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ABSTRACT

Car driving safety represents one of the major targets of the
ADAS (Advanced Driver Assistance Systems) technologies
deeply investigated by the scientific community and car mak-
ers. From intelligent suspension control systems to adap-
tive braking systems, the ADAS solutions allows to signif-
icantly improve both driving comfort and safety. The aim
of this contribution is to propose a driving safety assessment
system based on deep networks equipped with self-attention
Criss-Cross mechanism to classify the driving road surface
combined with a physio-based drowsiness monitoring of the
driver. The retrieved driving safety assessment performance
confirmed the effectiveness of the proposed pipeline.

Index Terms— ADAS, Automotive, Deep Learning,
Road Classification, Intelligent Suspension

1. INTRODUCTION

The ADAS technologies are able to accomplish several tasks
to assist the vehicle’s driver leveraging different level of au-
tomation: from car driving assistance to fully autonomous
driving or In-vehicle-Infotainment-Systems (IVIS) [1]. The
recent ADAS technologies include automotive embedded
systems suitable to provide ad-hoc warnings and alerts to
the driver such as the Intelligent Speed Adaptation, collision
warning systems or car driver drowsiness monitor [2]. More-
over, recent ADAS solutions combined visual information
inside and outside the car with physiological assessment of
the driver [2, 3]. In this context, the authors propose an in-
novative fully automated ADAS application which combines
an efficient physiological car driver’s drowsiness monitor
driven by adaptive road surface risk assessment. The use of
self-attention layers with temporal convolutional deep dilated
architectures makes the proposed pipeline robust and effi-
cient in monitoring driving risk. About road segmentation
and classification, several approaches have been proposed.

In [4] the authors described the development of a nice per-
former automated algorithms for extracting road features
from Mobile Laser Scanning point cloud data. In [5] the
authors proposed an interesting strategy to identify cracks on
images captured during road pavement surveys. It adopted
an efficient segmentation procedure, after appropriate image
smoothing, followed by ad-hoc binary classification. Deep
learning based solutions both supervised and unsupervised
have been implemented for addressing the issue of a robust
road segmentations [6, 7, 8, 9]. About driver attention moni-
toring systems, the authors have been deeply investigated the
topic providing several scientific contributions and surveys
[10, 11, 12, 13, 14, 15]. Several further approaches confirmed
that physiological signal, especially the Photoplethysmogra-
phy (PPG), can be efficiently used to monitor the car driver’s
attention level [15, 16, 17]. The proposed pipeline will be
described in detail in the next paragraphs.

2. THE ROAD SURFACE SEGMENTATION AND
CLASSIFICATION

The first sub-system of the proposed pipeline embeds a road
segmentation and classification algorithm. In Fig. 1 is re-
ported the scheme of the implemented approach. As schema-
tized in Fig. 1, a Mask-R-CNN embedding a DenseNet-201 as
feature generator backbone is proposed [18]. Mask-R-CNN
is widely used in the automotive field [18]. The advantage of
this architecture is that it provides a pixel-based segmentation
of the driving frames as well as the generation of a bounding-
box that characterizes the Region of Interest (ROI) on which
to perform post-processing. The segmented road (ROI) will
be fed as input of the enhanced downstream ResNet-101 in
which we have embedded a Recurrent Criss-Cross Attention
(RCCA) layer. The attention mechanism based on Criss-
Cross processing was firstly proposed in [19] showing very
promising performance in several tasks including semantic
segmentation. More in detail, for each source image/feature




Fig. 1. The proposed Road Surface Classifier: Mask-R-CNN
with a Recurrent Criss-Cross Attention (RCCA) enhanced
ResNet-101

pixel, an innovative Criss-Cross attention module computes
the contextual information of all the correlated pixels on
its Criss-Cross path. This attention pre-processing com-
bined with further recurrent operations allow the Criss-Cross
method to leverage the full-image dependencies during the
learning session of the deep network [19]. Lets formalize the
attention processing embedded in the Criss-Cross layer we
have implemented. Given a local feature map H € RC>*W>xH
where C'is the original number of channels while W x H rep-
resents the spatial size of the generated feature map trough a
Deep Convolutional Network. The Criss-Cross layer applies
two preliminary 1 x 1 convolutional layers on H in order
to generate two feature maps Fy and F5, which belong to
RO™WxH and in which C’ represents the reduced number
of channels due to dimension reduction with respect to orig-
inal (C). Lets define an Affinity function suitable to generate
the Attention-Map Ay, € RUFW-1)x(WxH) The Affinity
operation is so defined. For each position u in the spatial
dimension of F, we extract a vector F ,, € RC'. Similarly,
we define the set , € RHETW-1xC" py extracting feature
vectors from F; at the same position u. So that, Q; ,, € R
is the i-th element of €2,. Taking into account the above
operations, we can define the introduced Affinity operation as
follows:

