
Numerische Mathematik (2021) 148:43–78
https://doi.org/10.1007/s00211-021-01194-8

Numerische
Mathematik

Oscillation in a posteriori error estimation

Christian Kreuzer1 · Andreas Veeser2

Received: 8 October 2019 / Revised: 31 January 2021 / Accepted: 9 March 2021 / Published online: 9 April 2021
© The Author(s) 2021

Abstract
In a posteriori error analysis, the relationship between error and estimator is usually
spoiled by so-called oscillation terms, which cannot be bounded by the error. In order
to remedy, we devise a new approach where the oscillation has the following two
properties. First, it is dominated by the error, irrespective of mesh fineness and the
regularity of data and the exact solution. Second, it captures in terms of data the part
of the residual that, in general, cannot be quantified with finite information. The new
twist in our approach is a locally stable projection onto discretized residuals.

Mathematics Subject Classification 65N15 · 65N30 · 65N12 · 65N50 · 41A05 ·
41A63

1 Introduction

Finite elementmethods are a successful andwell-established technique for the solution
of partial differential equations. A key tool for the quality assessment of a given
finite element approximation and the application of adaptive techniques are so-called
a posteriori error estimators. These are functionals that are computable in terms of
data and the finite element approximation and aim at quantifying the approximation
error. For all known estimators, their actual relationship to the error is spoiled by
oscillation, i.e., by some additive terms measuring distances between non-discrete
and discrete data. Remarkably, oscillation may be even greater than the error. This
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flaw directly interferes with the quality assessment and, on top of that, it weakens
results on adaptive methods and complicates their proofs.

In this article we introduce a new approach to a posteriori error estimation, where
oscillation is error-dominated, i.e. it is bounded by the error of the finite element
approximation, up to a multiplicative constant depending on the shape-regularity of
the underlying mesh.

We illustrate this new approach in the simplest case, where the weak solution
u ∈ H1

0 (�) of the Dirichlet-Poisson problem

−�u = f in �, u = 0 on ∂� (1.1)

is approximated by the Galerkin approximation U that is continuous and piecewise
affine over some simplicial mesh M of �. It is instructive to start by recalling the
a posteriori error bounds in terms of the standard residual estimator

ER(U , f ,M) :=
( ∑
K∈M

hK ‖J (U )‖2L2(∂K )
+ h2K ‖ f ‖2L2(K )

)1/2

; (1.2)

see, e.g., Ainsworth and Oden [2] or Verfürth [26]. If f ∈ L2(�), then the energy
norm error ‖u−U‖H1

0 (�) and the estimator are almost equivalent. More precisely, we
have

‖u −U‖H1
0 (�) �ER(U , f ,M), ER(U , f ,M)�‖u −U‖H1

0 (�)+osc0( f ,M),

(1.3)

where the interfering oscillation is given by

osc0( f ,M)2 :=
∑
K∈M

h2K ‖ f − P0,M f ‖2L2(K )
with P0,M f |K := 1

|K |
∫
K

f .

(1.4)

Let us discuss the relationship of this classical L2-oscillation and the energy norm
error; for the proofs of the nontrival statements, see Sect. 3.8. Customarily, oscillation
is associated with higher order. This idea is supported by the following observation: if
f is actually in H1(�), then osc0( f ,M) = O(h2M) as hM := maxK∈M hK ↘ 0.
On any fixed mesh however, the oscillation osc0( f ,M) may be arbitrarily greater

than the energy norm error ‖u − U‖H1
0 (�). This is a consequence of the fact that the

L2-norm is strictly stronger than the H−1-norm. The use of the L2-norm in (1.4) can
be traced back to its use in the element residual hK ‖ f ‖L2(K ) in (1.2) and so it can be
motivated by the request for the computability of the estimator. In fact, in contrast to
an element residual based upon some local H−1-norm of f , this form reduces to the
(approximate) computation of an integral.

Onemay think that the use of the L2-norm is the only reason for the possible relative
largeness of oscillations like osc0( f ,M). Yet, Cohen, DeVore and Nochetto present
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in [10] a striking example which entails that even the H−1-oscillation

min
g∈P0(M)

‖ f − g‖2H−1(�)

with P0(M) := {g ∈ L∞(�) | ∀K ∈ M g|K is constant}
(1.5)

from Stevenson [23] may converge slower than the error; see Lemma 21 below. Notice
that this contradicts the aforementioned idea that osc0( f ,M) is always of higher
order and, moreover, in view of osc0( f ,M) � ER(U , f ,M), it entails that also the
estimator ER(U , f ,M) may decrease slightly slower than the error.

The key tool to overcome the shortcomings of the above oscillations is a new
projection operator PM enjoying the following properties; see Sects. 3.3–3.6:

• PM f is discrete for any functional f ∈ H−1(�). In comparison to P0,M, the
image ofPM is enriched by the span of the face-supported Dirac distributions and
so contains true functionals.

• PM f is computable in a local manner. Here computable means that it can be
determined from the information available in the linear systems for finite element
approximations.

• The local dual norms of the new oscillation f − PM f are dominated by
corresponding local errors. This property hinges on the face-supported Dirac dis-
tributions and on local H−1-stability of PM f .

• In contrast to the local dual norms of the residual f + �U , the local dual norms
of the discretized residual PM f + �U can be estimated from below and above
in a computable manner.

Thanks to these properties, we derive in Sect. 3.7 abstract a posteriori bounds such
that the oscillation is bounded by the error. In Sect. 4 we provide several realizations
leading to hierarchical estimators and estimators based on local problems or based on
equilibrated fluxes. Furthermore, in Sect. 4.2 we show that an extension of the standard
residual estimator (1.2) onto the image of PM satisfies

‖u −U‖2
H1
0 (�)

� ER(U ,PM f ,M)2 +
∑
z∈V

‖ f − PM f ‖2H−1(ωz)
, (1.6)

where V stands for the set of vertices of M and ωz is the star around the vertex z. A
comparison with (1.3) immediately yields:

• Both ER(U , f ,M) and the right-hand side of (1.6) bound the energy norm error
in terms of U , f , andM. However, while the latter one is free of overestimation,
the first one may overestimate, even asymptotically.

• Since PM f is discrete and computable in the aforementioned sense, we have that
ER(U ,PM f ,M) is also computable, while ER(U , f ,M) is not.

• Equivalence (1.6) thus splits the estimation of the error in two parts, reflecting
the spirit of Verfürth [26, Remark 1.8] and Ainsworth [1, Section 3.1]: One part
is computable and related to the underlying differential operator. The other one
depends solely on data; its computation, or rather estimation, hinges on a priori
knowledge.
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We remark that our new approach also has consequences in the convergence anal-
ysis of adaptive methods. In particular, it allows to generalize and sharpen the basic
convergence for adaptive methods from [19]; see [15].

2 Model problem and discretization

In order to exemplify our new approach to a posteriori error estimation, we consider
the homogeneous Dirichlet problem for Poisson’s equation and the energy norm error
of the associated linear finite element solution. The purpose of this section is to recall
the relevant properties of this boundary value problem and discretization.

We shall use the following notation associated with a (Lebesgue) measurable set ω
of R

d , d ∈ N. Given m ∈ N, we let L2(ω; R
m) denote the Lebesgue space of square

integrable functions over ω with values in R
m . We write 〈v, w〉ω and ‖ · ‖2ω for its

scalar product and its induced norm. For m = 1, we abbreviate L2(ω; R) to L2(ω).
If ω ⊂ R

d is non-empty and open, H1(ω) stands for the Sobolev space of all
functions in L2(ω) whose distributional gradient is also in L2(ω; R

d). Moreover, we
let H1

0 (ω) be the closure in H1(ω) of all infinitely differentiable functionwith compact
support in ω. If the boundary ∂ω of ω is sufficiently regular (e.g., Lipschitz), this are
all functions in H1(ω)with vanishing trace on the boundary ∂ω. Thanks to Friedrichs’
inequality, H1

0 (ω) is a Hilbert space with scalar product 〈∇·, ∇·〉ω and norm ‖∇ · ‖ω.
As usual, H−1(ω) indicates the dual space of H1

0 (ω), i.e. the space of linear and
continuous functionals on H1

0 (ω). We identify L2(ω) with its dual space and thus
have

H1
0 (ω) ⊂ L2(ω) ⊂ H−1(ω). (2.1)

The norm of H−1(ω) is given by

‖�‖H−1(ω) := sup
w∈H1

0 (ω)

〈�, w〉ω
‖∇w‖ω

, � ∈ H−1(ω),

where the dual brackets 〈�, w〉ω := �(w), w ∈ H1
0 (ω), extend-restrict the scalar

product in L2(ω). If D ⊂ R
d is a set such that D̊ is suitable for one of the preceding

notations, we also use D instead of themore cumbersome D̊, e.g. wewrite also H1(D)

instead of H1(D̊).
Let � be an open, bounded and connected subset of R

d with Lipschitz boundary
and whose closure can be subdivided into simplices. We shall omit � in the notation
of dual pairings and norms. The weak formulation of (1.1) reads as follows:

Given f ∈ H−1(�), find u = u f ∈ H1
0 (�) such that

∀v ∈ H1
0 (�) 〈∇u, ∇v〉 = 〈 f , v〉 .

(2.2)

In other words: we are looking for the Riesz representation of f in H1
0 (�). Notice

that the Riesz representation theorem establishes an isomorphism between the space
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H1
0 (�) of solutions and the space H−1(�) of loads. In particular, a unique solution

exists not only for f ∈ L2(�) but for all f ∈ H−1(�). This fact suggests that, at least
conceptually, an approximation method for (2.2), along with its a posteriori analysis,
should cover also loads in H−1(�).

In order to approximate the solution of (2.2),we use aGalerkin approximation based
upon finite elements. For the sake of simplicity, we restrict ourselves to simplicial
meshes and lowest order.

LetM be a simplicial, face-to-face (conforming) mesh of the domain �. Given an
element K ∈ M, we denote by hK := diam K := supx,y∈K |x − y| its diameter and
by ρK := sup{diam B | B ball in K } the maximal diameter of inscribed balls. In what
follows, ‘�’ stands for ‘≤ C’, where the generic constant C may depend on d and the
shape coefficient

σ(M) := max
K∈M

σK with σK := hK
ρK

.

