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A B S T R A C T

In this paper, we propose two related versions of a dissimilarity-based measure of functional beta diversity, to-
gether with the associated tests for differences in beta diversity among different groups of samples. Both mea-
sures are based on the optimal functional matching between the species in two samples. As such, they are tightly
connected to Hurlbert's seminal work on encounter-based diversity measures. The behavior of the proposed mea-
sures is illustrated with one worked example on the functional turnover of Alpine species along a successional
gradient. Results show that both measures proved able to detect the functional turnover of vegetation along the
chronosequence. The method, for which we provide a simple r function, further allows to evaluate the functional
contribution of single sampling units to the overall beta diversity of any kind of species assemblages.

1. Introduction

Beta diversity measures the variability in species composition
among a set of sampling units and is considered to be a key signature of
the ecological processes that make species assemblages more or less
similar to one another (Anderson et al., 2011; Bennet and Gilbert,
2016). Since the pioneering work by Whittaker (1972), there have been
intense discussions on how to measure beta diversity and how to test for
differences in beta diversity among different groups of samples. For re-
views, see e.g. Lande (1996), Koleff et al. (2003), Anderson (2006);
Anderson et al. (2011), Jost (2007), Tuomisto (2010a, 2010b), Chase et
al. (2011), Chao and Chiu (2016), Legendre and De Cáceres (2013),
Ricotta (2017), Chao and Ricotta (2019) and references therein.

Irrespective of how beta diversity is measured, an important requi-
site for diversity measures is their ecological interpretability. According
to the seminal paper of Stuart Hurlbert (1971), meaningful diversity in-
dices should have a straightforward biological interpretation: “We
therefore can muddle along with a plethora of indices, each supported
by at least one person's intuition and a few recommended by fashion, or
we can sharpen our thoughts and rephrase our questions in terms of bi-
ologically meaningful properties [...]” (Hurlbert, 1971 p. 579).

Among these properties, the probability of intra- and interspecific
encounters is a variable of interest, as it is directly related to the poten-
tial ecological interactions among all individuals and species in the

community (Hurlbert, 1971; Patil and Taillie, 1982). This encounter-
based approach is even more important for functional diversity where,
unlike for classical diversity measures, the species are not considered
equally dissimilar from each other. In a sense, dealing with functional
diversity measures, the potential amount of ecological interactions
among different individuals is ideally related to their functional resem-
blance.

In this paper, we thus propose two different versions of a dissimilar-
ity-related index of functional beta diversity, together with the associ-
ated tests for differences among different groups of samples. Both in-
dices are based on the optimal functional matching between the species
in two samples. As such, they are tightly connected to Hurlbert's en-
counter-based approach.

2. A dissimilarity-based index of functional beta diversity

Given a set of N samples, let pjk be the relative abundance of species
j = 1, 2, …, S in sample k = 1, 2, …, N such that 0 ≤ pjk ≤ 1 and
∑jSpjk = 1. The information on the species functional organization
within samples is usually represented by a symmetric S × S matrix of
pairwise functional dissimilarities dij between species i and j in the
range [0, 1] (with dij = dji and dii = 0) which represent the multivari-
ate differences in the character states among the S species.

⁎ Corresponding author.
E-mail address: carlo.ricotta@uniroma1.it (C. Ricotta).

https://doi.org/10.1016/j.ecoinf.2021.101458
Received 14 June 2021; Received in revised form 16 September 2021; Accepted 4 October 2021
1574-9541/© 2021

https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458
https://www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
mailto:carlo.ricotta@uniroma1.it
https://doi.org/10.1016/j.ecoinf.2021.101458
https://doi.org/10.1016/j.ecoinf.2021.101458


UN
CO

RR
EC

TE
D

PR
OO

F

C. Ricotta et al. Ecological Informatics xxx (xxxx) 101458

To calculate a dissimilarity-based index of functional beta diversity,
the first step consists in calculating the pairwise functional dissimilarity
Dhk between any pair of samples h and k. To this end, Ricotta et al.
(2021) first used an algorithmic measure originally developed by
Kosman (1996) and Gregorius et al. (2003) to calculate genetic dis-
tances between populations. The measure is based on the optimal
matching between the species abundances in h and k so as to minimize
the overall functional dissimilarity between both samples.

