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Abstract
Purpose  Continuous incremental protocols (CP) may misestimate the maximum aerobic velocity (Vmax) due to increases in 
running speed faster than cardiorespiratory/metabolic adjustments. A higher aerobic capacity may mitigate this issue due to 
faster pulmonary oxygen uptake ( V̇O2) kinetics. Therefore, this study aimed to compare three different protocols to assess 
Vmax in athletes with higher or lower training status.
Methods  Sixteen well-trained runners were classified according to higher (HI) or lower (LO) V̇O2max V̇O2-kinetics was 
calculated across four 5-min running bouts at 10 km·h−1. Two CPs [1 km·h−1 per min (CP1) and 1 km·h−1 every 2-min 
(CP2)] were performed to determine Vmax V̇O2max, lactate-threshold and submaximal V̇O2/velocity relationship. Results were 
compared to the discontinuous incremental protocol (DP).
Results  Vmax, V̇O2max, V̇CO2 and VE were higher [(P < 0.05,(ES:0.22/2.59)] in HI than in LO. V̇O2-kinetics was faster 
[P < 0.05,(ES:-2.74/ − 1.76)] in HI than in LO. V̇O2/velocity slope was lower in HI than in LO [(P < 0.05,(ES:-1.63/ − 0.18)]. 
Vmax and V̇O2/velocity slope were CP1 > CP2 = DP for HI and CP1 > CP2 > DP for LO. A lower [P < 0.05,(ES:0.53/0.75)] 
Vmax-difference for both CP1 and CP2 vs DP was found in HI than in LO. Vmax-differences in CP1 vs DP showed a large 
inverse correlation with Vmax, V̇O2max and lactate-threshold and a very large correlation with V̇O2-kinetics.
Conclusions  Higher aerobic training status witnessed by faster V̇O2 kinetics led to lower between-protocol Vmax differences, 
particularly between CP2 vs DP. Faster kinetics may minimize the mismatch issues between metabolic and mechanical power 
that may occur in CP. This should be considered for exercise prescription at different percentages of Vmax.

Keywords  V̇O2 kinetics · Maximal aerobic power · Maximum oxygen uptake · Incremental test · Running velocity · 
Aerobic capacity
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HI	� Group with high V̇O2max
LO	� Group with low V̇O2max
CP1	� Continuous incremental protocol 

[1 km·h-1 per min]
CP2	� Continuous incremental protocol 

[1 km·h-1 every 2 min]
DP	� Discontinuous incremental protocol

V̇O2max	� Maximum oxygen uptake
V̇O2/Velocity slope	� Regression analysis of the V̇O2 vs 
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V̇O2 kinetics	� V̇O2-transition from rest to 
steady-condition

Vmax	� The velocity associated with maxi-
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V̇CO2	� Carbon dioxide production
RER	� Respiratory exchange ratio
SaO2	� Arterial O2 saturation
̇VE	� Expiratory ventilation

BLa-	� Blood lactate concentration
RPE	� Rate of perceived exertion
ANOVA	� Analysis of variance
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Introduction

A successful aerobic performance depends on several 
physiological, biomechanical, and psychological factors 
(Bentley et al. 2007; Coyle 1995). Among physiological 
aspects, a high maximum pulmonary oxygen uptake ( V̇
O2max), the ability to maintain a long time to exhaustion 
at V ̇O2max, a faster V̇O2-transition from rest to steady-
condition ( V̇O2 kinetics), a higher lactate threshold and a 
low O2 cost of running are the main parameters of aerobic 
performance (Poole and Richardson 1997; Coyle 1995; 
Poole and Jones 2012).

Also the maximum aerobic velocity (Vmax), defined 
as the minimum velocity capable to elicit V̇O2max when 
considering only the completion of the primary phase of 
V̇O2-on kinetics (Ferretti 2015), is reported as a strong 
marker of running performance (Bentley et al. 2007) and 
it integrates both metabolic and biomechanical aspects of 
running into a single factor (Buchheit and Laursen 2013). 
In elite aerobic athletes, a higher Vmax reflects a greater 
capacity to utilize the aerobic metabolic pathways across 
several sports (Noakes 1988; Pedro et al. 2013; Ziogas 
et al. 2011; Rampinini et al. 2007).

V̇O2max and Vmax are generally determined using dif-
ferent incremental running protocols (Kuipers et al. 2003; 
Riboli et al. 2017), among which continuous or discontinu-
ous tests that may vary in work rate increments and stage 
duration (Billat et al. 1996; Kuipers et al. 2003; Riboli 
et al. 2017). Discontinuous incremental protocols (DP) 
are characterized by constant work rates interspersed by 
resting periods (Duncan et al. 1997; Riboli et al. 2017). DP 
permits to reach an equilibrium between the cardiorespira-
tory and metabolic systems and the work rate when lasting 
at least three minutes to achieve a steady-state condition 
(Poole and Jones 2012). However, the long overall dura-
tion of DP would markedly lengthen the whole testing 
phase, thus affecting the possibility to test several athletes 
within one single session, as often required in sports prac-
tice. Conversely, incremental continuous protocols (CP) 
last short overall duration and they have been shown as a 
valid and reliable method to determine V̇O2max despite the 
submaximal physiological adjustments cannot be reached 
as in DP due to increments in work rate faster than cardi-
orespiratory and metabolic adjustments (Riboli et al. 2017, 
2021). Despite in some intermittent protocols with very 
low workload vs recovery ratio V̇O2max may not be reached 
(Vinetti et al. 2017), previous studies using CP and DP 
showed that V̇O2max was found to be independent from 
the protocol adopted (Kuipers et al. 2003; Riboli et al. 
2017, 2021). Conversely, testing protocols with shorter 
stage duration may lead to higher Vmax (Riboli et al. 2017; 
Kuipers et al. 2003; Adami et al. 2013). Given that Vmax is 

