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Abstract: Linear separability, a core concept in supervised machine learning, refers to whether the
labels of a data set can be captured by the simplest possible machine: a linear classifier. In order to
quantify linear separability beyond this single bit of information, one needs models of data structure
parameterized by interpretable quantities, and tractable analytically. Here, I address one class of
models with these properties, and show how a combinatorial method allows for the computation,
in a mean field approximation, of two useful descriptors of linear separability, one of which is
closely related to the popular concept of storage capacity. I motivate the need for multiple metrics by
quantifying linear separability in a simple synthetic data set with controlled correlations between the
points and their labels, as well as in the benchmark data set MNIST, where the capacity alone paints
an incomplete picture. The analytical results indicate a high degree of “universality”, or robustness
with respect to the microscopic parameters controlling data structure.

Keywords: linear separability; storage capacity; data structure

1. Introduction

Linear classifiers are quintessential models of supervised machine learning. Despite
their simplicity, or possibly because of it, they are ubiquitous: they are building blocks of
more complex architectures, for instance, in deep learning and support vector machines,
and they provide testing grounds of new tools and ideas in learning theory and statisti-
cal mechanics, in both the study of artificial neural networks and in neuroscience [1–9].
Recently, interest in linear classifiers was rekindled by two outstanding results. First,
deep neural networks with wide layers can be well approximated by linear models acting
on a well defined feature space, given by what is called “neural tangent kernel” [10,11].
Second, it was discovered that deep linear networks, albeit identical to linear classifiers for
what concerns the class of realizable functions, allow it to reproduce and explain complex
features of nonlinear learning and gradient flow [12].

In spite of the central role that linear separability plays in our understanding of ma-
chine learning, fundamental questions still remain open, notably regarding the predictors
of separability in real data sets [13]. How does data complexity affect the performance of
linear classifiers? Data sets in supervised machine learning are usually not linearly separa-
ble: the relations between the data points and their labels cannot be expressed as linear
constraints. The first layers in deep learning architectures learn to perform transformations
that enhance the linear separability of the data, thus providing downstream fully-connected
layers with data points that are more adapted for linear readout [14,15]. The role of “data
structure” in machine learning is a hot topic, involving computer scientists and statistical
physicists, and impacting both applications and fundamental research in the field [16–22].

Before attempting to assess the effects of data specificities on models and algorithms
of machine learning, and, in particular, on the simple case of linear classification, one
should have available (i) a quantitative notion of linear separability and (ii) interpretable
parameterized models of data structure. Recent advances, especially within statistical
mechanics, mainly focused on point (ii). Different models of structured data have been

Entropy 2021, 23, 305. https://doi.org/10.3390/e23030305 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7745-8269
https://doi.org/10.3390/e23030305
https://doi.org/10.3390/e23030305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030305
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030305?type=check_update&version=2


Entropy 2021, 23, 305 2 of 21

introduced to express different properties that are deemed to be relevant. For example,
the organization of data as the superposition of elementary features (a well-studied trait of
empirical data across different disciplines [23–25]) leads to the emergence of a hierarchy in
the architecture of Hopfield models [26]. Another example is the “hidden manifold model”,
whereby a latent low-dimensional representation of the data is used to generate both
the data points and their labels in a way that introduces nontrivial dependence between
them [19]. An important class of models assumes that data points are samples of probability
distributions that are supported on extended object manifold, which represent all possible
variations of an input that should have no effect on its classification (e.g., differences in
brightness of a photo, differences in aspect ratio of a handwritten digit) [27]. Recently,
a useful parameterization of object manifolds was introduced that is amenable to analytical
computations [28]; it will be described in detail below. In a data science perspective, these
approaches are motivated by the empirical observation that data sets usually lie on low-
dimensional manifolds, whose “intrinsic dimension” is a measure of the number of latent
degrees of freedom [29–31].

The main aims of this article are two: (i) the discussion of a quantitative measure
of linear separability that could be applied to empirical data and generative models
alike; and, (ii) the definition of useful models expressing nontrivial data structure, and
the analytical computation, within these models, of compact metrics of linear separa-
bility. Most works concerned with data structure and object manifolds (in particular,
Refs. [8,27,28]) focus on a single descriptor of linear separability, namely the storage ca-
pacity αc. Informally, the storage capacity measures the maximum number of points that
a classifier can reliably classify; in statistical mechanics, it signals the transition, in the
thermodynamic limit, between the SAT and UNSAT phases of the random satisfiability
problem related to the linear separability of random data [32]. Here, I will present a more
complete description of separability than the sole storage capacity (a further motivation is
the discovery, within the same model of data structure, of other phenomena lying “beyond
the storage capacity” [33]).

2. Linear Classification of Data

Let us first review the standard definition of linear separability for a given data set. In
supervised learning, data are given in the form of pairs (ξµ, σµ), where ξµ ∈ Rn is a data
point and σµ = ±1 is a binary label. We focus on dichotomies, i.e., classifications of the
data into two subsets (hence, the binary labels); of course, this choice does not exclude
datasets with multiple classes of objects, as one can always consider the classification of
one particular class versus all the other classes. Given a set of points X = {ξµ}µ=1,...,m,
a dichotomy is a function φ : X → {−1,+1}m. A data set {(ξµ, σµ)}µ=1,...,m is linearly
separable (or equivalently the dichotomy φ(ξµ) = σµ, µ = 1, . . . , m, is linearly realizable) if
there exists a vector w ∈ Rn, such that

sgn

(
n

∑
i=1

wi · (ξµ)i

)
= σµ, µ = 1, . . . , m, (1)

where (ξµ)i is the ith component of the µth element of the set. In the following, I will
simply write w · ξµ for the scalar product appearing in the sgn function when it is obvious
that w and ξµ are vectors.

In machine learning, the left hand side of Equation (1) is the definition of a linear
classifier, or perceptron. The points x, such that w · x = 0 define a hyperplane, which
is the separating surface, i.e., the boundary between points that are assigned different
labels by the perceptron. By viewing the perceptron as a neural network, the vector w is
the collection of the synaptic weights. “Learning” in this context refers to the process of
adjusting the weight vector w so as to satisfy the m constraints in Equation (1). Because of
the fact that the sgn function is invariant under multiplication of its argument by a positive
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constant, I will always consider normalized vectors, i.e., both the weight vector w and data
points ξ will lie on the unit sphere.

A major motivation behind the introduction of the concept of data structure and the
combinatorial theory that is related to it (reviewed in Sections 5 and 6 below) is the fact
that the definition of linear separability above is not very powerful per se. Empirically
relevant data sets are usually not linearly separable. Knowing whether a data set is
linearly separable does not convey much information on its structure: crucially, it does
not allow quantifying “how close” to being separable or nonseparable the data set really
is. To fix the ideas, let us consider a concrete case: the data set MNIST [34]. MNIST is a
collection of handwritten digits, digitized as 28× 28 greyscale images, each labelled by
the corresponding digit (“0” to “9”). I will use the “training” subset of MNIST, containing
6000 images per digit. To simplify the discussion, I will mainly focus on a single dichotomy
within MNIST: that expressed by the labels “3” and “7”. The particular choice of digits is
unimportant for this discussion; I will give an example of another dichotomy below, when
subtle differences between the digits can be observed.

