, it is natural to assume that sign(E, Q) = −1. The Birch
and Swinnerton-Dyer conjecture then predicts—in light of assumption (6)—that both
E(Q) and E(K )− have odd rank.

We now turn to the derived period in the general case where h+ is not necessarily
equal to 1. In this case we define an invariant J ′( f, K ) ∈ C−

K , which, when h+
= 1, is

simply the class represented by the period I ′( f, K ) with the real period �+ factored
out. The definition of J ′( f, K ) (like the definition of the group to which it belongs) is
best given adelically.∗

It is worthwhile to allow more generality by introducing a quadratic character χ

of the narrow ideal class group of K . The character χ is said to be even if it is trivial
on the group of principal ideals (so that it factors through the class group of K ) and
is said to be odd otherwise (in which case it cuts out, by class field theory, a totally
imaginary quadratic extension of K ). We set the local sign w to be 1 if χ is even and
−1 if χ is odd.

Let C1, . . . , Ch+ be a full set of representatives for the narrow ideal classes of K ,
and let 91, . . . , 9h+ denote representatives for the corresponding 00(N )-conjugacy

∗The reader may wish in a first reading to skip the rest of this section and jump directly to Section 3, where the
Birch and Swinnerton-Dyer–type conjecture relating I ′( f, K ) to the circle pairing is described.
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classes of oriented optimal embeddings of OK into M0(N ). Setting

I ( f, χ) =

h+∑
j=1

χ(C j )I9 j , (19)

one has the following (see the references given for Lemma 2.5).

LEMMA 2.9
The period I ( f, χ) vanishes if and only if L(E/K , χ, 1) = 0.

The invariant J ′( f, χ) to be defined below (which we seek to interpret when
I ( f, χ) = 0) plays the role of L ′(E/K , χ, 1) in the conjectures of Section 3. It is
defined as a weighted linear combination of periods

J ′
9 j

∈ C−

K

indexed by the oriented optimal embeddings 9 j of OK into M0(N ). Fix such an
embedding 9 = 9 j , and let x9 and y9 ∈ P1(K ) be the fixed points of 9(K ×),
normalised as before. Choose a rational function g9 ∈ K (x) satisfying

Div(g9) = (y9) − (x9).

Note that this condition makes g9 well defined up to multiplication by an element of
K ×.

Let v be a prime of K , let p be the rational prime that lies below it, and let Kv

and kv denote the corresponding completion and residue field. Reduction modulo v

gives a natural map P1(Kv) −→ P1(kv), denoted x 7→ x̄ . Define a compact open
subset U9,v ⊂ P1(Qp) by the rule

U9,v =

{
P1(Qp) if p is inert or ramified in K/Q,

{t ∈ P1(Qp) such that t̄ 6= x̄9 and t̄ 6= ȳ9} otherwise.

The key properties of U9,v are summarised in the following two lemmas.

LEMMA 2.10
If t1 and t2 belong to U9,v , then the cross ratio( t1 − y9

t1 − x9

)( t2 − y9

t2 − x9

)−1
=

g9(t1)
g9(t2)

belongs to O×
v .



192 BERTOLINI and DARMON

Proof
If v is inert or ramified in K , then the expression on the left belongs to K ×

v and
is of norm one. In any case, the reduction of the expression on the left modulo a
uniformiser πv (i.e., its image in P1(kv) under the reduction map) is simply the cross
ratio of t̄1, t̄2, x̄9 , and ȳ9 . By definition of U9,v , the points t̄1 and t̄2 are different
from x̄9 and ȳ9 , and hence the lemma follows from the familiar properties of the
cross ratio.

LEMMA 2.11
For all α ∈ 00(N ),

Uα9α−1,v = αU9,v.

Proof
This follows directly from the fact that 00(N ) ⊂ SL2(Ov) acts naturally on P1(Kv)

and P1(kv) in a manner that is compatible with the reduction map

P1(Kv) −→ P1(kv).