currently utilized to prescribe or monitor training routines 
(Buchheit and Laursen 2013; Riboli et al. 2021), a precise 
Vmax assessment may allow coaches to manipulate accu-
rately the physiological load during running exercises as 
a percentage of Vmax (Buchheit and Laursen 2013; Riboli 
et al. 2021). For instance, 90–110% of Vmax are suggested 
for long-interval exercises, 110–130% Vmax for short-inter-
vals exercises, 130–160% Vmax for repeated sprint train-
ing and > 160% Vmax for sprint interval training (Buchheit 
and Laursen 2013). Therefore, a precise Vmax assessment 
should be carefully taken into account for athletes’ test-
ing and training prescription (Riboli et al. 2017; Bentley 
et al. 2007).

Athletes with a high aerobic capacity (HI), such as long- 
and middle-distance runners, are qualified by greater physi-
ological characteristics in terms of high V̇O2max and fast 
V̇O2 kinetics (Coyle 1995) than in individuals with lower 
aerobic capacity (LO). A high V̇O2max represents, indeed, a 
pronounced maximal pulmonary, cardiovascular, metabolic 
and muscular capacity to uptake, transport and utilize O2 
(Poole and Richardson 1997). Moreover, rapid V̇O2 kinetics 
may lead to a smaller O2 deficit and a reduced intracellu-
lar perturbation, thus reflecting greater exercise tolerance 
(Poole and Jones 2012; Dupont et al. 2005) and endurance 
performance (Poole and Jones 2012). These characteristics 
in HI may therefore lower or even minimize the misestimat-
ing issue that may occur in CP because of their faster V̇O2 
kinetics.

With this in mind, the present study aimed to investi-
gate how aerobic training status may affect Vmax assessment 
during CPs vs DP in two groups of athletes, characterized 
by different aerobic training conditions. Should HI in the 
investigated group demonstrate faster V̇O2 kinetics due to 
their greater ability of the cardiorespiratory and metabolic 
systems to adjust to continuous increases in work rate typi-
cal of CP, the Vmax misestimating issue may be minimized, 
when comparing their CPs to DP results.

Materials and methods

Participants

Sixteen well-trained middle and long-distance runners 
(age: 22.1 ± 1.8 years; stature: 1.75 ± 0.05 m; body mass: 
70.3.7 ± 3.7 kg; mean ± standard deviation) volunteered to 
participate in the study and were classified into two groups, 
according to their higher (HI) or lower (LO) V̇O2max and the 
International Physical Activity Questionnaire (IPAQ). All 
participants met the following criteria: (a) more than four 
years of systematic training and (b) no injuries in the last 
year. The ethics committee of the local University approved 
the study (protocol #102/14) which was performed in 
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accordance with the principles of the Declaration of Hel-
sinki (1964 and updates). All participants gave their written 
consent after a full explanation of the purpose of the study 
and the experimental design.

Study design

To test the current hypothesis, two incremental continuous 
protocols with different stage durations (CP) were performed 
and compared to a discontinuous incremental protocol (DP). 
The present study spanned over a maximum of 3 weeks. The 
participants reported to the laboratory five times, separated 
by at least 72 h. During the first visit, they were familiar-
ized with the experimental procedures. During the second 
session, they performed a continuous incremental protocol 
(1 km⋅h−1 per minute) to determine V̇O2max and to complete 
the IPAQ. Within the remaining three sessions, the partici-
pants randomly underwent the three experimental condi-
tions (two continuous and one discontinuous incremental 
protocols). Within each testing-session, an initial 5-min 
submaximal bout at 10 km⋅h−1 was modelled to determine 
the on-transient V̇O2 kinetics. Participants were instructed to 
avoid any form of strenuous exercise in the three days before 
each session. In addition, they were asked to have their last 
standardized meal at least three hours before each session. 
Finally, they were requested to abstain from ergogenic and 
caffeinated beverages before testing.

Participants were split subsequently into two groups, 
according to their V̇O2max normalized per body mass 
(ml·kg−1·min−1) and their training routines (i.e., n of train-
ing sessions per week). The first HI group was characterized 
by a higher V̇O2max and more than five training sessions per 
week. The second LO group was characterized by a lower 
V̇O2max and no more than three training sessions per week.