In the case of both inequalities ‘�’ and ‘�’, we shall use ‘�’ as shorthand.
An interelement face ofM is a simplex F with d vertices arising as the intersection

F = K1∩K2 of two uniquely determined elements K1, K2 ∈ M. Its associated patch
is

ωF := K1 ∪ K2. (2.3)

We let F = F(M) denote the set of all (d − 1)-dimensional interelement faces of
M. Given F ∈ F and K ∈ M with F ⊂ K , we write

hK ;F = d|K |
|F | ∈ [ρK , hK ] (2.4)

for the height of K over F .
Furthermore, V = V(M) stands for the set of all vertices of M. To any vertex

z ∈ V , we associate the sets

ωz :=
⋃

{K ∈ M : K � z}, σz :=
⋃

{F ∈ F : F � z},

for which we have

#{K ∈ M | K � z} � #{F ∈ F | F � z} � 1. (2.5)

If K ∈ M with K ⊂ ωz for some z ∈ V , then the diameter hz of ωz verifies

hK ≤ hz � hK . (2.6)
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Moreover, if e is a direction, i.e. e ∈ R
d with |e| = 1, we write hz;e for the maximal

length of a line segment in ωz with direction e. Then

ρ̃z := inf|e|=1
hz;e (2.7)

verifies

ρK ≤ ρ̃z � ρK (2.8)

whenever K ∈ M with K ⊂ ωz .
Let Pk be the space of polynomials of degree at most k ∈ N over R

d and let

Pk(M) := {
V ∈ L∞(�) | V |K ∈ Pk(K ) for all K ∈ M}

be its piecewise counterpart overM. The space of continuous, piecewise affine func-
tions over M is then

V(M) := P1(M) ∩ H1(�) = P1(M) ∩ C0(�̄).

Its nodal basis {φz}z∈V is defined by

φz ∈ V(M) such that φz(y) := δzy for all z, y ∈ V.

This basis provides the nodal value representation

V =
∑
z∈V

V (z)φz

for any V ∈ V(M) and the partition of unity

∑
z∈V

φz = 1 in �, (2.9)

where, for each vertex z ∈ V , we have suppφz = ωz , with skeleton σz . Finally, we
recall that, for any element K ∈ M and any powers αz ∈ N0, z ∈ V ∩ K , we have

∫
K

∏
z∈V∩K

φ
αz
z = d!∏z∈V∩K αz !

(
∑

z∈V∩K αz + d)! |K |. (2.10)

The finite element functions satisfying the boundary condition in (2.2) form the
space

V0(M) := {V ∈ V(M) | V (z) = 0 for all z ∈ V ∩ ∂�} = P1(M) ∩ H1
0 (�).
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The associated Galerkin approximation U = U f ;M is characterized by

U ∈ V0(M) such that ∀V ∈ V0(M) 〈∇U , ∇V 〉 = 〈 f , V 〉 . (2.11)

Notice that the right-hand side and soU arewell-defined, also for f ∈ H−1(�), thanks
to the conformity of V0(M). Céa’s lemma states that the Galerkin approximation is
the best approximation with respect to the energy norm error, i.e.,

‖∇u − ∇U‖� ≤ ‖∇u − ∇V ‖� for all V ∈ V0(M). (2.12)

In order to determine the Galerkin approximationU , one usually obtains its values
at the interior vertices V0 := V ∩ � by solving the symmetric positive definite linear
system

Mα = F,

where

α = (U (z))z∈V0 , M = ( 〈∇φz, ∇φy
〉 )

y,z∈V0
, F = (

〈
f , φy

〉
)y∈V0 . (2.13)

We thus see that the Galerkin approximation U is computable whenever the load
evaluations

〈
f , φy

〉
, y ∈ V0, are known exactly. (2.14)

Strictly speaking, these evaluations are in general not computable. In fact, even if
f ∈ L2(�) is a function, the evaluation of

〈
f , φy

〉 = ∫
�

f φy requires the compu-
tation of an integral, which in general can be done only approximately by means of
numerical integration. Notwithstanding, error analyses of approximations like (2.11)
have proved very useful for the theoretical understanding and underpinning of finite
element methods and are therefore very common. Accordingly, we shall suppose that
the evaluations (2.14) are known to us. In Sect. 3.6 below, we will discuss which kind
of additional information is used in our a posteriori analysis.

3 A posteriori analysis with error-dominated oscillation

We present our new approach to a posteriori error analysis by deriving bounds for the
energy norm error of the Galerkin approximation (2.11). The new idea for achieving
error-dominated oscillation is described in Sect. 3.3.

3.1 Residual norms

Given some load f ∈ H−1(�) and a Galerkin approximation U f ;M, we want to
quantify the energy norm error ‖∇(u f − U f ;M)‖, where the exact solution u f of
(2.2) is typically unknown to us.
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Our starting point is the so-called residual Res( f ;M) ∈ H−1(�) given by

〈Res( f ;M), v〉 := 〈 f , v〉 − 〈∇U f ;M, ∇v
〉

for all v ∈ H1
0 (�).

It is defined in terms of data and the computable Galerkin approximation and vanishes
if and only if the latter equals the exact solution. The following lemma shows that
appropriately measuring the size of the residual relates to the error.

Lemma 1 (Error, residual and load) We have

‖∇(u f −U f ;M)‖ = ‖Res( f ;M)‖H−1(�) ≤ ‖ f ‖H−1(�).

Proof Thanks to the differential equation in (2.2), we have, for all v ∈ H1
0 (�),

〈Res( f ;M), v〉 = 〈∇(u f −U f ;M), ∇v
〉 = 〈−�(u f −U f ;M), v

〉
, (3.1)

where −� indicates the distributional Laplacian. Consequently, the claimed equality
follows from the fact that −� : H1

0 (�) → H−1(�) is an isometry (which follows
from theCauchy–Schwarz inequality in L2(�) and from testingwith v = u f −U f ;M).
The claimed inequality follows by invoking also (2.12):

‖∇(u f −U f ;M)‖ ≤ ‖∇u f ‖ = ‖ f ‖H−1(�). ��

Thus, we aim now at quantifying the dual norm ‖Res( f ;M)‖H−1(�). The fol-
lowing simple observation shows that this task requires much more information than
computing the Galerkin approximation.

Lemma 2 (Bounding residual norms) Without any a priori information on the load
f ∈ H−1(�), the residual norm ‖Res( f ;M)‖H−1(�) cannot be bounded in terms of
a finite number of adaptive evaluations of the form: 〈 f , v〉 with v ∈ H1

0 (�).

Proof Suppose that the claim is false. Then, for each f ∈ H−1(�), there is a num-
ber B( f ) ≥ ‖Res( f ;M)‖H−1(�) which is given in terms of evaluations 〈 f , vi 〉,
i = 1, . . . , n f , where the choice of vi may depend deterministically on the previous
evalutations 〈 f , v1〉 , . . . , 〈 f , vi−1〉. Fix some functional 0 �= � ∈ H−1(�). Since
H1
0 (�) is infinite-dimensional, we can choose a normalized w ∈ H1

0 (�) that is per-
pendicular to V0(M) and all test functions vi , i = 1, . . . , n� associated with �. Set
δ := 3B(�)(−�)w and observe thatUδ;M = 0 and 〈δ, vi 〉 = 0 for all i = 1, . . . , n�.
Therefore 〈� + δ, vi 〉 = 〈�, vi 〉 and we obtain the contradiction

B(�) = B(� + δ) ≥ ‖Res(� + δ;M)‖H−1(�) = ‖δ + Res(�;M)‖H−1(�)

≥ ‖δ‖H−1(�) − ‖Res(�;M)‖H−1(�) ≥ 3B(�) − B(�) = 2B(�) > 0. ��
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Remark 3 (Load evaluations vs exact integrals) A similar yet simpler argument shows
that, without any a priori information on f ∈ L2(�), also ‖ f ‖ cannot be bounded in
terms of adaptive evaluations

∫
�

f v with v ∈ L2(�).

Before discussing in Sect. 3.3 repercussions of Lemma 2, it is useful to take into
account a further requirement for a posteriori bounds.

3.2 Localized residual norm

Adaptive mesh refinement is an important application of a posteriori bounds. It is
usually based upon the comparison of ‘local’ quantities. Therefore, it is of interest to
split a posteriori bounds, or the residual norm itself, into local contributions.

Such a localization appears implicitly, e.g., in the a posteriori error analysis of
Babuška and Miller [3]. It is based upon the W 1,∞-partition of unity (2.9) and the
orthogonality property:

〈Res( f ;M), φz〉 = 0 for all z ∈ V0 = V ∩ �.

We thus introduce the subclass

RM := {� ∈ H−1(�) | ∀V ∈ V0(M) 〈�, V 〉 = 0}

of residuals associated with Galerkin approximations. Recall that suppφz = ωz and
that H−1(ωz) is a shorthand for H−1(ω̊z).

Lemma 4 (Localization)
Let � ∈ H−1(�) be any functional.

(i) If � ∈ RM, then

‖�‖2H−1(�)
�
∑
z∈V

‖�‖2H−1(ωz)
,

where the hidden constant depends only on d and the shape coefficient σ(M).
(ii) We have

∑
z∈V

‖�‖2H−1(ωz)
≤ (d + 1)‖�‖2H−1(�)

.

Proof See also Cohen, DeVore, and Nochetto [10, §3.2 and §3.4], Ern and Guermond
[11, Proposition 31.7] or Blechta, Málek, and Vohralík [5, Theorem 3.7]. For the
sake of completeness, we provide details. In order to show (i), we fix an arbitrary
v ∈ H1

0 (�). In view of the partition of unity (2.9) and � ∈ RM, we can write

〈�, v〉 =
∑
z∈V

〈�, vφz〉 =
∑
z∈V

〈�, (v − cz)φz〉 , (3.2)
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where the reals cz ∈ R are given by

cz := 1

|ωz |
∫

ωz

v dx for z ∈ V0, and cz = 0 for z ∈ V \ V0.

