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1 Parton distributions from the parton model to QCD

In the naive parton model parton distribution functions (PDFs) are probability densities
for a parton to carry a given fraction of their parent hadron’s momentum. This simple
picture remains true at leading order (LO) in QCD where each PDF is proportional to a
physically measurable (in principle) cross section: it can consequently still be viewed as
a probability and it is non-negative. We will henceforth refer to the property of being
non-negative as “positivity” (while really meaning “positive-semidefiniteness”).

As is well known [1], positivity of the PDFs is in general violated at higher perturbative
orders, where physical cross sections are the convolution of the PDFs with a partonic cross
section. Partonic cross sections are beset by collinear singularities, whose subtraction
and factorization into the PDF spoils in general the separate positivity of the subtracted
partonic cross sections and of the PDFs. Therefore, the positivity condition on PDFs
beyond LO becomes a positivity constraint of physical observables [1, 2]. When determining
PDFs from data, this constraint must be imposed on physical observables, rather than
PDFs themselves: for instance by using Lagrange multipliers, or pseudodata for suitable
positivity observables, such as for example hypothetical deep-inelastic structure functions
corresponding to gauge bosons that couple to only one quark flavor [3].
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These positivity constraint may have a significant impact on PDF determination, es-
pecially in regions where there are little or no direct constraints coming from experimental
data. For example, in a recent study of the strange PDF [4] it was found that adding to the
dataset a positivity constraint for the charm structure function F c2 significantly impacts
the flavor decomposition of the quark sea in the large x region. However, adding posi-
tivity constraints in this way, as constraints on pseudo-observables, is cumbersome from
a methodological point of view, and theoretically not satisfactory. Indeed, as the target
accuracy of the PDFs increases, and PDFs are used more and more for new physics studies
and searches in regions in which the PDFs are experimentally unconstrained, it becomes
necessary to enforce an increasingly elaborate set of positivity constraints [5, 6] for a set of
suitably chosen and tuned pseudo-observables. This poses obvious problems of fine-tuning.
In fact, universality of PDFs suggests that positivity constraints should be imposed in
a process-independent way, without having to rely on a specific choice of processes, and
therefore, that it ought to be possible to impose the constraint at the level of PDFs.

Here, we address this issue head-on by constructing a subtraction scheme in which
PDFs are positive, and which we refer to as a “positive” factorization scheme. We do this
by studying the way collinear subtraction is performed in the MS scheme, and showing
that negative partonic cross sections arise as a consequence of over-subtraction of a posi-
tive contribution.1 This is chiefly due to the fact that the subtraction is performed at a
scale which, as the kinematic threshold for production of the final state is approached, is
higher than the actual physical scale; and also, in gluonic channels, due to the way the
d-dimensional averaging over gluon polarizations is treated in dimensional regularization.

Once these effects are taken into account it is possible to formulate a subtraction
prescription such that partonic cross sections remain positive. Effectively, this choice of
subtraction corresponds to a “physical” scheme, in which the scale choice is directly related
to the scale of parton radiation. Of course, the positive factorization scheme is not unique,
since any further scheme change through a matrix with positive entries (“positive matrix”,
henceforth) would leave the partonic cross sections positive. It is then possible to show
that there exist schemes in which PDFs also remain positive, so that the positive hadronic
cross section is obtained by convoluting positive partonic cross sections with positive PDFs.

The availability of positive schemes can be advantageous in the context of PDF de-
termination. Indeed, if PDFs are parametrized in the positive scheme, positivity can be
enforced by choice of parametrization. Results in the commonly used MS scheme can then
be obtained by scheme transformation.

However, perhaps surprisingly, this turns out not to be necessary: indeed, using the
explicit form of the scheme change matrix from the positive scheme to MS it is easy to
prove that in the perturbative region PDFs remain positive in MS. Hence, the common

1A subtlety is related to the fact that generally partonic cross sections are the sum of an ordinary function
of the scaling variable, and a distribution localized at the kinematic threshold of the scaling variable. Here,
by “negative cross section” we mean that the function (i.e., non-distributional part of the cross section) is
negative. For positivity to hold, the distributional part must also be positive in the sense that it gives a
positive result when integrated over a positive test function. As we shall see below, this condition turns
out to be automatically satisfied in MS and related schemes.
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lore that MS PDFs might be negative beyond LO turns out to be incorrect. Positivity of
the fitted PDFs can then be imposed using the standard methodology in the MS scheme.

The paper is organized as follows. In section 2 we show how negative partonic cross
sections arise due to over-subtraction. We start with the prototypical case of deep-inelastic
scattering (DIS): we review the computation of coefficient functions at next-to-leading order
(NLO); we show how over-subtraction arises in the MS scheme and how it can be fixed by
choosing a suitable subtraction prescription; we then discuss how this works in the general
case of hadronic processes, where we can define a “positive” subtraction prescription which
preserves positivity of all partonic cross sections. In section 3 we then turn to positivity of
PDFs: first, we use our positive subtraction prescription to define a positive factorization
scheme; then we show how positivity of PDFs is preserved in this factorization scheme;
and finally by studying the transformation from the positive scheme to MS we prove that
positivity is preserved in MS in the perturbative regime. The bulk of our discussion will
be at NLO, and its validity beyond NLO will be addressed in the end of section 3.

2 Positivity of partonic cross sections

QCD factorization allows expressing physical cross sections σ as convolutions of partonic
cross sections with parton distributions fi. In the prototypical case of DIS the cross section
is expressed in terms of hadronic structure functions F (x,Q2), which are then factorized
in terms of parton-level structure functions, called coefficient functions Ci:

1
x
F (x,Q2) =

∑
i

e2
iCi ⊗ fi, (2.1)

where the sum runs over all parton species, ei are quark electric charges, or the sum over
all electric charges for the gluon, (for photon-induced DIS, and more in general electroweak
charges), ⊗ denotes convolution, and we refer to ref. [7] for notations and conventions. The
convolution in eq. (2.1) links the three a priori physically distinct scaling variables on which
respectively the physical observable F , the partonic cross-section C and the PDF f depend.
In the sequel, for clarity, we will denote with x the physically observable variable (Bjorken-
x for DIS, or the scaling variable in hadronic collisions), with z the variable on which the
coefficient function depends, and with ξ the PDF momentum fraction. Of course, Mellin
transformation turns the convolution into an ordinary product and upon transformation
all these variables are mapped onto the same N variable.

