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Fully self-consistent charge-exchange quasiparticle random-phase approximation and its
application to isobaric analog resonances
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A microscopic model aimed at the description of charge-exchange nuclear excitations along isotopic chains
which include open-shell systems is developed. It consists of the quasiparticle random phase approximation
(QRPA) made on top of Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-BCS). The calculations are performed by
using the Skyrme interaction in the particle-hole channel and a zero-range, density-dependent pairing force in
the particle-particle channel. At variance with the (many) versions of QRPA which are available in the literature,
in our work special emphasis is put on the full self-consistency. Its importance, as well as the role played by
the charge-breaking terms of the nuclear Hamiltonian, like the Coulomb interaction, the charge symmetry and
charge independence breaking (CSB-CIB) forces and the electromagnetic spin-orbit, are elucidated by means of
numerical calculations of the isobaric analog resonances (IAR). The theoretical energies of these states along
the chain of the Sn isotopes agree well with the experimental data in the stable isotopes. Predictions for unstable
systems are presented.
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I. INTRODUCTION

The significant lack of knowledge concerning many prop-
erties of the charge-exchange nuclear excitations contrasts
markedly with their importance for nuclear structure and
the impact which they have on many interesting physical
phenomena.

The charge-exchange transitions involve a change in N
and Z of the nucleus, keeping A fixed. They can take place
spontaneously, like in the well-known case of β decay, or
be induced by external fields when in a nuclear reaction a
given amount of excitation energy �E and angular momentum
�J is released to the nucleus. The spectra of charge-
exchange reactions, like (p,n) or (3He, t), are characterized
by the emergence of collective isovector (i.e., �T = 1)
giant resonances (IVGRs) in analogy with the non-charge-
exchange case [1]. However, a unifying picture of these �Tz =
±1 states is still, to a large extent, missing. For instance, the
�L = 0 charge-exchange isovector giant monopole resonance
(IVGMR) is one of the most elusive nuclear states, despite
a long series of experiments aimed at its identification [2];
at the same time, its knowledge would be important for
the determination of the ground state isospin mixing. Also
the higher multipoles, that is, the charge-exchange dipole,
quadrupole, and octupole resonances, are basically unknown.
This is mainly due to the lack of really selective probes:
In particular, the separation of the electric (i.e., �S = 0 or
“non-spin-flip”) and magnetic (i.e., �S = 1 or “spin-flip”)
modes is far from being trivial. On the other hand, a systematic
pattern of the energy and collectivity of these states would
shed light on the strong uncertainties concerning the isovector
part of the nucleon-nucleon (NN) effective interaction and the
symmetry part of the nuclear equation of state.

It has to be mentioned that knowing the properties of
the nuclear charge-exchange states allows us also to attack
other kinds of problems outside the realm of nuclear structure.
These states enter the description of double-β decay, and the

need for a reliable theory of this process is a long standing
problem. More generally, all the weak interaction processes
within atomic nuclei involve charge-exchange transitions as
far as charged currents are involved. We have in mind many
processes which are of interest for neutrino physics, like the
interaction of these peculiar particles with nuclei, and for
astrophysics, that is, not only the mechanisms which are
responsible for the evolution of neutron stars, but also the
β-decay of isotopes which lie on the r-process path of stellar
nucleosynthesis.

A significant exception to the unsatisfactory ignorance of
the charge-exchange IVGRs is provided by the availability
of many experimental data on the isobaric analog resonance
(IAR) and the Gamow-Teller resonance (GTR). The IAR is
the simplest charge-exchange transition, in which a neutron
is changed into a proton without any other variation of
the quantum numbers (that is, �J = �L = �S = 0). The
corresponding operator is

ÔIAR ≡
A∑

i=1

t−(i), (1)

namely, it is the usual Fermi, or isospin-lowering, operator.
In the Gamow-Teller case, the transition is accompanied by a
spin-flip (�L = 0, �J = �S = 1), and the operator is

ÔGTR ≡
A∑

i=1

�σ t−(i). (2)

Many data coming at an early stage from (p,n), and later
from other reactions, have shown that these resonances can be
systematically identified in the isotopes with neutron excess
(in which the corresponding t+ transitions are Pauli blocked).
The IAR consists of a single, very narrow peak, whereas
the GTR manifests itself with a broad bump and can also
be fragmented in different peaks. Experimentally, when the
incident projectile energy is increased, the excitation of the
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GTR is favored over the IAR; this experimental fact has
allowed to establish that the strengths of the spin-independent
and the spin-dependent components of the effective NN
interaction have a different behavior as a function of the energy.