The dissimilarity index Dhk is calculated as follows: given two sam-
ples h and k, with n individuals in both samples, each individual in h is
matched to an individual in k in order to get n pairs that minimize the
sum of functional dissimilarities between the individuals in each pair
(Kosman and Leonard, 2007). The pairs are built such that all individu-
als in both samples are used only once. The overall functional dissimi-
larity between the two samples is then obtained as the mean dissimilar-
ity between each pair of individuals (i.e. by dividing the sum of func-
tional dissimilarities by the n pairs of individuals). However, since the
number of individuals in h and k is generally not the same, to get a com-
plete matching between the samples, this procedure is usually per-
formed on the species relative abundances in both samples. The algo-
rithmic dissimilarity Dhk can be thus interpreted as the minimum cost
per individual needed to change the character states of the species in
sample h to the states of the species in k (Gregorius et al., 2003).

Finding the optimal matching between the species abundances in h
and k is known as the assignment problem, a special type of linear pro-
gramming or linear optimization problem (Dantzig and Thapa, 1997).
Dealing with species relative abundances, the functional dissimilarity
between samples h and k can be formulated as (Gregorius et al., 2003):

(1)

where π(i, j) is the relative abundance of species i in sample h that is
matched with species j in sample k. Since Dhk is essentially a mean dis-
similarity between matched pairs of individuals, if the functional dis-
similarity dij between each pair of individuals is in the range [0, 1], the
resulting mean dissimilarity also ranges between 0 and 1. Kosman
(2014) further showed that if all species in h and k are considered maxi-
mally dissimilar from each other (i.e. if dij = 1 for all species i in sample
h and species j in sample k), Dhk will be equal to .

A simple way to generalize Dhk to more than two samples, which is
usually adopted in community ecology for calculating the beta diversity
of a set of N samples (but see e.g. Diserud and Ødegaard, 2007), consists
in calculating the mean value of Dhk for all possible pairs of samples:

(2)

Once beta diversity has been calculated, the next step is how to test
for differences in beta diversity among different groups of samples. To
this end, Anderson (2006) proposed a multivariate analogue of Levene's
(1960) test, which is directly connected to the way βN is calculated. The
test can be considered in two steps: first, starting from the functional
dissimilarities between all pairs of sampling units Dkn, the dissimilarity
Dk·of each individual sample from its group centroid in multivariate
space is calculated according to McArdle and Anderson (2001). Next,
the average of these dissimilarities among groups is compared using
ANOVA. A P-value can be then obtained with either the traditional ta-
bles on F-distribution or by using a permutation procedure (Anderson,
2006).

A drawback of this method is that the dissimilarity of individual
samples from the group centroid depends on the number of samples in
each group. Take for example a group composed of five maximally dis-
similar samples, i.e. with Dhk = 1 for all h ≠ k. In this case, the dissimi-
larity Dk· of each individual sample from its group centroid is equal to

Dk· = 0.632. By contrast, for ten maximally dissimilar samples,
Dk· = 0.671 (for details, see Anderson, 2006). Accordingly, this test
works correctly only with fully balanced designs with the same number
of samples in each group.

To overcome this problem, a possible solution may consist in substi-
tuting Dk· with the mean dissimilarity of each individual sample k from
all other N − 1 samples in the same group:

(3)

The same approach was used by Violle et al. (2017) and Kosman et
al. (2019) to calculate the mean distance in trait space of a species to all
other species in a community. The main advantage of over Dk· is that

is not influenced by the number of samples in each group. Like for
the Anderson (2006) test, the average of these dissimilarities among
groups can be then compared using standard ANOVA (see the example
in Supplementary material, Appendix 1).

3. A second index of beta diversity

A second method for deriving a measure of multiple-site functional
dissimilarity among sampling units may consist in calculating the dis-
similarity of Kosman (1996) and Gregorius et al. (2003) Dkη between
the species relative abundances in sample k and the species relative
abundances in an hypothetical complementary sample η. This comple-
mentary sample is obtained by pooling together the species relative
abundances of all N − 1 samples that are different from k such that the
relative abundance of species j in η is calculated as:

(4)

According to this leave-one-out approach, η can be interpreted as
the compositional centroid of the N − 1 samples that differ from k in
Euclidean space (see Champely and Chessel, 2002). A multiple-site
measure of beta diversity can be then obtained by taking the mean of
the dissimilarities Dkη over the N samples:

(5)

If beta diversity is calculated according to Eq. 5, a test for differ-
ences in beta diversity among different groups of samples can be then
performed in the usual way, by comparing the mean values of Dkη
within each group with ANOVA.