For each finite place v of K , fix a choice of local base points tv ∈ U9,v , and choose a
base point t∞ ∈ P1(Q). Write

t = (. . . , tv, . . . ; t∞) ∈

∏
v

P1(Qv) × P1(Q)

for the infinite tuple corresponding to these choices.
Let �w be the unique positive generator of 3 f ∩ R if w = 1 and of i−13 f ∩ R

if w = −1. We define an element

J ′
9,t ∈ CK = A×

K /
( ∏

v

Uv

)
K ×

by specifying each of its local components,

(J ′
9,t )v ∈ K ×

v /O×
v = Z, (J ′

9,t )∞i ∈ R×, i = 1, 2.

Each v of K (either finite or one of the two archimedean places ∞1 or ∞2) yields an
embedding K (z) −→ Kv(z) of rational function fields, and in this way g9(z) gives
rise to elements denoted gv

9(z) in each Kv(z). The components of J ′
9,t are defined as

follows:

(J ′
9,t )v =

{
ordv gv

9(tv) · Re(I9)�−1
+ if w = 1,

ordv gv
9(tv) · Imag(I9)�−1

− if w = −1;
(20)

(J ′
9,t )∞ j =

{
exp

(
Re

( ∫ γ9 t∞
t∞

log g
∞ j
9 (z)ω f

)
�−1

+

)
if w = 1,

exp
(

Imag
( ∫ γ9 t∞

t∞
log g

∞ j
9 (z)ω f

)
�−1

−

)
if w = −1.

(21)
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We note the following.
(1) The idèle class in CK corresponding to J ′

9,t does not depend on the choice
of g9 . This is because multiplying g9 by a scalar in K × changes J ′

9,t by the
corresponding principal idèle.

(2) For each nonarchimedean place v, the local component (J ′
9,t )v does not de-

pend on the choice of base point tv which was made to define it. This follows
directly from Lemma 2.10.

(3) The archimedean components (J ′
9,t )∞ j do not depend on the choice of base

point t∞ ∈ P1(Q) which was made to define them. This follows from the same
manipulations as were used to derive formula (11).

Finally, we have the following.

LEMMA 2.12
The derived period J ′

9,t depends only on the 00(N )-conjugacy class of 9.

Proof
Let 9 ′

= α9α−1 be an oriented optimal embedding of OK into M0(N ) which is
conjugate to 9 under a matrix α ∈ 00(N ). The fixed points for this embedding are
(x9 ′, y9 ′) = (αx9 , αy9), and we may set

g9 ′(z) = g9(α−1z),

γ9 ′ = αγ9α−1,

U9 ′,v = αU9,v (hence t ′v = αtv),

t ′∞ = αt∞,

t ′ = (. . . , t ′v, . . . ; t ′∞).

With these choices it follows by a direct computation (using change of variables for
the archimedean component) that

(J ′
9,t )v = (J ′

9 ′,t ′)v for all v.

The lemma now follows from the fact that J ′
9,t does not depend on t .

By an abuse of notation, let J ′
9 denote the natural image of J ′

9,t in C−

K . As before, let
C1, . . . , Ch+ be a full set of representatives for the narrow ideal classes of K , and let
91, . . . , 9h+ denote representatives for the corresponding 00(N )-conjugacy classes
of oriented optimal embeddings of OK into M0(N ). Since J ′

9 j
depends only on C j



194 BERTOLINI and DARMON

and not on the particular choice of representative, we may define

J ′( f, K ) =

h+∑
j=1

J ′
9 j

(with w = 1),

J ′( f, χ) =

h+∑
j=1

χ(C j )J ′
9 j

.

Question
In the simpler approach that was described, where h+

= 1, the fact that I ′( f, K )

was well defined depended on the vanishing of I ( f, K ) (cf. formula (13)). The adelic
approach we adopted in the general case, involving a more careful integral normalisa-
tion of the factor g9(t) appearing in the integrand, makes the derived periods J ′

9 and
J ′( f, K ) well defined in C−

K without any assumption on the vanishing of the corre-
sponding periods I9 and I ( f, K ). What meaning (if any) can be ascribed to J ′( f, K )

when I ( f, K ) 6= 0?