One may ask the question as to whether the MNIST training set, as a whole, is linearly
separable. However, the answer is not particularly informative: the MNIST training set
is not linearly separable [34]. But how unexpected is this answer? Can we measure the
surprise of finding out a given training set is or is not linearly separable? Intuitively, there
are three different properties of a data set that facilitate or hinder its linear separability:
size, dimensionality, and structure.

• Size. The number of elements m of a data set is a simple indication of its complexity.
While a few data points are likely linearly separable, they convey little information
on the “ground truth”, the underlying process that generated the data set. On the
contrary, larger data sets are more difficult to classify, but the information that is stored
in the weights after learning is expected to be more faithful to the ground truth (this is
related to the concept of “sample complexity” in machine learning [35]).

• Dimensionality. There are two complementary aspects when considering dimension-
ality in a data oriented framework. First, the embedding dimension is the number
of variables that a single data point comprises. For instance, MNIST points are em-
bedded in R784, i.e., each of them is represented by 784 real numbers. The embedding
dimension is n in Equation (1); therefore, n is also the number of degrees of freedom
that a linear classifier can adjust to find a separating hyperplane. Hence, one expects
that a large embedding dimension promotes linear separability. Second, the data set
itself does not usually uniformly occupy the embedding space. Rather, points lie on
a lower-dimensional manifold, whose dimension d is called the intrinsic dimension
of the data set. The concept of general position discussed below is related to the
intrinsic dimension; however, beyond that, I will not explicitly consider this type
of data complexity in this article (for analytical results on the linear separability of
manifolds of varying intrinsic dimension, see [27]).

• Structure. As I will show in a moment, the effects of size and dimensionality on
linear separability are easily quantified in a simple null model. Data structure, on the
other hand, has proved more challenging, and it is the main focus of the theory
described here. There is no single definition of data structure; different definitions are
useful in different contexts. A common characterization can be given like this: data
have structure whenever the data points ξµ and their labels σµ are not independent
variables. I will specify a more precise definition in Section 5. Intuitively, the data
structure can both promote or preclude linear separability. If points that are close
to one another tend to have the same label then linear separability is improved; if,
instead, there are many differently labeled points in a small region of space, then
linear separability is obstructed.
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Let us get back to the question “how surprising is it that MNIST is not linearly
separable?”. This question should be answered by at least taking into account the first
two properties described above, the size of the data set and its dimensionality, which are
readily computed from the raw data. In fact, the surprise, i.e., the divergence from what
is expected based on size and dimensionality, may be interpreted as a beacon of the third
property: data structure. I will show in the next section that the answer to our question is
“exceedingly unsurprising”. Yet, a slightly modified question will reveal that MNIST, albeit
unremarkable in it not being linearly separable, is exceptionally structured.

3. Null Model of Linear Separability

Let us consider a null model of data that fixes the dimension n and the size p. I use
a different letter (p instead of m), because it will be useful below to have two different
symbols for the size of the whole data set (m) and for the size of its subsets. Consider a data
set Zp = {(ξµ, σµ)}µ=1,...,p, where the vectors ξµ are random independent variables that
are uniformly distributed on the unit sphere, and the labels σµ are independent Bernoulli
random variables (also independent from every ξµ). These choices are suggested by a
maximum entropy principle, when only the parameters m and n are fixed. What is the
probability that a data set generated by this model is linearly separable? This problem was
addressed and solved more than half a century ago [36–38]; In Section 6 I will describe an
analytical technique that allows this computation. The fraction of dichotomies of a random
data set that are linearly realizable is

cn,p = 21−p
n−1

∑
i=0

(
p− 1

i

)
, (2)

where (··) is the binomial coefficient. Thus, a random (uniform) dichotomy has probability
cn,p of being linearly realizable. In this article, I will refer to the probability cn,p as the
separability, or probability of separation. A related quantity is the number of dichotomies
Cn,p = 2pcn,p (here, 2p is the total number of dichotomies of p points).

Figure 1 shows the sigmoidal shape of cn,p as a function of p at fixed n. The separa-
bility is exactly equal to 1 up to p = n (which pinpoints what is known as the Vapnik–
Chervonenkis dimension in statistical learning theory [35]), and it stays close to 1 up to a
critical value pc, which increases with n. At pc, the curve steeply drops to asymptotically
vanishing values, the more abruptly the larger is n. Rescaling the number of points p with
the dimension n yields the load α = p/n. As a function of α, the probability of separation
has the remarkable property of being equal to 1/2 at the critical value (that is known as
the storage capacity) αc = pc/n = 2, independently of n. Such an absence of finite size
corrections to the location of the critical point is an unusual feature, which will be lost
when we consider structured data below. In the large-n limit, cn,αn converges to a step
function that transitions from 1 to 0 at αc.

How large is the probability of separation cn,m that is given by Equation (2) when
one substitutes the sample size m = 12,000 and the dimensionality n = 784, i.e., those
of the dichotomy “3”/“7” in the data set MNIST? The probability, as anticipated, is ut-
terly small, less than 10−2000: it should be no surprise that MNIST is not linearly sep-
arable. This comparison is not completely fair, because of the assumption, underlying
Equation (2), of general position. The concept of general position is an extension of that
of linear independence, which is useful for sets larger than the dimension of the vector
space. A set X of vectors in Rn is in a general position if there is no linearly dependent
subset X′ ⊆ X of cardinality less than or equal to n. MNIST is quite possibly not in general
position. To make sure that it is, I downscaled each image to 10× 10 pixels and only
considered 1000 images per class (to allow for faster numerical computations), and applied
mild multiplicative random noise, by flipping 5% of the pixels around the middle grey
value (see Figure 2); I will refer to this modified dataset as “rescaled MNIST”. Running
the standard perceptron algorithm on rescaled MNIST did not show signs of convergence
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after 105 iterations, which indicated that the data set is likely not linearly separable. For
m = 2000 and n = 100, the separability cn,m is less than 10−400.
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Figure 1. (Top left) The probability of separation, Equation (2), as a function of the number of points
p for three values of the embedding dimension n. (Top right) As a function of the load α = p/n,
the probability of separation converges, for large n, to a step function. (Bottom) Depending on
the values of n and p, a data set being separable or nonseparable can convey information about its
structure. The location pc and the width ∆p of the transition region are the two main descriptors of
the shape of a separability curve.

The null model provides a simple concise interpretation of the linear separability of a
given data set, given its size m and dimensionality n, in terms of 5 possible outcomes (see
Figure 1, bottom panel):

1. The set is linearly separable and it lies in the region where cn,m ≈ 1. Separability here
is trivial: almost all data sets are separable in this region, provided that the points are
in general position.

2. The set is not linearly separable and it lies in the region where cn,m ≈ 1. The only way
this can happen for m ≤ n is if the points are not in a general position. For m > n,
but still in this region, the lack of separability could also be attributed to a non-trivial
data structure.

3. The set is not linearly separable and it lies in the region where cn,m ≈ 0. Almost no
dichotomy is linearly realizable in this region; therefore, the lack of separability is
trivial here.

