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Ketogenic diet (KD), a high fat and very low carbohydrates diet, is used worldwide

for the treatment of drug resistant epilepsy but, due to its composition, it might exert

an impact on gut health. Even though data of KD effects on intestinal microbiota

changes are recently emerging, its influence on the gut environment has been scarcely

addressed so far. The aim of this study was to investigate whether 1 month of KD

affects the gut environment in epileptic patients, by analyzing short chain fatty acids

(SCFA) production and fecal water toxicity. A total of seven patients were enrolled. Stool

samples were collected before (T0) and after 1 month of KD (4:1 ketogenic ratio) (T1).

SCFA were determined by GC-FID and fecal water toxicity in Caco-2 cell culture by

comet assay. Concentrations of SCFA significantly decreased after KD (p < 0.05): in

particular, we found a 55% reduction of total SCFA level, a 64% reduction of acetate,

33% of propionate, and 20% of butyrate (p < 0.05). Cytotoxicity of fecal water extracted

from stool samples was not significantly altered by diet, while genotoxicity was slightly

decreased after KD (p < 0.05). Genotoxicity values were consistent with data previously

obtained from a healthy Italian population. The present study suggests that 1 month of

KD significantly reduce SCFA production. Since SCFA produced by gut microbiota exert

many health promoting effects on either the gut environment or humanmetabolism, these

results open a new branch of investigation into KD effects.

Keywords: ketogenic diet, epilepsy, short chain fatty acids, fecal water toxicity, gut environment

INTRODUCTION

The classic ketogenic diet (KD) is a normocaloric high-fat very low-carbohydrate diet, used
worldwide for the treatment of drug-resistant epilepsy (DRE) for its anticonvulsant effect (1). KD
is typically composed of a 4:1 ratio of fat (in grams) to protein plus carbohydrates (in grams), thus
shifting the predominant caloric source from carbohydrates to fat (2).

This diet induces changes in gut microbiota that have been addressed in vivo in animal (3–5) and
human (6–10) studies. Increase of specific genera, such as Desulfovibrio and Akkermansia (8, 11),
decrease in the relative abundance of phylum, such as Actinobacteria and Firmicutes, and increase
of Bacteroidetes and Proteobacteria, were displayed in patients after ketogenic dietary therapies (6).
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Changes in the microbiota community potentially impact
the microbial metabolome which, in turn, exerts influence
on host physiology. For instance, short chain fatty acids
(SCFA) production (namely acetate, propionate, and butyrate),
resulting from microbial fermentation of dietary non-digestible
carbohydrates, is affected by numerous factors including the
source and the amount of available substrates, and the complex
interaction between the gut, transit time, and ecological factors
(12). SCFA, and butyrate in particular, are the main source
of energy for colonocytes, and appear important in regulating
the integrity of the epithelial barrier (13). The production of
SCFA reduces intestinal pH, therefore preventing the growth
of pH-sensitive pathogenic bacteria. Butyrate is also able to
inhibit growth, induce terminal differentiation, and promote
apoptosis in transformed cells possibly by the inhibition of
histone deacetylase activity (14). Moreover, butyrate inhibits the
activation of the transcriptional factor NF-kB and consequently
the production of pro-inflammatory cytokines (15). At an
organism level, several studies have shown that propionate and
acetate can modulate the glycol-lipid metabolism, by inhibiting
the hepatic synthesis of cholesterol and improving insulin
sensitivity (16). With these multiple actions in mind, it is possible
that altered SCFA production can negatively affect host’s health
either in the gut or at a systemic level.

By altering the gut microbial ecosystem, KD could also affect
the composition of human feces, exposing colon mucosa to
risk factors. A non-invasive way to study this potential risk
is by investigating, in vitro, the genotoxicity of the aqueous
extract from stool (fecal water), via single-cell gel electrophoresis
(comet assay). This sensitive technique has been successfully
applied to investigate the genotoxicity of specific compounds
(17) or the effect on the gut environment due to different
dietary interventions in humans (18). The few studies that have
monitored the genotoxicity of fecal water in healthy volunteers
(17, 19, 20) suggest that it could be considered as a predictive
biomarker for intestinal carcinogenic risk.

On these grounds, our study investigates the hypothesis
that 1 month of therapeutic KD by impacting the microbiota
ecosystem, could affect microbial metabolites production and,
consequently, the gut environment. To this aim, we analyzed the
production of SCFA, and the toxicity of fecal water, in order to
reach an integrated view of the KD impact on gut health.