At LO all factors on the right-hand side of eq. (2.1) are manifestly positive. Indeed, the
partonic cross sections (which for DIS at LO are trivial) are defined as the square modulus
of amplitudes. The PDFs in turn are defined as operator matrix elements which can be
interpreted as probability distributions [8, 9]: for quark PDFs [8]

fi(ξ) = 1
4π

∫
dy−e−iξP

+y−〈P |ψ̄i(0, y−,~0T )γ+P exp
[
igs

∫ y−

0
dȳ−A+

a (0, ȳ−,~0T )1
2λa

]
ψi(0)|P 〉,

(2.2)
where P denotes path-ordering; P is the four-momentum of the parent hadron in light-cone
components and gs is the strong coupling, with analogous expressions for antiquarks and
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gluons [8]. It can be shown (see e.g. section 6.7 of ref. [10]) that the expression eq. (2.2) is
a number density, and as such before subtraction of divergences it is positive.

Beyond LO, besides ultraviolet renormalization, both the PDFs and the partonic cross
section are beset by collinear singularities which can be factored into the PDF. Before
factorization the PDF is a “bare” probability density f (0)

i [10], while after factorization it
is a renormalized PDF fi

fi =
∑
j

ZSij ⊗ f
(0)
j . (2.3)

In operator language, the factor ZSij is a multiplicative renormalization of the operator
eq. (2.2), which admits a perturbative expansion

ZSij(Q2) = δij + αs
2πδ

S
ij(Q2) +O(α2

s), (2.4)

where δSij is a counterterm which diverges after regularization is removed, the superscript S
denotes the fact that the finite part of the counterterm depends on the choice of a particular
subtraction scheme S, and regularization induces a dependence of the counterterm and thus
of the renormalization constant on scale.

The counterterm can be determined in a standard way by taking the matrix element of
the operator in a state in which the right-hand side of eq. (2.2) is perturbatively computable,
such as a free state of a parton i, in which the PDF for finding a parton j is trivially

f
i (0)
j (ξ) = δijδ(1− ξ), (2.5)

imposing a renormalization condition and finally removing the regulator. In practice, this
is most easily done [9, 10] by introducing a probe that couples to the free quark, so for
instance computing the structure function eq. (2.1) for deep-inelastic scattering off a free
quark. This is the strategy that we will follow in this section, where such a computation
will be performed explicitly in a way that fully determines the factorization scheme, both
in the MS and in our new positive schemes.

The factorization argument then works as follows. The d-dimensional structure func-
tion eq. (2.1) is written as

1
x
Fi(x,Q2, ε) =

∑
j

e2
jCj ⊗ f

i (0)
j (2.6)

=
∑
j

e2
jC

S
j ⊗ f i Sj ; d = 4− 2ε, (2.7)

and computed by taking in turn the incoming parton to be each of the parton species, i.e.
using eq. (2.5). Of course, the structure function on the l.h.s. then reduces to the unsub-
tracted, regularized coefficient function, which is essentially the cross-section for scattering
off the given incoming free parton. The counterterm is defined by imposing the cancellation
of the singularity. Up to NLO, assuming a free incoming parton according to eq. (2.5),
substituting in eqs. (2.6)–(2.7) the perturbative expression eq. (2.4) of the renormalization
factor eq. (2.3), and assuming a perturbative expansion of the coefficient functions of the
form

Ci(z,Q2) = C
(0)
i (z,Q2) + αs

2πC
(1)
i (z,Q2) +O(α2

s) (2.8)
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one gets
CSi (z,Q2, ε) = C

(1)
i (z,Q2, ε)− δSqi(z,Q2, ε) , (2.9)

where q denotes a quark parton. Note that, up to NLO, imposing finiteness of the DIS
structure functions fixes the renormalization in the quark sector because DIS is a probe
that only couples to quarks at leading order.

The advantage of determining the counterterms in this way, as opposed to performing
a direct computation of the current matrix element eq. (2.2) is that in operator matrix
elements all divergences appear as ultraviolet, while, when computing a structure function
for an incoming free parton (or, more generally, a generic partonic cross-section), collinear
singularities come from the infrared region of integration over transverse momenta. Hence,
one may compute the relevant cross-section using renormalized perturbation theory (i.e.,
with counterterms already included in the Lagrangian). The only divergences are then of
collinear and infrared origin. The regularized partonic cross-section is then finite if the
computation is performed with ε < 0, and it enjoys the positivity properties of a standard
cross-section. This property will be crucial in the argument presented below.

After the subtraction eq. (2.9), the partonic cross-section (coefficient function) is finite
in the ε→ 0 limit, so one may define the four-dimensional coefficient function as

C
(1)
i

S
(z) = lim

ε→0−

(
C

(1)
i (z,Q2, ε)− δSqi(z,Q2, ε)

)
, (2.10)

where ε→ 0− denotes the fact that the limit is taken from below, as discussed above. Note
that the four-dimensional coefficient function can depend only on z for dimensional reasons,
while the d dimensional one also depends onQ2 through the combination Q2

µ2 , where µ2 is the
scale of dimensional regularization. That this subtraction is always possible is the content
of factorization theorems [9, 10]. The universal (i.e. process-independent) nature of the
collinear singularities ensure that the renormalization conditions on parton distributions,
defined as operator matrix elements eq. (2.2) without reference to any specific process, may
be determined by the computation of a particular process or set of processes as discussed
here.

The finite part of the subtraction is arbitrary and it defines the factorization scheme
S. In MS it turns out that in some partonic subchannels the subtracted cross section can
be negative: effectively, negative finite parts are factored away from the regularized cross
sections, and into the PDFs. These can then also become negative, though whether this
happens or not depends on the relative weight of the various subchannels. On the other
hand, the residue of the collinear pole is universal — it is given by process-independent
splitting functions — and this makes it possible to define its subtraction in a way that
preserves positivity of the partonic cross section at the regularized level. If all contributions
which are factored away from the partonic cross section and into the PDF remain positive,
then the latter also stays positive.

Having explained the general strategy, we now implement it explicitly. We first discuss
DIS structure functions. We then turn to hadronic processes, both quark-induced and
gluon induced.
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Figure 1. Mellin-space NLO contributions to deep-inelastic coefficient functions. The quark (left)
and gluon (right) coefficient functions, respectively C(1)

q and C(1)
g , eq. (2.11), are shown. The DPOS

scheme is defined in eqs. (2.20), (2.28), the POS scheme is defined in eqs. (2.34)–(2.36), and the
MPOS scheme in eqs. (3.34)–(3.35). Results are shown in the MS and DPOS, POS and MPOS
schemes. For C(1)

q MS, DPOS and POS coincide, and the two curves shown correspond, from top
to bottom, to MS and MPOS; for C(1)

g POS and MPOS coincide and the three curves correspond,
from bottom to top, to MS, DPOS and POS.