Thanks to 0 ≤ φz ≤ 1, the inverse estimate ‖∇φz‖L∞(ωz) ≤ maxK⊂ωz ρ−1
K � h−1

z
and the Poincaré-Friedrichs inequality ‖v − cz‖ωz � hz‖∇v‖ωz (see, e.g., Nochetto
and Veeser [21, Lemma 4]), we have, for any z ∈ V ,

‖∇((v − cz)φz
)‖ωz ≤ ‖∇v‖ωz + ‖v − cz‖ωz‖∇φz‖L∞(ωz) ≤ Cσ(M)‖∇v‖ωz , (3.3)

where the constant Cσ(M) depends only on σ(M). Thus, (3.2) leads to

| 〈�, v〉 | �
∑
z∈V

‖�‖H−1(ωz)
‖∇v‖ωz ≤ √

d + 1

⎛
⎝∑

z∈V
‖�‖2H−1(ωz)

⎞
⎠

1/2

‖∇v‖

and the proof of (i) is finished.
To prove (ii), we let vz ∈ H1

0 (ωz) with ‖∇vz‖ωz ≤ 1 for any node z ∈ V and set
v = ∑

z∈V 〈�, vz〉 vz ∈ H1
0 (�). Then

∑
z∈V

〈�, vz〉2 = 〈�, v〉 ≤ ‖�‖H−1(�)‖∇v‖,

and, with the help of two Cauchy–Schwarz inequalities,

‖∇v‖2 =
∑
K∈M

∑
z,y∈V∩K

〈�, vz〉
〈
�, vy

〉 ∫
K

∇vz · ∇vy

≤
∑
K∈M

∑
z∈V∩K

(d + 1)| 〈�, vz〉 |2‖∇vz‖2K = (d + 1)
∑
z∈V

| 〈�, vz〉 |2.

Consequently, we conclude (ii) by taking the suprema over all vz for all z ∈ V . ��
Thus, in the context of adaptive mesh refinement, we are also interested in quanti-

fying the single terms of the localized residual norm

‖Res( f ;M)‖2H−1(M)
:=
∑
z∈V

‖Res( f ;M)‖2H−1(ωz)
. (3.4)

Of course, we face the same problem for the local residual norms as for the global
one.

Corollary 5 (Bounding local residual norms) Without any a priori information on
f ∈ H−1(�), each local residual norm ‖Res( f ,M)‖H−1(ωz)

, z ∈ V , cannot be
bounded in terms of a finite number of adaptive evaluations of f .
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Proof Replace the domain � by ωz in the proof of Lemma 2 and extend functionals
in H−1(ωz) by 0 on the orthogonal complement of H1

0 (ωz) in H1
0 (�). ��

3.3 Towards error-dominated oscillation

Our approach to error-dominated oscillation relies on a projection operator. This sec-
tion motivates and formulates its key properties. They are summarized in (3.14) and
will guide the actual construction in the following sections.

In view of Lemma 2 and Corollary 5, a posteriori bounds for the residual norm
or its localized variant require knowledge on the load f beyond a finite number of
evaluations. The actual knowledge of f can be of different nature and, accordingly,
may require different techniques. Here we want to address only aspects of a posteriori
error estimation that are independent of the nature of this knowledge. Correspondingly,
we split the residual into a discretized residual and data approximation:

Res( f ;M) = (PM f + �U f ;M
)+ (

f − PM f
)

(3.5)

where PM maps onto a subspace D(M) of H−1(�) such that

• ‖PM f + �U f ;M‖H−1(M) can be bounded with the help of a finite number of
evaluations of f and

• the task of bounding ‖ f −PM f ‖H−1(M) hinges only on knowledge of the load f ;
this task may be viewed as a matter of approximation theory since, apart from the
choice of the norm, it is independent of the boundary value problem (2.2).

Herewehave used the localized dual norm‖·‖H−1(M) in order to allow for applications
in mesh adaptivity. It is then desirable that both parts are dominated by the error, i. e.,
we have

‖PM f + �U f ;M‖H−1(M) � ‖∇(u f −U f ;M)‖, (3.6a)

‖ f − PM f ‖H−1(M) � ‖∇(u f −U f ;M)‖. (3.6b)

In view of Lemmas 1 and 4, the two conditions are equivalent.
The construction of a suitable mapping PM is the new twist in our approach.

In order to get first hints on this, let us test out several candidates with necessary
conditions arising from (3.6b).

The proof of Corollary 5 suggests that the problem lies in the fact that f is taken
from an infinite-dimensional space. The projectionP0,M into discrete data from (1.4)
is thus a candidate for PM. This choice, however, does not verify (3.6). In fact,
Lemma 1, Lemma 4 (ii), and (3.6b) imply the stability estimate

‖PM f ‖H−1(M) � ‖ f ‖H−1(�), (3.7)

while P0,M f is not even defined for a general f ∈ H−1(�) (and cannot be continu-
ously extended; cf. Lemma 20).

123



54 C. Kreuzer, A. Veeser

This flaw is easily remedied. For any element K ∈ M, we replace in (1.4) the
characteristic function χK of K by the weighted mean

ψK := (2d + 1)!
d!|K |

∏
z∈V∩K

φz ∈ H1
0 (K ) with

∫
K

ψK = 1 (3.8)

thanks to (2.10) and consider

P̃0,M f :=
∑
K∈M

〈 f , ψK 〉 χK . (3.9)

Since ψK ∈ H1
0 (K ) ⊂ H1

0 (�) is an admissible test function, the operator P̃0,M is
defined for all functionals in H−1(�) and satisfies the stability estimate (3.7); see
Remark 11 below.

But still, the new operator P̃0,M does not verify (3.6). To see this, consider f =
−�V with V ∈ V0(M) arbitrary. We then have

u f = U f ;M

and therefore Res( f ;M) = 0 and property (3.6b) entails

∀V ∈ V0(M) PM(�V ) = �V . (3.10)

In addition, integration by parts yields that, for all v ∈ H1
0 (�),

〈�V , v〉 = −
∫

�

∇V · ∇v =
∑
F∈F

∫
F
J (V )v ds, (3.11)

where ds indicates the (d − 1)-dimensional Hausdorff measure in R
d and J (V ) is

the jump in the normal flux ∇V · n across interelement sides. More precisely, if
F = K1 ∩ K2 is the intersection of the elements K1, K2 ∈ M with respective outer
normals n1, n2, then J (V )|F := ∇V |K1 · n1 + ∇V |K2 · n2 ∈ R. If V �= 0, then we
have also �V �= 0, while (3.11) yields P̃0,M(�V ) = 0, in contradiction with (3.10).
Hence (3.6) does not hold for P̃0,M.

The two conditions (3.7) and (3.10) are central to our goals. Although they can be
checked without involving the Galerkin approximation (2.11), they are also sufficient
for (3.6). Incidentally, they imply thatPM has to be a near best ‘interpolation’ operator
in light of the Lebesgue lemma.

The failure of (3.10) for P̃0,M is not related to the choice of the test functions ψK ,
K ∈ M, but to its range. In fact, (3.11) and the fundamental lemma of calculus of
variation show that �V /∈ L2(�) whenever V �= 0, while P̃0,M(V0(M)) ⊂ L2(�).
In other words: to remedy, we have to change the range.

Finally, it is desirable that PM is a local operator for two reasons. First, this comes
in useful when evaluating PM. Second, since −� is a local operator, we have the
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following lower bound for the local error:

‖Res( f ;M)‖H−1(ωz)
≤ ‖∇(u f −U f ;M)‖ωz , (3.12)

which follows from testing (3.1) with all v from H1
0 (ωz). This bound can be exploited

if we strengthen (3.6) to the local conditions

‖PM f + �U f ;M‖H−1(ωz)
� ‖Res( f ;M)‖H−1(ωz)

, (3.13a)

‖ f − PM f ‖H−1(ωz)
� ‖Res( f ;M)‖H−1(ωz)

(3.13b)

for all z ∈ V . We shall therefore demand the stability (3.7) and invariance (3.10) in a
suitable local manner.

In order to formulate local invariance, let us introduce the following notations
associated with an open subset ω ⊂ �. Whenever two functionals �1, �2 ∈ H−1(�)

satisfy �1(v) = �2(v) for all v ∈ H1
0 (ω), we say �1 = �2 on ω. Moreover, we write

�1 ∈ D(M) on ω when additionally �2 can be chosen such that �2 ∈ D(M). Notice
that, thanks to the fundamental lemma of the calculus of variations, these notions
reduce to the usual ones if � ∈ L2(�), i.e. �(v) = ∫

�
gv for all v ∈ H1

0 (�).
Let us summarize our discussion by a list of desired properties for the operator

PM and its range D(M) ⊂ H−1(�), which corresponds to the set of all possible
discretized residuals. This list provides the guidelines for our approach and choices.
Denoting by �(V0(M)) = {�V | V ∈ V0(M)} the image of V0(M) under the
distributional Laplacian, we aim for the following properties:

�(V0(M)) ⊂ D(M), (3.14a)

if � ∈ D(M) on ω̊z, then ‖�‖H−1(ωz)
is quantifiable with a finite number

of evaluations of �, (3.14b)

PM is linear, (3.14c)

PM f is locally computable in terms of a finite number of evaluations

of f , (3.14d)

if � ∈ D(M) on ω̊z, then PM� = � on ω̊z, (3.14e)

‖PM�‖H−1(ωz)
� ‖�‖H−1(ωz)

for all � ∈ H−1(ωz). (3.14f)

Regarding the above discussion, we have that conditions (3.14f), (3.14e) and (3.14a)
are equivalent to (3.13); cf. Sect. 3.7. Conditions (3.14d) and (3.14b) allow to quantify
the local dual norms of the approximate residual PM f + �U f ;M ∈ D(M) in a
computable manner; compare also with Sect. 3.6 below.

In the next three sections we construct two operators PM fulfilling (3.14).
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3.4 Discretized residuals and a locally stable biorthogonal system

We present a possible choice of the set D(M) of discretized residuals and introduce
an associated biorthogonal system, which is instrumental in constructing a suitable
operator PM with range D(M).