Experimental procedures

All tests were conducted approximately at the same time 
of the day in a climate-controlled laboratory (constant tem-
perature of 20 ± 1 °C and relative humidity of 50 ± 5%). 
All tests were carried out on a treadmill ergometer (RAM 
s.r.l., mod. 770 S, Padova, Italy) with a 1% positive slope. 
Blood lactate concentration (BLa−) was assessed by a 
spectrophotometric system (Lactate Pro LT-1710, Arkray, 
Kyoto, Japan). The lactate analyzer was calibrated before 
each protocol to guarantee consistent data. V̇O2max, expira-
tory ventilation, carbon dioxide production and respiratory 
exchange ratio were measured during each protocol by a gas 
analyzer cart (Cosmed, mod. Quark b2, Rome, Italy). The 
device was calibrated before each test with gas mixtures of 
known concentration (O2 16%, CO2 5%, balance N2). Heart 
rate was monitored continuously using a heart rate monitor 
(Polar Electro Oy, mod. S810i, Kempele, Finland). Arterial 

O2 saturation was determined by a finger-tip infrared oxym-
eter (NONIN Medical, mod. 3011, Minneapolis, MN). At 
the end of the test, the rate of perceived exertion (RPE) was 
determined using the 6–20 Borg scale for general, respira-
tory and muscular fatigue. The participants were strongly 
encouraged by the operators to perform each test up to their 
maximum exercise capacity.

Continuous Incremental Protocol 1 (CP1). After 5 min 
of baseline measurements, while standing on the treadmill, 
the participants warmed up at 10 km⋅h−1 for 5 min. Then, 
the running speed was increased progressively by 1 km⋅h−1 
per minute until volitional exhaustion. BLa− was meas-
ured at baseline, at the end of each stage and after 1, 3 and 
5 min of passive recovery. The achievement of V ̇O2max was 
identified as the plateauing of V̇O2 (< 2.1 ml·kg−1·min−1 
increase) despite an increase in workload (Poole and Rich-
ardson 1997). If the above-stated criterion and/or second-
ary criteria to establish V̇O2max (Poole et al. 2008) were not 
fulfilled, the participants were asked to perform a further 
constant-speed test equal or higher than the highest speed 
achieved at the end of the incremental test, as strongly rec-
ommended (Rossiter et al. 2006). V̇O2, carbon dioxide pro-
duction, expiratory ventilation, O2 saturation and respiratory 
exchange ratio were averaged during the last 30 s of each 
step at submaximal workload and over the last 30 s before 
exhaustion. Vmax was determined as the minimal running 
velocity that elicited V̇O2max over a period of 30 s (Billat 
et al. 1996). If a stage could not be completed, the Vmax 
was calculated according to a previously published equation 
(Kuipers et al. 2003) [Vmax = Vcompleted + t/T x speed incre-
ment], in which Vcompleted is the running speed of the last 
stage that was completed, t the number of seconds that the 
uncompleted running stage could be sustained, T the number 
of seconds required to complete the stage, and speed incre-
ment is the speed load increment in km⋅h−1.

Continuous Incremental Protocol 2 (CP2). CP2 followed 
the same experimental procedures as CP1, but with the 
increases in treadmill running speed of 1 km⋅h−1 every two 
minutes. As for CP1, V̇O2, carbon dioxide production, expir-
atory ventilation, O2 saturation, and respiratory exchange 
ratio were averaged during the last 30 s of each step at sub-
maximal workload and over the last 30 s before exhaustion. 
Vmax was determined as the minimal running velocity that 
elicited V̇O2max over a period of 30 s (Billat et al. 1996).

Discontinuous Incremental Protocol (DP). DP protocol 
involved five workloads of 4 min each, interspersed by at 
least 5 min of recovery (Bernard et al. 2000). The optimal 
stage duration suggested for DPs is still questioned (Bernard 
et al. 2000). Although some authors suggested that it should 
be around 6–8 min (Bernard et al. 2000), it was criticized 
that relatively long stage duration could result in prema-
ture fatigue and suggested that 4–6 min could be suitable 
for this purpose (Bentley et al. 2007; Kuipers et al. 2003; 
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Bernard et al. 2000). Since shorter test duration is strongly 
advocated during in-field practice, a 4-min stage duration 
was used here.

Baseline measurements were recorded with the partici-
pants standing on the treadmill. The first two workloads were 
set at 8 and 10 km·h−1 for all participants. The following 
three workloads were tailored for each participant according 
to the individual cardiorespiratory responses to the first two 
workloads and considering the theoretical maximum heart-
rate determined (Bernard et al. 2000). Firstly, based on the 
V̇O2 and the heart-rate recorded during the first two stages, 
a sub-maximal linear regression was determined up to the 
predicted peak heart rate, to predict the speed correspond-
ing to possible exhaustion (Bernard et al. 2000). Then, the 
third, the fourth and the fifth workloads corresponded to 
approximately 80%, 90% and 105% of the predicted peak 
workload, respectively. The fourth and the fifth workloads 
were recalculated using the heart-rate and V̇O2 recorded dur-
ing the third and the fourth stage, respectively. The last stage 
was tailored to let the participants maintain the task for at 
least four minutes (Bernard et al. 2000). The blood lactate 
concentration was measured at baseline and after 1, 3 and 
5 min of passive recovery for each workload, and the peak 
blood lactate was inserted into the data analysis. V̇O2, car-
bon dioxide production, expiratory ventilation, O2 saturation 
and respiratory exchange ratio were determined as the aver-
age value of the last (fourth) minute during each workload 
(Poole and Richardson 1997). Vmax was extrapolated from 
the regression analysis equation of V̇O2 as a function of run-
ning velocity at submaximal workloads below the lactate 
threshold (Bernard et al. 2000; Riboli et al. 2017).