From this rather general introduction, the motivation for
microscopic calculations of the charge-exchange states in
nuclei is already evident. We must add that one of the main
present interests in nuclear physics is the understanding of the
limits of nuclear stability, and of the exotic, very neutron-rich
(or proton-rich) nuclei, that is, of the systems with different
values of N − Z than those which characterize the valley
of stability. The experimental evidences about the isospin
properties of exotic nuclei are still rather scarce. In order
to make predictions in this delicate sector accurate calcula-
tions are called for, which do not make approximations by
neglecting terms of the nuclear Hamiltonian in an uncontrolled
way.

For nuclei with mass up to A ∼ 50, the shell model
(SM) calculations can be rather successful and are indeed
performed, also in cases of interest for applications. The
agreement with the experimental findings (like the GT strength
and/or the β-decay half-life) can be quite good [3]. However,
these calculations become too demanding, or impossible, for
heavier nuclei. Also, they have trouble if the space must
be large enough so to account for high-energy transitions;
these transitions can be induced, for instance, by neutrinos
which follow a supernova explosion. In Ref. [4] it has been
shown that for energies above 50 MeV the SM calcula-
tions may underestimate the strength of the charge-exchange
transitions.

The alternative choice is a mean-field based calcula-
tion which employs an effective NN interaction. In this
case, the ground state of the parent (N,Z) system is
obtained by means of a Hartree-Fock (HF) calculation,
extended to Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-
BCS) or Hartree-Fock-Bogoliubov (HFB) in the case of
open-shell nuclei where pairing is relevant. In the two cases,
respectively, the charge-exchange excited states in the (N ∓ 1,

Z ± 1) isobars can be obtained within the framework of the
linear response theory, that is, by using the random phase ap-
proximation (RPA) or its extension to the pairing case, namely
the quasiparticle RPA (QRPA). These are well-known theories,
whose general features can be found in many textbooks. How-
ever, there are only few examples, if any, of fully self-consistent
QRPA calculations—which constitute the proper scheme for
the analysis of long isotopic chains extending towards the
drip lines. In fact, self-consistency is a crucial issue if
the calculations are required to have predictive power far
from the experimentally known regions of the mass table.
Moreover, as we discuss below, self-consistency plays a
special role if the isospin symmetry and its breaking enters
the discussion. We repeat here that self-consistency means
that the residual particle-hole (p-h) and particle-particle (p-p)
residual forces, which enter the QRPA equations (cf. Sec. II),
are derived from the same energy functional from which the
HF-BCS of HFB equations describing the ground state are
obtained.

The first attempt of self-consistent QRPA on top of HFB
is found in Ref. [5]. The Skyrme zero-range force and a

zero-range pairing interaction are used, respectively, in the
mean-field and in the pairing channel to solve the HFB
equations in coordinate space (cf. also Ref. [6]). The associated
QRPA equations are solved in the canonical basis. The method
is applied to the calculation of Gamow-Teller β-decay half-
lives. These 1+ states are known to be sensitive only to the
T = 0 component of the residual p-p interaction, if pairing
is described by means of a zero-range force. In Ref. [5] it
is assumed that, since this T = 0 pairing does not manifest
itself in the HFB ground state of nuclei with N different from
Z by a few units, one is free to introduce it within QRPA in
a completely different way than the T = 1 pairing, without
any constraint related to self-consistency. The authors have
employed a finite-range interaction with free parameters: the
overall strength is fitted to reproduce some selected β-decay
experimental findings. The same approach is used in Ref. [7] to
analyze the performance of existing Skyrme parametrizations
in the case of the GT resonances, and to correlate it with
their ability to reproduce the values of the empirical Landau
parameters of infinite matter. It is also worth mentioning that
in a series of works, starting from [8], the β-decay strength has
been studied also in many deformed isotopes [9] by using an
approach which is based on Skyrme forces in the mean-field
channel but which is not self-consistent in the pairing one.