4. The set is linearly separable and it lies in the region where cn,m ≈ 0. This situation
is the hallmark of data structure. The fact that the data set happens to represent one
of the few dichotomies that are linearly realizable in this region indicates a non-null
dependence between the labels and the points in the data set.

5. The set lies in the region where cn,m is significantly different from 0 and 1. Here,
knowing that a data set is linearly separable or not is unsurprising either way. The
location and the width of this “transition region” are the two main parameters that
summarize the shape of the separability curve. In Section 6 I will show how to
compute these quantities within a more general model that includes data structure.
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Figure 2. Linear separability (y axis) for subsets of varying size p (x axis), computed in a modified
MNIST data set, generated by downscaling and applying multiplicative noise (left and center panels),
and in synthetic data sets generated from a mixture of two normal distributions (right panel). (Left
panel) If the labels are reshuffled, MNIST data (pink area) almost perfectly follow the prediction of
the null model (blue line). (Center panel) The separabilities of two representative dichotomies in the
data set (digits “4” versus “9”, and digits “3” versus “7”) are far removed from the null model, as is
apparent from the location (and the width) of their transition regions (green areas). The shaded areas
denote the 95% variability intervals. (Right panel) By increasing the distance δ between the means
of the two Gaussian distributions that define the synthetic data set (here in n = 20 dimensions), the
separability increases. For δ = 0 (squares), one recovers the prediction of the null model (blue line).
Error bars (not shown) are approximately the same size as the symbols.

4. Quantifying Linear Separability via Relative Entropy

In order to make a step further in the characterization of the linear separability of
(rescaled) MNIST, we can consider its subsets. While there is only one subset with m = 2000
points (focusing on the dichotomy “3”/“7”), and only one yes/no answer to the question
of its linear separability, there are many subsets of size p < m, which can provide more
detailed information. To quantify such information, let us formulate a more precise notion
of surprise with respect to a model expressing prior expectation [39]. Let us again fix an
empirical data set Zm = {(ξµ, σµ)}µ=1,...,m and fix p ≤ m. Now, consider the set Np of all
subsets ν = {ν1, . . . , νp} of p indices νi ∈ {1, . . . , m}, with νi 6= νj for i 6= j. Additionally,
consider the set Σp = {−1,+1}p of all dichotomies σ̂ = {σ̂1, . . . , σ̂p} of p elements. (I use
curly braces for both sets and indexed families.) For each pair

(
ν ∈ Np, σ̂ ∈ Σp

)
, we can

construct the corresponding synthetic dataset

Z(ν, σ̂) = {(ξνi , σ̂i)}i=1,...,p; (3)

similarly, for each ν ∈ Np, we can construct the corresponding subset Zemp(ν) of the
empirical data set Zm:

Zemp(ν) = {(ξνi , σνi )}i=1,...,p. (4)

The main tool for defining the surprise will be probability distributions on a space Ωp,
which is defined as the union of all synthetic data sets:

Ωp =
⋃

(ν,σ̂)∈Np×Σp

Z(ν, σ̂). (5)
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The empirical space Ωemp
p ⊆ Ωp can be defined similarly:

Ωemp
p =

⋃
ν∈Np

Zemp(ν). (6)

Essentially, Ωemp
p contains all collections of p point/label pairs in the data set Zm, while

Ωp contains all the collections of p point/label pairs where the p points are chosen among
the ones in the data set and the labels are all possible 2p combinations on those p points.
Notice that Ωp and Ωemp

p have different cardinalities: |Ωemp
p | = Mp and |Ωp| = 2p Mp,

where Mp = (m
p) is the number of subsets of size p in the data set.

Interpreted as a probability distribution on Ωp, the empirical data are uniform dis-
tributed on Ωemp

p ; likewise, the null model defined above induces, by conditioning on the
points {ξµ}, the uniform distribution on the whole Ωp. In general, not every data set in Ωp

(nor in Ωemp
p ) is linearly separable. Let us define the subsets for which this property holds:

Ω̂p =
{

Z ∈ Ωp : Z is linearly separable
}

Ω̂emp
p =

{
Z ∈ Ωemp

p : Z is linearly separable
}

.
(7)

Let us call Qp and Qemp
p the uniform probability distributions on Ω̂p and Ω̂emp

p , respec-

tively. The Kullback–Leibler (KL) divergence DKL

(
Qemp

p ||Qp

)
from Qp to Qemp

p (or
relative entropy)

DKL

(
Qemp

p ||Qp

)
= ∑

z∈Ωp

Qemp
p log

Qemp
p

Qp
(8)

then measures the surprise carried by the data with respect to the prior belief regarding
its linear separability expressed by Qp. Because Qp and Qemp

p are defined on sets (Ωp and
Ωemp

p ) of different cardinality, I define the (signed) surprise Sp by subtracting the reference
KL divergence between the uniform distributions on these spaces:

Sp = DKL

(
Qemp

p ||Qp

)
− log

(∣∣Ωp
∣∣/∣∣∣Ωemp

p

∣∣∣)
= DKL

(
Qemp

p ||Qp

)
− p log 2.

(9)

Notice that the summand in the definition of KL divergence, Equation (8), is only nonzero
for z ∈ Ω̂emp

p ; one then obtains

Sp = ∑
z∈Ω̂emp

p

1
|Ω̂emp

p |
log

|Ω̂p|
|Ω̂emp

p |
− p log 2

= log
|Ω̂p|
|Ω̂emp

p |
− p log 2

= log
cn,p Mp2p

|Ω̂emp
p |

− p log 2

= log cn,p − log cemp
n,p ,

(10)

where I have defined the empirical separability cemp
n,p as the fraction of linearly separable

subsets of size p in Zm:

cemp
n,p =

|Ω̂emp
p |

Mp
. (11)

The signed surprise Sp is positive (respectively negative) when the fraction of linearly
separable subsets of size p is smaller (respectively larger) than expected in the null model.
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Separability in a Synthetic Data Set and in MNIST

The discussion above encourages the use of the empirical separability cemp
n,p as a

detailed description of the linear separability of a data set in an information theoretic
framework. Despite being one of the simplest benchmark data sets used in machine
learning, MNIST is already rather complex; its classes are known to have small intrinsic
dimensions and varied geometries [15]. Therefore, before turning to MNIST, let us consider
a simple controlled experiment, where the data are extracted from a simple one-parameter
mixture distribution, defined, as follows. Let σ ∈ {−1,+1} be a Bernoulli random variable
with parameter 1/2, which generates the labels. The data points ξ ∈ Rn are extracted
from a multivariate normal distribution with σ-dependent mean. The joint probability
distribution of each point-label pair is

P({ξ, σ}) = 1
2

fN (µ(σ),I)(ξ), µ(σ) =

(
σ

δ

2
, 0, . . . , 0

)
, (12)

where fN (µ,I) is the probability density function of the multivariate normal distribution
with mean µ and identity covariance matrix. The parameter δ measures the distance
between the two means: δ = ‖µ(σ = +1)− µ(σ = −1)‖. Figure 2 shows the empirical
separability cemp

n,p , as a function of the size p of the subsets, for such a data set containing
m = 200 data points in n = 20 dimensions. When δ = 0, all of the data points are extracted
from the same distribution, regardless of their labels: the data have no structure and the
separability follows the null model, as in Equation (2). While δ increases, equally labelled
points start to cluster, and the separability at any given p > n increases, as expected
from the qualitative discussion in Section 2. It is interesting to note that the width of the
transition region (∆p in Figure 1) is also an increasing function of δ. This dependence was
not expected a priori; In Section 7, I will show that the theory of structured data presented
below allows for explaining this behavior.