4. Worked example

4.1. Data

To illustrate the behavior of the proposed measures, we used a data
set of Alpine vegetation sampled by Caccianiga et al. (2006) along a pri-
mary succession at the foreland of the Rutor Glacier (Northern Italy).
The data set has been already used in previous studies on community
structure and diversity (Ricotta et al., 2016; Ricotta et al., 2020) and is
composed of 45 species in 59 plots of approximately 25 m2. All data are
available in Ricotta et al. (2016, Appendix S2). The species abundances
in each plot were measured with a five-point ordinal scale transformed
to ranks. The plots were classified into three successional stages based
on the age of the glacial deposits: early-successional stage (17 plots),
mid-successional stage ( 32 plots), and late-successional stage (10
plots).

For all 45 species sampled at the three successional stages, we used
six quantitative traits that are related to their successional status along
the primary succession: canopy height (CH; mm), leaf dry mass content
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(LDMC; %), leaf dry weight (LDW; mg), specific leaf area (SLA;
mm2 × mg-1), leaf nitrogen content (LNC; %), and leaf carbon content
(LCC; %). All traits can be found in Caccianiga et al. (2006, Table 2).

First, we used the Euclidean distance to compute a matrix of pair-
wise functional distances between the 45 species from the six functional
traits. For this purpose, all trait values for the 45 species were standard-
ized to zero mean and unit standard deviation. The output functional
distances were then scaled in the range by dividing each distance
by the maximum value in the distance matrix.

Using the algorithmic approach of Kosman (1996) and Gregorius et
al. (2003), we next calculated the beta diversity components (i.e. dis-
similarities) and Dkη for each sample in each successional stage. All
calculations were performed with a new r script (available in the elec-
tronic Supplementary material, Appendix 1 and 2 of this paper) that
modifies the r function dislptransport in Ricotta et al. (2021, Appendix
S3). We finally tested for differences in beta diversity among the three
successional stages by comparing the average of these dissimilarities
among groups with ANOVA. P-values were obtained by using a permu-
tation procedure. Among the many available permutation procedures
in ANOVA designs (Anderson, 2004; Anderson and Ter Braak, 2003),
we used the simplest approach, which consists in permuting individual
observation units among the three successional stages of the Rutor
chronosequence. To this end, we reshuffled 17 + 32 + 10 = 59 ob-
served dissimilarities and Dkη into random groups of 17, 32, and
10 units, respectively (9999 permutations) and recalculated the F-
values for each permutation. The same permutation procedure, was
then used to perform a post-hoc pairwise t-test with Holm correction of
the values of and Dkη between the three successional stages.

4.2. Results

The results of the permutational ANOVA on the values of and Dkη
among the three successional stages were in both cases highly signifi-
cant ( , p < 0.001 and F(Dkη) = 18.91, p < 0.001). For
both dissimilarity coefficients and Dkη, the within-group dispersion
(or beta diversity) progressively decreased along the primary succes-
sion (Fig. 1). As shown by Caccianiga et al. (2006) and Ricotta et al.
(2016), the significantly higher beta diversity of the early-successional
samples may be due to the random dispersal mechanisms that drive the
colonization of the moraine ridges in the first successional stages (abi-
otic filter). In contrast, the lower beta diversity of the mid- and late suc-
cessional samples is associated to a lower level of stochasticity in the
colonization process of the later successional stages and hence to an in-
creased level of functional homogeneity among different sampling units
(biotic filter).

Note that, since is essentially an average dissimilarity between
pairs of samples, while Dkη is the dissimilarity between a given sample k

Fig. 1. Box plots of the beta diversity components (dissimilarity coefficients)
and Dkη for the three successional stages of the Alpine vegetation of the Ru-

tor glacier. ESS = early-successional stage; MSS = mid-successional stage;
LSS = late-successional stage. Different letters a and b indicate significantly
different distributions at p < 0.001 for and p < 0.01 for Dkη (permutational
t-test with Holm adjustment for multiple tests based on 9999 randomizations).

and a complementary sample η that is obtained by pooling together the
species relative abundances of all samples that are different from k, the
values of Dkη are generally lower than the values of (see Fig. 1).

