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Abstract 12 

Purpose 13 

Loess in Northern Italy has been usually considered deposited during the MIS 4-2 period, which 14 

corresponds to the last Pleistocene glacial cycle. In particular, no absolute dating evidenced loess 15 

depositions older than ca. 89 ka. We investigated two strongly rubified soil profiles in the southern margin 16 

of the Alpine range in Lombardy to prove their aeolian origin and age of formation.  17 

Methods 18 

We analysed the granulometry of all genetic horizons of these strongly rubified soils and a total of 8 19 

samples were collected for luminescence dating purpose. 20 

Results  21 

Most of the analysed soil horizons were dominated by silt and were characterized by the s-shaped 22 

granulometric curve, typical of loess materials. A particularly high clay content evidenced a strong 23 

weathering degree. A deep horizon was particularly clay-rich and it was interpreted as a typical Terra-Rossa 24 

horizon. Luminescence dates increased with depth, reaching 122 ka for the deepest loess layer and 453 ka 25 

(minimum age) for the Terra-Rossa horizon. 26 

Conclusions 27 

The deepest observed loess layer represents the oldest quantitatively dated aeolian deposition in Northern 28 

Italy up to now. 29 
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1 Introduction 41 

Loess is a prevalently silty sediment transported by wind, usually in glacial periods, during which the 42 

grinding action of glaciers on the enclosing rocks was active and fluvio-glacial sedimentation occurred on 43 

large surfaces in proglacial braided stream beds; these barren areas acted as deflation sources for great 44 

amounts of silty materials, which could be deposited in dust traps, which were more vegetated, stable 45 

surfaces (Pye 1995; Li et al. 2020). After deposition, loess was subjected to erosion, solifluction, 46 

cryoturbation and pedogenesis (Muhs and Bettis 2003). 47 

A large loess belt covers much of mid-latitude Eurasia (Haase et al. 2007). The presence of loess in northern 48 

Italy has long been historically neglected or underestimated (e.g., Haase et al. 2007; Muhs 2013) in the 49 

international scientific literature, but the presence of a loess basin between the Alps, the Apennines and 50 

the Dalmatian coast is well known (Cremaschi 1988). Usually, this loess cover is considered to be deposited 51 

between the Würm alpine ice stage and the Late Glacial, between MIS 4 and MIS 2 (e.g., Costantini et al. 52 

2018; Cremaschi et al. 1990; Ferraro 2009; Zhang et al. 2018). Most dated loess deposits in the Po plain (fig. 53 

1) show that aeolian depositions have been active since 60 ka, at the onset of full glacial conditions in MIS 4 54 

(Cremaschi et al. 2015). A more ancient loess layer on an isolated hill in the central Po Plain in Lombardy 55 

had an OSL date of 89 ± 9 ka (MIS 5b), while nearby alluvial sands and gravels were slightly more ancient, 56 

dated back to 107 ± 13 ka - MIS 5d (Panzeri et al. 2011). Much older, dated loess covers are widespread in 57 

other European areas, such as Germany (Kreutzer et al. 2012), Austria (Preusser and Fiebig 2009), and 58 

Serbia (Marković et al. 2011). 59 

Some northern Italian loess sections, however, have been attributed to the Middle Pleistocene or even 60 

earlier periods, but no absolute dating is available in the literature. For example, Busacca and Cremaschi 61 

(1998), based on pedogenic and magnetostratigraphic evidences, attributed ca. 400.000 years of age to 62 

some loess layers in the southern Po Plain margin. In the Lanzo alluvial fan (Torino), Billard and Orombelli 63 

(1986) attributed some loess sections to the 5th glacial stage, corresponding to 1.8-1.0 Ma BP (MIS 63-23). 64 

Recently a thick and strongly rubefied silty deposit was locally found on some slopes of Monte Orfano, an 65 

isolated hill on the northern margin of the Po Plain, a few km south of Lake Iseo (Brescia province, 66 
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Lombardy). Our aim was, thus, to check if this silty deposit was actually loess (using granulometric analysis) 67 

and to date its deposition using luminescence methods both on quartz (OSL) and feldspars (IRSL, Infrared 68 

Stimulated Luminescence).  69 

 70 

2 Material and methods 71 

2.1 Study area characterization 72 

The Monte Orfano is an isolated relief, located on the northern edge of the Po Plain, south of Lake Iseo, 73 

west of Brescia and east of Bergamo, Lombardy (fig. 1). Its ridge has an elongated shape in the prevailing 74 