Lactate threshold, V̇O2/Velocity slope 
at submaximal exercise and V̇O2 kinetics

Lactate threshold was determined by the DMAX method, 
according to which it was identified as the point on the 
third-order polynomial curve that yielded the maximal per-
pendicular distance to the straight line formed by the two 
end data points (Riboli et al. 2019). Similar to the previous 
study, lactate threshold calculated from CP1 was utilized to 
limit the range of exercise during which the V̇O2 vs running 
velocity relationship at submaximal exercise was considered 
(Riboli et al. 2017).

V̇O2/Velocity slope: the V̇O2/Velocity slope was calcu-
lated as the regression analysis of the V̇O2 vs velocity rela-
tionship at submaximal workloads below lactate threshold 
for CP1, CP2 and DP (Anderson 1996; Fletcher et al. 2009).

V̇O2 kinetics. The on-transient V̇O2 kinetics were mod-
elled after four different bouts of 5-min submaximal exer-
cise (10 km·h−1, moderate intensity, below lactate thresh-
old) to avoid any effect of the slow component phenomenon 
(Jones et al. 2011). The influence of the inter-breath noise 

was reduced averaging the results of four identical tests in 
each participant (Lamarra et al. 1987). Each abnormal breath 
(e.g., different from the mean of the adjacent four data point 
by more than three times the standard-deviation of those 
four point, were excluded (Dupont et al. 2005). To increase 
the time resolution the breath-by-breath V̇O2 data were sub-
sequently linearly interpolated, and the four data sets were 
averaged together to produce a single response for each sub-
ject. This procedure was previously established to reduce the 
noise of the V̇O2 signal and to provide the highest confident 
results (Poole and Jones 2012). The on-transient of the V̇
O2 kinetics were modelled as previously proposed (Barstow 
and Mole 1991). The time-delay of the cardiodynamic-phase 
and the time-constant of the primary-phase (i.e., the time 
to reach 63% of the V̇O2 steady-state of the V̇O2 kinetics 
were calculated to determine the amplitude of V̇O2 from 
baseline to steady-state (Poole and Jones 2012). Then, the 
mean response time of the on-transition V̇O2 kinetics as the 
sum of time-delay and time-constant was calculated. The 
time-delay, the time-constant and the mean response time 
were thereafter inserted into data analysis.

Statistical analysis

Statistical analysis was performed using a statistical software 
package (Sigma Plot for Windows, v 12.5, Systat Software 
Inc., San Jose, CA, USA). To check the normal distribution 
of the sampling, a Kolgomorov-Smirnov test was applied. A 
one-way analysis of variance (ANOVA) for repeated meas-
ures was used also to assess significant differences in Vmax, 
V̇O2max, carbon dioxide production, respiratory exchange 
ratio, arterial O2 saturation, heart-rate, expiratory ventila-
tion, blood lactate concentration, V̇O2/Velocity slope (for 
both slope and intercept of the submaximal regression analy-
sis equation), V̇O2 kinetics (time-delay, time-constant and 
mean-response time), general-, muscular-, and respiratory-
RPE between CP1, CP2 and DP. For all pairwise multiple 
comparisons, a post-hoc Shapiro–Wilk test was applied. 
A regression analysis was used to assess the relationship 
between V̇O2 and running velocity at submaximal exercise. 
The magnitude of the changes was assessed using Cohen’s 
standardized effect size (ES) with 95% confidence inter-
vals (95% CI). Effect size with 95% CI was calculated and 
interpreted as follows: < 0.20: trivial; 0.20–0.59: small; 
0.60–1.19: moderate; 1.20–1.99: large; ≥ 2.00: very large 
(Hopkins et al. 2009). Pearson’s product moment and 95% 
CI were utilized to assess the relationship among protocols 
for Vmax. The correlation coefficients were interpreted as 
follows: r < 0.1 trivial; 0.1 ≤ r < 0.3 small; 0.3 ≤ r < 0.5 mod-
erate; 0.5 ≤ r < 0.7 large; 0.7 ≤ r < 0.9 very large; 0.9 ≤ r < 1 
nearly perfect. Statistical significance was set at an α level 
of 0.05. Unless otherwise stated, all values are presented as 
mean ± standard deviation (SD).
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Results

Between‑groups differences

As shown in Table 1, Vmax [P < 0.001, (ES:1.85/2.59)], 
V̇O2max [P < 0.001, (ES:0.85/1.07)], VCO2 [P < 0.001, 
(ES:0.22/0.61)] and VE [P < 0.001, (ES:0.57/0.82] were 
small to very largely higher in HI than LO within-each 
protocol (CP1, CP2 and DP) (Table 1). No between-groups 
differences (P > 0.05) in respiratory exchange ratio, arte-
rial O2 saturation, heart rate, BLa−

peak, general-, respira-
tory-, and muscular-RPE were found.