We set

D(M) := {� ∈ H−1(�) | 〈�, v〉 =
∑
K∈M

∫
K
cK v dx +

∑
F∈F

∫
F
cFv ds

for all v ∈ H1
0 (�) with cK , cF ∈ R for K ∈ M, F ∈ F}. (3.15)

Every functional � ∈ D(M) is thus constant on each element and on each face.
Obviously, condition (3.14a) is verified. More precisely, D(M) is in general a strict
superset of �(V0(M)), since in �(V0(M)) only certain linear combinations of the
constants cF , F ∈ F are allowed. The fact that these constants are independent in
D(M) facilitates the definition of PM. Moreover, we have added the contributions
given by the constants cK , K ∈ M, for comparability with the classical oscillations
and a posteriori error estimators and because similar contributions will appear for
higher order elements; cf. Kreuzer and Veeser [14]. In spite of these enlargements, we
still have dimD(M) < ∞. Consequently, an argument as in the proof of Lemma 2,
which hinges on infinite dimension, is ruled out.

Let us associate a biorthogonal system with D(M). To this end, we introduce the
surface Dirac distributions

χF :
{
H1
0 (�) → R,

v �→ ∫
F v ds,

F ∈ F , (3.16a)

and we identify the characteristic functions χK , K ∈ M, with their associated distri-
butions

χK :
{
H1
0 (�) → R,

v �→ ∫
K v dx,

K ∈ M. (3.16b)

Notice that the definitions of χF and χK involve different measures for integration:
the (d − 1)-dimensional Hausdorff measure for χF and the d-dimensional Lebesgue
measure for χK . Correspondingly, each χK is absolutely continuous and each χF is
singular with respect to the d-dimensional Lebesgue measure.

Wecollect all elements and interelement faces in the index setI = I(M) := M∪F
and derive in the next lemma the properties of the functionals χi , i ∈ I, that are of
interest to us.

Lemma 6 (Basis and scaling) The functionals χi , i ∈ I, are a basis of D(M). For
any element K ∈ M and any face F ∈ F containing a vertex z ∈ V , we have

‖χK ‖H−1(ωz)
≤ |K |1/2 ρ̃z and ‖χF‖H−1(ωz)

≤ |F |1/2ρ̃1/2
z

with ρ̃z from (2.7).
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Proof We will use the Friedrichs inequality

∀v ∈ H1
0 (ωz) ‖v‖ωz ≤ ρ̃z‖∇v‖ωz (3.17)

and the following trace theorem: if F ∈ F with F � z and n denotes a normal of F ,
then

∀w ∈ W 1,1
0 (ωz) ‖w‖L1(F) ≤ 1

2
‖∇w · n‖L1(ωz)

. (3.18)

Given K ∈ M with K � z and any v ∈ H1
0 (ωz), the Cauchy–Schwarz inequality and

(3.17) yield

|〈χK , v〉| =
∣∣∣∣
∫
K

v dx

∣∣∣∣ ≤ |K |1/2 ‖v‖ωz ≤ |K |1/2 ρ̃z‖∇v‖ωz ,

which verifies the first claimed inequality. To show the second one, fix F ∈ F with
F � z and let again v ∈ H1

0 (ωz). Using (3.18) with w = v2 and then again (3.17), we
derive

|〈χF , v〉| =
∣∣∣∣
∫
F

v ds

∣∣∣∣ ≤ |F |1/2 ‖v‖F ≤ |F |1/2‖v‖1/2ωz
‖∇v · n‖1/2ωz

≤ |F |1/2ρ̃1/2
z ‖∇v‖ωz

and also the second claimed inequality is proved. ��
In order to complete the basis of Lemma 6 to a biorthogonal system, we use the

following test functions: Given any element K ∈ M, take

ψK = (2d + 1)!
d!|K |

∏
z∈V∩K

φz . (3.19a)

Given any interelement face F ∈ F , let zi , i = 1, 2, be the vertices in the patch ωF ,
see (2.3), that are opposite to F and set

ψF := (2d − 1)!
(d − 1)!|F |

⎛
⎝ ∏

z∈V∩F

φz

⎞
⎠
(
1 − (2d + 1)

2∑
i=1

φzi

)
. (3.19b)

Let us verify that the basis χi , i ∈ I and the test functions ψi , i ∈ I, actually form
a biorthogonal system with a crucial stability condition.

Lemma 7 (Locally stable biorthogonal system) Together with the basis χi , i ∈ I, the
test functions ψi , i ∈ I, form a locally stable biorthogonal system:

(i) We have

∀i, j ∈ I 〈
χi , ψ j

〉 = δi j .
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(ii) Let Iz := {i ∈ I | i � z} denote the elements and faces containing a vertex z ∈ V .
Then

∀i ∈ Iz ‖χi‖H−1(ωz)
‖∇ψi‖ωz ≤ Cψ,

where the stability constant Cψ only depends on d and the shape coefficient σ(M).

Proof To show (i), we consider the cases of elements j ∈ M and faces j ∈ F
separately. First, let K ∈ M be an element. As already seen in (3.8), we have
〈χK , ψK 〉 = ∫

K ψK = 1. Moreover, sinceψK = 0 in�\ K̊ , we infer 〈χK ′ , ψK 〉 = 0
for any K ′ ∈ M \ {K } and 〈χF , ψK 〉 = 0 for any F ∈ F .

Second, fix a face F ∈ F . Using (2.10), we obtain

〈χF , ψF 〉 = (2d − 1)!
(d − 1)!|F |

∫
F

∏
z∈V∩F

φz ds = 1.

From ψF = 0 in � \ ω̊F , where ωF is the patch of the two elements containing the
face F , we infer 〈χF ′, ψF 〉 = 0 for any F ′ ∈ F \ {F} and 〈χK , ψF 〉 = 0 for any
K ∈ M with K �⊃ F . Last, let K ∈ M such that K ⊃ F . Using again (2.10), we
deduce

〈χK , ψF 〉 = (2d − 1)!
(d − 1)!|F |

⎛
⎝∫

K

∏
z∈V∩F

φz dx − (2d + 1)
∫
K

∏
z∈V∩K

φz dx

⎞
⎠ = 0.

For (ii), we again treat elements and faces separately. Let K ∈ M be an element
containing z. The well-known inverse estimate ‖∇ψK ‖K ≤ Cdρ

−1
K ‖ψK ‖K , K ⊂ ωz

and (2.10) imply

‖∇ψK ‖ωz = ‖∇ψK ‖K ≤ Cd

|K |1/2ρK
.

Combining this with the first inequality in Lemma 6 and (2.8), we obtain the claimed
inequality for elements:

‖χK ‖H−1(ωz)
‖∇ψK ‖ωz ≤ Cd

ρ̃z

ρK
≤ Cd;σ(M).

Let F ∈ F be an interelement face containing z and write F = K1 ∩ K2, where
K1, K2 ∈ M are the two elements containing F . Proceeding as before, we deduce

‖∇ψF‖2ωz
=

∑
n=1,2

‖∇ψF‖2Kn
≤ C2

d

∑
n=1,2

ρ−2
Kn

‖ψF‖2Kn

≤ C2
d

∑
n=1,2

|Kn|
|F |2ρ2

Kn

. (3.20)
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and

‖χF‖H−1(ωz)
‖∇ψF‖ωz ≤ Cd

⎛
⎝∑

i=1,2

hKn;F ρ̃z

ρ2
Kn

⎞
⎠

1/2

≤ Cd;σ(M). ��
In what follows, we shall rely only on the properties of the test functions ψi , i ∈ I,

expressed in Lemma 7. In other words: what counts is not their special form, but the
fact that they form a stable biorthogonal system with the basis χi , i ∈ I, of D(M).

3.5 Construction and properties ofPM

We now propose a possible choice for the projection operator PM and verify the
desired properties (3.14). Set

PM� =
∑
i∈I

〈�, ψi 〉χi , (3.21)

where the functionals χi , i ∈ I, are given by (3.16) and the test functions ψi , i ∈ I,
by (3.19). Clearly, PM is linear and PM f is locally computable in terms of a finite
number of evaluations of f , i. e., we have (3.14c) and (3.14d).

The biorthogonality of these functionals and test functions implies the following
local counterparts of the algebraic condition (3.10).

Theorem 8 (Local invariance) For any functional � ∈ H−1(�), element K ∈ M,
and side F ∈ F , the operatorPM does not change the following discrete restrictions:

(i) If � ∈ D(M) on K̊ , then PM� = � on K̊ .
(ii) If � ∈ D(M) on ω̊F , then PM� = � on ω̊F .

Proof Let � = cχK on K̊ with c ∈ R. For any i ∈ I, we have 〈�, ψi 〉 = c
∫
K ψi =

cδK ,i by means of Lemma 7 (i). Consequently, PM� = cχK on K̊ , which proves (i).
To show (ii), let K1, K2 ∈ M be the two elements containing F and let � =

cχF +∑i=1,2 ciχKi on ω̊F with c, c1, c2 ∈ R. Using again Lemma 7 (i), we observe

〈�, ψF 〉 = c 〈χF , ψF 〉 +
∑
i=1,2

ci
〈
χKi , ψF

〉 = c and
〈
�, ψKi

〉 = ci for i = 1, 2

and 〈�, ψi 〉 = 0 for all i ∈ I \ {F, K1, K2}. Consequently,

PM� = cχF +
∑
i=1,2

ciχKi = � on ω̊F

and also (ii) is verified. ��
Theorem 8 implies in particular (3.14e). Moreover, it has the following global

consequences.
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Corollary 9 (Global invariance) The operator PM is a linear projection onto the
discretized residuals D(M) from (3.15). In particular, we have

PM(�V ) = �V and PM( f ) = f

for any V ∈ V0(M) and any M-piecewise constant function f ∈ P0(M).

Next, we verify the local stability (3.14f) of PM. As a side product, we also obtain
the local stabilty of the operator P̃0,M, which was left open in Sect. 3.3.

Theorem 10 (Local stability) The linear projection PM is locally H−1-stable: for
any functional � ∈ H−1(�) and any vertex z ∈ V , we have

‖PM�‖H−1(ωz)
� ‖�‖H−1(ωz)

,

where the hidden constant depends only on d and σ(M).