5 = Fr.9f, (1)

where 6;‘}u € D is the affinity potential i.e. the degree
of correlation between features F ,, and ; ,, for each i =
[1,... H+ W — 1], and D € RHFW=1x(WxH)  Thep,
we apply a softmax layer on D over the channel dimension
to calculate the attention map A ;. Finally, another convolu-
tional layer with 1 x 1 kernel will be applied on the feature
map H to generate the re-mapped feature € RE*XW*H (o
be used for spatial adaptation. At each position « in the spa-
tial dimension of ¥, we can define a vector ¥,, € R® and a
set §,, € RH+W-1)xC The set @, is a collection of feature
vectors in ¢ having the same row or column with position u.

At the end, the final contextual information will be obtained
by an Aggregation operation defined as follows:

H4+W -1 )
H,= > Ay®,+H, )
=0

where H! is a feature vector in H' € RE*W>H at posi-

tion u while Aé\’} is a scalar value at channel ¢ and position
win Apr. The so defined contextual information H, is then
added to the given local feature H to augment the pixel-wise
representation and aggregating context information according
to the spatial attention map Aps. The Criss-Cross processing
fails to process the connections there are among one pixel and
its around. For this reason, a Recurrent Criss-Cross process-
ing was embedded in the proposed pipeline (with R = 2 i.e.
Criss-Cross operations can be unrolled into 2 loops)[19]. In
order to enhance the deep classifier, we have included a Criss-
Cross layer in the latest residual block of the ResNet-101 as
reported in Fig. 1. The proposed pipeline has been trained
and tested in the RTK dataset [20] trying to discriminate four
types of road: asphalt, paved, potholes and unpaved. The out-
put of the Criss-Cross enhanced ResNet-101 (having a soft-
max as latest layer) is a binary mask of four bits [asphalt,
paved, potholes, unpaved]. The bits set to 1 confirm that the
segmented input frames contains this kind of road surface.
The performance results will be showed in the next sections.

3. THE PPG BASED CAR DRIVER DROWSINESS
MONITORING SYSTEM

As introduced, the second block of the proposed ADAS
pipeline is the physio-based car driver drowsiness monitor-
ing system. Specifically, we proposed a car-driver attention
level monitoring based on the usage of the driver’s Photo-
plethysmographic (PPG) signal. Through a deep PPG signal
features analysis [3] a non-invasive blood volume dynamic
assessment can be retrieved. More in detail, a common PPG
waveform consist of a pulsatile physiological signal (‘AC’)
that embedding blood volume information overlapped with
slowly varying component (‘DC’) that represents informa-
tion correlated to the skin tissues (where the PPG sensor is
placed), respiration and thermoregulation. With a device con-
sisting in a light-emitter and a detector placed on the skin that
measure the amount of light either transmitted or reflected
we can detect the blood volume changes occuring with the
heart pressure pulse. The correlation between blood volume
changes and the Autonomic Nervous System that manage the
alert levels of the subject and cardiac activity allows to con-
sider the PPG an excellent indirect detector of the subject’s
level of attention [3, 10, 11]. In addition, the correct level of
attention required for safe driving is computed and adjusted
according to the driving context (speed, pavement conditions,
adjacent vehicles, and so on) [14]. In this work, the Silicon
Photomultiplier sensor [10, 11] was used as PPG detector.



PPG Signal from car driver’s hand

Car Driver Hand

ST Chorus MCU

Fig. 2. The PPG sensing device embedded in the car steering.