The lactate threshold calculated in CP1 was moder-
ately [ES:1.99(CI:0.79/3.19)] higher (P < 0.001) in HI 
[17.8(1.1)] than LO [16.1(0.3)]. Overall, the submaxi-
mal regression analysis of V̇O2/velocity relationship for 
CP1, CP2 and DP was less steep (P < 0.05) in HI than 
LO (Fig. 1); in details, the intercept of the submaximal 
regression analysis in V̇O2/velocity relationship ( V̇O2/
velocity intercept) was moderately to largely (ES:-0.86/-
1.63) lower (P < 0.05) in HI than LO within-each protocol 
(CP1, CP2 and DP). The slope of the submaximal regres-
sion analysis in V̇O2/velocity relationship ( V̇O2/velocity 
slope) showed trivial to moderate (ES:-0.18/0.83) not 
significant (P > 0.05) differences between HI and LO in 
CP1, CP2 and DP.

The V̇O2 kinetics was largely to very largely (ES: 
-2.74/-1.76) faster (P > 0.05) in HI than LO: despite 
small  [ES:-0.36(CI: -1.35/0.63] non-signif icant 

differences (P > 0.05) in time-delay, HIGH showed a 
large [ES:-1.76(CI:−2.92/−0.61] and very-large [ES:-
2.74(−4.10/−1.37)] difference with a faster time-constant 
and mean-response time than LO, respectively (Fig. 2).

Between‑protocols differences at maximal exercise

As shown in Table  1, Vmax was largely higher in CP1 
vs DP for both HI [P < 0.001, ES:1.96(0.77/3.16)] and 
LO [P < 0.001, ES: 1.84(0.67/3.01)]. In CP1 vs CP2, 
Vmax was largely higher for HI [P < 0.001, ES: 1.73, CI: 
0.58/2.88)] and moderately higher for LO [P = 0.006, 
ES: 1.11(0.06/2.17]. In CP2 vs DP, Vmax was moderately 
higher for LO [P = 0.039, ES: 0.75(−0.26/1.76)], while 
small not significant Vmax-difference for HI [P = 0.102, ES: 
0.30(−0.68/1.29)] were retrieved.

No between-protocol (CP1 vs CP2 vs DP) differences for 
maximum  V̇O2, VCO2, RER, SaO2, fH, VE and BLa−

peak 
were found for both HI and LO. Similarly, no between-pro-
tocol differences in general-, respiratory- and muscular-RPE 
were found.

Between‑protocols differences at submaximal 
exercise

As shown in Fig.  1,  V̇O2/velocity slope showed a 
moderate difference in CP1 vs DP for HI [P = 0.003, 
ES:−0.85(−1.88/−0.17)] and a large difference for LO 
[P = 0.002, ES: −1.75(−2.91/−0.60)]. In CP1 vs CP2,  V̇O2/
velocity slope showed a small difference for HI [P = 0.003, 

Table 1   Cardiorespiratory, metabolic, and perceptual variables at maximum exercise for HI and LO groups. Mean (SD)

Vmax velocity associated with maximum oxygen uptake; V̇O2 oxygen uptake; V̇CO2 carbon dioxide production; RER respiratory exchange ratio; 
SaO2 arterial O2 saturation; fH heart rate frequency; V̇E, expiratory ventilation; BLa−

peak peak blood lactate concentration; and rate of perceived 
exertion (RPE) at general, respiratory, and muscular level. Variables were determined at maximum exercise in the three testing conditions (CP1, 
continuous ramp 1; CP2, continuous ramp 2; DP, discontinuous protocol).
* P < 0.05 vs DP; **P < 0.05 vs CP1; ***P < 0.05 vs HI

HI LO

CP1 CP2 DP CP1 CP2 DP

Vmax (km·h−1) 22.1 (1.2)* 19.9 (1.2)*, ** 19.5 (1.3) 19.1 (1.8)*, *** 17.2 (1.4) *,**,*** 16.2 (1.1)***

V̇O2 (ml·min−1) 4169.6 (478.9) 4132.8 (134.2) 4158.8 (473.5) 3912.0 (442.6)*** 3907.8 (356.4) *** 3895.3 (424.9) §

V̇O2 (ml·kg·min−1) 59.2 (5.2) 58.7 (5.4) 59.1 (5.2) 54.6 (4.8)*** 54.4 (4.1) *** 54.5(2.5)***

V̇CO2 (ml·min−1) 4581.9 (510.4) 4492.8 (110.8) 4665.2 (442.0) 4465.8 (494.7)*** 4366.4 (473.0) *** 4371.7 (463.0) ***

RER 1.10 (0.09) 1.09 (0.03) 1.13 (0.04) 1.13 (0.06) 1.11 (0.06) 1.12 (0.06)
SaO2 (%) 89.8 (2.7) 89.6 (1.8) 89.8 (2.7) 91.0 (1.7) 90.6 (2.7) 90.1 (2.7)
fH (beats·min−1) 188.0 (10.0) 188 (10.0) 186.0 (7.0) 189.0 (1.0) 188.0 (5.0) 187.0 (7.0)
V̇  E (l·min−1) 166.9 (19.4) 164.1 (4.2) 163.3 (10.9) 155.1 (19.4)*** 156.2 (14.9) *** 155.4 (7.0) ***

BLa−
peak (mM) 13.0 (4.0) 11.4 (2.3) 12.5 (2.1) 11.4 (1.3) 11.9 (1.0) 11.8 (0.8)

General RPE (au) 18.2 (1.2) 17.9 (1.3) 18.0 (1.3) 18.1 (2.1) 18.3 (1.5) 18.9 (1.2)
Respiratory RPE (au) 18.5 (1.2) 17.7 (1.4) 17.7 (1.4) 17.6 (3.1) 17.8 (1.7) 18.8 (1.0)
Muscular RPE (au) 17.4 (1.5) 17.9 (1.8) 18.4 (1.5) 17.8 (1.7) 17.9 (2.6) 18.1 (1.9)
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ES:−.48(−1.48/0.51)] and very large difference for LO 
[P = 0.007, ES: -5.97(−8.26/-3.68)]. In CP2 vs DP,  V̇O2/
velocity slope showed a trivial no-significant difference for 
HI [P = 0.283, ES: −0.20(−1.18/0.79)] and a very large dif-
ference for LO [P = 0.016, ES: −2.33(−3.60/−1.06)].