Let us now compute cemp
n,p for the rescaled MNIST data set. Figure 2 shows the results

of three numerical experiments, as compared with the null model prediction (2), and elicits
four observations. (i) MNIST data are significantly more separable than the null model. For
instance, the signed surprise, with respect to the null model, of the empirical dichotomies
separating the digits “3” and “7” takes the values S400 ≈ −55, S500 ≈ −100, S600 ≈ −150.
(ii) Even within the same data set, different classifications can have different probabilities
of separation; the dichotomy separating the digits “4” and “9” in rescaled MNIST is closer
to the null model than the dichotomy of “3” and “7” (e.g., S400 ≈ −48). (iii) Destroying the
structure by random reshuffling of the labels makes the separability collapse onto that of
the null model; the surprise Sp in this case is, at most, of order 10−1 for all p. (iv) Similarly
to what happens in the more controlled experiment with the synthetic data above, the
separability curve of the “3”/“7” dichotomy, which has its transition point at a larger value
of p than the “3”/“9” dichotomy, also has a wider transition region.

This analysis shows that, contrary to what appeared by looking solely at the whole
data set, the dichotomies of rescaled MNIST are much more likely to be realized by a linear
separator than random ones. In relation to the separability as a function of p, the null
model has a single parameter, the dimension n. Is it possible to interpret the empirical
curves as those of the null model with an effective dimension neff? Increasing n has the
effect of increasing proportionally the value pc because the storage capacity is fixed to
αc = 2. However, while fixing neff ≈ 280 indeed aligns the critical number of points pc with
the empirical one, it yields a much smaller width of the transition region (∆p ≈ 80 for the
null model and ∆p ≈ 300 in the data). Furthermore, notice that the values of the surprise
for the “3”-vs.-“7” and “4”-vs.-“9” experiments are not very different. The reason is the
ingenuousness of the null model, which hardly captures the properties of the empirical
sets, and whose term cn,p therefore dominates in Sp. These observations, together with the
motivations that are discussed above, are a spur for the definition of a more nuanced and
versatile model of the separability of structured data.
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5. Parameterized Model of Structured Data

Fixing a model of data structure in this context means fixing a generative model
of data. Here, I use the model first introduced in [28]. This should not be considered
to be a realistic model of real data sets. It is useful as an effective or phenomenological
parameterization of data structure. It has two main advantages: (i) it allows the analytical
computation, within a mean field approximation, of the probability of separation cn,p; and,
(ii) it naturally points out the relevant geometric-probabilistic parameters that control the
linear separability.

The model is expressed in the form of constraints between the points and the labels.
The synthetic data set is constructed as a collection of q “multiplets”, i.e., subsets of k points
{ξ1

µ, . . . , ξk
µ} with prescribed geometric relations between them, and such that the labels

are constant within each multiplet:

Zq =
{(

ξ1
1, σ1

)
, · · · ,

(
ξk

1, σ1

)
,(

ξ1
2, σ2

)
, · · · ,

(
ξk

2, σ2

)
,

...(
ξ1

q , σq

)
, · · · ,

(
ξk

q, σq

)}
.

(13)

The total number of point/label pairs is p = qk. Observe that, if one considers the set of all
points X = {ξ i

µ}, not every dichotomy of X is admitted by the parameterization of Zq in
Equation (13). If a dichotomy assigns different labels to two elements of the same multiplet,
it cannot be written in this form. The dichotomies that agree with the parameterization of
Equation (13) are termed as admissible.

The relations between the points ξ i
µ within each multiplet can be fixed, for instance,

by prescribing that the k(k− 1)/2 overlaps ρi,j = ξ i
µ · ξ

j
µ be fixed and independent of µ

(remember that |ξ i
µ| = 1). The statistical ensemble for Zq, as specified by the probabil-

ity density dp(Zq), is chosen in accordance with the maximum entropy principle: it is
the uniform probability distribution on the points and the labels independently, given
the constraints:

dp(Zq) =
1

Z
(
n, q, {ρi,j}

) ∏
µ=1,...,q
i=1,...,k

dξ i
µ δ
(∣∣∣ξ i

µ

∣∣∣− 1
)

∏
a>b=1,...,k

δ
(

ρa,b − ξa
µ · ξb

µ

)
, (14)

where Z
(
n, q, {ρi,j}

)
is the partition function, fixed by the normalization condition

∑
{σµ}

∫
Rnqk

dp(Zq) = 1. (15)

The null (unstructured) model of Section 3 is recovered in this parameterization in
two different limits. First, if k = 1 each multiplet is composed of a single point, and no
contraints are imposed other than the normalization. Second, for any k, if all overlaps are
fixed to 1, then all points in each overlap coincide, ξ1

µ = ξ2
µ = · · · = ξk

µ, and the model is
equivalent to the null model with p = q.

The theory that will be described below depends on a natural set of parameters ψm,
with m = 2, . . . , k. These quantities are conditional probabilities of geometric events that
are related to single multiplets. They characterize the properties of the multiplets that are
relevant for the linear separability of the whole set. Consider a multiplet X = {ξ1, . . . , ξk}.
ψm is a measure of the likelihood that a subset X′ ⊆ X of m ≤ k points is classified
coherently by a random weight vector. More precisely, ψm is the probability that the scalar
product w · ξ has the same sign for all ξ ∈ X′, being conditioned on the event that w · ξ has
the same sign for all ξ ∈ X \ {ξ?}. This probability is computed in the ensemble where the
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vector w is uniformly distributed on the unit sphere Sn−1, X′ is uniformly distributed on
the subsets of X of m points, and ξ? is uniformly distributed on the elements of X′. This is
coherent with the mean field nature of the combinatorial theory, which assumes uniformly
distributed and uncorrelated quantities (see below).

In a few cases, ψm can be computed explicitly. For instance, for a doublet {ξ, ξ̄} at
fixed overlap ρ = ξ · ξ̄,

ψ2(ρ) =
2
π

arctan

√
1 + ρ

1− ρ
. (16)

This is the probability that a random hyperplane does not intersect the segment that
connects two points at overlap ρ. It is an increasing function of ρ, from ψ2(−1) = 0 to
ψ2(1) = 1. If k > 2, then the quantity that enters the equations will be the mean of ψ2(ρ)
over all the pairs in the multiplet. It can be shown that ψm, as a function of the overlaps ρi,j,
does not explicitly depend on the dimensionality n [28]; this property greatly simplifies the
analytical computations.

In summary, the parameters of the model are the following: the dimensionality n,
the multiplicity k, and the k− 2 probabilities ψm. Actually, only two special combinations of
the parameters ψm emerge as relevant from the theory that is presented in the next sections:

Ψ1 =
k

∑
r=2

ψr, (17)

Ψ2 =
k

∑
r=2

r−1

∑
l=2

ψrψl . (18)

I will call them structure parameters. Other functions of the probabilities ψm are relevant
for other purposes, for instance, when considering the large-p asymptotics of cn,p, which
relates to the generalization properties of the linear separator [32].