Proof Given v ∈ H1
0 (ωz), we derive

| 〈PM�, v〉 | ≤
∑
i∈Iz

| 〈�, ψi 〉 〈χi , v〉 | ≤
∑
i∈Iz

‖�‖H−1(ωz)
‖∇ψi‖ωz‖χi‖H−1(ωz)

‖∇v‖ωz

� ‖�‖H−1(ωz)
‖∇v‖ωz ,

where we used Lemma 7 (ii) and #Iz � 1. ��
Remark 11 (Stability of P̃0,M) The argument in the proof of Theorem 10 also shows
that P̃0,M is locally H−1-stable. In fact, one simply replaces PM by P̃0,M and the
index set Iz by Iz ∩ M.

Let us conclude this section with the following further remarks on the linear pro-
jection PM.

Remark 12 (Orthogonality) For any � ∈ H−1(�), the error � − PM� is orthogonal
to span {ψi | i ∈ I}. This a immediate consequence of Lemma 7(i).

Remark 13 (Adjoint of PM) Formally, the adjoint of PM is given by

P∗
Mv =

∑
i∈I

〈χi , v〉 ψi , v ∈ H1
0 (�).

Here Lemma 7 (i) implies∫
K
P∗
Mv =

∫
K

v and
∫
F
P∗
Mv =

∫
F

v (3.22)

for all elements K ∈ M and interelement faces F ∈ F . The operator P∗
M and these

conditions, which characterize it, were used in Veeser [24] to derive an a posteriori
error upper bound in terms of a hierarchical estimator. That argument, aswell asMorin,
Nochetto, and Siebert [18, Theorem 3.6] and Verfürth [25, (3.14)], is closely related
to Theorem 15 below.
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3.6 Required a priori information, an alternative toPM, and quantification of
the discretized residual

The purpose of this section is twofold. First, we illustrate which type of a priori
information on f in (2.2) is needed to carry out our approach, presenting also a
possible alternative to PM. Second, we show that a stable biorthogonal system is not
only useful to construct PM, but also to quantify the local dual norms of discretized
residuals.

Clearly, the operator PM of §3.5 can be applied to the right-hand side f of (2.2)
whenever

〈 f , ψi 〉 , i ∈ I, are known exactly. (3.23)

In order to ensure a meaningful discretized residual, this information goes beyond
(2.14), the information necessary for the Galerkin approximation (2.11) on the mesh
M; it is available, e.g., when one is able to compute the counterpart of (2.11) of order
d + 1 over M.

There are other possibilities to obtain a meaningful discretized residual. The fol-
lowing one fits particularly well to (2.14) in the context of mesh adaptivity. Suppose
that we are given an initial mesh and a refinement procedure such that the set M of all
refined meshes form a shape-regular family. Furthermore, suppose that, for any mesh
M ∈ M, there is a refinement M̃ ∈ Mwith vertices V(M̃) that satisfies the following
properties:

∀K̃ ∈ M̃ ∃K ∈ M with K̃ ⊂ K and hK � hK̃ , (3.24a)

∀i ∈ I(M) ∃̃z ∈ V(M̃) such that z̃ is interior to i . (3.24b)

Let us now fix a mesh M ∈ M and a refinement M̃ ∈ M satisfying (3.24). For any
i ∈ I(M), using (3.24b), we fix a vertex z̃ ∈ V(M̃) interior to i and denote by φ̃̃z its
associated hat function in V(M̃). We then obtain counterparts ψ̃i , i ∈ I, of the test
functions ψi , i ∈ I, by using these hat functions with a suitable scaling in place of the
element and faces bubble functions in (3.19) such that the following lemma holds. We
skip the technical details, referring to Morin, Nochetto and Siebert [17] and Veeser
[24].

Lemma 14 (Another locally stable biorthogonal system) Together with the basis χi ,
i ∈ I, the test functions ψ̃i , i ∈ I, form a locally stable biorthogonal system:

(i) We have

∀i, j ∈ I 〈
χi , ψ̃ j

〉 = δi j .

(ii) Let Iz = {i ∈ I | i � z} denote the elements and faces containing a vertex z ∈ V .
Then

∀i ∈ Iz ‖χi‖H−1(ωz)
‖∇ψ̃i‖ωz ≤ Cψ̃ ,
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where the stability constant Cψ̃ only depends on d and the shape coefficient σ(M).

Thus, the operator

P̃M� :=
∑
i∈I

〈
�, ψ̃i

〉
χi (3.25)

defines an alternative to PM and the properties (3.14) without (3.14b) can be estab-
lished as forPM. The operator P̃M can be evaluated on any meshM ∈ Mwhenever

∀M̃ ∈ M ∀z ∈ V0(M̃)
〈
f , φ̃z

〉
are known exactly, (3.26)

where {φ̃z}z∈V0(M̃) denotes the nodal basis of V0(M̃). This is exactly (2.14) for all
meshes in M. Consequently, it is also needed to ensure that an adaptive algorithm
with the above refinement procedure can always compute the Galerkin approximation
(2.11).

Let us now turn to the quantification of the discretized residual and verify (3.14b),
considering a general locally stable biorthogonal system.

Theorem 15 (Quantifying local dual norms) Let ψi , i ∈ I, be the test functions from
Lemma 7 or Lemma 14. If � ∈ D(M) on a star ωz , then the corresponding local dual
norm can be quantified by a finite number of evaluations:

1

d + 1

∑
i∈Iz

∣∣∣∣
〈
�,

ψi

‖∇ψi‖
〉∣∣∣∣
2

≤ ‖�‖2H−1(ωz)
�
∑
i∈Iz

∣∣∣∣
〈
�,

ψi

‖∇ψi‖
〉∣∣∣∣
2

,

where the hidden constant depends on d, σ(M), and Cψ .

Proof Let us first prove the lower bound, which holds for any arbitrary functional
� ∈ H−1(�). In fact, the definition of the dual norm readily yields

∣∣∣∣
〈
�,

ψi

‖∇ψi‖
〉∣∣∣∣ ≤ ‖�‖H−1(suppψi )

(3.27)

for any i ∈ Iz . Notice that the essential supremum of x �→ #{i ∈ Iz | suppψi � x}
is bounded by d + 1. Arguing as in the proof of Lemma 4 (ii), we therefore obtain

∑
i∈Iz

‖�‖2H−1(suppψi )
≤ (d + 1)‖�‖2H−1(ωz)

(3.28)

and the proof of the lower bound is finished.
To show the upper bound, we (need to) assume that � ∈ D(M) on ωz . Given

v ∈ H1
0 (ωz), we can then write

〈�, v〉 =
∑
i∈Iz

ci 〈χi , v〉 with ci ∈ R.
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In light of the biorthogonality, we have ci = 〈�, ψi 〉. Using also the local stability of
the biorthogonal system, we infer

| 〈�, v〉 | ≤
∑
i∈Iz

| 〈�, ψi 〉 〈χi , v〉 |

≤
∑
i∈Iz

‖∇ψi‖ωz‖χi‖H−1(ωz)

∣∣∣∣
〈
�,

ψi

‖∇ψi‖
〉∣∣∣∣ ‖∇v‖ωz

≤ Cψ

⎛
⎝∑

i∈Iz

∣∣∣∣
〈
�,

ψi

‖∇ψi‖
〉∣∣∣∣
⎞
⎠ ‖∇v‖ωz .

Since the solid angle of every simplex containing z is bounded away from 0 in terms
of d and the shape coefficient σ(M), we have #Iz ≤ Cσ(M). Consequently, the
Cauchy–Schwarz inequality on the sum implies the desired upper bound. ��

Theorem 15 implies the missing (3.14b) for both operators PM and P̃M and,
in accordance with Sect. 3.3, we have splittings of the local residual norms with the
desired properties. Notice that, in view of the discussion of this section andCorollary 5,
bounding the terms

‖PM f − f ‖H−1(ωz)
or ‖P̃M f − f ‖H−1(ωz)

cannot be done in general with a finite number of evaluations of the load f . Notably,
these terms involve only the load, and the discretized residuals

‖PM f + �U f ;M‖H−1(ωz)
or ‖P̃M f + �U f ;M‖H−1(ωz)

can be quantified with finite information, which, in light of Remark 3, is less than the
information required for evaluating local L2-norms of the load f .

3.7 A posteriori error bounds

We now summarize our preceding results by deriving a posteriori error bounds. The
resulting bounds are defined for any load f ∈ H−1(�) and the oscillation is dominated
by the error.

The following statements remain correct if PM is replaced by P̃M from (3.25).

Theorem 16 (Abstract upper bound) For any functional f ∈ H−1(�) and any con-
forming mesh M, we have

‖∇(u f −U f ;M)‖2 �
∑
z∈V

‖PM f + �U f ;M‖2H−1(ωz)
+ ‖PM f − f ‖2H−1(ωz)

.

Each local dual norm ‖PM f + �U f ;M‖H−1(ωz)
of the discretized residual can be

quantified with a finite number of evaluations of f , while the quantification of the
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local dual norms ‖PM f − f ‖H−1(ωz)
of the oscillation requires additional a priori

information on f .

Proof Lemma 1, Lemma 4 and a triangle inequality imply the claimed bound. Recall-
ing that

PM f + �U f ;M ∈ D(M),

Theorem 15 and Corollary 5 ensure the statements about the quantification of the two
parts of the bound. ��

In contrast to previous results available in literature, the complete upper bound in
Theorem 16 is also a lower bound, even locally.

Theorem 17 (Abstract local lower bounds) For any functional f ∈ H−1(�) and any
conformingmeshM, the discretized residual and the oscillation are locally dominated
by the error: for every vertex z ∈ V , we have

‖PM f + �U f ;M‖H−1(ωz)
� ‖∇(u f −U f ;M)‖ωz

and

‖PM f − f ‖H−1(ωz)
� ‖∇(u f −U f ;M)‖ωz .