WNW-ESE direction and has a maximum elevation at 452 m a.s.l. The maximum cross width is 1,200 m. The 75 

northernmost point of the mountain has a latitude 45°35’40.5” N and a longitude 9°56’12” E; the 76 

southernmost one is 45°33’49.9” N and 9°59’08.6” E. The occurrences, although discontinuous, of loess 77 

cover, with a thickness up to a few meters, and Terra Rossa soils make the site interesting for the study of 78 

the Quaternary paleoenvironments of Northern Italy, the Po Plain and the Alpine and Apennine fringes.  79 

The hill is composed of a single geological formation called "Conglomerato di Monte Orfano" (MOC), an 80 

orthoconglomerate with massive to poorly-bedded arrangement of pebbles and cobbles of limestones, 81 

marly limestones, chert, cherty limestones, radiolarites, dolostones, sandstones and few volcanic 82 

fragments, with carbonatic cement. (Sciunnach et al. 2010). It was recently dated to the Late Oligocene 83 

(Sciunnach et al. 2010), while in the past its age was believed to be between Early and Middle Miocene 84 

(Vecchia and Cita 1954). The clasts, mainly derived from sedimentary Norian and Aptian formations, were 85 

deposited in a shallow-marine fan delta during the uplifting front of the Southern Alps, without significant 86 

lithological variations in the different sedimentary strata with the exception of rare intercalations of 87 

decimetric layers of sandstones and marls (Sciunnach et al. 2010). 88 

The climate (1960-1990 data) in nearby Chiari weather station (located an elevation of 148 m a.s.l.) is 89 

characterized by an average yearly temperature of 13.5°C, a total mean precipitation of 946 mm, with 90 

equinoctial maxima and a primary winter minimum and a secondary summer one. The moisture regime for 91 

the described soils, calculated with the Newhall method (Newhall 1972), is Udic according to Soil Taxonomy 92 

rules (Soil Survey Staff 1998). The sites of the two profiles are covered by Castanea sativa Mill. mixed with 93 

Robinia pseudoacacia L. woodlands, presently unmanaged but coppiced in the past. While other sectors of 94 

the hill are terraced, in our sites there are no terrace remnants, it is thus unlikely that the sites were ever 95 

used for agriculture. 96 

 97 

2.2 Field and laboratory methods 98 

Two soil sections were investigated: the loess section (LS) located at 410 m a.s.l., with latitude 45°35’24.9” N 99 

and longitude 9°56’57.6” E; and a Terra Rossa soil profile (TR) located at 310 m a.s.l., 45°34’39.70’’ N, 100 
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9°58’31.83” E. The LS section was opened with an excavator, down to a depth of ca. 4.8 m, in the upper part 101 

of a west-facing slope. The TR section was located in a middle steep slope facing north-east. Different soil 102 

horizons were recognized and described (table 1, fig. 2), according to the FAO (2006) guidelines. Soil samples 103 

were taken from the main pedogenic horizons, treated with 20% H2O2 solution for 3 days (until complete 104 

disappearance of bubbles) and, after adding a 5% Na-hexametaphosphate solution, particle size was 105 

measured by sieving and sedimentation using a hydrometer according to ASTM standards (ASTM D 422). The 106 

analysis was carried out in the Pedology lab in the DISAT, Milano Bicocca University. The results were shown 107 

as cumulate curve using a base 2 cologarithmic scale for equivalent diameters (Krumbeinɸ scale).  108 

 109 

2.3 Luminescence measurements  110 

Optically stimulated luminescence dating methods can be used to estimate the time elapsed since buried 111 

sediment grains were last exposed to daylight. Luminescence has been successfully applied, in the last 112 

decade, on loess and Terra Rossa-like sequences in Italy (Andreucci et al. 2012; Zucca et al 2014) and Europe 113 

as well (Guerin et al. 2017; Zhang et al. 2018; Stevens et al. 2020). It is based on the measurement of the 114 

electric charges trapped in mineral grains since the time of the sediment deposition, as a consequence of the 115 

irradiation due to the natural radioactivity field. The upper age limit is normally controlled by saturation of 116 

the luminescence signal. Because the natural OSL signal from quartz extracted from most of the Monte 117 

Orfano samples was close to the limit of saturation, the K-feldspars were chosen as dosimeters in 118 

luminescence dating. K-feldspar IRSL signals, in fact, normally saturate at higher doses than quartz (Wintle 119 

and Murray 2006). 120 

Samples for OSL analysis were collected using specific core samplers able to get undisturbed soil materials at 121 

least 30 cm from the vertical surface of the soil pit, at different depths. In particular, we collected undisturbed 122 

soil samples at six depths in LS, and two in TR profile (table 2). In order to separate quartz from K-feldspars 123 