3. The conjecture
We begin by formulating the main conjecture in the special case where h+

= 1,
following the notation of Section 2 which was introduced for this setting. Let e denote
the exponent of the torsion subgroup of E(K ).

CONJECTURE 3.1
The derived period I ′( f, K ) is nonzero (and, even, of infinite order) if and only if
E(Q) and E(K )− both have rank one. In that case,

I ′( f, K ) · t = ±〈P+, P−
〉circle ·

√
#LLI · �+

E ·

∏
p|N

cp

(
mod �+

·
1
e

log εK

)
, (22)

where
(1) the points P+ and P− are generators for E(Q) and E(K )−, respectively,

modulo torsion;
(2) t is the index in E(K ) of the group generated by P+ and P−;
(3) LLI is the conjecturally finite Shafarevich-Tate group of E over K ;
(4) �+

E is the real Néron period for E/Q;
(5) cp is the local Tamagawa factor attached to E/Qp.

Remark
Note that the right-hand side in Conjecture 3.1 can be rewritten as

±R1/2
circle ·

√
#LLI · �+

E ·

∏
p|N

cp
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and is analogous to the square root of the kind of expression in the leading term of
L(E/K , s) predicted by the classical Birch and Swinnerton-Dyer conjecture. This is
clear for the Tamagawa factors (since all the primes dividing N are split in K/Q), for
the factor �+

E (since K is real quadratic), and for the term involving the order of the
Shafarevich-Tate group. Finally, it was explained in Section 1 that R1/2

circle should be
thought of as the “square root” of a hypothetical circle pairing regulator for E(K ).

In the case where h+ > 1, let H be the extension of K which is cut out by χ . Thus
H = K if χ is the trivial character, and H is an unramified quadratic extension of K
otherwise.

Let σ be a generator for Gal(H/K ), and let

E(H)χ :=
{

P ∈ E(H) such that σ P = χ(σ)P for all σ ∈ Gal(H/K )
}
,

LLI χ
:=

{
α ∈ LLI (E/H) such that σα = χ(σ)α for all σ ∈ Gal(H/K )

}
denote the χ -parts of the Mordell-Weil group E(H) and of the Shafarevich-Tate group
of E over H , respectively.

Choose a lift of τ to Gal(H/Q). Since τ commutes with Gal(H/K ), it acts on
E(H)χ , and one denotes by E(H)χ,± the eigenspaces for this action and by rχ,± the
corresponding ranks. Considerations involving the signs on the functional equation
for L(E/K , χ, s) lead to the expectation that E(H)χ has even rank, so that r+

χ and
r−
χ should have the same parity.

The adèlic pairing

〈 , 〉 : E(H) × E(H) −→ CH

gives rise, by its functorial nature, to a pairing on E(H)χ with values in CK . Com-
posing this pairing with η : CK −→ C−

K yields the corresponding circle pairing

〈 , 〉circle : E(H)χ × E(H)χ −→ C−

K ,

which satisfies properties similar to the case where χ is the trivial character. For
example, both the submodules E(H)χ,+ and E(H)χ,− are isotropic for this pairing.

For each rational prime p|N , let p be a prime of K above it, and let σp denote
the Frobenius element in Gal(H/K ) attached to p. One may attach to E and χ a
Tamagawa factor cχ

p by letting cp2 denote the Tamagawa factor attached to E over the
quadratic unramified extension of Qp and setting

cχ
p =

{
cp if χ(σp) = 1,

cp2/cp if χ(σp) = −1.

Let �w
E denote the real (resp., imaginary) Néron period for E/Q if w = 1 (resp.,

w = −1). The ratio (�w
E/�w) is known to be a rational number. Let d0 > 0 be
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its denominator, and let d = d0e, where e is, as before, the exponent of the torsion
subgroup of E(K ). Let C−

K [d] denote the d-torsion subgroup of the group C−

K .
Our conjecture can now be formulated as follows.