In the present paper, we discuss the implementation of
a fully self-consistent charge-exchange QRPA by putting
emphasis on aspects which were not considered in Refs. [5,7].
A first aspect is the issue of isospin invariance. We show that
the T = 1 component of the residual p-p force can be fixed
by exploiting this invariance. Our hypothesis is supported
by the absence of strong evidences coming from literature
which point to a clear need to differentiate the strengths
of the three components of the T = 1 pairing. Within this
assumption, we show that we can obtain results for the IAR
which are quite satisfactory when compared with experiment.
The IAR is a serious benchmark for every theoretical model,
because of its intimate relationship with the isospin symmetry
(cf., e.g., Ref. [10]). In fact, if the whole Hamiltonian H
commuted with isospin, and if one were able to solve H
exactly, the resulting IAR would be degenerate with the
parent ground state. Many of the approximation schemes
which are commonly used to solve the nuclear many-body
problem destroy this property of the Hamiltonian. HF and
HF-BCS belong to this category and introduce a spurious
isospin breaking (as soon as N �= Z in the case of HF).
Instead, it has been demonstrated that self-consistent RPA and
QRPA calculations restore the isospin symmetry and eliminate
any spuriousity [11], being in this sense “good” symmetry-
preserving approximations. Consequently, only within their
framework is it possible to assess the relative importance of
the physical contributions which are responsible for an explicit
isospin breaking: the Coulomb force, the electromagnetic
spin-orbit, and the other charge-symmetry breaking (CSB)
and charge-independence breaking (CIB) terms in the nuclear
Hamiltonian. The study of these issues in the case of the IAR
for the open-shell isotopes is an original feature of the present
work. Since we do not go beyond QRPA, we cannot discuss
the (narrow) width of the IAR. The extensions of RPA and
of the normal, non-charge-exchange QRPA, intended to take
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into account the coupling with more complex configuration
and therefore to describe the spreading width of the reso-
nances, are described elsewhere (see the references quoted in
Sec. II).

In our work, we employ zero-range forces. We are not
aware of self-consistent calculations of charge-exchange states
done by using finite-range interactions like Gogny. On the
other hand, in recent papers the relativistic mean-field (RMF)
effective Lagrangians, based on the description of nucleons
as Dirac particles which interact by means of the exchange of
effective mesons, have been used for the calculation of the IAR
and the GTR [12], as well as of β-decay rates [13]. The RMF
description of the ground state and of the excited nuclear states
emerges from rather different ingredients than those which
characterize the non-relativistic mean-field. It is known that
the isovector channel of the NN interaction, and consequently
the symmetry part of the energy functional, are quantitavely
not the same, generally speaking, in the two cases (the
symmetry energy at saturation and its derivatives are generally
larger in the relativistic case). In the relativistic calculations
of the spin and isospin excitations the pion-exchange is very
important; but this degree of freedom is not present in the
ground state description because of parity conservation. On the
other hand, in the case of RMF the spin-orbit is automatically
considered, at variance with the non-relativistic case. Finally,
we are not aware of attempts to include CSB and CIB forces
in the RMF calculations. All this should be kept in mind when
comparing our results with those of Ref. [12].

II. THEORETICAL FRAMEWORK

As mentioned in the previous section, charge-exchange
RPA and QRPA are well-known and described in textbooks.
We try here to recall only the basic elements, or some details
which are useful for the following discussion.