METHODS

Subjects
The KD effects were assessed through the enrolment of seven
patients (four females and three males, ages ranging between
2 and 46 years) affected by DRE. From each patient, a fecal
sample was collected before (T0) and after 1 month (T1) of
treatment with a classic KD. Exclusion criteria included fecal
incontinence, gastrointestinal disorders or the use of antibiotic
or probiotic/prebiotic supplements during the month prior to
the study, age < 2 years old, and participants who were under-

Abbreviations: KD, ketogenic diet; DRE, drug-resistant epilepsy; SCFA, short

chain fatty acids; FW, fecal water.

and overweight. The recruitment began in September 2017
and lasted until June 2018. In this period, 28 patients were
diagnosed with DRE and prescribed a ketogenic diet; only seven
were suitable for the study (16 had no fecal continence and
5 declined to participate). The study protocol complied with
the principles of the Declaration of Helsinki, and was approved
by the Ethical Committee of San Paolo Hospital—University
of Milan (Comitato Etico Milano Area 1, Protocol number
2017/EM/147). Written informed consent to participate in this
study was provided by the participants or participants’ legal
guardian/next of kin.

Ketogenic Diet Treatment
Using a standardized approach (21), the Human Nutrition
Research Center keto-team implemented a non-fasting dietary
protocol—which was uniformly applied in all of the study
patients—characterized by gradual increases of the ketogenic
ratio. The usual caloric intake as well as food intolerances
and preferences were investigated using weekly food diaries.
Energy prescriptions were tailored to each patient’s specific
requirements (based on basal energy expenditures measured
by indirect calorimetry and subsequently corrected for physical
activity levels). KD plans with increasing ketogenic ratios were
adjusted at the individual level by an experienced dietician.
Macronutrient composition included a minimum of 0.8–1 g of
proteins from animal sources (e.g., eggs, milk, meat, poultry,
and fish) were supplied per kilogram of body weight. All of the
study participants were prescribed sugar-free multivitamin and
mineral supplements according to their age and sex. No probiotic
or prebiotic supplementation was provided during the treatment.
All patients were started at home on a 1:1 ketogenic diet, with
ketogenic ratios subsequently increased to 2:1, 3:1, or 4:1 in order
to achieve blood β-OHB levels ≥2.0 mmol/L. Family members
were instructed to monitor blood β-OHB concentrations twice
per day during the induction phase and report values by email to
the study investigators.

Collection and Preparation of Samples
Daily total stool was collected in disposable bedpans,
immediately frozen, delivered to the laboratory within 24–
48 h and stored at −80◦C. Aliquots of stool were then divided
for biological assessments and fecal water (FW) preparation. The
humidity of the fecal samples was determined, after drying at
105◦C overnight, by the weight difference of a sample aliquot
according to the official AOAC method (22).

Preparation of Fecal Water
From the frozen stool samples, FW was obtained after 2 h
thaw at room temperature; samples were then diluted 1:1
(w/v) in sterilized PBS and homogenized manually until a
uniform consistency was achieved. Samples were centrifuged
at 24,000 rpm (35,000 × g) for 2 h at 20◦C (Beckman L7-55
Ultracentrifuge; Beckman Limited, High Wycombe, UK) and
the supernatants were carefully decanted and stored at −80◦C
(19). For the cytotoxicity and genotoxicity evaluations, the FW
samples were rapidly defrosted, centrifuged at 11,000 rpm for
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2min at 20◦C to remove any residuals, and filtered through a
0.45m filter (VWR International, USA).

SCFA Measurement
SCFA concentrations were assessed in accordance with the
method proposed by Weaver et al. (23), modified as follows.
Stool (200mg) were suspended in 1ml of double distilled water,
homogenized and, after 30min, centrifuged (15,000 rpm) for
15min at 10◦C. Aliquots (500µl) of supernatant were added with
200µl of 85% orthophosphoric acid, 200µl of 2% (v/v) sulphuric
acid, and 100µl of 10mmol/L ethyl-butyric acid (Sigma-Aldrich,
Italy) in 12% acetic acid as internal standard. SCFA were gently
extracted for 1min with 1ml of ethyl-ether/heptane (1:1 v/v)
and centrifuged for 10min at 3,000 rpm. The organic layer
was removed for analysis by a Varian 3400 CX gas liquid
chromatograph equipped with a Varian 8200 CX auto sampler
and a HP-FFAP fused-silica capillary column (30m, 0.53mm i.d.
with a 1-mm film) as previously reported (24). Quantification
of the SCFA was obtained through external calibration curves
(concentration range 0.25–10mmol/L). Results were expressed as
mg/g of the dry weight of feces.