2.1 Deep-inelastic coefficient functions

At NLO, photon-induced DIS proceeds through the two sub-processes q + γ∗ → X and
g + γ∗ → X, in such a way that the contribution of each quark or antiquark flavor to the
structure function F2 can be written as:

1
x
F2(x,Q2) = e2

q

[
q + αs

2π
(
C(1)
q ⊗ q + C(1)

g ⊗ g
)]

(Q2) , (2.11)

where eq is the electric charge of the quark, on the right-hand side we have omitted the x
dependence which arises from the convolution, and the generalization to Z- andW -induced
DIS is trivial.

The MS NLO contributions to the coefficient functions Cq and Cg are shown in figure 1
in Mellin space, where the convolution becomes an ordinary product. The Mellin space
plot is especially transparent since the x-space cross section is found to high accuracy by
computing the inverse Mellin transform in the saddle-point approximation [11]: hence, the
physical x-space cross section is just the product of the Mellin-space coefficient function
and PDF evaluated at the value of N corresponding to the saddle for given kinematics.
It is clear from figure 1 that at large N the gluon coefficient function is negative on the
real axis: hence, the x-space coefficient function must also be negative because its real
moments are negative. This shows that a negative contribution has been factored from the
coefficient function into the PDF.
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2.1.1 Over-subtraction and the off-diagonal coefficient function

In order to understand what is going on, we look at the dimensionally regularized, unsub-
tracted gluon coefficient function:

C(1)
g (z,Q2, ε) =

Γ(−ε)
(
µ2

D
πµ2

)−ε
[8Pqg(z)− 16TRε(3− ε(2− ε))]

16π(2− 2ε)Γ(3− 2ε) , (2.12)

where
µ2
D = s

4 = Q2(1− z)
4z , (2.13)

and s = Q2(1−z)
z is the center-of-mass energy of the γ∗q collision. Note that in order to

regulate the collinear singularity it is necessary to choose ε < 0; it then follows that as ε
goes to zero from below, Γ(−ε) > 0 and the unsubtracted coefficient function, eq. (2.12),
is positive as it ought to be.

The subtracted MS coefficient function is then given by

C(1)
g

MS(z) = lim
ε→0−

C(1)
g (z,Q2, ε)−

(
Q2

4πµ2

)−ε (
−1
ε

+ γE

)
Pqg(z)

 (2.14)

= Pqg(z)
(

ln
(1− z

z

)
− 4

)
+ 3TR , (2.15)

where ε → 0− denotes the fact that the limit should be taken from below, because the
collinear singularity is regulated with ε < 0. The Pqg splitting function is positive for all
z, so for z > 1

2 the log becomes negative and at large z the coefficient function is negative.
Comparing eqs. (2.12)–(2.14) immediately reveals what happened: the regularized

coefficient function contains a term(
s/4
πµ2

)−ε
= 1− ε ln

(
Q2(1− z)/z

4πµ2

)
, (2.16)

but in the collinear subtraction ln Q2

4πµ2 has been subtracted instead. For z > 1
2 , s < Q2 this

amounts to over-subtracting, at the larger scale Q2 instead of the smaller physical scale s.
The physical origin of this contribution, and the reason for the mismatch are easy to trace.

Namely, this is the contribution coming from quark emission from the incoming gluon
line, and the singularity is due to the collinear singular integration over the transverse
momentum of the emitted quark, as revealed by the fact that it is proportional to the
corresponding Pqg splitting function. The argument of the ensuing collinear log is set by
the upper limit of the transverse momentum integration kmax

T , which for a 2 → 2 process
with massless particles in the final state is kmax

T = s
4 . In MS the collinear subtraction is

performed at the scale Q2, hence leading to the over-subtraction that we observed, and
producing a contribution to the coefficient function which is logarithmically enhanced in
the threshold z → 1 limit.

Therefore, this contribution has the same origin as the soft (Sudakov) logarithms which
are resummed to all orders when performing threshold resummation [12, 13], except that

– 7 –
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in soft resummation the splitting function is evaluated in the z → 1 limit, and the factor of
1
z in the argument of the log is neglected. In fact, threshold resummation can be obtained
by identifying (and then renormalization-group improving)

|kmax,DIS
T |2 = µ2

D (2.17)

(with µ2
D given by eq. (2.13)) as the physical scale in the soft limit [14]. The over-subtraction

is then simply the manifestation of the well-known fact that, in the MS scheme, threshold
logs beyond the first are factored in the coefficient function, and not in the PDF [15].
Indeed, alternative factorization schemes in which these logs are instead included in the
PDF have been proposed, in particular the Monte Carlo factorization scheme of ref. [16].
Note, however, that radiation in off-diagonal parton channels is power-suppressed in the
threshold limit, and indeed this contribution is proportional to ln(1 − z), which in Mellin
space behaves as lnN

N . This is to be contrasted with the
(

ln(1−z)
1−z

)
+
behavior, corresponding

to ln2N , found in diagonal channels, as we shall discuss in section 2.1.2 below. Hence,
while it has the same origin, this contribution is not among those included in standard
leading-power threshold resummation.

In conclusion, in order to restore positivity it is sufficient to perform the collinear
subtraction at the scale µ2

D = s/4, eq. (2.17). There is a further subtlety, however. Namely,
the factor 2−2ε in the denominator of eq. (2.12) is the average over the polarization states
of the incoming gluon. Therefore, it should be viewed as an overall prefactor which is
common to both the unsubtracted and subtracted coefficient function, and thus must be
included in the subtraction term. Because it interferes with a −1

ε pole, not including
it, as in MS, leads to over-subtraction: the collinear singularity is regulated with ε < 0,
so 1

1−ε < 1.
Therefore, we define a modified positivity subtraction as

C(1)
g

DPOS(z) = lim
ε→0−

C(1)
g (z,Q2, ε)− 1

1− ε

(
µ2
D

πµ2

)−ε (
−1
ε

+ γE

)
Pqg(z)

 (2.18)

= 3 [TR − Pqg(z)] . (2.19)

Note that the normalization of the prefactor is fixed by the requirement of cancellation of
the pole. The coefficient function of eq. (2.18) is positive definite, as it is easy to check
explicitly. Its Mellin-space form is also shown in figure 1, and it is manifestly positive.

We can rewrite the subtraction which relates the regularized coefficient function,
eq. (2.12), to its renormalized counterparts eqs. (2.14), (2.18) in terms of counterterms
according to eq. (2.10), where now S = MS, DPOS. We then have

C(1)
g

DPOS(z) = C(1)
g

MS(z)−KDPOS
qg (z) , (2.20)

KDPOS
qg (z) = δMS

qg − δDPOS
qg = Pqg(z)

[
ln
(1− z

z

)
− 1

]
. (2.21)
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Figure 2. Mellin-space NLO contributions to Drell-Yan coefficient functions. The quark (left) and
gluon (right) coefficient functions, respectively Cq

q
(1) and Cq

g
(1), eq. (2.29), are shown. Results

are shown in the MS, POS and MPOS schemes. The POS scheme is defined in eqs. (2.34)–(2.36)
and (2.44)–(2.46), and the MPOS scheme in eqs. (3.34)–(3.37). Cq

q
(1) MS and POS coincide, and

the two curves correspond, from top to bottom, to MS and MPOS; for Cq
g

(1) POS and MPOS
coincide and the two curves correspond, from top to bottom, to MS and POS.