In the case of charge-exchange RPA, self-consistent calcu-
lations have been available for many years. In particular, the
first application to the case of the IAR can be found in Ref. [14].
Extensive calculations of the response to different multipole
operators, made by using the coordinate space formulation
of RPA with proper treatment of the particle continuum, but
dropping for simplicity some terms of the residual interaction,
are reported in Ref. [15]. As we have recalled in the Intro-
duction, it is well known that mean-field calculations of this
kind cannot reproduce the total width of the resonances, but
only the escape width if the continuum is correctly taken into
account. The spreading width, associated with the coupling of
the simple p-h configurations to the more complex states, of
two particle-two hole (2p-2h) character, can be described only
by diagonalizing the effective Hamiltonian in a larger model
space than the one of RPA. A microscopic model suited for
this purpose has been developed in Refs. [16,17]. In Ref. [18]
the importance of CSB and CIB forces for the IAR width has
been studied.

In the case of the QRPA, most of the charge-exchange
calculations performed so far make use of two separable p-h
and p-p residual interactions (having, as a rule, the same
functional form and two different overall parameters gph and

gpp), as in the pioneering work by Halbleib and Sorensen [19],
where the formalism has been developed for the first time.

We start by solving the HF-BCS equations in coordinate
space by using a radial mesh extending up to 20 fm (with a
step of 0.1 fm). The HF equations contain the Skyrme NN
interaction and we have chosen in this work the parametriza-
tion SLy4 [20], which has been determined by trying to retain
many of the advantageous features of the previous versions of
the Skyrme force, as well as by fitting the equation of state of
pure neutron matter obtained by means of realistic forces. This
latter characteristic should justify its use for systems outside
the valley of stability. The BCS equations are solved, as usual,
in a limited space: only the levels which correspond to the
82–126 neutron shell are included. The pairing force that we
have used is of the type

V = V0


1 −


�

(
�r1+�r2

2

)
�c




γ

 δ(�r1 − �r2). (3)

The parameter γ is fixed to one for the sake of simplicity.
With the same spirit, �c is set at 0.16 fm−3. The strength
V0 has been determined by requiring a reasonably good
agreement between the theoretical and empirical values of the
pairing gaps � along the whole series of isotopes under study.
This agreement, when V0 is equal to our adopted value of
680 MeV fm3, is shown in Fig. 1. We notice in this context
that a rather similar pairing force, having V0 = 625 MeV fm3,
has been used independently by other groups to carry out
large-scale, systematic calculations of the pairing gaps and
of the rotational bands (see Ref. [21] and references therein).
It is known that the HFB treatment is more coherent than
the HF-BCS one; however, qualitatively important differences
between the results of the two methods show up only in the
case of weakly bound nuclei, which will not be considered in
the present study.

When the ground state is obtained, together with the filled
or partially occupied states lying within the pairing window, a
number of unoccupied states (which have occupation factors
v2 strictly equal to zero) are calculated by using spherical
box boundary conditions. This means that our continuum is
discretized. For every value of (l, j ), we calculate unoccupied
states with six increasing values of n. The dimension of the
space has been checked by looking at the results for the energy
and the strength of the IAR, which have been found to be
stable when we enlarge the space, by considering in some
cases up to ten increasing values of n. We have checked that
also the N − Z sum rule is accurately reproduced. In this
configuration space, the QRPA matrix equation written on the
basis made up with the two quasiparticle states having good
angular momentum and parity Jπ , reads

(
A B

−B −A

)(
X(n)

Y (n)

)
= En

(
X(n)

Y (n)

)
. (4)

In this formula, En is the energy of the nth QRPA state in
the parent nucleus, while X(n), Y (n) are the corresponding
forward and backward amplitudes. The matrices A and B, in the
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FIG. 1. The values of the pairing gaps � in the Sn isotopes. The open squares correspond to the empirical values, extracted by attributing
to the isotope with N neutrons the value which results from the three-point formula centered in N + 1. The black squares correspond to the
theoretical results: in this case, the values of the state-dependent HF-BCS pairing gaps �i are averaged in an energy interval centered at the
neutron Fermi energy and having a width of ±5 MeV.

angular momentum coupled representation, have the explicit
form

Apn,p′n′ = (Ep + En)δpp′δnn′

+V
(J )
pnp′n′(upunup′un′ + vpvnvp′vn′)

+W
(J )
pnp′n′ (upvnup′vn′ + vpunvp′un′ ), (5)

Bpn,p′n′ = −V
(J )
pnp′n′(upunvp′vn′ + vpvnup′un′ )

+W
(J )
pnp′n′ (upvnup′vn′ + vpunvp′un′ ).