CONJECTURE 3.2
The derived period J ′( f, K ) is nonzero if and only if E(H)χ,+ and E(H)χ,− both
have rank one. In that case

J ′( f, χ) · t .
= ±〈P+

χ , P−
χ 〉circle ·

√

#LLI χ
· (�w

E/�w) ·

∏
p|N

cχ
p in C−

K /C−

K [d],

where
(1) the symbol .

= denotes equality up to multiplication by a power of 2;
(2) the points P+

χ and P−
χ are generators for E(H)χ,+ and E(H)χ,−, respec-

tively, modulo torsion;
(3) t is the index of the group generated by P+

χ and P−
χ in E(H)χ .

Remark
Applying the natural projection

C−

K −→ Cl+(K )

to Conjecture 3.2 yields a variant of the conjectures of [MT2] for real quadratic fields
which is spelled out precisely in [D, Conjecture 3.6]. Thus Conjecture 3.2 can be
viewed as a (partial) lift of [D, Conjecture 3.6] to the full idèle class group C−

K , in-
cluding the connected component of the identity of which class field theory does not
provide a Galois-theoretic interpretation.

4. Numerical evidence
We summarise some of the numerical evidence for Conjecture 3.1 which has been
gathered. Since the complexity of the period calculation increases with the size of the
discriminant and fundamental unit of K , the experiments focused on the real quadratic
fields of small discriminant D = 5 and D = 13.

Calculations with Q(
√

5)

Let K = Q(
√

5) be the real quadratic field of discriminant 5. It has narrow class
number one, and its fundamental unit of norm one is given by

εK =
3 +

√
5

2
.

There are exactly 3 elliptic curves of conductor at most 100 with sign(E, Q) = −1,
all of whose prime factors are split in Q(

√
5): the curves denoted 61A, 79A, and 89A
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in the tables of Cremona [Cr]. The equations for these curves, the coordinates for the
points P+ and P−, and the circle pairings for these points (with ten significant digits
after the decimal point) are in Table 1.

Table 1

E Equation P+ P−
〈P+, P−

〉circle

61A y2 + xy = x3
− 2x + 1 (1, 0)

( 4
5 , −10+3

√
5

25
)

−0.9723644825

79A y2
+ xy + y = x3

+ x2
− 2x (0,0)

( 1
5 , −15+

√
5

25
)

−0.4284370106

89A y2
+ xy + y = x3

+ x2
− x (0,0)

(
−1
5 , −10+7

√
5

25
)

−1.5571998775

(For the explicit formulae allowing the calculation of 〈P+, P−
〉circle, see [MT1]

or [C], for example.) The values of t are readily calculated from Table 1: one has
t = 2, 1, and 2 for E = 61A, 79A, and 89A, respectively.

To compute the derived period I ′
9 , we set

F(z) =

∫ z

∞

ω f =

∞∑
n=1

an

n
e2π inz .

The assumption that I ( f, K ) = 0 implies that F(z) = F(γ9 z) for all z ∈ H ∗, so
that, in particular, F(γ9∞) = 0. Applying integration by parts,∫ γ9∞

∞

log
( z − x9

z − y9

)
ω f = −

∫ γ9∞

∞

F(z) d log
( z − x9

z − y9

)
. (23)

Since the differential appearing on the right-hand side of (23) is invariant under γ9 ,
one can replace ∞ by any other τ ∈ H ∗ in this expression without affecting its value.
The optimal choice of τ is to take a value for which both Imag(τ ) and Imag(γ9τ) are
maximized:

τ =
−d + i

c
, so that γ9τ =

a + i
c

, where γ9 =

(
a b
c d

)
.