2.1.2 The diagonal coefficient function

We now turn to the diagonal coefficient function: in the MS scheme it is given by

CMS
q (z) = δ(1− z) + αs

2πC
(1)
q

MS(z) (2.22)

= δ(1− z)
(

1 + αs
2π∆(1)

q

MS
)

+ αs
2πCq

(1)MS
(z) , (2.23)

where in the last step we have separated off the contribution to C(1)
q

MS
(z) proportional to

a Dirac δ (corresponding to a constant in Mellin space) so that Cq
(1)MS

(z) only contains
functions and + distributions. The NLO diagonal coefficient function is given by

C(1)
q

MS(z) = lim
ε→0−

C(1)
q (z,Q2, ε)−

(
Q2

4πµ2

)−ε (
−1
ε

+ γE

)
Pqq(z)

 (2.24)

= lim
ε→0−

[
C(1)
q (z,Q2, ε)− δMS

qq (z,Q2, ε)
]

(2.25)

= CF

[(
pqq(z) ln

(1− z
z

))
+
− 3

2

( 1
1− z

)
+

+ 3 + 2z − 4δ(1− z)
]
, (2.26)

where pqq(z) is implicitly defined in terms of the quark-quark splitting function Pqq(z) as

Pqq(z) = CF (pqq(z))+ . (2.27)

The Mellin transform of C(1)
q (z) is shown in figure 1. It is clear that the coefficient

function is positive for all N : the slightly negative dip of the NLO term in the N ∼ 1
region is more than compensated by the much larger LO contribution, which in N space
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is a constant (at 2π
αs

on the scale of figure 1). As N → ∞, where the NLO contribution
diverges (and in principle needs resummation) the growth is actually positive.

A comparison of eq. (2.26) with its off-diagonal counterpart, eq. (2.15), immediately
shows what is going on. In this case too, the MS subtraction amounts to an over-
subtraction, and indeed the term proportional to pqq(z) in the coefficient function eq. (2.26)
has the same origin as the term eq. (2.16), namely, the collinear singularity due to real
emission, in this case of a gluon from the incoming quark line. In fact, this is the contri-
bution which is included in standard leading-log threshold resummation. Amusingly, the
further (process-dependent) term, proportional to

(
1

1−z

)
+
, arises at the next-to-leading log

level due to collinear radiation from the outgoing quark line [12], and thus has the same
kinematic origin [14]. One may thus think of generally including these contributions in the
PDF by changing the collinear subtraction, as we did above: indeed this is done in the
Monte Carlo scheme of ref. [16], which aims at including in PDFs all contributions coming
from soft radiation.

However, if the goal is ensure positivity, in the diagonal case it is not necessary to
modify the MS subtraction prescription. Indeed, in this case over-subtraction actually
leads to a more positive coefficient function, due to the fact that the Pqq splitting function
is negative at large z, where it reduces to a + distribution, i.e., it leads to a negative answer
when folded with a positive test function. Of course, this follows from baryon number
conservation which requires the vanishing of the first moment of the splitting function. It
is in fact easy to check that the MS coefficient function, eq. (2.22), is positive for all z < 1.
The term proportional to a δ of course has a positive coefficient in the perturbative regime,
where it is dominated by the LO term.

We conclude that in order to ensure positivity of the coefficient function it is sufficient
to modify the collinear subtraction only in the off-diagonal channel. We therefore set

C(1)
q

DPOS(z) = C(1)
q

MS(z) . (2.28)

Equations (2.20), (2.28) thus define the DPOS factorization scheme in the quark channel,
in terms of the MS scheme. Note that the considerations underlying the construction of
this factorization scheme are based on the structure of the collinear subtraction and the
behavior of the splitting functions, and are therefore process-independent.

In order to fully characterize the scheme it is necessary to also consider gluon-induced
processes. In ref. [1], this was done by considering Higgs production in gluon fusion, with
one of the two gluons coming from a proton and the other being taken as a pointlike probe.
Equivalently, one might consider Higgs production in photon-gluon fusion. However, the
treatment of these processes is essentially the same as that of hadronic processes, to which
we thus turn.

2.2 Hadronic processes

For hadronic processes the basic factorization formula has the same structure as eq. (2.11),
with the structure function replaced by a cross section and the PDF replaced by a parton
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Figure 3. Same as figure 2, but now for the Higgs coefficient functions Cg
g

(1) (left) and
Cg

q
(1) (right).

luminosity Lij : up to NLO

1
x
σ(x,Q2) = σ̂0

[
Lii + αs

2π
(
Ciq

(1) ⊗ Liq + Cig
(1) ⊗ Lig

)]
, (2.29)

where for simplicity we consider process for which at LO only one partonic channel con-
tributes, so i = q, g labels quark-induced processes (such as Drell-Yan) or gluon-induced
processes (such as Higgs production in gluon fusion), σ̂0 is the LO partonic cross section
and the parton luminosity is

Lij = fi ⊗ fj . (2.30)

We first discuss quark-induced processes: their treatment is very close to that of DIS
presented in the previous section, so it is sufficient to highlight the differences. We then
turn to gluon-induced processes, for which we repeat the analysis of section 2.1.

2.2.1 Quark-induced processes

As a prototype of quark-induced process we consider Drell-Yan production. The NLO
coefficient functions (i.e. NLO partonic cross sections normalized to the LO result) are
given by

Cqq
(1)MS

(z) = CF

[(
4π2

3 − 7
2

)
δ(1− z) + 2

(
pqq(z) ln

(
(1− z)2

z

))
+

]

= ∆(1)
qq

MS
δ(1− z) + 2CF

(
pqq(z) ln

(
(1− z)2

z

))
+
, (2.31)

Cqg
(1)MS

(z) = Pqg(z)
[
ln
(

(1− z)2

z

)
− 1

]
+ CF

[3
2 −

3
2z

2 + z

]
. (2.32)

Comparing the coefficient functions eq. (2.31)–(2.32) to their DIS counterparts
eqs. (2.14), (2.26) shows that they have the same structure, with a residual logarithmic
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contribution proportional to the splitting function, due to over-subtraction. The only dif-
ference is that the argument of the log is now (1−z)2

z . This is again recognized to be the
upper limit of the transverse momentum integral, and to coincide with the argument of
the logs whose renormalization-group improvement leads to threshold resummation [14]:
indeed, for a 2→ 2 process with a final state particle with mass M2, and z = M2

s ,

µ2
h = |kmax, had

T |2 = (s−Q2)2

4s = Q2(1− z)2

4z , (2.33)

where Q2 = M2. The coefficient functions, eq. (2.31)–(2.32), are displayed in figure 2 in
Mellin space; their qualitative features are the same as those of the DIS coefficient functions.