Here, the indices p and p′ (n and n′) refer to proton (neutron)
quasiparticles. E is their energy, whereas u and v are the usual
BCS occupation factors. V (J ) and W (J ) indicate, respectively,
the coupled p-p and p-h matrix elements. The p-h matrix
elements are derived from the Skyrme part of the energy
functional: all the terms are considered, including the two-
body spin-orbit.

The p-p matrix elements, when consistently derived from
the energy functional, are those of the bare force (3): in fact,
no rearrangement terms show up if we do not impose any
dependence on the anomalous density in the force itself. The
isospin invariance that we have assumed, demands that the
T = 1 component of the pairing force is the same in the three
channels: neutron-neutron, proton-neutron, and proton-proton.
In the present case, since we deal with the Sn isotopes which
have magic proton number, there is no proton pairing in the
ground state. Also, we have neglected proton-neutron pairing
in the ground state: in fact, this may be important only in nuclei
having N ∼ Z and we have considered Sn isotopes in the range

104 � A � 132. However, the proton-neutron T = 1 pairing
force enters the QRPA equations (in the V matrix elements)
and we can say that we have preserved the self-consistency in
the pairing channel, in the same way as in the p-h one.

The CSB and CIB forces are included in our HF-BCS
iterative procedure. These forces are parametrized as in
Ref. [22], where they have been cast in a form similar to that
of the Skyrme interaction. They had been already employed,
under the form of a Yukawa function in Ref. [23] and they
have been shown to reproduce well the correct mass number
dependence of the Coulomb displacement energies, as well as a
number of values of isospin mixing in the ground state. Finally,
they turned out to be important to account for the IAR width in
208Pb [18]. For all these reasons, we use these parametrizations
in the present work. Because of their operatorial form, they do
not add any contribution to the p-h force in the RPA or QRPA.
The electromagnetic spin-orbit is quite small: consequently,
the associated energy shift has been added to the HF-BCS
results using first-order perturbation theory.

III. RESULTS

The systematic trend of the IAR energies in the nuclei
we have considered, 104–132Sn, is plotted in Fig. 2. The
energies are obtained within QRPA, by including all the
terms mentioned in the previous section: only the proton-
rich 104,106Sn have been calculated using the quasiparticle
Tamm-Dancoff approximation (QTDA) because of QRPA
instabilities. Our findings are compared with the experimental
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FIG. 2. Systematic trend of the IAR energies in the stable and unstable Sn isotopes. The theoretical results, displayed by means of black
circles, are compared with the experimental data (open squares) whenever these are available. It must be noticed that the energies are referred
to the daughter nuclei.

energies quoted in Ref. [24], where the results of the (3He,t)
reaction performed at an incident beam energy of 200 MeV are
reported. It can be immediately realized that the agreement is
fairly good. The difference between theory and experiment is
typically ≈200 keV in the series of isotopes which have been
measured, namely 112–124Sn (with the exception of the two
extremes 112Sn and 124Sn where this difference is larger). It
is remarkable that another microscopic, self-consistent model
like RMF—which starts from a quite different description of
the nuclear mean-field and its oscillations as already stressed
in the Introduction—produces a similar numerical outcome
[12]. The results for the IAR in the unstable nuclei do constitute
a useful guideline for possible future experiments.