(grains size 180-250 μm), samples were prepared following the conventional procedure (Lang et al. 1996). 124 

To measure the annual radiation dose provided to the sample from the radioactive elements surrounding it, 125 

Th and U concentrations of each sample were measured with total alpha counting using ZnS scintillator discs 126 

(Aitken 1985), assuming a concentration ratio Th/U equal to 3. Content of 40K was hypothesized from the 127 

total concentration of K measured with flame photometry. Attenuation of the beta dose (Bell 1979) and a 128 

probable water content of the loess were taken into account (table 2) while alpha contribution was 129 

eliminated by an HF etching (10%; 30 minutes). The cosmic ray contribution to the final dose rate was based 130 

on Prescott and Hutton (1994). The 40K internal radioactivity on K-feldspar grains contributing to the final 131 

dose rate was calculated assuming a K content of 12.0 ± 0.5% (Huntley and Baril 1997). 132 
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The measurements were performed with an automated luminescence system (Risø TL/OSLDA-20) equipped 133 

with a 90Sr/90Y beta source delivering 0.11 Gy/s (± 3%) to the sample position. Feldspars IRSL was stimulated 134 

by an array of IR LEDs (830 ± 10 nm; 360 mW/cm2) and detected through a blue filter (Schott BG39/Corning 135 

7-59 filter combination). The Single-Aliquot Regeneration (SAR) dating protocol (Murray and Wintle 2000) 136 

was applied using different protocols to analyse samples along the studied profiles. In particular, from the 137 

top of the profiles downward, the postInfrared-IRLS (pIRIR) at 150°C protocol was used to analyse TR25 and 138 

LS 40 samples (Reimann and Tsukamoto 2012), while the pIRIR at high temperature (290°) was selected for 139 

TR100 and LS 120 samples (Buylaert et al. 2012). For all the other samples (LS 170, LS 270, LS 350 and LS 440) 140 

the Multi-Elevated-temperature MET-postIRIR procedure was applied (Li and Li 2011) using multi-steps of 141 

IRSL measurements with increasing stimulation temperature from 50 to 250°C. At high stimulation 142 

temperatures (200 and 250°C), the MET-pIRIR Equivalent Dose (De) reached a plateau and these values were 143 

used for age determination. For all samples, the measured residual doses were subtracted from the 144 

calculated De and negligible anomalous fading was achieved. OSL-IRSL measurements were performed at the 145 

Department of Materials Science of the University of Milano Bicocca and at the Luminescence Dating 146 

Laboratory of the University of Sassari, Italy. 147 

 148 

3 Results and discussions 149 

The main morphological properties of the investigated soil profiles are shown in table 1. The LS soil profile 150 

was very thick (more than 4 m), and it included at least 4 main pedogenetic discontinuities separating 151 

different stratigraphic units, in which different soil forming processes created different types of horizons (Bw, 152 

Bt and Btx horizons). The limit between the different stratigraphic units was usually clear and linear, it was 153 

abrupt only between the surface Bw horizon and the underlying Bt one. The deep 4Bt horizon had a small 154 

quantity of stones (chert fragments), evidencing a partial mixing with slope materials. Nearby, close to rock 155 

outcrops, Terra Rossa horizons (strongly rubified horizons with Munsell colour of 2.5YR 3/6 or 4/6, 156 

particularly rich in clays) and weakly developed plinthites were observed as well. The abrupt lateral limit 157 

between thick loess covers and shallow Terra Rossa soils on rock outcrops was likely associated with tectonic 158 

activities, even if no data nor precise map is available at the moment. According to the WRB taxonomic 159 

system (IUSS Working Group WRB 2014), the LS profile can be classified as Rhodic Alisol (Siltic) over Rhodic 160 

Fragic Luvisol (Siltic, Profondic) over Rhodic Luvisol (Loamic). 161 

The TR profile was shallower, limited by hard rock at ca. 170 cm. Two discontinuities were immediately 162 

visible, between the light-coloured, silt and sand-rich EB horizon and the underlying red, silt- and clay-rich 163 