Proof In light of (3.12), the first claimed inequality follows from the triangle inequality
and the second one. The latter is a consequence of Theorems 8 and 10 and (3.12):

‖PM f − f ‖H−1(ωz)
≤ ‖PM( f + �U f ;M)‖H−1(ωz)

+ ‖ f − �U f ;M‖H−1(ωz)

� ‖ f − �U f ;M‖H−1(ωz)
� ‖∇(u f −U f ;M)‖ωz . ��

Squaring and summing, we readily get global lower bounds.

Corollary 18 (Abstract global lower bounds) For any functional f ∈ H−1(�) and
any conforming mesh M, the discretized residual and the oscillation are globally
dominated by the error in that

∑
z∈V

‖PM f + �U f ;M‖2H−1(ωz)
� ‖∇(u f −U f ;M)‖2

and ∑
z∈V

‖PM f − f ‖2H−1(ωz)
� ‖∇(u f −U f ;M)‖2.

To summarize: if we are able to quantify the oscillation terms ‖PM f − f ‖H−1(ωz)
,

z ∈ V , then the right-hand side in Theorem 16 is a truly equivalent a posteriori error
estimator.
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Remark 19 (Surrogate oscillation) The quantification of the local dual norms ‖PM f −
f ‖H−1(ωz)

, z ∈ V , of the oscillation appears to be a difficult matter. In [10, Section 7],
Cohen, DeVore, and Nochetto consider similar terms for special f and resort to surro-
gates that can be approximatedwith the help of numerical integration. Those surrogates
hinge on additional regularity of f , which entails the risk of overestimation; cf. Lemma
20 below.

3.8 Classical versus error-dominated oscillation

In this section we compare the error-dominated oscillation with the classical

⎛
⎝∑

z∈V
‖PM f − f ‖2H−1(ωz)

⎞
⎠

1/2

L2- and H−1-oscillation,

osc0( f ,M) and min
g∈P0(M)

‖ f − g‖H−1(�),

from (1.4) and (1.5) in the introduction. Doing so, we verify statements of the intro-
duction and substantiate the advantages of the stability and invariance properties of
the operator PM.

Let us first show that the error-dominated oscillation is always smaller, up to a
multiplicative constant, than both classical oscillations. To this end, let f ∈ H−1(�)

and let g ∈ P0(M) be an arbitrary piecewise constant approximation over M. The
local invariance and stability properties of PM in Theorems 8 and 10 imply that, for
all z ∈ V ,

‖ f − PM f ‖H−1(ωz)
≤ ‖ f − g‖H−1(ωz)

+ ‖PM(g − f )‖H−1(ωz)

� ‖ f − g‖H−1(ωz)
.

(3.29)

Combining this with Lemma 4 (ii) and minimizing over g, we obtain the bound in
terms of the classical H−1-oscillation:

∑
z∈V

‖ f − PM f ‖2H−1(ωz)
� min

g∈P0(M)
‖ f − g‖2H−1(�)

. (3.30a)

To show the other bound, suppose f ∈ L2(�). Making use of the orthogonality of
P0,M and Poincaré inequalities in the elements of ωz , we deduce

‖ f − P0,M f ‖2H−1(ωz)
�

∑
K⊂ωz

h2K ‖ f − P0,M f ‖2K ,
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which together with (3.29) gives the bound in terms of the L2-oscillation:

∑
z∈V

‖ f − PM f ‖2H−1(ωz)
�

∑
K∈M

h2K ‖ f − P0,M f ‖2K = osc0( f ,M)2. (3.30b)

The converse bounds of (3.30) do not hold. For the classical L2-oscillation, this
applies even on a fixed mesh and is in particular due to stability issues. The fol-
lowing lemma provides an illustration, relating directly to the error instead of the
error-dominated oscillation.

Lemma 20 (Overestimation of classical L2-oscillation) For any conformingmeshM,
there exists a sequence ( fk)k ⊂ L2(�) such that

osc0( fk,M)

‖∇(u fk −U fk ;M)‖ → ∞ as k → ∞.

Proof Choose f ∈ H−1(�) \ L2(�). Since L2(�) is dense in H−1(�), there exists a
sequence ( fk)k ⊂ L2(�) such that fk → f in H−1(�). On the one hand, the energy
norm errors ‖∇(u fk − U fk ;M)‖ are uniformly bounded with respect to k. On the
other hand, in view of limk→∞ ‖ fk‖L2(�) = ∞, the oscillation osc0( fk,M) becomes
arbitrarily large for k → ∞. ��

In the case of the classical H−1-oscillation, (3.30a) cannot be inverted because of
invariance issues. Let us illustrate this again by the relationship to the Galerkin error.
Consider

f = −�V for some V ∈ V0(M†) \ {0}, (3.31)

whereM† is some conforming simplicial mesh of �. For any conforming refinement
M of M†, we then have u f = V = U f ;M and f /∈ P0(M). Hence

‖∇(u f −U f ;M)‖ = 0 < min
g∈P0(M)

‖ f − g‖H−1(�),

where the classical H−1-oscillation can be made arbitrarily large for a given M but
decreases to 0 under suitable refinement. One could argue that the (neighborhoods of
the) loads (3.31) are very special, in particular because the optimal convergence rate
of (3.31) is formally ∞. Here is another example based upon Cohen, DeVore, and
Nochetto [10, Section 6.4], where the optimal nonlinear convergence rate for the error
is finite and often encountered in practice.

Lemma 21 (Another overestimation of classical H−1-oscillation) Let � = (0, 1)2.
There is a functional f ∈ H−1(�) and a sequence (Ln)n with log n � Ln → ∞ as
n → ∞ such that

min
#M≤n

‖∇(u f −U f ;M)‖ � n−1/2, (3.32a)
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and

min
#M≤n

min
g∈P0(M)

( ∑
z∈V(M)

‖ f − g‖2H−1(ωz)

)1/2

≥ Ln n
−1/2, (3.32b)

whereM varies in all meshes created by recursive or iterative newest vertex bisection
of some conforming initial meshM0 of �.

Proof In [10, Section 6.4] Cohen, DeVore and Nochetto construct some function u f ∈
H1
0 (�) and a sequence Ln as claimed for which (3.32a) and

min
#M≤n

( ∑
z∈V(M)

‖ f ‖2H−1(ωz)

)1/2

≥ Ln n
−1/2 (3.33)

hold. It thus remains to establish (3.32b). To this end, we fix temporarily an arbitrary
vertex z ∈ V of a conforming mesh M and let g ∈ P0(M). The inverse triangle and
(3.12) yield

‖ f − g‖H−1(ωz)
≥ ‖�U f ;M + g‖H−1(ωz)

− ‖ f + �U f ;M‖H−1(ωz)

≥ ‖�U f ;M + g‖H−1(ωz)
− ‖∇(u f −U f ;M)‖ωz .

By Lemma 7, we have, for all K ∈ M,

〈
�U f ;M, ψK

〉 = ∑
F∈F

J (U f ;M)|F
∫
F

χFψK ds = 0

and, for all F ∈ F and K1, K2 ∈ M with K1 ∩ K2 = F ,

〈
�U f ;M + g, ψF

〉 = ∫
F
J (U f ;M)ψF ds +

∑
i=1,2

g|Ki

∫
Ki

χKi ψF dx

= 〈
�U f ;M, ψF

〉
.

Theorem 15 therefore implies

‖�U f ;M + g‖H−1(ωz)
�

∑
i∈Iz∩F

∣∣∣∣
〈
�U f ;M + g,

ψi

‖∇ψi‖
〉∣∣∣∣

=
∑

i∈Iz∩F

∣∣∣∣
〈
�U f ;M,

ψi

‖∇ψi‖
〉∣∣∣∣

=
∑
i∈Iz

∣∣∣∣
〈
�U f ;M,

ψi

‖∇ψi‖
〉∣∣∣∣ � ‖�U f ;M‖H−1(ωz)

.
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Exploiting also Lemma 4, we arrive at

⎛
⎝∑

z∈V
‖�U f ;M + g‖2H−1(ωz)

⎞
⎠

1/2

�

⎛
⎝∑

z∈V
‖�U f ;M‖2H−1(ωz)

⎞
⎠

1/2

�

⎛
⎝∑

z∈V
‖ f ‖2H−1(ωz)

⎞
⎠

1/2

−
⎛
⎝∑

z∈V
‖ f + �U f ;M‖2H−1(ωz)

⎞
⎠

1/2

≥
⎛
⎝∑

z∈V
‖ f ‖2H−1(ωz)

⎞
⎠

1/2

− C ‖∇(u f −U f ,M)‖.

Consequently, (3.32a) and (3.33) lead to

min
#M≤n

min
g∈P0(M)

⎛
⎝∑

z∈V
‖ f − g‖2H−1(ωz)

⎞
⎠

1/2

≥ (Ln − C) n−1/2,

which, upon redefining (Ln)n , implies (3.32b) and the proof is finished. ��
Remark 22 (Overestimation of H−1-variant of standard residual estimator) As
pointed out by Cohen, DeVore, and Nochetto [10], the example of Lemma 21 entails
that the right-hand side of

‖∇(u f −U f ;M)‖2 �
∑

z∈V(M)

‖�U f ;M‖2H−1(ωz)
+ ‖ f ‖2H−1(ωz)

,

a variant of the standard residual estimator defined for all loads f ∈ H−1(�), is
overestimating. In Sect. 4.2 below, we propose through our new approach another
variant that is free of overestimation.

4 Realizations with classical techniques

The a posteriori error bounds in Sect. 3.7 are abstract in that they are given in terms of
the local dual norms ‖ · ‖H−1(ωz)

, z ∈ V , of the discretized residual and the oscillation.
For the norms ‖PM f + �U f ;M‖H−1(ωz)

, z ∈ V , of the discretized residual, we
required a quantification in terms of finite information on the load and provided a
possible realization in Theorem 15. In this section we discuss a selection of alternative
realizations. All realizations are motivated by classical approaches to a posteriori
analysis and cover two explicit and two implicit techniques. It is worth making the
following observations:
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• Hierarchical estimators and estimators based upon local problems implicitly intro-
duce a splitting of the residual like the one proposed in Sect. 3.3.

• The overestimation of the standard residual estimator in Remark 22 can be cured
with the help of the splitting of the residual in Sect. 3.3.