More in detail, the suggested PPG probes consists in a large
area of n-on-p Silicon Photomultipliers (SiPMs) fabricated
at STMicroelectronics [10, 11]. The SiPMs array has a to-
tal area of 4.0 x 4.5mm? and 4871 square microcells with
60 um pitch, packaged in a surface mount housing (SMD)
with about 5.1 x 5.1mm? total area [11]. Furthermore, on the
SMD package was glued a Pixelteq dichroic bandpass filter
by means the use of Loctite 352TM adhesive. The aforemen-
tioned bandpass filter was set with a pass band centered at
about 540 nm with a Full Width at Half Maximum (FWHM)
of 70nm and an optical transmission higher than 90 — 95%
in the pass band range. As light emitter we have used the OS-
RAM LT M673 LEDs in SMD package that emits at 830 nm
which is based on InGaN technology [11]. More in detail, the
aforementioned LEDs devices have an area of 2.3 x 1.5mm?,
spectral bandwidth of 33nm, viewing angle of 120° and
lower power emission (mW) in the standard operation range.
The authors have designed a printed circuit board (PCB) in
order to make the PPG probe easily to use. More imple-
mentation details can be found in [11]. In Fig. 2 we report
an overall scheme of the proposed PPG sensing framework
(SiPM + LEDs) embedded in the car steering. As reported
in Fig. 2, the filtering and stabilization of the raw PPG signal
collected from the car driver hand will be performed by the
developed algorithms running as firmware in the ST Chorus
MCU [11, 12, 13, 14, 15, 16]. After that, the hyper-filtering
approach we have implemented and patented [11], [16] will
be applied to the collected stabilized PPG data in order to
retrieve an evaluation of the attention level of the driver from
which the PPG signal is sampled. We have configured the
hyper-filtering approach for the application herein described.
Specifically, the proposed hyper-filtering system has been
inspired by the widely-accepted idea of hyper-spectral pro-
cessing used in 2D imaging [16]. Hyper-spectral imaging
gather visual information through the whole electromagnetic
spectrum, in order to retrieve the so called “frequency spec-
trum of each pixel” [15]. Thus, using the same method, the
authors considered the information set retrieved from such
“hyper-filtered” signals i.e. the set of signals obtained by

different frequency filtering of the source time-serie (PPG in
our use-case). With the proposed hyper-filtering approach
we are able to collect valuable information about the fre-
quency spectrum of the car driver’s PPG signal and then
about the correlated driver’s attention level (Drowsiness mon-
itoring). More in detail, we have divided the valuable PPG
frequency range 0.5 Hz—10 Hz in several sub-ranges in which
we have applied the Butterworth pass-band filter (high-pass
and low-pass filters) as described in [16, 15]. Thus, we have
configured two layers of hyper-filtering systems which are
able to modulate the frequencies in the low-pass application,
meanwhile preserving the cut-off frequency of the high-pass
filter (Hyper low-pass filtering layer) and vice-versa (Hyper
high-pass filtering layer). The applied hyper-filtering fre-
quency setup is reported in Table 1 and Table 2. We proposed
the usage of Butterworth filters in both hyper-filtering setup
since they do not create modulations or distortions in the
bandwidth [14, 15, 16]. We retrieved the frequency values
reported in Table 1 and Table 2 through a Reinforcement
Learning algorithm with a reward function correlated to the
car driver drowsiness classification accuracy [15, 16]. Once

F | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11

HP | 05| / / / / / / / / / /

LP | 00|11 |32]35|38|39]40/|41|50| 51 |63

Table 1. Hyper Low-pass filtering setup (in Hz).

F | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11

HP | 0.1 | 1.1 | 23|24 |32|35| 4 |42 | 5 | 53 | 64

LP | 70| / / / / / / / / / /

Table 2. Hyper High-pass filtering setup (in Hz).

the hyper-filtering setup has been assessed, the collected car
driver PPG raw signal will be processed accordingly. Specifi-
cally, from the collected source PPG driver signal, a subset of
hyper-filtered signals will be generated through the frequency
setup as per Table 1 and Table 2. Lets define WP (¢, k)
the single segmented waveform of the i-th hyper-filtered PPG
time-serie. For each sample s(t;) of the segmented PPG
waveform WFFCE (¢ k), we will compute a signal-pattern
representing the dynamic of the sample s’(t3) for each i-th
WFPG(t, k) waveforms. Consequently, we collect a large
dataset of hyper-filtered signal patterns [14, 15, 16]. As soon
as the driver put the hand over the PPG sensing probe embed-
ded on the steering wheel, the hyper-filtering pipeline starts
to work generating the signal-patterns to be fed as input to
the Deep Learning block as detailed in Fig. 3. Specifically,
the designed classifier is a Deep 1D Temporal Dilated Con-
volutional Neural Network (1D-TCNN) with residual blocks
[15]. The temporal convolutional network is mainly char-
acterized by a causal convolution layer [15]. The designed
ID-TCNN is composed as follows: 25 residual blocks with
3 x 3 kernel filters, where such of them contains dilated



Hyper-Filtering Signal Patterns

1D Temporal Dilated ConvNet

r,\w.n.“ ki

ST

TR it

A

Ptk
LT agh
: \1m~m

Fig. 3. The Physio-based Car Driver Drowsiness Monitoring
System

convolution operations in which the dilation factor size starts
from 2 and increase (power of 2) till to 16, normalization,
ReLU activation, spatial dropout layers and a downstream
softmax layer. The so designed 1D-TCNN is able to classify
the input hyper-filtered PPG patterns coming from a drowsy
or wakeful driver ((0.0 — 0.5), (0.51 — 1.0) respectively). As
reported in Fig. 3, the designed 1D TCNN is running over the
STA1295A Accordo5 MCU [15, 16].