Table 2 lists the choices of γ9 which were made for the calculation of I ′
9 = I ′( f, K ),

together with the value of the corresponding derived period. Finally, Table 3 sum-
marises the calculations of the left- and right-hand sides occurring in Conjecture 3.1.
Here
• LHS denotes t · I ′( f, K );
• #LLI ? denotes the putative value of #LLI which makes (22) hold;
• RHS denotes ±〈P+, P−

〉circle ·

√

#LLI ?
· �+

·
∏

p|N cp;
• δ denotes (LHS − RHS)/(�+

· log εK ).
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Table 2

E 61A 79A 89A

γ9

(
19 −5
61 −16

) (
−28 −11

79 31

) (
−8 −1
89 11

)

I ′
9 −0.0304845228 −1.2747715571 1.6512851401

Table 3

E LHS #LLI ? RHS δ

61A −0.0609690456 1 −5.9636991823 1
79A −1.2747715571 1 −1.2747715571 0
89A 3.3025702803 1 8.6465494063 −1

The last column in Table 3 indicates that in these three calculations the quantity δ

was always found to be an integer to within the calculated degree of accuracy, lend-
ing support for (but of course not proving) Conjecture 3.1 in these examples. Al-
though only 10 digits of numerical accuracy are indicated in the tables, the calcula-
tions were actually carried out to over 20 significant digits. The pari programs and
script used to perform these calculations can be downloaded from Darmon’s Web site
at http://math.mcgill.ca/darmon/programs.html

Calculations with Q(
√

13)

Let K = Q(
√

13) be the real quadratic field of discriminant 13. It has narrow class
number one, and its fundamental unit of norm one is given by

εK =
11 + 3

√
13

2
.

There are exactly 4 elliptic curves of conductor N ≤ 100 with sign(E, Q) = −1, all
of whose prime factors are split in Q(

√
13): the curves denoted 43A, 53A, 61A, and

79A in the tables of Cremona [Cr]. The equations for these curves, the coordinates for
the points P+ and P−, and the circle pairings for these points (with ten significant
digits after the decimal point) are given in Table 4. From this table it can be checked,
by a direct calculation, that t = 2 in all cases; that is, the point P+

+ P− is always
divisible by two in E(K ). Table 5 lists the derived period I ′

9 in each case to ten digits
of numerical accuracy, together with the value of γ9 used to compute it using (23).
Table 6 summarises the calculations of the left- and right-hand sides occurring in
Conjecture 3.1, with the same conventions as before.

http://math.mcgill.ca/darmon/programs.html
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Table 4

E Equation P+ P−
〈P+, P−

〉circle

43A y2
+ y = x3

+ x2 (0,0)
( 61

52 , −676+675
√

13
1352

)
0.9717293862

53A y2
+ xy + y = x3

− x2 (0,0)
( 1

13 , −91+25
√

13
132

)
−2.4475758590

61A y2
+ xy = x3

− 2x + 1 (1,0)
( 4

13 , −26+31
√

13
132

)
0.8669460262

79A y2
+ xy + y = (0,0) (−23

13 , 65+53
√

13
132 ) 0.7180776230

x3
+ x2

− 2x

Table 5

E 43A 53A 61A 79A

γ9

(
40 −9

129 −29

) (
−17 −3
159 28

) (
−65 −27
183 76

) (
−41 −9
237 52

)

I ′
9 2.6570431602 5.4645636685 −4.6691398640 2.1365682861

A calculation with the curve of conductor 5077
The elliptic curve E of the smallest conductor with rank three is given by the minimal
Weierstrass equation

y2
+ y = x3

− 7x + 6.

This curve has conductor 5077. The real quadratic field of narrow class number one
with the smallest discriminant in which 5077 splits is K = Q(

√
53). It was checked

for this field that the period I ′( f, K ) belongs to the lattice 3 f log εK . (In fact, in
this computation the value of I ′( f, K ) turned out to be zero to within the calculated
accuracy of roughly 12 decimal digits.) This supports the prediction of Conjecture 3.1
that the derived period I ′( f, K ) should be trivial whenever either r+ or r− is strictly
greater than one.