• Employing different local dual norms, the approach of Sect. 3 can be extended to
estimators based on flux equilibration.

• Each realization quantifies a local dual norm of the discretized residual by a
computable, equivalent norm. Both equivalence and computability hinge on the
finite-dimensional nature of the discretized residual.

4.1 A hierarchical estimator

Hierarchical estimators investigate the residual on an extension of the given finite
element space. While higher order extensions were used originally, Bornemann, Erd-
mann, and Kornhuber show in [6] that an extension containing the functions

λK :=
∏

z∈V∩K

φz, K ∈ M, and λF :=
∏

z∈V∩F

φz, F ∈ F , (4.1)

already ensures reliability for piecewise constant loads f ∈ P0(M). The indicators
of a corresponding, ‘minimal’ hierarchical estimator are given by

EH( f ,M, i) :=
∣∣∣∣
〈
Res( f ;M),

λi

‖∇λi‖
〉∣∣∣∣ , i ∈ I = M ∪ F ,

and computable in terms of U f ;M and the evaluations 〈 f , λi 〉, i ∈ I. This definition
implies the constant-free local lower bounds

EH( f ,M, i) ≤ ‖Res( f ;M)‖H−1(supp λi )

and therefore, cf. (3.28), we have that, for every z ∈ V and Iz = {i ∈ I | i � z},
⎛
⎝∑

i∈Iz

EH( f ,M, i)2

⎞
⎠

1/2

≤ √
d + 1 ‖Res( f ,M)‖H−1(ωz)

, (4.2)

which is a local counterpart of the global lower bound in Veeser [24, Lemma 3.3].
This estimator is very closely related to the discretized residuals of Sect. 3.4 and

Theorem 15. Indeed, if K ∈ M and F ∈ F , K1, K2 ∈ M such that F = K1 ∩ K2,
we have

ψK = (2d + 1)!
d!|K | λK and ψF = (2d − 1)!

(d − 1)!|F |

(
λF − (2d + 1)

2∑
i=1

λKi

)
(4.3)
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in view of (3.19). Hence span{ψi | i ∈ I} = span{λi | i ∈ I} and Remark 12 yields
〈 f , λi 〉 = 〈PM f , λi 〉, i ∈ I, and the indicators may be viewed also as evaluations
of the discretized residual: for i ∈ I,

EH( f ,M, i) =
∣∣∣∣
〈
PM f + �U f ,M,

λi

‖∇λi‖
〉∣∣∣∣ .

As a consequence, we also have the following counterpart of (4.2):

⎛
⎝∑

i∈Iz

EH( f ,M, i)2

⎞
⎠

1/2

≤ √
d + 1 ‖PM f + �U f ,M‖H−1(ωz)

. (4.4)

In order to prove the converse bound, we may proceed with the help of P∗
M as in

[24]. However, having Theorem 15 at our disposal, it is simpler to exploit (4.3). We
immediately see

EH( f ,M, K ) =
∣∣∣∣
〈
PM f + �U f ,M,

ψK

‖∇ψK ‖
〉∣∣∣∣ . (4.5a)

Moreover, given F ∈ F , K1, K2 ∈ M with F = K1 ∩ K2, we deduce

Cd |F |−1 ≤ max
F

ψF ≤ hF max
K1

|∇ψF | � hF |K |−1/2‖∇ψF‖K1

with hF := diam F and, for i ∈ {F, K1, K2}

‖∇λi‖ωF ≤ Cd max
i=1,2

ρ−1
K |ωF |1/2.

We therefore obtain ‖∇ψF‖−1‖∇λi‖ � |F | and
∣∣∣∣
〈
PM f + �U f ,M,

ψF

‖∇ψF‖
〉∣∣∣∣ �

∑
i∈{F,K1,K2}

EH( f ,M, i). (4.5b)

Summing up, the hierarchical estimator quantifies the local discretized residual,

∑
i∈Iz

EH( f ,M, i)2 � ‖PM f + �U f ,M‖H−1(ωz)
, z ∈ V,

and we have the following a posteriori bounds.

Theorem 23 (Hierarchical estimator with error-dominated oscillation) For any func-
tional f ∈ H−1(�) and any conforming mesh M, we have the global equivalence

‖∇(u f −U f ;M)‖2 �

∑
i∈I

EH( f ,M, i)2 +
∑
z∈V

‖PM f − f ‖2H−1(ωz)
,
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as well as the following local lower bounds: for every z ∈ V ,
∑
i∈Iz

EH( f ,M, i)2 ≤ (d + 1)‖∇(u f −U f ;M)‖2ωz
,

∑
i∈Iz

‖PM f − f ‖2H−1(ωz)
� ‖∇(u f −U f ;M)‖2ωz

.

The hidden constants depend only on d and σ(M).

Proof Combine Theorem 16, Theorem 17, Corollary 18, (3.12), (4.5), and (4.2). ��

4.2 An improved standard residual estimator

The standard residual estimator applies suitably scaled norms to the jump and element
residual; see, e.g., Verfürth [26, Section 1.4]. In the case of the discretized residual

PM f + �U f ,M =
∑
F∈F

( 〈 f , ψF 〉 + J (U f ;M)|F
)
χF +

∑
K∈M

〈 f , ψK 〉 χK ,

this leads to the following indicators:

ER(U f ;M,PM f , F) := h1/2F ‖ 〈 f , ψF 〉 + J (U f ;M)‖F , F ∈ F ,

ER(U f ;M,PM f , K ) := hK ‖ 〈 f , ψK 〉 ‖K , K ∈ M,

where hF and hK denote, respectively, the diameters of F and K and computability
is given in terms of U f ;M and (3.23).

These indicators actually quantify the discretized residual and in a way that is very
tight to Theorem 15: for any interelement face F ∈ F ,

ER(U f ;M,PM f , F) �

∣∣∣∣
〈
PM f + �U f ;M,

ψF

‖∇ψF‖
〉∣∣∣∣ (4.6a)

and, for any element K ∈ M,

ER(U f ;M,PM f , K ) �

∣∣∣∣
〈
PM f + �U f ;M,

ψK

‖∇ψK ‖
〉∣∣∣∣ , (4.6b)

where the hidden constants depend only on d and σ(M). To see (4.6a), let F ∈ F be
any interelement face. Lemma 7 (i), the trace inequality (3.18) for w = ψ2

F and the
Friedrichs inequality (3.17) for v = ψF , both with ωF in place of ωz , give∣∣∣∣

〈
PM f + �U f ;M,

ψF

‖∇ψF‖
〉∣∣∣∣ =

∣∣∣∣
〈( 〈 f , ψF 〉 + J (U f ;M)|F

)
χF ,

ψF

‖∇ψF‖
〉∣∣∣∣

≤ ‖ 〈 f , ψF 〉 + J (U f ;M)‖F ‖ψF‖F
‖∇ψF‖ ≤ h1/2F ‖ 〈 f , ψF 〉 + J (U f ;M)‖F ,
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while (3.20) yields ‖∇ψF‖� � (hF |F |)−1/2 and so

∣∣∣∣
〈
PM f + �U f ;M,

ψF

‖∇ψF‖
〉∣∣∣∣ = ‖ 〈 f , ψF 〉 + J (U f ;M)‖F

|F |1/2 ‖∇ψF‖
� h1/2F ‖ 〈 f , ψF 〉 + J (U f ;M)‖F .

Similarly, we obtain (4.6b).
Inserting the combination of Theorem 15 and (4.6) in the abstract a posteriori

analysis of Sect. 3.7, we obtain the following result.

Theorem 24 (Standard residual estimator with error-dominated oscillation) For any
functional f ∈ H−1(�) and any conformingmeshM, we have the global equivalence

‖∇(u f −U f ;M)‖2 �

∑
i∈I

ER(U f ;M,PM f , i)2 +
∑
z∈V

‖PM f − f ‖2H−1(ωz)
,

as well as the following local lower bounds: for z ∈ V ,
∑
i∈Iz

ER(U f ;M,PM f , i)2 + ‖PM f − f ‖2H−1(ωz)
� ‖∇(u f −U f ;M)‖2ωz

.

The hidden constants depend only on d and σ(M).

Theorem24 relies on key features of the approach in §3,which the following remark
elaborates on.

Remark 25 (Classical vs new standard residual estimator) In contrast to the classical
standard residual estimator (1.2) and its H−1-variant in Remark 22, the variant of
Theorem 24 is completely equivalent to the error. The reason for this improvement
lies in a suitable correction of the original jump residual. To elucidate this, remember
that both the classical standard residual estimator and its H−1-variant in Remark 22
do not discretize the residual and therefore compare them to

∑
F∈F

h1/2F ‖J (U f ;M) + 〈 f , ψF 〉 ‖2F +
∑
z∈V

∥∥∥ f −
∑
F∈F

〈 f , ψF 〉χF

∥∥∥2
H−1(ωz)

,

which also does not split off an infinite-dimensional part of the load f . The corrections
〈 f , ψF 〉, F ∈ F , of the jump residual make sure that the new jump residual has the
invariance properties necessary for avoiding overestimation, i. e., it vanishes whenever
the exact solution happens to be discrete. Correctionswith this property have been used
previously. For example, Nochetto [20] considers the special case f = f1 + div f2,
where f1, f2 are suitable functions, and assigns (div f2)|K , K ∈ M, to the element
residual and the jumps in the normal trace of f2 across interelement sides correct
the jump residual. Similarly, in standard residual estimators for the Stokes problem,
pressure jumps correct the jump residual associated with the velocity. The novelty is
that the corrections 〈 f , ψF 〉, F ∈ F , are defined for an arbitrary f ∈ H−1(�) and
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also locally H−1-stable and so fulfill the second necessary condition to avoid local
overestimation. Notably, the latter entails that, even if f is a smooth function, the jump
residual will be corrected significantly in certain cases.

4.3 An estimator based on local problems

A local problem lifts the residual to a local extension of the given finite element space
and so provides a local correction, the norm of which is used as an error indicator; cf.
Babuška and Rheinboldt [4]. While computability requires finite-dimensional exten-
sions, the higher cost with respect to the previous explicit estimators is tied up with
the hope of improved accuracy.