4. EXPERIMENTAL RESULTS AND CONCLUSION

We tested the implemented pipeline, validating the single sub-
systems and then arranging a composite scenario of a road
surface-driven risk assessment (driving safety monitoring
system). Specifically, we considered the following risk as-
sessment: asphalt (low driving risk), paved (medium driving
risk due to certain braking problems) unpaved / potholes (high
driving risk). More in detail, if high or medium risk level is
assessed by the road classification system (Mask-R-CNN
with Criss-Cross ResNet-101 downstream) the driving safety
monitoring system will check that 1D-TCNN confirms a cor-
responding “wakeful” attention classification. Otherwise,
acoustic alert-signal will be emitted by the Audio underly-
ing System (STA1295A MCU) in order to alert the drowsy
driver. If the driver’s PPG signal is not available for some
reasons (for instance: the driver does not have his/her hand
placed over the PPG sensing devices in the steering wheel),
the authors have developed a system for ad-hoc visual re-
construction of the PPG signal by means of an innovative
motion magnification technique applied to specific driver’s
facial landmarks [12]. Now, follows more details about the
performance of the proposed sub-systems. About the pro-
posed road surface classification deep pipeline, we validated
and compared our pipeline using the RTK dataset and related
algorithms [20, 9]. We arranged the dataset into 80% for
training and validation while the remaining 20% for testing.
The following Table 3 shows some performance benchmarks.
Regarding the driver’s physio-based drowsiness assessment,
we have tested the suggested pipeline by gathering various
PPG measurements of several subjects in different scenarios
(Drowsy vs Wakeful drivers) under clinical study covered
by the Ethical Committee CTI authorization.113/2018/PO.

Method Road Surface Classification Performance
Low Risk | Medium Risk High risk
(Asphalt) (Paved) (unpaved / potholes)
Proposed 93 % 92% 97% 197 %
Proposed wio | =g, 89% 89% / 92%
Criss-Cross
Proposed w/o
ResNet-101 88% 88% 84% / 82%
[20, 9] 92% 94% 94% 1 97 %

Table 3. Road Surface Classification Performance.

We collected data from 70 patients with different features
such as ages, gender, etc. Furthermore, simultaneously with
the PPG signals we also acquired EEG signal to be able to
verify the attention level (alpha and beta waves) [13]. We
have sampled the PPG signals of the subjects by means of the
hardware setup detailed in this contribution with a sampling
frequency equal to 1kHz. We gathered 5 minutes of PPG
signals for both condition (Drowsiness and Wakefulness).
The so collected PPG time-series, have been organized as
follow: 70% was used for the training and validation phases
while the remaining 30% was used for testing. For the train-
ing phase of the 1D-TCNN we set an initial learning rate
equal to 0.001 and dropout factor equal to 0.5. Furthermore,
a classic SGD algorithm was used. The following Table 4
reports the performance obtained with the aforementioned
pipeline compared to similar pipeline based on deep learning
[16]. The collected performance results (related to the single

Driver Drowsiness Monitoring
Method Drowsy Driver | Wakeful Driver
Proposed 98.71% 99.03%
[16] 96.50% 98.40%

Table 4. Car Driver Drowsiness Classification Performance.

subsystems) confirm that the overall proposed pipeline per-
forms very well allowing an adaptive, robust and innovative
fully automated assessment of the driving risk based on road
surface classification. As confirmed by the results reported
in Table 3, the use of Criss-Cross enhanced downstream
ResNet-101 classifier allow to obtain significantly improve-
ment in terms of classification performance. This research
was supported by the National Funded Program 2014-2020
under grant agreement n. 1733, (ADAS + Project).

5. REFERENCES

[1] Ryosuke Okuda, Yuki Kajiwara, and Kazuaki
Terashima, “A survey of technical trend of adas
and autonomous driving,” in Technical Papers of 2014

International Symposium on VLSI Design, Automation
and Test. IEEE, 2014, pp. 1-4.

[2] Chang Wang, Qinyu Sun, Yingshi Guo, Rui Fu, and



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Wei Yuan, “Improving the user acceptability of ad-
vanced driver assistance systems based on different driv-
ing styles: A case study of lane change warning sys-
tems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 10, pp. 41964208, 2019.