Hence, just as in case of DIS, it is possible to define a positive subtraction scheme,
which we call POS, and which differs from MS because in the off-diagonal quark-gluon
channel the subtraction is performed at the scale µ2

h, eq. (2.33). Just like for DIS, in
the diagonal quark-quark channel there is no need to modify the MS subtraction, which
actually makes the coefficient function more positive, so we define a POS factorization of
the DY process according to

Cqq
(1)POS

(z) = Cqq
(1)MS

(z) , (2.34)

Cqg
(1)POS

(z) = Cqg
(1)MS

(z)−KPOS
qg (z) , (2.35)

KPOS
qg (z) = Pqg(z)

[
ln
(

(1− z)2

z

)
− 1

]
. (2.36)

The quark-gluon coefficient function can be read off eqs. (2.32), (2.36) and it is easy to
check that it is positive definite for all 0 < z < 1.

Of course, a choice of factorization scheme must be universal. Therefore, it is interest-
ing to check what this choice amounts to if adopted for DIS. Clearly, the hadronic scale
eq. (2.33) is always lower than the DIS scale eq. (2.33): µ2

h < µ2
D. Hence, subtraction in the

DPOS scheme amounts to under-subtraction, and if adopted for DIS coefficient function
it leads to a DIS coefficient function C(1)

g
POS

(z) which is actually more positive than that
in the DPOS scheme. This is seen in figure 1 (right), where C(1)

g (z) is shown in the MS,
DPOS and POS schemes.

2.2.2 Gluon-induced processes

In order to fix completely the factorization scheme we turn to gluon-induced hadronic
processes. We choose Higgs production in gluon fusion (in the infinite top mass limit) as
a prototype, and we repeat the analysis of section 2.1.1, but now for the quark coefficient
function Cgq(1). The regularized, unsubtracted expression is (see e.g. [17])

Cgq
(1)(z,Q2, ε) =

Γ(−ε)
(
µ2

h
πµ2

)−ε
(1− ε)

[
Pgq(z)− CF (1+z)2

2z ε
]

16π(2− 2ε)Γ(3− 2ε) , (2.37)
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where µ2
h is given by eq. (2.33), with Q2 = M2

H , the Higgs square mass. Performing MS
subtraction in the usual way we get

Cgq
(1)MS

(z) = lim
ε→0−

Cgq(1)(z,Q2, ε)−
(
Q2

4πµ2

)−ε (
−1
ε

+ γE

)
Pgq(z)

 (2.38)

= Pgq(z)
[
ln
(

(1− z)2

z

)
− 1

]
+ CF

(1 + z)2

2z . (2.39)

Again, we encounter the same situation that we have seen in the quark channel for
DIS, eqs. (2.12), (2.14): the collinear log has a scale set by the upper limit of the trans-
verse momentum integration, now the hadronic µ2

h, eq. (2.33), but the MS subtraction is
performed at the scale Q2, which at large z is higher, thus leading to over-subtraction.
Indeed, the Mellin-space MS coefficient function Cgq

(1), shown in figure 3, is seen to be
negative at large N .

As in the quark sector, the problem is fixed by performing the collinear subtraction at
the physical scale µ2

h. Note that also in this case, as for the DIS quark-gluon channel, there
is an issue with the sum over gluon polarizations: indeed, because the LO process is in the
gluon-gluon channel, even the NLO quark-gluon channel has a gluon in the initial state,
leading to a factor 1− ε in the denominator of eq. (2.37), which must be accounted for in
order to avoid over-subtraction. Hence, we define the POS scheme coefficient function as

Cgq
(1)POS

(z) = lim
ε→0−

Cgq(1)(z,Q2, ε)− 1
1− ε

(
µ2
h

πµ2

)−ε (
−1
ε

+ γE

)
Pqg(z)

 (2.40)

= CF
(1 + z)2

2z , (2.41)

with µ2
h given by eq. (2.33). The coefficient function is clearly positive. Its Mellin transform

is also shown in figure 3.
We finally examine the gluon-gluon NLO coefficient function:

Cgg
(1)MS

(z) = CA

[
21
z

(
zpgg(z) ln

(
(1− z)2

z

))
+

+
(

473
36 + 4π2

3

)
δ(1− z)− 11

3
(1− z)3

z

]

= ∆(1)
gg

MS
δ(1− z) + CA

[
21
z

(
zpgg(z) ln

(
(1− z)2

z

))
+
− 11

3
(1− z)3

z

]
, (2.42)

where, in analogy to eq. (2.27), pgg(x) is implicitly defined by

Pgg(z) = CA
1
z

(zpgg(z))+ −
nf
3 δ(1− z). (2.43)

As in the diagonal quark channel, the MS subtraction is now multiplied by a splitting
function which is negative at large z, for the same physical reason. It therefore leads to a
coefficient function which is positive, as seen by inspecting eq. (2.42) and shown in figure 3
(left), so no further scheme change is needed.
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Therefore we get

Cgg
(1)POS

(z) = Cgg
(1)MS

(z) , (2.44)

Cgq
(1)POS

(z) = Cqg
(1)MS

(z)−KPOS
gq (z) , (2.45)

KPOS
gq (z) = Pgq(z)

[
ln
(

(1− z)2

z

)
− 1

]
. (2.46)

Equations (2.34)–(2.36) and (2.44)–(2.46) fully define the POS subtraction. We shall
see in the next section that they define a positive factorization scheme. Indeed, in the
construction presented in this section we have not made use of the detailed from of the
partonic cross section, but rather just of the collinear counterterms, expressed in terms of
universal splitting functions. Hence, these counterterms, when used in eq. (2.4) define a
universal renormalization scheme eq. (2.3) for PDFs, without spoiling PDF universality.

3 A positive factorization scheme

We will now construct a positive factorization scheme based on the POS subtraction of
eqs. (2.34)–(2.36), (2.44)–(2.46). We then discuss the scheme transformation from this
scheme to the MS scheme and use it to show that PDFs are non-negative in the MS scheme
in the perturbative region.