6. Combinatorial Computation of the Separability for Structured Data

Cover popularized a powerful combinatorial technique to compute the number of
linearly realizable dichotomies in an old and highly cited paper [38]. Despite its appeal,
the combinatorial approach (while certainly not extraneous to contemporary statistical
physics, both theoretical and applied [40–43]) remained somewhat confined to very few
papers in discrete mathematics, and it was only very recently extended to more modern
questions, when it was used to obtain an equation for Cn,q, the number of admissible
dichotomies of q multiplets, for structured data of the type that is defined in the previous
section. Ref. [28] first presented the arguments and computations leading to this equation.
To make this article as self-contained as possible, I repeat most of the derivation here.

6.1. Exact Approach for Unstructured Data (k = 1 Points per Multiplet)

First, I recall the classic computation for unstructured data (k = 1 in our notation).
The idea is to write a recurrence relation for the number of linearly realizable dichotomies
Cn,p and, consequently, for the probability cn,p, by considering the addition of the (p + 1)th
element ξp+1 to the set Xp = {ξ1, . . . , ξp} that was composed of the first p elements.

Consider one of the dichotomies of Xp, let us call it φp; how many linearly realizable
dichotomies of Xp+1 = {ξ1, . . . , ξp, ξp+1} agree with φp (i.e., take the same values) on the
points of Xp? When the point ξp+1 is added to the set, two different things can happen: (i)
sgn(w · ξp+1) is the same for all possible weight vectors w that realize φp; and, (ii) there
is at least one weight vector ŵ realizing φp, such that ŵ · ξp+1 = 0. These two cases lead
to different contributions to Cn,p+1. In the first case, there is only one dichotomy of Xp+1
agreeing with φp, as the value that is assigned to ξp+1 is fixed. In the second case, the value
that is assigned to ξp+1 can be either +1 or −1; therefore, the number of dichotomies of
Xp+1 agreeing with φp is 2.
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Let us call Mn,p the number of those dichotomies, among the Cn,p dichotomies of Xp,
such that (ii) holds for the new point; the number of those satisfying (i) will be Cn,p −Mn,p.
The reasoning above then leads to Cn,p+1 = (Cn,p−Mn,p)+ 2Mn,p = Cn,p + Mn,p. Here lies
the keystone that allows for the closure of the recurrence equation: Mn,p is the number of
dichotomies conditioned to satisfy a linear constraint; therefore, it is equal to the number of
dichotomies, of the same number of points p, in n− 1 dimensions: Mn,p = Cn−1,p. Finally,
the recurrence relation is Cn,p+1 = Cn,p + Cn−1,p, which translates into the following
equation for the probability cn,p:

cn,p+1 =
1
2
(
cn,p + cn−1,p

)
. (19)

The boundary conditions of the recurrence (19) are

cn>0,1 = 1,

cn≤0,p = 0
[
⇒ c1,p = 21−p

]
,

(20)

which come from the conditions C1,p>0 = 2 (there are only two normalized weight vectors
in one dimension) and Cn>0,1 = 2 (there is always a weight vector w, such that±w · ξ = ±1).
The solution of Equation (19) is Equation (2), as can be checked directly. However, the more
complicated equations that are satisfied by the probabilities for structured data are not
as easily solvable. For this reason, in Section 7, below, I will show a method to compute
useful quantities that are related to the shape of cn,p directly from the recurrence relations,
with no need for a closed solution.

6.2. Mean-Field Approach for Pairs of Points (k = 2 Points per Multiplet)

The simplest non-trivial extension of Cover’s computation to structured data is k = 2.
From here on I will use ĉn,q and Ĉn,q to denote the fraction and number of linearly realizable
admissible dichotomies of q multiplets because the symbols cn,p and Cn,p were reserved to
denote the fraction and number of linearly realizable dichotomies of p points.

Notice that all the quantities appearing above are notated with no explicit dependence
on the points ξ. This is because the unstructured case enjoys a strong universality property
(as proved in [38]): Cn,p is independent of the points of Xp, as long as they are in a general
position. Such generality breaks down for structured data. In this case, the recurrence
equations that will be obtained are not valid for all sets Xp; rather, they are satisfied by
the ensemble averages of Ĉn,q and ĉn,q, in the spirit of the mean-field approximation of
statistical physics.

The set of points is now Xq ∪ X̄q, where Xq is a set of q points {ξ1, . . . , ξq} and X̄q
is a set of partners {ξ̄1, . . . , ξ̄q}, where ξµ · ξ̄µ = ρ for all µ = 1, . . . , q (remember that all
of the points are on the unit sphere). Consider the addition of the points ξq+1 and ξ̄q+1
to Xq and X̄q, respectively. By repeating the reasoning described above for k = 1 with
respect to the point ξ̄q+1, one finds a formula for the number Qn,q of dichotomies of the
set {ξ1, ξ̄1, . . . , ξq, ξ̄q, ξ̄q+1} that are admissible on the first q pairs (and are unconstrained
on ξ̄q+1): Qn,q = Ĉn,q + Ĉn−1,q. These dichotomies can be separated into two classes,
similarly to the two cases (i) and (ii) above: those that can be realized by a weight vector
orthogonal to ξq+1 (let us denote their number by Rn,q) and those that cannot (their number
is then Qn,q − Rn,q). For each dichotomy φ of the first class, there exists one and only one
admissible dichotomy of the full set Xq+1 ∪ X̄q+1 that agrees with φ and can be realized
linearly. In fact, thanks to the orthogonality constraint, there is always, among the weight
vectors realizing φ, one vector w, such that

sgn(w · ξq+1) = φ(ξ̄q+1), (21)

thus satisfying the admissibility condition on the pair {ξq+1, ξ̄q+1}. The remaining
Qn,q − Rn,q dichotomies do not allow this freedom. How many of them are realized
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by weight vectors w, such that the admissibility condition (21) is satisfied can be estimated
at the mean field level by the probability that, given a random weight vector w chosen
uniformly on the unit sphere, the scalar products w · ξq+1 and w · ξ̄q+1 have the same sign.
This probability does not depend on the actual points, but only on their overlap ρ, and it
is exactly the quantity ψ2(ρ) that is defined in the previous section, Equation (16). I will
denote it by ψ2 in the following, with the dependence on ρ being understood.