Concerning the results in the (N + 1, Z − 1) channel,
unfortunately few experimental measurements are available
for a comparision with our model. The only exception is the
case of 120Sn. In Fig. 3 we plot for this nucleus the response
to the IVGMR operator,

ÔIVGMR ≡
A∑

i=1

r2
i t+(i), (6)

as a function of the energy with respect to the ground
state of 120In. The continuous curve has been obtained by
averaging the QRPA discrete strength distribution with a
1 MeV width Lorentzian curve. We can compare our results
with three experiments carried out by means of different
nuclear reactions. By using (π−, π0) at 165 MeV [25], (13C,
13N) at 50 MeV/ nucleon [26] and (7Li, 7Be) at 350 MeV [27]
it has been shown, more or less ambiguously, that a 0+ state
should lie, respectively, at 16.0 ± 2.2 MeV, 14.7 ± 1 MeV, and

17.0 ± 1.6 MeV. In our calculation most of the strength is found
indeed in the energy region between 12 and 20 MeV. Our main
peak seems compatible with the (7Li, 7Be) result.

Coming back to the case of the IAR, we analyze in more
detail our results in order to clarify the most important features
of our theoretical description. Firstly, in analogy with the
conclusion drawn in Ref. [12], we show that also in the present
case the consistent treatment of pairing correlations is very
important. In Fig. 4 we display three different results obtained
for the IAR strength distribution in 114Sn. Not only does the
residual proton-neutron pairing force play a crucial role to
concentrate the IAR in a single peak; it also affects the IAR
energy in an important way, that is, it induces a downward
shift of about 500 keV. In the whole isotopic series we have
studied, the peak associated with the IAR exhausts typically
a percentage between 95% and 98% of the N − Z sum rule.
Only in the isotope 108Sn the IAR is found to be split in two
peaks.

Having assessed the importance of the proton-neutron
residual pairing, we have also tried to understand the role
played by various other correlations present in our model. For
this purpose, we display in Fig. 5 results for the IAR energy in
120Sn obtained by making different approximations. The first
number on the left side refers to a simple TDA calculation,
without any pairing, without the spin-orbit term in the residual
p-h force, and without the other terms which have been
often neglected (electromagnetic spin-orbit, CSB, and CIB).
This would be the simplest possible calculation, analogous to
that performed for many closed-shell nuclei in the previous
literature. The inclusion of RPA ground state correlations do
not very much affect the IAR, as it is expected for a nucleus
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FIG. 3. Strength function as-
sociated with the IVGMR op-
erator (6) in 120In. The discrete
QRPA peaks have been smoothed
by using a Lorentzian averaging
(the Lorentzian width is 1 MeV).
See the text for a comparison with
the available experimental results.

which has neutron excess; the effect is larger if we move
towards the neutron-deficient isotopes. Pairing correlations are
more important. We have discussed above that they have to be
included consistently (we repeat that a calculation with pairing

only in the ground state would lead to a fragmented IAR):
moreover, their inclusion shifts the IAR downwards by about
150 keV. At this stage, the QRPA result would differ from
the experimental finding by about 500 keV. This would be
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FIG. 4. Importance of the residual proton-neutron p-p interaction for the collectivity of the IAR. The left, center, and right panels refer,
respectively, to RPA, QRPA without that term in the residual force, and complete QRPA. The result is analogous to the one shown in
Fig. 5 of Ref. [12].
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FIG. 5. Result for the IAR energy in 120Sn obtained using different approximations. The values labeled by � represent the energy shifts of
the IAR (in keV) at each step. See the text for a detailed discussion.

approximately true for all the stable isotopes. The two-body
spin-orbit have a non-negligible effect (about 100 keV) in
pushing the IAR energy towards the experimental value. Even
more important, from a quantitative point of view, are in this