2Bt1 horizon, and between this latter and the redder, clayey and stone-rich 3Bt below. The limit between 164 

the two upper stratigraphic units was irregular, with glossae, possibly derived by root channels. The stone 165 
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fragments, observed mainly in the EB and 3Bt horizons, are composed of chert, which is resistant to 166 

weathering. According to the WRB taxonomic system (IUSS Working Group WRB 2014), the TR profile can be 167 

classified as Chromic Cambisol (Siltic) over Rhodic Luvisol (Clayic). 168 

The granulometric analysis in the LS profile showed that all soil horizons down to 410 cm of depth were 169 

dominated by silt, but with an increasing clay fraction (fig. 3, table 3) with depth. All samples in the LS 170 

profile are also slightly richer in clays, thus their curve falls into the range of weathered loess, in which 171 

pedogenesis (clay lessivage and illuviation) and mineral weathering caused an important increase in the 172 

clay fraction. The curve is also typical for reworked loess deposits in Northern Italy (Cremaschi et al. 1987), 173 

slightly enriched in sand. The EB horizon in the TR profile has a curve compatible with a colluvial loess 174 

mixed with slope materials (particularly rich in sand), in agreement with its stone content (Costantini et al. 175 

2018); the granulometric composition could resemble the upper layer of the Central European cover beds 176 

(Semmel and Terhorst 2010). Below, the 2Bt1 horizon was mainly silty and its curve clearly resembles the 177 

one characterizing most LS soil horizons, while the 3Bt3 one was mainly clayey (clay 59.9%, table 3), 178 

evidencing a mainly non-aeolian origin. Some Terra Rossa soils in Italy have higher clay contents (e.g. Priori 179 

et al. 2008; D’Amico et al. 2015), as it often happens when soils are mainly derived from the residuals of 180 

dissolution of limestones. However, the MOC is rich in non-calcareous materials, such as chert and 181 

sandstone fragments, which are likely related with the not-so-high clay content in the 3Bt3 horizon. 182 

 183 

Luminescence dating results showed that surface soil horizons are recent (table 2). In particular, TR-EB 184 

horizon has an age of ca. 2.7±0.8 ka; LS-Bw horizon is a bit older (7.7 ± 1.6 ka). IRSL shows that this horizon 185 

has been isolated from sunlight since the Early-Middle Holocene. Both horizons are, however, derived from 186 

reworked materials, and they likely include Late Glacial loess mixed by slope processes and tree uprooting. 187 

In both horizons, the presence of loess is verified by texture and granulometric curves; however, TR EB has a 188 

quite large stone content. The red, clay-rich 3Bt3 horizon in the TR profile was much older. In fact, both quartz 189 

and K-feldspar are saturated or close to saturation. The minimum age is 453 ka, thus this profile started its 190 

formation at least in Marine Isotopic Stage MIS 12 (Middle Pleistocene), or even in older periods. 191 

In LS soil, the 2Bt3 horizon, at ca. 120 cm depth, has an age of ca. 40 ka (39 ± 4 ka). This loess layer was thus 192 

deposited during MIS 3, corresponding to a glacial period preceding the Last Glacial Maximum. The lower 193 

part of the same horizon (2Bt3), at a depth of ca. 170 cm below the surface, with age of ca. 48 ± 3 ka, is 194 

formed in a loess layer still apparently deposited during MIS 3. The 3Btx3 horizon at 270 cm depth, 195 

particularly enriched in Fe-Mn coatings and with a different glossae orientation compared to the 2Bt3 horizon 196 

above, had an older deposition age, dating back to ca. 83 ± 6 ka (MIS 5a or early MIS 4). The same horizon, 197 

but at 350 cm depth, had a slightly older age, dating back to ca. 105 ± 8 ka (MIS 5c or MIS 5d). The underlying 198 
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4Bt horizon, which did not have fragic properties, was deposited 122 ± 10 ka BP (MIS 5e or MIS 6), perhaps 199 

reaching back to a previous glacial period. 200 

As it frequently happens in Italian loess covers, no loess-paleosol sequence is recognizable (with the notable 201 

exception of Monte Netto, Zerboni et al. 2015). Loess covers deposited in different periods are all 202 

pedogenized and are part of complex polygenetic soils (Costantini et al. 2018), and only differences in 203 

pedogenic features are recognizable. This could be explained by a possible truncation of profiles during 204 

erosive periods, or because each loess deposition was not thick enough to allow isolation of deeper soils from 205 

the surface pedogenesis during following biostasy periods. 206 

The at least Middle Pleistocene age of the 3Bt horizons in the TR profile is in agreement with the age of red 207 

soils in Central European loess areas; for example, Buggle et al. (2014) found that Early and Middle 208 