The argument is based on the factorization eqs. (2.6)–(2.7), and, very crudely speaking,
amounts to showing that with the POS subtraction, all factors in eqs. (2.7) are positive: the
left-hand side is positive because it is a physically measurable cross-section, the coefficient
CS function on the right-hand side is positive because the POS subtraction preserves the
positivity of the unsubtracted coefficient function C, which is a partonic cross-section, and
thus positive before subtraction, but only well-defined in d > 4 dimensions.

Taking a Mellin transform of both sides of eqs. (2.6)–(2.7) all convolutions turn into
ordinary products, and it is immediately clear that, because the left-hand side is positive,
for the Mellin transformed PDF to be positive it is necessary and sufficient that the co-
efficient function is positive. However, positivity of the Mellin transform of a function is
a necessary condition for its positivity, but not a sufficient one: a negative function may
have a positive Mellin transform. The somewhat more complex structure of the discussion
below is necessary in order to deal with the necessity of providing an x-space argument.

3.1 Positive PDFs

We start by presenting the construction in a simplified setting, namely in the absence of
parton mixing. This means that the operators eq. (2.2) whose matrix elements define the
PDFs renormalize multiplicatively. This would specifically correspond to the case of a
quark combination that does not mix with the gluon, such as any combination qNS(Q2) =
qi(Q2)− qj(Q2), where i, j denote generically a quark flavor or antiflavor, with i 6= j. We
refer to this as a nonsinglet quark combination. We can think of the argument below as
applying to such a combination, chosen in such a way that the bare qNS(Q2)(0), eq. (2.2),
is positive — which in general of course will not be true even if qi and qj are separately
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positive. This should be viewed as an academic case — after all, in principle, a positive
nonsinglet PDF might not exist — whose purpose is to illustrate the structure of the
argument in the absence of parton mixing. We then turn to the realistic case of PDFs
that do undergo mixing upon renormalization (which we will refer to as singlet case). The
nonsinglet case is simpler, not only because of the absence of mixing, but also because in
this case the POS scheme actually coincides with MS (i.e., MS is already positive).

3.1.1 The nonsinglet case as a toy model

In the nonsinglet case, only the diagonal quark subtraction is relevant: so in the nonsinglet
case the DIS structure function eq. (2.11) becomes

1
x
FNS

2 (x,Q2) = 〈e2
i 〉
[
1 + αs

2πC
(1)
q ⊗

]
qNS(Q2) , (3.1)

where qNS is a difference of two quark or antiquark PDFs, assumed positive and 〈e2
i 〉 =

1
2

(
e2
i + e2

j

)
is the average of their electric charges.

The factorization eqs. (2.6)–(2.7) takes the form
1
x
FNS

2 (x,Q2) = 〈e2
i 〉 lim
ε→0−

[
1 + αs

2πC
(1)
q (Q2, ε)⊗

] [
qNS

](0)
(3.2)

= 〈e2
i 〉 lim
ε→0−

[
1 + αs

2πC
(1)
q

MS(Q2, ε)⊗
] [

1 + αs
2πδ

MS(Q2, ε)⊗
] [
qNS

](0)
(3.3)

= 〈e2
i 〉
[
1 + αs

2π∆(1)
q

MS + αs
2π C̄

(1)
q

MS⊗
] [
qNS

]MS
(Q2) , (3.4)

where C(1)
q

MS
, Cq

(1)MS
, ∆(1)

q
MS

and δMS
qq have been defined in eqs. (2.23), (2.24), (2.25), and

the dependence on x on the right-hand side has been omitted because it appears due to
the convolution, while the dependence on all other variables has been indicated explicitly.

Now, the discussion of section 2.1 shows that, because the bare PDF of eq. (2.2) is a
probability density, the three factors which are convoluted in eq. (3.4) are all separately
positive when ε → 0−, i.e. from the negative region, provided only µ2 < µ2

D, with µ2
D

given by eq. (2.13).2 This, as discussed in section 2.1.2 [see in particular eq. (2.26) and
figure 1] can be understood as a consequence of the fact that the only region in which the
O(αs) term could overwhelm the LO contribution is the threshold region z → 1, where
αs ln(1 − z) ∼ 1. However, in this region the MS over-subtraction leads to a coefficient
function which is positive because Pqq is negative at large z. Consequently, all factors in
eq. (3.4) remain positive for all z.

The meaning of the factorization argument eqs. (3.2)–(3.4) can be understood by
noting that it is possible to choose a “physical” factorization scheme [18] in which PDFs
are identified with physical observables. This means that the coefficient function is set to
one to all orders by scheme choice. An example is the “DIS” scheme [19] in which the
quark PDF is identified with the DIS structure function, so that eq. (3.1) becomes

1
x
FNS

2 (x,Q2) = 〈e2
i 〉
[
qNS

]DIS
(x,Q2) , (3.5)

2Note that the condition cannot be satisfied in the strict x→ 1 limit, but this is as it should be since in
the limit the scattering process becomes elastic and it is no longer described by perturbative QCD.
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which holds to all perturbative orders. Comparing this DIS scheme expression of the
structure function to the MS expression, eq. (2.11), immediately shows that the quark
PDF in the DIS and MS schemes are related by[

qNS
]DIS

(ξ,Q2) =
[
1 + αs

2π∆(1)
q

MS + αs
2π C̄

(1)
q

MS⊗
] [
qNS

]MS
(Q2) , (3.6)

where again we have dropped the ξ dependence of the convolution on the right-hand side,
as in eqs. (3.2)–(3.4).

The MS PDFs can be obtained in terms of the DIS ones by inverting eq. (3.6): per-
turbative inversion of course gives[

qNS
]MS

(ξ,Q2) =
[
1− αs

2π∆(1)
q

MS − αs
2π C̄

(1)
q

MS⊗
] [
qNS

]DIS
(Q2) +O(α2

s) . (3.7)

One may worry that therefore the MS PDFs may turn negative in the large ξ region, where
αs ln(1 − ξ) & 1 and the last term in square brackets in eq. (3.7), which is negative, may
overwhelm the LO contribution term. However, in this region the perturbative inversion
is invalid, but it is easy to invert eq. (3.6) exactly in the asymptotic large ξ limit. Letting

[
qNS

]DIS
(ξ,Q2) =

[
1 + αs

2π∆(1)
q

MS + αs
2π2CF

[ ln(1− z)
1− z

]
+
⊗
] [
qNS

]MS
(Q2)

+ NLL(1− ξ) (3.8)

=
(

1 + αs
2π∆(1)

q

MS
)[

1 + cLL

[ ln(1− z)
1− z

]
+
⊗
] [
qNS

]MS
(Q2)

+ NLL(1− ξ) , (3.9)

with
cLL =

αs
2π2CF

1 + αs
2π∆(1)

q
MS

, (3.10)

and which holds at the leading ln(1− ξ) level (LL(1− ξ)), inversion can be performed by
going to Mellin space and then computing the Mellin inverse term by term in an expansion
in powers of αs. We get[
qNS

]MS
(ξ,Q2) = 1

1 + αs
2π∆(1)

q
MS
×

[
1− cLL

 ln(1− z)[
1 + cLL ln2(1− z)/2

]2 1
1− z


+

⊗
] [
qNS

]DIS
(Q2) + NLL(1− ξ) . (3.11)

It is clear that as ξ → 1 the negative LL(1− ξ) contribution actually vanishes.3

Now, we observe that
[
qNS

]DIS
(ξ,Q2) is positive because it is a physical observable.