Fecal Water Toxicity
Cell Culture
The intestinal epithelial cell line Caco-2, derived from a human
colonic adenocarcinoma (HTB-37; ATCC, Manassas, VA), is a
well-established and validated model of the human intestinal
mucosa (25). Cells were cultured as previously described
(19). The culture medium was routinely changed every 2
days and the day before exposure to FW. All cell culture
reagents were purchased from Sigma–Aldrich (St. Louis, MO,
United States) and chemicals were purchased from Merck
(Darmstadt, Germany). For the analysis, cells were seeded on
60mm plates (Cellstar, Greiner, Germany) at a density of 105
cells/cm2, and maintained for 10 d in complete medium; the
medium was changed three times a week (25).

Cytotoxicity and Genotoxicity
A suspension of differentiated Caco-2 cells (3.5 × 105 cells/mL
in 380 µL) was incubated with FW (120 µL) or medium (120
µL negative control) or H2O2 500 mmol/L (120 µL positive
control) for 30min at 37◦C on a shaking platform (19). Every
FW recovered from the stool samples was analyzed four times
and controls (both negative and positive) were included in each
batch. After incubation, an aliquot of cell suspension was used
to assess the cytotoxicity of FW by measuring cell viability with
the Trypan Blue exclusion test (expressed as a percentage of
viable cells with respect to the control cells). Another aliquot
of cells was used to assess the genotoxicity of FW by the comet
assay, according to the procedure previously described (26).
Briefly, cell suspension was centrifuged (100 × g, for 3min),
re-suspended in 1% low-melting point agarose, and spread on
microscope slides previously covered with a 1% normal-melting
point agarose layer. Embedded cells were lysed, DNAwas allowed
to unwind, and then electrophoresis was performed. Then slides
were washed with neutralization buffer, stained with ethidium
bromide, and analyzed using a fluorescence microscope (BX60

Olympus, Japan) equipped with the Image-Pro Plus software
(Immagini & Computer, Bareggio. Milano, Italy). Fifty images
were analyzed for each slide, and the DNA damage was expressed
as percentage of DNA in the tail.

Statistical Analysis
Variables were expressed as median and interquartile range. Due
to the paired data and small sample size, comparisons of variables
before and after 1 month of KD were performed by theWilcoxon
matched-pairs test. All calculations were performed using SPSS
version 17.0 for Windows (SPSS, Inc., Chicago, IL, USA). A p <

0.05 was considered statistically significant.

RESULTS

Subjects
We enrolled seven epileptic patients, collecting a fecal sample
before and after 1 month of KD. Adherence to the KD
protocol was documented by constant ketonemia in all subjects.
All participants completed the protocol, tolerated the diet,
and there were no adverse effects. An improvement was
reported by all patients, i.e., >50% reduction in seizures and
involuntary movements.

Ketogenic Dietary Treatment
Table 1 shows the daily dietary intake before and after the KD: the
total energy intake and protein intake did not differ significantly
while other macronutrients changed significantly. In particular,
the fat content increased significantly from 54.6 (IQR 40.9–
92.9) g/day to 125.7 (IQR 112.8–159.1) g/day (p = 0.028), the
carbohydrate content diminished significantly from 130.0 (IQR
91.6–176.2) g/day to 20.2 (IQR 12.0–31.8) g/day (p = 0.018)
and a significant reduction in dietary fiber content (p = 0.028)
was found.

SCFA Production
Concentrations of SCFA, expressed as mg/g dry weight feces,
before and after KD, are reported in Table 2. We found a
significant statistical difference before (T0) and after (T1) the KD
for total SCFA, acetate, butyrate, propionate, and isobutyrate (p
< 0.05), while iso-valerate was not significantly different between
T0 and T1. Overall, the results showed that the KD strongly
decreased the amount of SCFA in these patients.

Fecal Water Toxicity
The toxicity of fecal water, a parameter of gut human health,
was analyzed in our group of seven patients. First, we measured
the cytotoxicity by using the Trypan Blue assay (Table 3): only
one fecal water sample was cytotoxic, as the percentages of cell
viability were around 50% (T0: 50.7 and T1: 43.1%). Additionally,
we did not find any statistically significant difference of
cytotoxicity before and after the KD for each subject. Afterward,
we measured the fecal water genotoxicity with the comet assay
(Table 3). As expected, the subject with high cytotoxicity showed
the highest genotoxicity, both before and after the KD (T0: 64.9%
and T1: 61.4% of DNA in the tail). The other subjects showed
a medium level of genotoxicity, following the classification of
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TABLE 1 | Daily dietary intake before and after the treatment with KD.