Pleistocene interglacials had climatic conditions favouring the formation of hematite, and red paleosols in 209 

loess-paleosols sequences were formed in MIS 11 and older. The red colour of the more recent 2Bt2, 3Btx 210 

and 4Bt horizons in LS soil (with IRSL ages younger than ca. 125 ka), however, are not explainable in the same 211 

way. This is in contrast with Busacca and Cremaschi (1998), who found 2.5YR colours only in the deep alluvial 212 

substrate, deposited between 400 and 780 ka (MIS 11-17). MIS 3 paleosols in the southern Po Plain Apennine 213 

margin, formed during temperate interstadial conditions, did not become redder than 7.5YR (Zuffetti et al. 214 

2018). 215 

Quite a large number of samples appear as deposited during temperate interstadial periods (i.e. LS 270 and 216 

LS 350 deposited during MIS 5a and 5c respectively) or even during the warm Eemian interglacial (LS 440, 217 

dated from MIS 5e). In particular, it is well known that the climatic conditions during the Eemian were 218 

warm and humid in the Po Plain, normally leading to strongly weathered and rubified soils (e.g. Ferraro 219 

2009; Zerboni et al. 2015). The plant cover was presumably thick forest (Klotz et al. 2003), and the small 220 

glaciers in the Alps associated with the slightly higher temperatures compared to the Holocene (Pons et al. 221 

1992) were likely producing little amounts of sediments, in a similar way to what is happening during the 222 

Holocene. Thick loess deposits were thus unlikely forming during that period. Strong erosive processes, 223 

able to deeply rejuvenate the soil layer were unlikely as well under the thick forest cover. Loess deposition 224 

needs colder and drier climates with lower vegetation cover, which permit the existence of large deflation 225 

surfaces. Thus, an underestimation of the oldest loess deposition periods cannot be excluded due to mixing 226 

caused by tree uprooting or other slope morphodynamic processes. Likewise, loess deposition of the deep 227 

LS 4Bt horizon during full glacial conditions in MIS 6 or older is thus much more likely than during the warm 228 

interglacial MIS 5e. In the same way, LS 3Btx3 (350 cm in depth) could be better attributed to MIS 5d, 229 

characterized by slightly colder and drier conditions than MIS 5c (Wohlfahrt 2013). Considering a 230 

hypothetical age underestimation in our deep samples would make our results comparable to other dated 231 

loess-paleosols sequences in Europe (e.g. Novotny et al. 2011). 232 
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 233 

4 Conclusions 234 

Our results show that the deepest loess layer in LS profile (122 ± 10 ka) on Monte Orfano appears to be the 235 

oldest loess deposit among those quantitatively dated in Northern Italy (Cremaschi et al. 2011, 2015; Livio 236 

et al. 2014; Peresani et al. 2008; Zerboni et al. 2015; Frigerio et al. 2017; Costantini et al. 2018), between 237 

the Alpine margins and the Apennine fringe. In fact, the oldest published numerical ages until now are 238 

those of Ghiardo terrace (Reggio Emilia, Italy), which is 81.6 ± 10.9 ka BP (Cremaschi et al. 2015), and the 239 

San Colombano one, which is 89 ± 8.8 ka (Panzeri et al. 2011). Northern Italian loess cover seems to have 240 

been deposited between MIS 4 and MIS 2 (Costantini et al. 2018), even if most European loess-paleosols 241 

sequences started their formation in Early or Middle Pleistocene. Thus, based on our results, we can 242 

assume that loess deposition was actually active in the Po Plain also before MIS4, as assumed only by soil 243 

properties by many older studies (e.g. Coudé-Gaussen 1990; Billard and Orombelli 1986) and by more 244 

recent ones (Negri et al. 2020), but never verified by numerical dates. The pedogenic and paleoclimatic 245 

implications of our results will be analysed in a following paper. 246 
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Figure captions 392 

Fig. 1 location of the Monte Orfano, and the location of the other OSL-dated loess layers, available in the 393 

literature, in the Po Plain (Northern Italy). 1: Frigerio et al. (2017); 2: Cremaschi et al. (2011; 2015); 3: D’Amico 394 

et al. (present paper); 4: Zerboni et al. (2015); 5: Ferraro et al. (2009); 6: Peresani et al. (2008); 7: Accorsi et 395 

al. (1990); 8: Cremaschi et al. (2015); 9: Panzeri et al. (2011) 396 

Fig. 2 the LS (left) and TR (right) profiles 397 

Fig. 3 granulometric curves for the analysed soil horizons. Typical curves for loess (reworked and 398 

weathered) are observed for LS samples, and TR60, while mixing is visible in TR30 from the high sand 399 

content; the curve of TR160 has a different shape, evidencing a non-aeolian origin 400 
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