Equation (3.6), which expresses the DIS PDF in terms of the MS one, then implies that
3A similar argument also applies at small ξ, where the coefficient function also rises, as seen in figure 1.

We do not discuss this case in detail since positivity of the MS PDF at small ξ is manifest.
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for
[
qNS

]MS
(ξ,Q2) to be guaranteed to be positive, the MS coefficient function must also

be positive, otherwise folding a positive MS PDF with a negative coefficient function could
lead to a negative DIS PDF. So positivity of the MS coefficient function is a necessary
condition for positivity of the MS PDF. However, the inverse of eq. (3.6), expressing the
MS PDF in terms of the DIS one, implies that the condition is also sufficient, because
it gives the MS PDF as the convolution of a positive coefficient with a positive PDF.
Equations. (3.7), (3.11) show that the coefficient is indeed positive because in the dangerous
ξ → 1 region, where a large negative contribution may arise, inversion can be performed
exactly and shown to lead to a positive result. Of course, this argument works for any
factorization scheme, and it shows that a necessary and (perturbatively) sufficient condition
for the PDFs to be positive is that the coefficient function in that scheme is positive.

The perturbative nature of the argument is worth commenting upon. As discussed at
the beginning of this section, the corresponding Mellin space argument is trivial: because
in Mellin space the structure function is the product of the PDF times the coefficient
function, it follows that positivity of the coefficient function is necessary and sufficient for
the positivity of the PDF. However, as already mentioned, Mellin-space positivity is not
sufficient for x-space positivity. It is therefore necessary to compute the x-space inverse of
the coefficient function, and check that it is still positive.

The inversion is done perturbatively in eq. (3.7), and it leads to a coefficient function
which is manifestly positive in most of the z range, except at small and large z, where the
coefficient functions blows up, due to high-energy (BFKL) and soft (Sudakov) logs respec-
tively. Consider the large-z case that was discussed above. Upon Mellin transformation,
the z → 1 region is mapped onto the N → ∞ region, and specifically, as well known (see
e.g. ref. [14]) powers of ln(1 − z) are mapped onto powers of lnN . The lnN logarithmic
growth of the coefficient function in this limit is seen in figure 1, where it is apparent that
the coefficient function diverges as N →∞. The N -space inverse of the coefficient function
is just its reciprocal, and thus it manifestly vanishes as N →∞ (while of course remaining
positive). One would therefore naively expect that the x-space inverse also vanishes (from
the positive side) as z → 1, and this expectation is borne out by the explicit computation
presented above in eq. (3.11).4 Similar arguments apply at higher orders (NNLO and be-
yond), where the coefficient function grows with a higher order power of ln(1−z) as z → 1,
and at small z, where the coefficient function grows as powers of ln 1

z as z → 0. Hence,
either the coefficient function is not logarithmically enhanced, and then the perturbative
inverse is manifestly positive, or it is logarithmically enhanced, and then the exact inverse
of the enhanced terms can be computed ans also shown to be positive. It is natural to
conjecture that an explicit computation of the exact inverse of the full coefficient function
would also be positive.

4In view of the fact that the Mellin space inverse coefficient function behaves as [C̄(1)(N)]−1 ∼
N→∞

1
ln2 N

it may appear surprising hat the term in square brackets in eq. (3.11) starts with one. However, it should
be born in mind that the Mellin transform of any function which is regular (or indeed integrable) at x = 1
vanishes as 1

Nk , with k > 0, hence in Mellin space the suppression of the inverse coefficient function as
N →∞ is a subleading correction to the leading power suppression of qNS(N).
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The perturbative assumption is therefore used in two different ways. On the one hand,

the NLO correction to the MS coefficient function C̄(1)
q (z)

MS
is not everywhere positive, as

it is apparent from figure 1. However, this is a small correction to the positive coefficient
function if αs . 1, and the overall coefficient function remain positive. This would fail in
a region in which αs blows up. So the full NLO coefficient function remains positive, but
only in the perturbative region. On the other hand, the perturbative inversion eq. (3.7)
is used to show that positivity of the coefficient function is shared by its inverse, and in
regions in which perturbativity would fail it is checked explicitly that this is the case by
exact inversion. In this case we conjecture that positivity of the inverse is actually an exact
property, even when αs is arbitrarily large.

The argument based on the physical factorization scheme showing that a positive co-
efficient function is necessary and (perturbatively) sufficient for a positive PDF is in fact
equivalent to the factorization argument eqs. (3.2)–(3.4). Indeed, the operator definition of
the quark distribution, eq. (2.2), upon performing a derivative expansion of the Wilson line,
leads to the standard expression of its moments in terms of matrix elements of local oper-
ators. The interpretation of the bare quark distribution as a probability is then preserved
by any physical subtraction scheme such that the matrix elements of Wilson operators are
expressed in terms of a measurable quantity. The DIS scheme of eq. (3.1) is of course an
example of this scheme. Given the equivalence of the two arguments, one may wonder
whether, if at all, perturbativity is used in the argument of eqs. (3.2)–(3.4): specifically,
the perturbative inversion of eq. (3.7). The question is answered in the affirmative: the
perturbative inversion is hidden in the step leading from eq. (3.2) to eq. (3.3). Indeed, this
step amounts to

[
1 + αs

2πC
(1)
q

MS⊗
]−1 [

1 + αs
2πC

(1)
q (Q2, ε)

]
=
[
1 + αs

2πδ
MS(Q2, ε)

]
+O(α2

s) , (3.12)

i.e. the perturbative inversion of the MS coefficient function. The two arguments are thus
seen to coincide. Again, while we only provide a perturbative argument it is natural to
conjecture that the argument is in fact exact (i.e. it also holds for large values of αs).