Nicoleta Minoiu Enache, Said Mammar, Mariana Netto,
and Benoit Lusetti, “Driver steering assistance for lane-
departure avoidance based on hybrid automata and com-
posite lyapunov function,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 11, no. 1, pp. 28-39,
2009.

Haiyan Guan, Jonathan Li, Yongtao Yu, Michael Chap-
man, and Cheng Wang, “Automated road informa-
tion extraction from mobile laser scanning data,” IEEE
Transactions on Intelligent Transportation Systems, vol.
16, no. 1, pp. 194-205, 2014.

Henrique Oliveira and Paulo Lobato Correia, “Road sur-
face crack detection: improved segmentation with pixel-
based refinement,” in 2017 25th IEEE EUSIPCO Pro-
ceedings. IEEE, 2017, pp. 2026-2030.

Christian Koch, Kristina Georgieva, Varun Kasireddy,
Burcu Akinci, and Paul Fieguth, “A review on computer
vision based defect detection and condition assessment
of concrete and asphalt civil infrastructure,” Advanced
Engineering Informatics, vol. 29, no. 2, pp. 196-210,
2015.

Jin Tian, Jiazheng Yuan, and Hongzhe Liu, “Road mark-
ing detection based on mask r-cnn instance segmenta-
tion model,” in 2020 International Conference on Com-
puter Vision, Image and Deep Learning (CVIDL). IEEE,
2020, pp. 246-249.

Shashank Yadav, Suvam Patra, Chetan Arora, and Sub-
hashis Banerjee, “Deep cnn with color lines model for
unmarked road segmentation,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP). 1EEE,
2017, pp. 585-589.

Thiago Rateke and Aldo von Wangenheim, “Road sur-
face detection and differentiation considering surface
damages,” Autonomous Robots, pp. 1-14, 2021.

Vincenzo Vinciguerra, Emilio Ambra, et al., “Ppg/ecg
multisite combo system based on sipm technology,” in
Convegno Nazionale Sensori. Springer, 2018, pp. 353—
360.

Francesco Rundo, Sabrina Conoci, Alessandro Ortis,
and Sebastiano Battiato, “An advanced bio-inspired
photoplethysmography (ppg) and ecg pattern recogni-
tion system for medical assessment,” Sensors, vol. 18,
no. 2, pp. 405, 2018.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

Francesca Trenta, Sabrina Conoci, Francesco Rundo,
and Sebastiano Battiato, “Advanced motion-tracking
system with multi-layers deep learning framework for
innovative car-driver drowsiness monitoring,” in 2079
14th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2019). IEEE, 2019, pp. 1-5.

Francesco Rundo, Sergio Rinella, et al., “An innovative
deep learning algorithm for drowsiness detection from
eeg signal,” Computation, vol. 7, no. 1, pp. 13, 2019.

Francesco Rundo, Sabrina Conoci, Sebastiano Battiato,
et al., “Innovative saliency based deep driving scene
understanding system for automatic safety assessment
in next-generation cars,” in 2020 AEIT International
Conference of Electrical and Electronic Technologies
for Automotive. IEEE, 2020, pp. 1-6.

Francesco Rundo et al., “Advanced 1d temporal deep di-
lated convolutional embedded perceptual system for fast
car-driver drowsiness monitoring,” in 2020 AEIT Inter-
national Conference of Electrical and Electronic Tech-
nologies for Automotive. IEEE, 2020, pp. 1-6.

Francesco Rundo, Concetto Spampinato, and Sabrina
Conoci, “Ad-hoc shallow neural network to learn hyper
filtered photoplethysmographic (ppg) signal for efficient
car-driver drowsiness monitoring,” Electronics, vol. 8,
no. 8, pp. 890, 2019.

Hyeonjeong Lee, Jaewon Lee, and Miyoung Shin, “Us-
ing wearable ecg/ppg sensors for driver drowsiness de-
tection based on distinguishable pattern of recurrence
plots,” Electronics, vol. 8, no. 2, pp. 192, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross
Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.

2961-2969.

Zilong Huang, Xinggang Wang, Lichao Huang, et al.,
“Ccnet: Criss-cross attention for semantic segmenta-
tion,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 603-612.

Thiago Rateke, Karla Aparecida Justen, and Aldo von
Wangenheim, “Road surface classification with images
captured from low-cost camera-road traversing knowl-
edge (rtk) dataset,” Revista de Informdtica Tedrica e
Aplicada, vol. 26, no. 3, pp. 50-64, 2019.