The following instance fromVerfürth [26, Section 1.7.1 andRemark 1.21] is vertex-
based and uses the local extensions

Uz := span{λi | i ∈ Iz} = span{ψi | i ∈ Iz}, z ∈ V,

where the functions ψi and λi are defined, respectively, in (3.19) and (4.1). Given a
vertex z ∈ V , the indicator is then

EL( f ,M, z) := ‖∇νz‖,

where

νz ∈ Uz such that ∀λ ∈ Uz

∫
�

∇νz · ∇λ dx = 〈Res( f ;M), λ〉 .

Thus, νz is computable in terms ofU f ;M and, e.g., (3.23). The indicator EL( f ,M, z)
may be viewed as an implicit counterpart of (

∑
i∈Iz

EH( f ,M, i)2)1/2 from §4.1.
Taking λ = νz , we immediately obtain the constant-free lower bound

EL( f ,M, z) ≤ ‖Res( f ;M)‖H−1(ωz)
, (4.7)

which slightly improves upon (4.2).
Notice that, in light of Remark 12, the solution νz can be interpreted also as a lift

of the discretized residual PM f + �U f ;M. Consequently, the first inequality in

EL( f ,M, z) ≤ ‖PM f + �U f ;M‖H−1(ωz)
� EL( f ,M, z) (4.8)

is correct. The second one follows from Remark 13 and Theorem 10 in the spirit of
Morin, Nochetto and Siebert [18]. In fact, for v ∈ H1

0 (ωz), we have

〈PM f + �U f ;M, v
〉 = 〈

Res( f ;M), P∗
Mv

〉 = ∫
ωz

∇νz · ∇P∗
Mv dx

≤ ‖∇νz‖‖∇P∗
Mv‖ωz � EL( f ,M, z)‖∇v‖ωz .
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Theorem 26 (Estimator based on local problems with error-dominated oscillation)
For any functional f ∈ H−1(�) and any conforming mesh M, we have the global
equivalence

‖∇(u f −U f ;M)‖2 �

∑
z∈V

EL( f ,M, z)2 + ‖PM f − f ‖2H−1(ωz)
,

as well as the following local lower bounds: for every z ∈ V ,

EL( f ,M, z) ≤ ‖∇(u f −U f ;M)‖ωz

and ‖PM f − f ‖H−1(ωz)
� ‖∇(u f −U f ;M)‖ωz .

The hidden constants depend only on d and σ(M).

Proof Combine Theorem 16, Theorem 17, Corollary 18, (3.12), (4.7) and (4.8). ��

4.4 An estimator based on flux equilibration

While indicators based on local problems provide constant-free local lower bounds,
estimators based on flux equilibration aim for a constant-free, or at least explicit,
global upper bound. This is achieved with the help of other, more sophisticated liftings
within the framework of the fundamental theorem of Prager and Synge [22], which,
for the homogeneous Dirichlet problem (1.1), can be formulated as follows: For any
v ∈ H1

0 (�), we have

‖∇(v − u)‖ = min
{
‖ξ‖ | ξ ∈ L2(�; R

d) with div ξ = �v + f in H−1(�)
}

.

(4.9)

Realizations of this idea in Ainsworth [1], Braess and Schöberl [8], Ern, Smears and
Vohralik [12,13], and Luce andWohlmuth [16] make use of some classical oscillation.
Its replacement by an error-dominated oscillation requires some adjustment to the
approach of Sect. 3.

The upper bound in the localization of Lemma 4 involves a non-explicit multiplica-
tive constant. In order to improve on this, we replace the local spaces H1

0 (ωz), z ∈ V ,
with

Hz :=
{

{v ∈ H1(ωz) | ∫
ωz

v dx = 0}, if z ∈ V0 = V ∩ �,

{v ∈ H1(ωz) | v|∂ωz∩∂� = 0}, if z ∈ V \ V0,

equip them with the norm ‖∇ · ‖ωz , and denote the respective dual spaces by H∗
z .

Lemma 27 (Alternative localization) Let � ∈ H−1(�) be any functional.

(i) If � ∈ RM, then

‖�‖2H−1(�)
≤ (d + 1)

∑
z∈V

‖φz�‖2H∗
z
.
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(ii) We have

∑
z∈V

‖φz�‖2H∗
z

� ‖�‖2H−1(�)
,

where the hidden constant depends only on d and the shape coefficient σ(M).

Proof The proof is essentially a regrouping of the arguments proving Lemma 4, where
(3.3) slips into the proof of (ii); cf. Canuto et al. [9, Proposition 3.1]. ��

Splitting the residual up in discretized residual and oscillation, we then obtain
the following abstract error bounds; we do not state the global lower bound as it is
immediate consequence of the local one.

Lemma 28 (Alternative abstract error bounds) For any functional f ∈ H−1(�) and
any conforming meshM, we have the global upper bound

‖∇(u f −U f ;M)‖2
≤ (d + 1)

∑
z∈V

(‖φz(PM f + �U f ;M)‖H∗
z

+ ‖φz(PM f − f )‖H∗
z

)2
,

as well as the following local lower bounds: for every vertex z ∈ V ,

‖φz(PM f + �U f ;M)‖H∗
z

+ ‖φz(PM f − f )‖H∗
z

� ‖∇(u f −U f ;M)‖ωz .

The hidden constants depend only on d and σ(M).

Proof The global upper bound follows from Lemma 27 (i) and the triangle inequality.
To prove the local lower bounds, we recall Theorem 17 and take � = PM f +�U f ;M
and � = PM f − f in

〈φz�, vz〉 = 〈�, φzvz〉 ≤ ‖�‖H−1(ωz)
‖∇(vzφz)‖ωz � ‖�‖H−1(ωz)

‖∇vz‖ωz , (4.10)

which exploits (3.3) for vz ∈ Hz and z ∈ V . ��
In order to quantify the local discretized residual, we construct local equilibrated

fluxes following the ideas of Braess, Pillwein, and Schöberl [7] and Ern, Smears, and
Vohralík [12]. To this end, fix any vertex z ∈ V and define the operator πz : {πz :
H∗
z → H∗

z } → H∗
z by

πz
(
φz�

) :=
{

φz� − 〈φz�, 1〉
|ωz | if z ∈ V0,

φz� if z ∈ V \ V0.
(4.11)

We emphasize that πz
(
φz(PM f +�U f ;M)

)
can be computed in terms ofU f ;M and

(3.23). Thanks to the definition of the spaces Hz , z ∈ V , and the general form of the
theorem of Prager and Synge (see, e.g., Verfürth [26, Proposition 1.40]), we have

‖φz(PM f + �U f ;M)‖H∗
z

= ‖πzφz(PM f + �U f ;M)‖H∗
z

= min
ξ∈Wz

‖ξ‖ωz (4.12)

with the affine space
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Wz := {
ξ ∈ L2(ωz; R

d) | div ξ = πz
(
φz(PM f + �U f ;M)

) ∈ H∗
z

and ξ · n = 0 on ∂ωz if z ∈ V0

and ξ · n = 0 on ∂ωz \ ∂� if z ∈ V \ V0
}
,

and the equalities in the definition of Wz have to be understood in the sense of dis-
tributions; the space Wz is not empty since

〈
πz
(
φz(PM f + �U f ;M)

)
, 1
〉 = 0 for

every z ∈ V0.
In order to introduce a discrete counterpart of Wz in (4.12), we employ the Raviart-

Thomas-Nédélec spaces

RTN(K ) := {� : K → R
d | �(x) = a + bx for some a ∈ P

d
1 , b ∈ P1}, K ∈ M,

and define

Wz(M) := {
� ∈ L2(ωz) | �|K ∈ RTN(K ) for all K ∈ M with K ⊂ ωz

and div� = πz
(
φz(PM f + �U f ;M)

) ∈ H∗
z

and � · n = 0 on ∂ωz if z ∈ V0

and � · n = 0 on ∂ωz \ ∂� if z ∈ V \ V0
}
,

which satisfies

min
�∈Wz(M)

‖�‖ωz � min
ξ∈Wz

‖ξ‖ωz ≤ min
�∈Wz(M)

‖�‖ωz (4.13)

and the hidden constant depends only on d and σ(M). Indeed, the right inequality is
obvious because of Wz(M) ⊂ Wz . The left inequality can be proved by an explicit
construction; see, e.g., [7,12]. For the ease of presentation, however, we shall assume

�z := argmin
�∈Wz (M)

‖�‖ωz

and note

‖�z‖ωz � ‖φz(PM f + �U f ;M)‖H∗
z

≤ ‖�z‖ωz

in view of (4.12) and (4.13). Inserting this in the abstract bounds of Lemma 28, we
readily obtain the following a posteriori bounds; as before, we suppress the global
lower bound.

Theorem 29 (Equilibrated flux estimator with error-dominated oscillation) For any
functional f ∈ H−1(�) and any conforming mesh M, we have the global upper
bound

‖∇(u f −U f ;M)‖2 ≤ (d + 1)
∑
z∈V

(‖�z‖ωz + ‖φz(PM f − f )‖H∗
z

)2
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as well as the following local lower bounds: for every vertex z ∈ V ,

‖�z‖2ωz
+ ‖φz(PM f − f )‖2H∗

z
� ‖∇(u f −U f ;M)‖2ωz

.

The hidden constant depends only on d and σ(M).

In contrast to the cited previous bounds, the upper bound in Theorem29 contains the
multiplicative constant d +1. This constant arises from the localization in Lemma 27.
As an alternative to this localization, one may use the constant-free upper bound in the
following remark and split the estimator part ‖�‖ therein into local L2-contributions.

Remark 30 (Alternative upper bound) Observing that

∑
z∈V

div�z = f + �U f ;M +
∑
z∈V

πz
(
φz(PM f − f )

)
,

we set � := ∑
z∈V �z and apply the theorem of Prager and Synge (4.9) globally and

Lemma 27 to obtain

‖∇(u f −U f ;M)‖ ≤ ‖�‖ + √
d + 1

⎛
⎝∑

z∈V
‖φz(PM f − f )‖2H∗

z

⎞
⎠

1/2

.
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