Pre intervention (T0) Post intervention (T1)

Median (IQR) Median (IQR) p

Energy intake (kcal/day) 1278.0 (1115.0–1765.0) 1615.0 (1200.0–1675.0) 0.612

Energy intake (kcal/kg) 65.6 (20.6–77.0) 65.6 (28.3–75.4) 0.735

Protein (g/day) 56.2 (35.9–63.3) 36.0 (17.2–58.4) 0.310

Protein (% energy) 15.9 (10.2–19.4) 8.6 (5.8–13.9) 0.176

Fat (g/day) 54.6 (40.9–92.9) 125.7 (112.8–159.1) 0.028

Fat (% energy) 38.6 (34.3–49.0) 86.6 (78.1–88.3) 0.018

Saturated fat (% energy) 10.5 (9.2–15.3) 19.3 (14.6–21.9) 0.042

Monounsaturated fat (% energy) 10.1 (8.8–15.6) 19.3 (17.5–31.0) 0.028

Polyunsaturated fat (% energy) 3.2 (2.3–5.9) 10.3 (5.9–13.4) 0.018

Carbohydrates (g/day) 130.0 (91.6–176.2) 20.2 (12.0–31.8) 0.018

Carbohydrates (% energy) 40.3 (28.1–51.7) 4.3 (4.0–9.7) 0.018

Fiber (g/day) 12.8 (8.3–14.9) 7.4 (6.9–8.1) 0.028

Data are expressed as median (interquartile range).

TABLE 2 | Fecal SCFA concentrations (mg/g dry feces) before (T0) and after 1

month (T1) of the KD.

T0 T1

Median (IQR) Median (IQR) p

Total SCFA 20.7 (11.0–25.8) 9.3 (5.5–13.9) 0.018

Acetate 8.4 (4–12.2) 2.7 (2.1–5.3) 0.018

Butyrate 4.8 (3.8–6.8) 3.2 (1.3–4.2) 0.018

Propionate 3.4 (2.6–5.2) 2.4 (1.0–3.5) 0.043

Iso-valerate 1.1 (0.4–1.5) 0.6 (0.5–0.7) 0.128

Iso-butyrate 0.6 (0.4–1.0) 0.3 (0.2–0.4) 0.028

Data are expressed as median (interquartile range).

TABLE 3 | Cytotoxicity (expressed as a percentage of viable cells) and

genotoxicity (expressed as % of DNA in the tail) of fecal water before (T0) and after

1 month (T1) of the KD.

T0 T1

Median (IQR) Median (IQR) p

Cytotoxicity 70.7 (61.0–84.8) 73.4 (71.3–79.8) 0.735

Genotoxicity 33.4 (32.0–41.8) 29.2 (26.2–32.6) 0.018

Data are expressed as median (interquartile range).

Venturi et al. (17) (ranging between 25.3 and 41.8%). Themedian
level of genotoxicity significantly decreased after the ketogenic
therapy, therefore KD could have an impact on the human
intestinal environment.

DISCUSSION

A rich microbial ecology promotes the fundamental cross-talk
and cross-feeding between species that guarantees the resilience

of the gut ecosystem; conversely, one of the features of intestinal
dysbiosis is the loss of diversity (27). Our study evaluated
the effect of KD on SCFA and fecal water toxicity in seven
patients, by collecting fecal samples before and after 1 month of
dietary treatment.

A growing number of reports suggest that KD might alter
human gut microbiota. Despite the different methods used
(selective PCR or 16s rRNA gene sequencing), the low number
of subjects involved, different age and country of residence,
and different dietary treatment timing, the results of human
studies (6–10) displayed that KD reduced the relative abundance
of some taxa (i.e., Actinobacteria) and increased others (i.e.,
Bacteroidates). A similar outcome was observed in a murine
model of autism spectrum disorder (3), which showed an anti-
microbial-like effect of the KD by significantly decreasing the
total host bacterial abundance.