case the CSB and CIB forces which are inserted in the HF-BCS
calculation (the fact that they have opposite sign has been
already remarked [10]). Finally, we have included for the sake
of completeness the one-body electromagnetic spin-orbit. This
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FIG. 6. Effect of the overall pairing strength V0 which defines the effective force (3) on the pairing gap (upper panel) and the IAR energy
(lower panel) in 116Sn. The experimental values are marked by horizontal full lines, whereas the vertical dashed line indicates the adopted value
of V0.
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term has also been calculated long time ago (see, e.g, p. 494 of
Ref. [28]) and it is known to have, as a rule, an effect of only
a few tenths of keV on the Coulomb displacement energies.
Because of its j-dependence, it may become significant in
the case of pure transitions associated with large angular
momentum, as it has been stressed in Ref. [29]. We should add
that we have checked that the contributions stemming from
the CSB, CIB, and the electromagnetic spin-orbit are almost
constant over the isotopic chain. In this sense, the numbers
presented in Fig. 5 can be considered as typical. As far as the
two-body spin-orbit is concerned, in the middle of the chain the
associated repulsive contribution is maximum; at the extremes
of the chain it becomes smaller or even attractive (for instance,
in 132Sn we find an attractive contribution associated with the
diagonal h11/2 matrix element).

Since many Skyrme parametrizations are available in the
market, we would like to mention that our results are not
very sensitive to the choice of a specific set. In fact, we
have seen that the IAR energy of 120Sn varies by less than
100 keV if we calculate it either using the force SLy4, or
SIII [30] or SGII [31]. We have also performed a calculation
using the recently introduced SkO’ interaction [32], in view
of the possibility of testing it in the next future on the
systematics of spin states. In this case, the variation of the
energy, with respect to the result obtained by using SLy4, is
somewhat larger [33]. Also the effect of varying the pairing
strength V0 has been considered, and we refer to Fig. 6 for
the results obtained in the case of 116Sn (i.e., the isotope in
the middle of the 50–82 neutron shell). We can consider as
satisfactory that variations of V0 in the range ≈650–710 MeV
fm3, which lead to sizable(≈20%) variations of �, do not
seriously affect the energy of the IAR. We can quite generally
conclude that the choice of parameters, both of our p-h and
p-p forces, do not seriously affect our main conclusions on
IAR.

IV. CONCLUSIONS

Very few examples of microscopic, fully self-consistent
charge-exchange QRPA calculations exist (in contrast with the
non-charge-exchange case). This motivated the present work,
in which we have developed the method and analyzed some
specific issues: the relation between the isospin invariance and
the self-consistency in the pairing channel, and the role of
the usually neglected contributions in the mean-field. We have
applied our scheme for the calculation of the IAR along the
chain of the Sn isotopes. Only calculations based on RMF are
available for this case. We find that our nonrelativistic model
can account quite well for the experimental results.

We plan to extend our calculations, and make further
analysis of the charge-exchange states. This will be done for
different multipolarities, both in the non-spin-flip and spin-flip
sectors. It is hoped that the comparison with experimental
data, and with the outcome of other microscopic models, can
be instrumental in fixing rather general problems. In fact,
as stressed in our Introduction, many uncertainties plague
the isovector channel of the effective NN interaction, and
consequently the symmetry part of the nuclear equation of
state.

A possible improvement of our model consists in changing
the description of the nuclear ground state, which may be
calculated within full HFB instead of HF-BCS. This could
allow a better description in the case, for instance, of weakly
bound systems. Another open problem is the consideration
of the role played by the proton-neutron pairing. Literature
reflects the existence of many different thoughts about this
interesting issue; a full microscopic QRPA calculation in the
case in which the particles do not have a definite charge state
may probably be at present too demanding. Finally, we should
mention that the extension beyond mean-field of theories like
ours remains to be done.

[1] M. N. Harakeh and A. M. van der Woude, Giant Resonances:
Fundamental High-Frequency Modes of Nuclear Excitation
(Oxford University Press, Oxford, 2001); P. F. Bortignon,
A. Bracco, and R. A. Broglia, Giant Resonances; Nuclear
Structure at Finite Temperature (Harwood Academic, New York,
1998).

[2] T. Ichihara, M. Ishihara, H. Ohnuma, T. Niizeki, Y. Satou,
H. Okamura, S. Kubono, M. H. Tanaka, and Y. Fuchi, Phys.
Rev. Lett. 89, 142501 (2002), and references therein; J. Guillot,
S. Galès, D. Beaumel, S. Fortier, E. Rich, G. Colò, A. M. van den
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