Table 6

E LHS #LLI ? RHS δ

43A 5.3140863205 1 5.3140863205 0
53A 10.9291273370 1 −11.4733570670 2
61A −9.3382797281 1 5.3171474282 −1
79A 4.2731365722 4 4.2731365722 0
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5. A Gross-Kohnen-Zagier formula
We begin by recalling a formula proved in [GKZ] which relates the height pairings
between Heegner points coming from different imaginary quadratic fields to special
values of certain L-series.

Given any (not necessarily fundamental) discriminant D, let K D = Q(
√

D) de-
note the corresponding quadratic field, let HD denote the ring class field attached to
the order of discriminant D, and let hD denote the degree of HD over K D .

In order to state [GKZ, Theorem B] precisely, it is useful to recall some of the
notation used in this work. If D < −4 is a negative discriminant satisfying

D ≡ r2 (mod 2N ),

then there are exactly hD distinct 00(N )-orbits of integral binary quadratic forms
ax2

+ bxy + cz2 of discriminant D satisfying

a > 0, a ≡ 0 (mod N ), b ≡ r (mod 2N ),

the roots of which give representatives in H /00(N ) for the distinct Heegner points in
X0(N )(HD) attached to the order of discriminant D, with orientation corresponding
to the choice r of the square root of D (modulo N ). Let αD,r be one of these points,
and let

PD,r =

∑
σ∈Gal(HD/K D)

σαD,r ∈ Div
(
X0(N )

)
(K D) (24)

denote the K D-rational divisor of degree hD on X0(N ) formed by taking the trace of
αD,r . Finally, let

yD,r = PD,r − hD(∞) (25)

denote both the degree zero divisor on X0(N ) and, by a slight abuse of notation, its
class in J0(N )(K D). We write P∗

D,r
and y∗

D,r
for the images of PD,r and yD,r in X∗

0(N )

and J ∗

0 (N ), respectively, where X∗

0(N ) denotes the quotient of X0(N ) by the Atkin-
Lehner involution WN and J ∗

0 (N ) denotes its Jacobian.

LEMMA 5.1
The element y∗

D,r
belongs to J ∗

0 (N )(Q).

Proof
We already know that yD,r belongs to J0(N )(K D). To analyse the action of
Gal(K D/Q) = 〈τ 〉 on yD,r , note the equality of divisor classes on X0(N ):

τ yD,r = WN yD,r + hD
(
(0) − (∞)

)
.

It follows immediately from this that the class of y∗

D,r
is fixed by τ and hence belongs

to J ∗

0 (N )(Q).
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Let T be the subring of End(J ∗

0 (N )) generated by the Hecke operators Tp (p 6 |N ) and
Uq (q|N ). Fix a rational multiple t f ∈ T ⊗ Q of the idempotent attached to f . Such a
t f is only well defined up to multiplication by a nonzero rational scalar, but one may
choose to normalise t f so that it belongs to T and is not divisible by any integer in T.
Let λ f ∈ Z be the integer scalar defined by the rule

t f f = λ f f,

and set (y∗

D,r
) f := t f y∗

D,r
.

Finally, define a number dE by the identity

4π2
‖ f ‖

2
= dE�+

E�−

E .

It is known that dE is a rational number. In fact, if E is the strong Weil curve of
conductor N , it is equal (up to a possible factor of 2) to the degree of the minimal
modular parametrisation attached to E (cf. the last equation in [Z, §1].) Furthermore,
we have the following.

LEMMA 5.2
The denominator of the rational number λ f /(2dE ) divides 2N i for some i and divides
2 if N is prime.

Proof
The integer denoted r in the proof of [Z, Theorem 3] clearly divides λ f . The proof of
[Z, Theorem 3] (note, in particular, the last sentence) shows that dE divides λ f N i for
some exponent i which can be taken to be zero if N is prime.

Let D1 and D2 be two negative coprime fundamental discriminants with Di ≡ ri

(mod 4N ). The product D = D1 D2 is a positive fundamental discriminant, and the
factorisation D = D1 D2 corresponds, by genus theory, to an odd genus character

χD1,D2
: Gal(HD/K D) −→ {±1}.