The changes of microbiota can alter the microbiome, and
modify the quality and levels of microbial metabolites, such as
SCFA. To our knowledge, this is the first study that measured
the SCFA concentrations after ketogenic diet treatment. The
results showed that 1 month of dietary intervention significantly
decreased total SCFA concentrations, particularly acetate,
propionate, and butyrate; branched chain fatty acids were
also reduced, but only isobutyrate was statistically significant.
Comparing the basal SCFA levels with previous data obtained in
healthy subjects, no significant differences were evident excluding
a trend toward decreased acetate level (24). These important
results indicate that the change in bacterial metabolite production
may be caused by a specific impact of the ketogenic protocol,
besides the pathological condition. It is worth noting that SCFA
exert multiple beneficial effects on human metabolism (glucose
and cholesterol metabolism, as well contributing to gut health)
(16). Thus, impaired SCFA production might be detrimental for
human health either at the local level, i.e., by altering the gut
barrier permeability, or the systemic level, i.e., by altering the host
immune system. Actually, the reduction of SCFA has been shown
in studies investigating gut microbiota in different neurological
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pathologies (28) and systemic inflammatory response syndrome
(29). The decrease in SCFA concentrations observed can be
explained as a result of altered substrates availability during KD
or as a consequence of the reduction of some microbial species to
be able to ferment non-digestible carbohydrates. It is recognized
that non-digestible carbohydrate availability in the large intestine
can shape the whole microbial community by impacting on both
the activity and the abundance of different bacterial groups able
to produce SCFA (30–32).

Finally, as diet can affect the composition of human feces,
modifying compounds in the water fraction and thus toxicity of
fecal water—a risk factor for mucosa (33, 34)—we evaluated the
cytotoxicity/genotoxicity of fecal water to better understand the
global impact of the KD on the human gut.

The risk of colon cancer is increased by diet high in fat (35)
mainly due to higher secretion of bile salts into the small intestine
for fat digestion and absorption. The bile salts that escape ileum
recycling, reach the colon where microbiota convert them into
secondary bile acids. One of the most predominant secondary
bile acids is deoxycholic acid, whose cancer-promoting activity
was demonstrated in an animal model (36). Actually, higher
secondary bile acids concentrations were found in colon fluids
of humans with colon cancer (37), and healthy subjects tripled
their bile acids concentrations in fecal water after adding a high
amount of fat to their diet (38). A study in vitro on human colon
adenocarcinoma cells confirmed the genotoxicity of secondary
bile acids after exposure to physiological concentrations (20, 39).
As KD intake of fat is consistent with the high fat diet protocols of
Stadler’s study (38), we should have expected detrimental effects
on fecal water toxicity isolated after KD treatment.

Owing to the fact that high inter-individual variability of fecal
water activity in the population is well-known (40) and previous
studies have suggested that the evaluation of dietary intervention
on FW toxicity should be assessed within the same subject
(20, 41), we performed the Trypan blue test and comet assay
measurements using basal data as the reference value. The results
showed that the majority of samples presented medium fecal
water genotoxicity, consistently with data detected in healthy
Italian people (19). Only one subject displayed the highest
cytotoxicity and consequently genotoxicity. This result, although
suggesting a possible altered condition of intestinal environment,
is in accordance with the published data, reporting that 15%
of Italians are classified with high FW toxicity (19). Moreover,
we found a statistically significant decrease in genotoxicity level
after 1 month of KD. Although surprisingly, the results should
be attributed to the strict control of dietary intake, consequently
to the adoption of the KD, that favors gut well-being; otherwise
the overall better health condition of these patients after KD,
should have positively influenced the gut environment. In this
study, we found that the classic KD seemed able to affect the
gut environment by altering metabolites production. Indeed, we
found lower SCFA levels after 1month of KD, probably due to the
low fermentable carbohydrate intake with KD or the reduction
of fermenting bacteria, without adverse effects on FW cyto- and
geno-toxicities. The obtained results sustain the hypothesis of

the multistep impact of the KD on human health, extending its
influence, beside the gut environment, to a systemic level and
justifying further studies.

Health care professionals should be educated on the important
role of dietary choices in modulating gut microbiota for
therapeutic purposes. The maintenance of a healthy gut
microbiota, via nutrition and use of food supplements, could
lead to the reduction of the metabolic risk associated with
unbalanced diets (42). There are some limitations that need
to be clarified. First, the small size and the wide age range
of the group of the participants was due to the difficulties
encountered during subject recruitment. Besides the rarity of the
pathologies considered, most of the patients affected by drug-
resistant epilepsy did not have fecal continence, thus they were
not eligible for the study. Secondly, it would have been interesting
to evaluate the effect of KD on the human gut after a further
follow-up, as other studies (3, 7) have reported a re-establishment
of the dysbiosis condition after several weeks of ketogenic dietary
treatment. Despite these limitations, which must be considered
when interpreting the results, this study suggests that KD has
an impact on the human gut, highlighting the need for further
research to better investigate the state of dysbiosis and optimize
the therapy. For instance, it may be reasonable to suggest a
supplementation of probiotics and/or prebiotics to potentially
prevent microbiota dysfunction.
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