The foregoing argument brings the following equation:

Ĉn,q+1 = Rn,q + ψ2
(
Ĉn,q + Ĉn−1,q − Rn,q

)
(22)

Similarly to what happens in the unstructured case, the unknown term Rn,q can be ex-
pressed in terms of variables Ĉ•,q by considering the same problem in a lower dimension.
In fact, remember that Qn,q above was computed by applying Cover’s argument for k = 1,
because it counts how the number of dichotomies is affected when the single point ξ̄q+1 is
added to the set. Rn,q must be computed in the same way, since it, again, counts the number
of dichotomies that are admissible on the first q pairs and free on ξ̄q+1. However, these
dichotomies must satisfy the additional linear constraint w · ξq+1 = 0; therefore, the whole
argument must be applied in n− 1 dimensions. This leads to

Rn,q = Ĉn−1,q + Ĉn−2,q. (23)

Finally, substituting this expression of Rn,q into Equation (22) yields

Ĉn,q+1 = ψ2Ĉn,q + Ĉn−1,q + (1− ψ2)Ĉn−2,q. (24)

As above, this translates to a similar equation for the probability ĉn,q:

ĉn,q+1 =
ψ2

2
ĉn,q +

1
2

ĉn−1,q +
1− ψ2

2
ĉn−2,q. (25)

The boundary conditions of this recurrence are slightly different than for k = 1. They are
discussed in the Appendix A, together with those for the general case.

6.3. General Case Parameterized by k

It is possible to extend the method that is described above to all k. I will only sketch
the derivation; the details can be found in [28]. Just as the case k = 2 can be treated by
making use of the recurrence formula for k = 1, the idea here is to construct the case k
recursively by using the formula (yet to be found) for k− 1, therefore obtaining a recurrence
relation in k as well as in n and q. To this aim, the (q + 1)th multiplet {ξ1

q+1, . . . , ξk
q+1} is

split into the two subsets {ξ1
q+1} and ξ̄q+1 = {ξ2

q+1, . . . , ξk
q+1}. The formula for k− 1 allows

for applying the argument to the set ξ̄q+1, thus obtaining the number Qn,q of dichotomies of
the set Xq \ {ξ1

q+1} that are admissible on the first q complete multiplets and are admissible
on the (q + 1)th incomplete multiplet ξ̄q+1. More formally, Qn,q is the number of linearly
realizable dichotomies φ, such that

φ(ξ i
µ) = φ(ξ

j
µ) i, j = 1, . . . , k; µ = 1, . . . , q

φ(ξ i
q+1) = φ(ξ

j
q+1) i, j = 2, . . . , k.

(26)

Now the argument goes exactly as for the case k = 2: some of these Qn,q dichotomies
(their number being Rn,q) can be realized by a weight vector orthogonal to the point ξ1

q+1;
therefore, each of them contributes a single admissible dichotomy of the whole set Xq+1;
the remaining Qn,q − Rn,q contribute with probability ψk. Again, Rn,q can be expressed by
applying the same argument in n− 1 dimensions.
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Finally, one finds that the probability ĉn,q satisfies a recurrence equation in n and q:

ĉn,q+1 =
k

∑
l=0

θk
l cn−l,q, (27)

where the coefficients θk
l are constants (independent of n and q) satisfying a recurrence

equation in k and l:
θk

l = ψkθk−1
l + (1− ψk)θ

k−1
l−1 . (28)

The boundary conditions for Equation (28) are

θ1
0 = θ1

1 =
1
2

θk
l<0 = θk

l>k = 0;
(29)

the conditions at k = 1 are those that reproduce Equation (19).

7. Computation of Compact Metrics of Linear Separability

The model of data structure leading to the foregoing equations is very detailed, in that
it allows for the independent specification of a large number of parameters. However,
the influence of each parameter on the separability ĉn,q is not equal, with some combi-
nations of parameters being more relevant than others. In this section, I compute two
main descriptors of the shape of ĉn,q as a function of q at n fixed: the transition point pc
(equivalently, the capacity αc) and the width ∆p of the transition region; they are defined
more precisely below. We will see that only the structure parameters Ψ1 and Ψ2, the special
combinations defined in Section 5, are needed to fix pc and ∆p.

7.1. Diagonalization of the Recurrence Relation

Notice that, while the quantity ĉn,q that is given by the theory is expressed as a
function of the number of multiplets q, the definition of separability that is discussed in
Section 5 is given in terms of the number of points p = kq. This is not really a problem in
the thermodynamic limit

n→ ∞

p→ ∞

α =
p
n

fixed

k fixed,

(30)

whereby the separability is expressed as a function of the load α. In the following, I will
define the location qc and the width ∆q of the transition region in the parameterization by
the number of multiplets q; the corresponding quantities that are parameterized by p are
obtained by rescaling:

pc = kqc, ∆p = k∆q. (31)

Let us consider the discrete derivative of ĉn,q with respect to n:

γn,q = ∆n ĉn,q ≡ ĉn+1,q − ĉn,q. (32)

As will be clear momentarily, working with γn,q is convenient because it is normalized, as I
will prove below. γn,q satisfies the same recurrence relation as ĉn,q:

γn,q+1 =
k

∑
l=0

θk
l γn−l,q. (33)
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The boundary conditions, in accordance with (20), are

γn,1 = δn,0,

γn<0,q = 0.
(34)

The right hand side of Equation (33) has the form of a discrete convolution between θk
•

and γ•,q:
c•,q+1 = θk

• ∗ c•,q. (35)

The convolution is diagonalized in Fourier space, by defining the characteristic functions

γ̃q(t) =
∞

∑
n=0

γn,qeint, (36)

θ̃k(t) =
∞

∑
n=0

θk
neint. (37)

Multiplying both sides of Equation (35) by eint and summing over n yields

γ̃q+1(t) = θ̃k(t) γ̃q(t). (38)

From the definition (36) and boundary conditions (34), one gets γ̃1(t) = 1; hence, the solu-
tion of the recurrence equation is

γ̃q(t) =
[
θ̃k(t)

]q−1. (39)

7.2. Defining the Location and Width of the Transition Region

As mentioned above, γn,q is normalized, which means that

∞

∑
n=0

γn,q = 1, (40)

or, equivalently, γ̃q(0) = 1. To prove this, it suffices to show that θ̃k(0) = 1, i.e., that θk
n

is normalized. Summing both sides of Equation (28) in l from 0 to ∞ shows that θ̃k(0) is
constant in k, therefore

θ̃k(0) = θ̃1(0) = 1, (41)

as can be computed from the boundary conditions (29).
Because it is normalized, γ•,q can be interpreted as a probability distribution, whose

cumulative distribution function is ĉ•,q. The ath moment of the distribution is

〈na〉q =
∞

∑
n=0

naγn,q

= i−a da

dta γ̃q(t)
∣∣∣∣
t=0

.

(42)

The same holds for θk
•, whose moments 〈θa〉k can be obtained from its characteristic function

θ̃k(t). Let us focus on the mean µq and the variance σq,

µq = 〈n〉q, σ2
q =

〈
n2
〉

q
− 〈n〉2q. (43)

Equation (39) allows for expressing these quantities in terms of the mean µθ = 〈θ〉k and
variance σ2

θ =
〈
θ2〉

k − 〈θ〉
2
k of θk

•:

µq = (q− 1)µθ , σ2
q = (q− 1)σ2

θ , (44)
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as can be checked by using Equation (42).
We can now define the two main descriptors, qc and ∆q, which summarize the separa-

bility as a function of q:

qc : µqc = n, (45)

q± : µq± ∓ σq± = n, (46)

∆q : ∆q = q+ − q−. (47)

7.3. Expression in Terms of the Structure Parameters

To compute these quantities, all we need is µθ and σθ , or 〈θ〉k and
〈
θ2〉

k. Solving
Equation (45) for qc gives

qc = nµ−1
θ + 1. (48)

Solving Equations (46) and (47) for ∆q gives

∆q =
1

µ2
θ

√
σ2

θ

(
σ2

θ + 4µθn
)
. (49)

The corresponding expressions to leading order in n are the following

qc = nµ−1
θ + O(1),

∆q = 2σθµ−3/2
θ n1/2 + O(n−1/2).