Recall the period I ( f, χD1,D2
) associated to D and χD1,D2

in equation (19).
Theorem B of [GKZ] states that

〈(y∗

D1,r1
) f , y∗

D2,r2
〉 =

λ f

2dE
·

I ( f, χD1,D2
)

i�−

E
·

L ′(E/Q, 1)

�+

E
. (26)

Remark
(1) The statement given here differs slightly from [GKZ, Theorem B] in the way that
we have grouped the terms, and in our definition of the f -isotypic elements (y∗

Di ,ri
) f .
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In [GKZ], the element t f is chosen to be an idempotent in T ⊗ Q so that λ f = 1.
Requiring that t f belong to the integral Hecke algebra T becomes essential for the
analogue we wish to formulate next, in which the Néron-Tate height is replaced by
the Mazur-Tate circle pairing on J ∗

0 (N )(K ) for a suitable real quadratic field K . This
is because the circle pairing, whose value group is not uniquely divisible, does not
extend naturally to J ∗

0 (N )(K ) ⊗ Q.
(2) Note that the first factor in the expression

λ f

2dE
·

I ( f, χD1,D2
)

i�−

E
(27)

on the right in (26) is a rational number that is not far from being an integer, by Lemma
5.2, and that the second factor is in fact an integer if the Manin constant attached to
the modular parametrisation for E is equal to 1.

A circle pairing variant
We wish to express the circle pairing between two Heegner divisor classes in terms of
a derived period integral. As before, we let D1 and D2 be negative fundamental dis-
criminants, but in our setting we are forced to relinquish the simplifying assumption
that D1 and D2 are relatively prime. Rather, we must assume that D1 divides D2, so
that

D2 = d · D1,

where d is a positive fundamental discriminant. To simplify the discussion, assume
that the real quadratic field Kd has narrow class number one.

As in the Gross-Kohnen-Zagier formula, let

D = D1 D2 = d D2
1 .

This discriminant is not fundamental but corresponds to the order of conductor D1 in
Q(

√
d). Let HD be the ring class field attached to this order, and let χD1,D2

denote the
(generalised) genus character attached to the factorisation D = D1 D2.

We define the Heegner element y∗

D1,r1
as in (25) and the sentence following it.

Turning to the discriminant D2, we let ε be the genus character of K D2 corresponding
to the factorisation D2 = d D1, which cuts out the quadratic extension K D2(

√
d) of

K D2 , and we set

yD2,r2,ε =

∑
σ∈Gal(HD2/K D2 )

ε(σ )σαD2,r2
∈ Div0 (

X0(N )
)(

K D2(
√

d)
)
.

By abuse of notation, we let yD2,r2,ε (resp., y∗

D2,r2,ε
) denote the corresponding divisor

classes in J0(N )(K D2(
√

d))
(
resp., in J ∗

0 (N )(K D2(
√

d))
)
.
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LEMMA 5.3
The element y∗

D2,r2,ε
belongs to J ∗

0 (Kd)−.

Proof
The proof is similar to that of Lemma 5.1 and is left to the reader.

Having in hand two explicit elements y∗

D1,r1
and y∗

D2,r2,ε
in J ∗

0 (Q) and J ∗

0 (Kd)−, re-
spectively, it is natural to ask for a formula for their Mazur-Tate circle pairing, in
the spirit of the Gross-Kohnen-Zagier formula (26). Guided by Conjecture 3.1, the
following suggests itself naturally.

CONJECTURE 5.4
Let m be the denominator of the rational number (27). Then

〈
(y∗

D1,r1
) f , y∗

D2,r2,ε

〉
circle =

λ f

2dE
·

I ( f, χD1,D2
)

i�−

E
·

I ′( f, Kd)

�+

E

(
mod Z

log εK

m

)
.

This conjecture appears to be more tractable than Conjecture 3.1. Since it only in-
volves terms that are explicitly defined, one may hope that it would lend itself to an
assault analogous to what is carried out in [GKZ]. The authors plan to return to this
matter in a future publication.
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