In CP1 vs DP,  V̇O2/velocity intercept showed a small dif-
ference for HI [P < 0.001, ES:0.21(−0.78/1.19)] and a mod-
erate difference for LO [P = 0.002, ES: 0.99(0.05/2.03)]. In 
CP1 vs CP2,  V̇O2/velocity intercept showed a trivial differ-
ence for HI [P = 0.010, ES:0.10(-0.88/1.08)] and a moderate 
difference for LO [P = 0.015, ES:0.61 (-0.36/1.60)]. In CP2 
vs DP,  V̇O2/velocity intercept showed a trivial no-signifi-
cant differences for HI [P = 0.348, ES: 0.00(−0.98/0.98)] 
and a very large difference for LO [P < 0.001, ES: 
1.51(0.40/2.62)].

Between‑protocol Vmax correlations

Very large between-protocol correlations for Vmax were cal-
culated for HI (r = 0.73, r = 0.84, and r = 0.73 for CP1 vs DP, 
CP2 vs DP and CP1 vs CP2, respectively P < 0.05). Mod-
erate to large between-protocol correlations for Vmax were 
calculated for LO (r = 0.49, r = 0.68, and r = 0.79 for CP1 
vs DP, CP2 vs DP and CP1 vs CP2, respectively P < 0.05).

Relationship between training status 
and between‑protocol differences

The percentage of the Vmax in CP1 vs DP showed a small 
[P = 0.045, ES: -0.53 (-1.56/0.46)] difference between HI 

and LO [+ 13.3(5.4)% and + 17.9(10.2)%,, respectively] and 
a moderate [P = 0.032, ES:−0.75 (−1.76/0.26)] difference 
for CP2 vs DP [+ 6.2(6.6) and + 2.1(3.7)% for HI and LO, 
respectively].

As shown in Fig. 3, the percentage of the Vmax-difference 
in CP1 than DP showed an inversely large correlation with 
Vmax,  V̇O2max and the velocity at lactate threshold. Con-
versely, the percentage of the Vmax-difference in CP1 than 
DP was largely correlated with the time-constant of the  V̇
O2 kinetics.

Discussion

The main finding of the present study was that HI, with 
faster  V̇O2 kinetics, had lower differences in Vmax between 
CP and DP than LO. This observation may confirm the 
experimental hypothesis stating that athletes with higher 
aerobic capacity and faster  V̇O2 kinetics are able to adjust 
better to work rate increments typical of CP with short stage 
duration. Noticeably, HI had a similar Vmax in DP and CP2 
(i.e., the continuous protocol with slower work rate incre-
ments) and the difference in Vmax between CP1 and DP was 
lower than in LO. Lastly, the percentage of the Vmax differ-
ences between CP1 and DP were inversely correlated with 
Vmax,  V̇O2max and directly correlated to the time-constant of 
the  V̇O2 kinetics, providing further evidence that between-
protocol Vmax differences in HI are minimized likely because 
of their faster  V̇O2 kinetics.

Fig. 1   The V̇O2 as a function of running velocity at submaximal work 
rates (below the velocity corresponding to the lactate threshold cal-
culated in CP1 condition) for both HI and LO. The solid, dashed and 
dotted lines represent the regression lines for the discontinuous (DP), 
continuous protocol with 1 km·h−1 increment per minute (CP1) and 

2 km·h−1 increment every 2 min (CP2), respectively. Panel A and B 
show HIGH and LOW group, respectively. Regression equations 
(y = a · bx) and correlation coefficients are also reported. *P < 0.05 
vs DP for slope and intercept of the regression equation, #P < 0.05 vs 
CP1 for slope of the regression equation, §P < 0.05 vs HI for the inter-
cept of the regression equation
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Preliminary considerations

The present results came with no between-protocol differ-
ences in  V̇O2max and in the other main cardiorespiratory 
and metabolic parameters in both HI and LO. Despite some 
previous findings about the effects of protocol (i.e. workload 
vs recovery ratio) on  V̇O2max (Vinetti et al. 2017), these 
findings reinforce previous data demonstrating that  V̇O2max 
was independent of the protocol adopted across different 
incremental testing procedures (Bentley et al. 2007; Billat 
et al. 1996; Riboli et al. 2017). The present outcomes are in 
line with previous literature, in which no differences in  V̇
O2max were observed between protocols in different popu-
lations, such as recreationally-active men (Kirkeberg et al. 
2011), physically-active young adults (Riboli et al. 2017), 

semi-professional soccer players (Riboli et al. 2021) and 
competitive middle- and long-distance runners (Billat et al. 
1996; Kuipers et al. 2003). Similar results were also found 
in moderately-active cyclists during cycle-ergometric evalu-
ation (Adami et al. 2013).