(50)

The moments of θk
• satisfy the following equation, which can be obtained by multiply-

ing both sides of Equation (28) by la and summing over l:

〈θa〉k =ψk〈θa〉k−1 + (1− ψk)
∞

∑
l=0

(l + 1)aθk−1
l

=〈θa〉k−1 + (1− ψk)
a−1

∑
s=0

(
a
s

)
〈θs〉k−1.

(51)

The boundary conditions are
〈
θ0〉

k = 1 (computed above) and 〈θa〉1 = 1/2, as given by
Equation (29). In particular, for a = 1, we obtain

〈θ〉k = 〈θ〉k−1 + (1− ψk), (52)

whose solution is
〈θ〉k = k− 1

2
−Ψ1, (53)

where the structure parameter Ψ1, as defined in Equation (17), implicitly depends on k. For
a = 2, the recurrence Equation (51) becomes〈

θ2
〉

k
=
〈

θ2
〉

k−1
+ (1− ψk)

(
2〈θ〉k−1 + 1

)
. (54)

By substituting 〈θ〉k−1 given by Equation (53) and solving the recurrence we obtain, af-
ter some algebra, 〈

θ2
〉

k
= k2 − k +

1
2
− 2(k− 1)Ψ1 + 2Ψ2, (55)

where Ψ2 is the second structure parameter that is defined in Equation (18). Finally,
by combining the leading order expansions (50) and the moments (53) and (55), and by
rescaling, as in Equation (31), we have the following explicit expressions for the two main
metrics of separability as functions of the multiplicity k and the structure parameters Ψ1
and Ψ2:
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pc

n
=

(
1− 1

2k
− Ψ1

k

)−1
, (56)

∆p√
n
= 2k

(
k− 1

2
−Ψ1

)− 3
2
(

1
4
+ Ψ1 −Ψ2

1 + 2Ψ2

) 1
2
. (57)

For data that are structured as pairs of points, k = 2, Equation (56) gives the storage
capacity of an ensemble of segments; this special result was first obtained, by means of
replica calculations, in [44], and it was then rediscovered in other contexts in [8,45].

7.4. Dependence on the Structure Parameters and Scaling

The two structure parameters Ψ1 and Ψ2, which control the two main metrics of linear
separability, belong to k-dependent ranges:

Ψ1 ∈ [0, k− 1], Ψ2 ∈ [0, (k− 1)(k− 2)/2]. (58)

The two quantities are not independent, since they are constructed from the same set of k− 1
quantities ψm ∈ [0, 1]. When conditioned on a fixed value of Ψ1, Ψ2 has a lower bound Ψ−2
and an upper bound Ψ+

2 that can be computed by considering the two following extreme
cases. First, the supremum of Ψ2 is realized in the maximum entropy case, where the value
of Ψ1 is uniformly distributed among the ψm. Second, the infimum of Ψ2 corresponds to
the minimum entropy case, where Ψ1 is distributed on the fewest possible ψm’s. Explicitly,

sup : {ψm} =
{

Ψ1

k− 1
, · · · ,

Ψ1

k− 1

}
, (59)

inf : {ψm} = { 1, · · · , 1︸ ︷︷ ︸
bΨ1c

, Ψ1 − bΨ1c, 0, · · · , 0}. (60)

The definition of Ψ2, Equation (18), can be rewritten, as follows:

Ψ2 =
1
2

Ψ2
1 −

1
2

k

∑
m=2

ψ2
m. (61)

Substituting (59) and (60) into (61), we obtain

Ψ+
2 = sup Ψ2 =

Ψ2
1

2

(
1− 1

k− 1

)
, (62)

Ψ−2 = inf Ψ2 = Ψ1bΨ1c −
1
2

(
bΨ1c2 + bΨ1c

)
. (63)

Figure 3 shows the location of the transition, pc, and the width of the region, ∆p,
as functions of Ψ1 and Ψ2 for a few values of k. Notice that the range of ∆p at fixed k and
Ψ1 is itself bounded because of the limited range [Ψ−2 , Ψ+

2 ] of Ψ2.
There is an interesting observation to be made on a semi-quantitative level. At fixed

k and n, pc is an increasing function of Ψ1. The width ∆p depends on both structure
parameters, but, since the range of Ψ2 at fixed Ψ1 is so limited, one expects that, in practice,
∆p will be approximately an increasing function of Ψ1. Therefore, ∆p will be, in most
cases, an increasing function of pc. This is exactly the phenomenology that is observed in
Figure 2, in both the synthetic data and MNIST.
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Figure 3. (Top left) The dependence of the rescaled location pc/n of the transition region (y axis)
on the structure parameter Ψ1 (x axis), for a few values of the multiplicity k. Circles pinpoint the
tips of the curves, which correspond to the unstructured case, where Ψ1 = k− 1 (i.e., ψm = 1 for all
m) and pc = 2kn. (Top right) The rescaled width ∆p/

√
n of the transition region (y axis). Segments

correspond to 50 fixed values of Ψ2, which were equally spaced in [0, (k− 1)(k− 2)/2]; their range in
Ψ1 (x axis) is obtained by inverting the relations (62) and (63). The dashed red lines are the upper and
lower bounds of ∆p/

√
n, obtained by substituting (62) and (63) into (57). (Bottom left) The large-k

scaling form (red line) of pc/n (y axis) as a function of the rescaled parameter Ψ1/k (x axis); the blue
lines are the same as in the top left panel. (Bottom right) The large-k behavior of the upper (thick red
line) and lower (thin red and grey lines) bounds ∆p±/

√
n (y axis) as functions of Ψ1/k (x axis). Grey

lines are the tight lower bounds as in the top right panel and thin red lines are the simpler bound
Equation (66); different lower bounds correspond to k = 10, 30, 90.

The rescaled location of the transition pc/n, Equation (56), does not depend on Ψ2, and
it depends on Ψ1 only through the rescaled value Ψ1/k. For large k, it takes the scaling form

pc

n
∼ fpc

(
Ψ1

k

)
, fpc(x) =

1
1− x

. (64)

The width ∆p, on the contrary, depends on both Ψ1 and Ψ2. Because it is a monotonically
increasing function of Ψ2, its upper bound ∆p+ and lower bound ∆p− at fixed Ψ1 can be
obtained by substituting (62) and (63) in Equation (57). Expressing ∆p+ again as a function
of the rescaled parameter Ψ1/k, and only keeping the leading term in k→ ∞, one obtains
the scaling form

∆p+√
n
∼ f∆p+

(
Ψ1

k

)
, f∆p+(x) = 2

√
x

1− x
. (65)

Doing the same for ∆p− yields a complicated function, which is plotted in Figure 3. A
simpler expression for the bound can be obtained by observing that Ψ−2 ≥ (Ψ2

1 −Ψ1)/2;
using this more regular bound yields, at leading order in k,

∆p−√
n
∼ k−

1
2 f∆p−

(
Ψ1

k

)
, f∆p−(x) = (1− x)−

3
2 . (66)

Figure 3 shows the large-k scaling behavior of pc, ∆p+, and ∆p−.
The two metrics are insensitive on most of the microscopic parameters of the theory,

and they only depend on the two structure parameters, as shown analytically above.
In addition, they display a large degree of robustness, even as functions of Ψ1 and Ψ2:
measuring pc/n from the data fixes (up to corrections in k) the quantity Ψ1/k, which,
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in turn, significantly narrows down the range of values that are attainable by ∆p, the more
so the smaller is k.