5. Discussion

In this paper we proposed two measures of functional beta diversity,
βN and βη which originate from Whittaker's (1972) suggestion that beta
can be summarized from a dissimilarity coefficient between pairs of
samples (see also Chao and Chiu, 2016). The proposed measures are
tightly connected to each other to the point that both of them can be
considered ‘variazioni sul tema’ of the same approach. In particular, Dkη
represents the dissimilarity of sample k from the pooled set of species in
the N − 1 samples that differ from k. Therefore, this index, together
with the corresponding beta diversity βη, is directly related to the notion
of originality (or distinctiveness, Pavoine et al., 2017). A sample is func-
tionally original if its functional characteristics are rare in the pooled
set of samples. The index is also related to the notion of the complemen-
tarity of a sample compared to a reference set of samples: complemen-
tarity being the gain in biodiversity units provided by adding an area
(or sample) to a set of areas (samples) (Faith et al., 2004). These two no-
tions (originality and complementarity) are used in conservation biol-
ogy to identify sites with distinct species/functional/phylogenetic com-
position (and thus sites for which conservation actions should be a pri-
ority because of their distinct composition) (e.g. Mishler et al., 2014).

From the perspective of conservation biology, Kosman et al. (2019)
recently proposed an additional indicator for estimating functional dif-
ferences among samples: functional uniqueness, or singularity. Based
on this approach, a sample that is on average quite distant from most
samples but functionally similar to another sample has a lower conser-
vation priority compared to a sample with the same average distance to
other samples but without a close neighbor in functional space. To sum-
marize this property, Violle et al. (2017) calculated the minimum pair-
wise distance between a focal sample and all other samples, while the
singularity measure of Kosman et al. (2019) is based on variation in dis-
tances of the focal sample to all other samples, not just the nearest
neighbor in trait space. Nonetheless, irrespective of how singularity is
calculated, it can be easily derived from the distances Dhk in Eq. 1.

Unlike the vast majority of functional dissimilarity measures used in
community ecology, the algorithmic index of Kosman (1996) and
Gregorius et al. (2003), is not based on the excess of among-sample di-
versity compared to within-sample diversity (e.g. Chao et al., 2014;
Chiu and Chao, 2014; Pavoine and Ricotta, 2014). Therefore, it is very
flexible as it can be based on any between-species dissimilarity measure
of choice without restrictions on their geometrical properties (see e.g.
Pavoine and Ricotta, 2014). Also, the index of Kosman (1996) and
Gregorius et al. (2003) satisfies an important requisite for functional
dissimilarity measures which requires that dissimilarity remains un-
changed if a given species j is replaced by two functionally identical
species with the same total abundance of j. For mathematical details,
see Leinster and Cobbold (2012); Pavoine and Ricotta (2019). From an
ecological viewpoint, this means that the measures that conform to this
requisite summarize the functional dissimilarity among samples irre-
spective of the identity of the species that support these functions. Ac-
cordingly, this algorithmic dissimilarity is closer to the essence of func-
tional dissimilarity than the measures that do not conform to this requi-
site.

Regarding the test for differences in functional beta diversity among
different groups of samples, the principle is the same as that of
Anderson (2006). However, the values of and Dkη are not influenced
by the number of samples in each group. In addition, we do not need to
calculate the functional centroid of each group, and this renders the test
much easier to perform, especially if the dissimilarities Dhk and Dkη are
not embeddable in Euclidean space without distortion (for details, see
McArdle and Anderson, 2001).
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Nonetheless, alongside the pros, there are also a few potential cons
for this test: like for the Anderson test, the values of and Dkη are not
fully independent of each other. This is because, for a given sample k
the quantity (Dkη) is obtained by averaging all dissimilarities Dhk (all
species relative abundances pjh) over all N − 1 samples that are differ-
ent from k (see Eq. 3 and 4, respectively). This nonindependence may
become relevant for small numbers of samples such that in the most
critical situation of N = 2, the values of and Dkη are identical for
both samples.

Even more importantly, the randomization process associated to
this test, while being statistically sound, has only little biological foun-
dation. Beta diversity describes the spatial variability in species compo-
sition and is considered to be a key signature of a number of community
assembly processes, such as dispersal, habitat filtering, intra- and inter-
specific competition, or the species responses to environmental condi-
tions (Bennet and Gilbert, 2016). Therefore, while the permutation of
the dissimilarities and Dkη among sampling units has no clear biolog-
ical meaning, a biologically sound null model should provide some in-
dication on whether differences in beta diversity among groups of sam-
ples are actually related to deterministic assembly processes that devi-
ate from stochastic patterns of species co-occurrence (Chase et al.,
2011). This may be achieved, for example, by restricted permutation of
species occurrences among the samples in each group. However, to con-
struct an adequate randomization test that correctly addresses the eco-
logical questions under study without confounding within group het-
erogeneity with between group heterogeneity, some additional work is
needed. In the meantime, the tests described in this paper may repre-
sent an acceptable, though ecologically imperfect solution to the prob-
lem.
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