Maximum exercise

The present findings demonstrate that Vmax was protocol-
dependent, as also previously observed (Kuipers et al. 2003; 
Riboli et al. 2017, 2021). The steeper the work rate increase, 
the higher the Vmax in both groups. In LO Vmax differed 
in each protocol (i.e., CP1 > CP2 > DP). Conversely, in HI 
the Vmax differences between CP2 and DP were not present 
(i.e., CP1 > CP2 = DP). These findings suggest that higher 
aerobic capacity may minimize the between-protocol Vmax 

Fig. 2   The rate of  V̇  O2 increase at submaximal exercise for both 
HI and LO. Panel A shows the rate of  V̇O2 increase ( V̇O2 kinetic) 
for two representative subjects (HI: white circles; LO: black circles). 

The time-delay (Panel B), the time-constant (Panel C) and the mean-
response time (Panel D) are illustrated for each subject (white circles) 
in HI (white bar) and LO (dark-grey bar) group. #P < 0.05 vs HI
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differences due to the faster cardiorespiratory and metabolic 
adjustments to match the increasing mechanical power in 
CP. This explanation was further supported by the faster  
V̇O2 kinetics in HI, in which no difference was found 
between CP2 and DP. On the contrary, in LO Vmax in CP2 
was higher than in DP due to the slower  V̇O2 kinetics. A 
direct comparison with previous studies is challenging, as 
this was the first study investigating the effect of aerobic 
training status on Vmax. Previous studies observed a greater 
between-protocol difference when steeper work rate vs time 
increments were utilized (Kuipers et al. 2003; Riboli et al. 
2017, 2021). Indeed, when comparing three CPs with 1-, 
3- or 6-min stage duration in competitive middle-distance 
runners, Vmax was related to the slope of the work rate vs 
velocity increments (Kuipers et al. 2003). Similar results 
were found when a CP with different work rate vs veloc-
ity increments was used during cycle ergometry in active 
people (Adami et al. 2013) or international competitive tri-
athletes (Bentley and McNaughton 2003). Recently, greater 
peak mechanical power output was found also in healthy 
participants using a synchronous arm crank ergometry when 
work rate increments were steeper (Kouwijzer et al. 2019). 
Interestingly, when long-distance runners were tested using 
CP with different stage duration but similar slope in the 
velocity vs time increments (e.g., 1 km·h−1 increments every 
2 min vs 0.5 km·h−1 increments every min), no difference in 
Vmax was detected (Billat et al. 1996). Similar findings were 
observed also in sedentary men on cycle ergometer (Zhang 
et al. 1991).

Submaximal exercise

A faster  V̇02 kinetics was observed in HI than in LO partici-
pants during the test at 10 km/h, implying a more rapid car-
diorespiratory and metabolic adjustment capacity to match 
mechanical power increase during incremental exercise. 
Previous investigations observed that athletes with a high 
aerobic capacity, such as long- and middle-distance run-
ners, were qualified by greater physiological characteristics 
in terms of faster  V̇O2 kinetics (Poole and Jones 2012; Coyle 
1995). In top-level aerobic athletes, indeed, an extremely 
short time (i.e., ~ 30 to ~ 40 s) is required to achieve a  V̇O2 
steady-state (Poole and Jones 2012), while in trained healthy 
individuals at least 2–3 min or even more are required (Rob-
ergs 2014; Poole and Jones 2012). The present results con-
firm the current hypothesis demonstrating a lower between-
protocol Vmax difference in HI than in LO likely due to the 
changes in running velocity faster than cardiorespiratory and 
metabolic adjustments. This was remarkably highlighted by 
no-differences in Vmax between CP2 and DP for HI.

The between-protocol difference in the  V̇O2/velocity 
slope, was greater in LO (large to very large) than in HI 
(trivial to moderate), leading the slope to CP1 > CP2 > DP 

Fig. 3   Relationship between training status and the between-protocol Vmax dif-
ference. The percentage of the individual Vmax-difference in CP1 than DP is 
related with the velocity associated with maximum oxygen uptake (Vmax, Panel 
A), maximum oxygen uptake ( V̇O2max, Panel B) and lactate threshold (LaT, 
Panel C). Regression equations (y = a · bx), 95% confidence intervals and cor-
relation coefficients are also reported
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and CP1 > CP2 = DP in LO and HI, respectively. High-level 
aerobic athletes are also qualified by better biomechanical 
characteristics matching with a faster  V̇  O kinetics and a 
higher running economy (Coyle 1995). In the present study, 
LO showed a reduced  V̇O2/velocity slope in both CP1 and 
CP2 than DP, while in HI the difference between CP2 and 
DP disappeared. This condition typically occurs when the 
time to reach cardiorespiratory and metabolic equilibrium 
matches the change in work rate across CPs.