8. Discussion

The discussion above focused on the quantification of linear separability within a
model that encodes simple relations between data points and their labels, in the form of
constraints. Such a model has the advantage of being analytically tractable and allows the
explicit expression of pc and ∆p in terms of model parameters. Moreover, the parameters
appearing in the theory have direct interpretations as probabilities of geometric events,
thus suggesting routes for further generalization.

In the face of its convenience for theoretical investigations, the definition of data
structure used here does not aim at a realistic description of any specific data set. It must
be interpreted as a phenomenological or effective parameterization of basic features of
data structure that have a distinct effect on linear separability. The limited numerical
experiments on MNIST data reported above are a proof of concept, showing a real data
set with unexpectedly high linear separability, and they serve as a notable motivation for
the investigation of data structure. The main goal of this article is the theoretical analysis;
therefore, I postpone any comparison of theory and data. Moreover, MNIST is a relatively
simple and clean data set. The numerical analysis signals the highly constrained nature of
these data, where points that are close with respect to the Euclidean distance in Rn are more
likely to have the same label. However, more complex data sets, such as ImageNET, are
expected to be less constrained at the level of raw data, due to the higher variability within
each category, and due to what are referred to as “nuisances”, i.e., elements that are present,
but do not contribute to the classification. Yet, even in these cases, the aggregation of
equally-labelled points emerges in the feature spaces towards the last layers of deep neural
networks, which improves the efficacy of the linear readout downstream, as empirically
observed [14,15].

An interesting, and perhaps unexpected, outcome of the theory concerns the universal
properties of the probability of separation cn,p. Here, I use the term “universality” in a
much weaker sense than what is usually intended in statistical mechanics: I use it to denote
(i) the qualitative robustness of the sigmoidal shape of the separability curve on the details
of the model, and (ii) the quantitative insensitivity of the separability metrics on all but a
few special combinations of parameters [46]. Importantly, the two metrics of data structure
that are computed for the model, pc and ∆p, are the only two important parameters
that fix cn,p in the thermodynamic limit, apart from the rescaling by k. The central limit
theorem suggests this universality property. In fact, γn,q is the probability distribution
of the sum of p− 1 independent and identically distributed variables, as expressed by
Equation (39). Therefore, γn,q will converge to a Gaussian distribution with linearly
increasing mean and variance. This indicates that µq and σq are the only two nonzero
cumulants in the thermodynamic limit and, thus, qc and ∆q are the only two nontrivial
metrics that are related to ĉn,q. This does not, by any means, imply that the model of data
structure itself can be reduced to only two degrees of freedom. In fact, the phenomenology
is richer if one considers the combinatorial quantity Cn,q instead of the intensive one ĉn,q,
see [32]; still, regarding the probability of separation, the relevant metrics are the location
and width of the transition region.
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Appendix A. Boundary Conditions

The boundary conditions of the recurrence Equation (27) require some care. When a
single (q = 1) multiplet is considered in dimension n ≥ k, both its admissible dichotomies
are linearly realizable. This is because all dichotomies of k points can be realized in n ≥ k
dimensions, as I mentioned above. Therefore

ĉn≥k,1 = 1. (A1)

The boundary conditions for n < k are not simply the same as for k = 1. To see this,
consider for instance what happens in n = 1 dimensions when dealing with a single (q = 1)
multiplet of k = 2 points, ξ and ξ̄. Two problems arise: (i) if the two points lie on opposite
sides of the origin, a linearly realized dichotomy φ will always assign them different signs,
φ(ξ) = −φ(ξ̄); (ii) there are not enough degrees of freedom to fix the overlap ρ = ξ · ξ̄
while keeping ξ and ξ̄ normalized.

These obstructions are problematic when trying to define the value of ĉ1,1 for k = 2.
This quantity appears in the right hand side of the recurrence Equation (25) when n = 2 and
q = 1, where it is needed, alongside ĉ2,1, to compute ĉ2,2. Retracing the derivation for k = 2
shows that ĉ1,1 in this context occurs when imposing a linear constraint in 2 dimensions,
where it represents the fraction of admissible dichotomies of the doublet {ξ, ξ̄} that can
be realized by a weight versor w satisfying w · ξ ′ = 0. In 2 dimensions, the orthogonality
condition fixes w up to its sign. If this constrained w is such that

sgn(w · ξ) = sgn(w · ξ̄) (A2)

then exactly 2 admissible dichotomies of {ξ, ξ̄} are realizable, otherwise the only re-
alizable dichotomies are not admissible. Therefore ĉ1,1 expresses the probability that
Equation (A2) is satisfied; in the mean field approximation, this is ψ2(ρ). The foregoing
argument actually applies for all k ≥ 1. The probability that all k points in a multiplet lie in
the same half-space with respect to the hyperplane realized by a random versor fixes the
first non-trivial boundary condition ĉ1,1.

For k = 2 this fixes everything. Let us now consider k = 3. In this case Equation (A1)
omits ĉ2,1. What should its value be? Again, going back to the argument in Section 6.3 is
helpful. ĉ2,1 appears in the recurrence when n = 3 and a linear constraint is imposed on
w. This fixes w up to rotations around an axis, identified by a versor v. Now, whether the
multiplet {ξ1, ξ2, ξ3} allows 2 or 0 admissible dichotomies depends on whether there exists
a vector w satisfying the constraint and such that sgn(w · ξ1) = sgn(w · ξ2) = sgn(w · ξ3).
This happens if and only if the axis of rotation v lies outside the solid angle subtended
by the three vectors ξ1, ξ2, ξ3. This characterization allows to compute ĉ2,1 by elementary
methods of solid geometry. One finds

ĉ2,1 =
1

2π
(1−ω123 −ω231 −ω312 − π) [k = 3], (A3)

where

ωabc = arccos

 ρa − ρbρc√
(1− ρ2

b)(1− ρ2
c )

. (A4)

For larger values of k, the same reasoning allows to express the non trivial boundary
conditions ĉn<k,1 as geometric probabilities. Fortunately, the hassle of computing all these
probabilities can be bypassed by using the boundary conditions (20), which are approximate
for k > 1, but still provide asymptotically correct results [28]. In fact, as is evident from
the discussion in Section 7, if one takes the thermodynamic limit (30) the contribution
of the k − 1 approximate values of ĉn,1 becomes negligible. Other ways of taking the
thermodynamic limit (e.g., if k is extensive in n) may not enjoy this simplification, and may
require a different analysis of the boundary conditions.
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