Training status and between‑protocol differences

The between-protocol Vmax differences were inversely cor-
related with training status. A higher  V̇O2max, Vmax, lactate 
threshold and faster  V̇O2 kinetics provided further evidence 
that between-protocol Vmax differences in HI may be likely 
counteracted by their higher aerobic training status. There-
fore, a more consistent Vmax across different protocols in 
athletes with a higher aerobic capacity was found. The 
knowledge of the between-protocols Vmax differences could 
have practical implications for testing, exercise prescriptions 
and physiological outcomes during running activities. Dif-
ferent % Vmax were shown to lead different physiological 
responses by increasing or decreasing the time spent at ~  V̇
O2max, a crucial factor for chronic adaptations and perfor-
mance development (Buchheit and Laursen 2013). There-
fore, a more consistent Vmax determination should permit a 
more accurate running exercise prescription in both HI and 
LO athletes.

Methodological considerations

Some methodological considerations should accompany 
the present investigation. First, the study of the dynamic 
response of metabolic and pulmonary variables upon exer-
cise onset is strongly affected by the recording technique 
(Ferretti 2015). The Auchincloss algorithm (Auchincloss 
et al. 1966) utilized to calculate dynamic  V̇O2 responses 
requires a correct determination of the change in the amount 
of gas stored in the lungs over each breath. However, the 
algorithm estimated the end-expiratory lung volume impos-
ing fixed pre-defined values of end-expiratory lung volumes 
(Ferretti 2015) leading to an impossibility of attaining a cor-
rect estimation (di Prampero and Lafortuna 1989). Subse-
quently, it was demonstrated a two-time improvement of the 
signal-to-noise ratio in breath-by-breath alveolar gas transfer 
(Capelli et al. 2001) and a lower dynamic response (Cautero 
et al. 2002) using Grønlund algorithm. However, despite 
such algorithm improvements, the aforementioned issue 
could not be fixed (Ferretti 2015). Secondly, despite a step-
wise interpolation procedure was proposed to improve the 
time-constant calculation (Lamarra et al. 1987), a slightly 
higher time-constant than the interpolation interval still 

remains. Therefore, at least in the light exercise domain, 
mere stacking of multiple repetitions was proposed if the 
data were from the same  V̇O2 on rest-to-exercise transient 
(Bringard et al. 2014; Francescato et al. 2014b, a). As such, 
attempts at improving the time resolution beyond the single-
breath duration could rely only on computational manipula-
tions, such as superimposition of several trials and interpola-
tion procedures (Francescato et al. 2014a; Francescato and 
Cettolo 2020).

Lastly, the present findings open to new future perspec-
tives. During submaximal running bouts, the time shift 
between velocity and  V̇O2 could be calculated knowing the 
time constant of the  V̇O2-on kinetics. Therefore, a mathe-
matical modeling would possibly provide a calibration equa-
tion for Vmax correction in CP1 and CP2 with respect to DP.

Practical considerations

The between-protocol Vmax differences in CP1 (+ 18% 
and + 13% than DP in LO and HI, respectively) and CP2 
(+ 6% than DP in LO) should be considered for both athletes 
aerobic profiling and exercise prescription. These results 
suggest that in LO a protocol with more than 2 min stage 
durations is required for the metabolic power to match the 
mechanical power. In HI, a 2-min stage duration may be 
suitable and can be consistently utilized within sport con-
texts. When shorter stage durations are mandatorily required 
(e.g., 1-min), a misestimate Vmax should be considered to 
plan accurately high-intensity exercises in both HI and LO. 
Indeed, different %- Vmax are suggested to increase the time 
spent at ~  V̇O2max during high-intensity interval or intermit-
tent exercises (e.g., 110% to 130%-Vmax for short-intervals 
exercises or 130% to 160%-Vmax for repeated sprint train-
ings) (Buchheit and Laursen 2013). Therefore, when short 
intervals exercises (e.g., ~ 110% Vmax) are prescribed, ~ 18% 
of Vmax difference in CP1 vs DP for LO should induce an 
unexpected greater anaerobic involvement leading to acute 
physiological responses similar to a running exercise 
at ~ 130%-Vmax (i.e., ~ 25 km·h−1 instead of ~ 21 km·h−1). 
Similar differences between desired and actual physiologi-
cal responses could be found across any %-Vmax within both 
longer and shorter running exercises. Neglected between-
protocol Vmax differences may mislead acute physiological 
responses (e.g., more aerobic or anaerobic contribution) and 
possibly negatively affect the training adaptations, especially 
within-athletes with lower training status. Therefore, the 
knowledge of the between-protocol differences may help 
practitioners to properly manage different testing modali-
ties and to adjust the %-Vmax when intermittent or interval 
running-based exercises are prescribed.
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Conclusions

As previously observed, CP and DP can be used inter-
changeably to assess  V̇O2max, but not Vmax (Riboli et al. 
2017, 2021). We demonstrate here that aerobic training 
status can influence the magnitude of the between-protocol 
differences in Vmax assessment. When different protocols 
are utilized to determine Vmax, between-protocol differ-
ences exist, especially in CPs vs DP in which a matching 
between metabolic and mechanical power clearly occurs. 
These Vmax differences should be considered when ath-
letes with different aerobic training status are tested. The 
Vmax difference between CPs and DP disappeared in HI 
during CP2, suggesting that a protocol with at least 2-min 
stage duration may be sensitive enough in athletes with 
a greater aerobic capacity, while differences still exist 
across participants with lower aerobic training status for 
which at least 3-min stage duration seems required. These 
between-protocol Vmax differences should be considered 
when athletes with different aerobic capacity are tested 
because they may affect the testing outcomes and training 
prescriptions.
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