3.1.2 The POS factorization scheme

Equipped with the results of section 3.1.1 we can turn to the case in which parton mixing
is present. This corresponds to the realistic case in which the operators eq. (2.2) mix with
the gluon and conversely (at NLO) and with each other at NNLO and beyond. Because at
NLO only quark-gluon mixing is present, we refer to this as the singlet case. In order to
fully define the factorization scheme at NLO we must thus consider a pair of processes, a
quark-induced and a gluon-induced one. The factorization for a pair of hadronic processes
can be written as

1
x
σ(x,Q2) = Σ̂0 ⊗

[
1 + αs

2πC
(1)⊗

]
f(Q2) . (3.13)
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In eq. (3.13)

• σ(x,Q2) is a vector of hadronic cross sections

σ(x,Q2) =
(
σq(x,Q2)
σg(x,Q2)

)
, (3.14)

such as the pair of processes of section 2.2, namely Drell-Yan and Higgs production in
gluon fusion; we are assuming for simplicity and without loss of generality that both
are evaluated at the same scale Q2 = M2 (such as when producing an off-shell gauge
boson and/or Higgs with the same mass), with a trivial generalization to the case of
unequal scales, and the scaling variable is x = Q2

s , with s the hadronic center-of-mass
energy;

• Σ̂0 is a diagonal matrix of LO partonic cross sections, multiplied by the respective
PDFs,

Σ̂0(x,Q2) =
(
σ̂q0q(x,Q2) 0

0 σg0g(x,Q2)

)
, (3.15)

namely the quark and the gluon respectively for Drell-Yan and Higgs;

• C(1) is the two-by-two matrix of NLO coefficient functions Cij
(1) with i, j = q, g

defined in eq. (2.29);

• f(ξ,Q2) is a vector of PDFs that mix upon renormalization:

f(ξ,Q2) =
(
q(ξ,Q2)
g(ξ,Q2)

)
. (3.16)

Having established a suitable notation, the argument then proceeds in an analogous
way as the nonsinglet argument of section 3.1.1, except that now, in order to guarantee
positivity of the two-by-two matrix of coefficient functions, we must perform the POS
subtraction, which in the diagonal channels (and thus in the nonsinglet case) coincides
with MS but in the off-diagonal channel differs from it. Namely, we have

1
x
σ(x,Q2) = Σ̂0 ⊗ lim

ε→0−

[
I + αs

2πC
(1)(Q2, ε)⊗

]
f (0) (3.17)

= Σ̂0 ⊗ lim
ε→0−

[
I + αs

2πC
(1)POS(Q2, ε)⊗

] [
I + αs

2πδ
POS(Q2, ε)⊗

]
f (0) (3.18)

= Σ̂0 ⊗
[
I + αs

2π∆(1)POS + αs
2πC

(1)POS
⊗
]
fPOS(Q2) . (3.19)

In eqs. (3.17)–(3.19)

• ∆(1)POS is the diagonal matrix

∆(1)POS =

∆(1)
qq

MS
0

0 ∆(1)
gg

MS

 , (3.20)

with ∆(1)
ii

MS
defined in eqs. (2.31) and (2.42) respectively for i = q and i = g;
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• δPOS(Q2, ε) is a two-by-two matrix of counterterms

δPOS(z,Q2, ε) =
(
−1
ε

+ γE

)
(
Q2

4πµ2

)−ε
Pqq(z) 1

1−ε

(
µ2

h
πµ2

)−ε
Pqg(z)

1
1−ε

(
µ2

h
πµ2

)−ε
Pgq(z)

(
Q2

4πµ2

)−ε
Pgg(z)

 , (3.21)

with µ2
h given by eq. (2.33), so that in the diagonal channels the subtraction is the

same as in MS, while in the off-diagonal channels it is performed at the physical scale
µ2
h, and also, accounting for the d-dimensional continuation of the average over the

polarization of the gluons.

Positivity of the quark and gluon PDF vector fPOS(Q2), eq. (3.19), now follows from
the same argument used to show the positivity of the nonsinglet PDF eq. (3.4). Namely,
all factors, which are convoluted in eq. (3.4), are separately positive when ε → 0− and
µ2
h < µ2

D (with µD defined in eq. (2.13)) and in particular, the matrix of POS-scheme
coefficient functions is now positive as shown in section 2.2.

Also, as in the nonsinglet case, the positivity argument can be formulated in terms
of a physical scheme, in which now to all perturbative orders the quark and gluon are
defined by

1
x
σ̄(x,Q2) = fPHYS(x,Q2) , (3.22)

where, as in ref. [1], the hadronic cross sections σ̄(x,Q2) are computed assuming that one
of the two incoming protons is replaced by a beam of antiquarks or a beam of gluons
respectively, i.e.

σ̄(x,Q2) =
(
σ(x,Q2)[q̄p→ γ∗ +X]
σ(x,Q2)[gp→ H +X]

)
. (3.23)

This hadronic cross section is linear in the PDFs, it coincides with it at LO in any scheme,
and, assuming that it coincides with it to all orders, defines the PHYS scheme. Equivalently,
one could choose as σ̄ a DIS structure function in the quark channel, and the cross section
for Higgs production in photon-gluon fusion in the gluon channel. The POS and PHYS
schemes are then related by

fPHYS(x,Q2) =
[
I + αs

2π∆(1)POS + αs
2π C̄

(1)POS⊗
]
fPOS(Q2) , (3.24)

which is perturbatively inverted as

fPOS(x,Q2) =
[
I− αs

2π∆(1)POS − αs
2π C̄

(1)POS⊗
]
fPHYS(Q2) +O(α2

s) . (3.25)

Again, this shows that positivity of the POS-scheme coefficient function is necessary
for positivity of the POS-scheme PDFs and sufficient if perturbativity holds. Just like in
the case of eq. (3.7), this assumption fails at the endpoints z → 0 and z → 1. However,
as well known [7], and as it is easy to check from the explicit expressions of the matrix
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elements of C̄(1)(z)POS, in both these limits the matrix is diagonal up to power-suppressed
corrections. Specifically, in the z → 1 limit the coefficient function matrix is diagonal:

lim
z→1

C(1)POS(z,Q2) =

Cqq(1)POS 0
0 Cgg

(1)POS

 [1 +O(1− z)] . (3.26)

Indeed, diagonal coefficient functions grow as
(

ln(1−z)
(1−z)

)
+
while off-diagonal ones tend to a

constant as z → 1. This is clearly seen in the N space plots of figures 2–3, in which as
N →∞ the diagonal coefficient functions are seen to grow (as ln2N) while the off-diagonal
ones vanish (as 1

N )5 It follows that at large z the quark and gluon channels decouple, and
the perturbativity argument is the same as in the nonsinglet case.

3.1.3 Positive PDFs and their scale dependence

In section 3.1.2 we have shown that also in the presence of quark-gluon mixing POS-scheme
coefficient functions are positive, and thus in the perturbative regime PDFs are also positive.
One can then ask two (closely related) questions. First, at which scale does this conclusion
apply, and is it affected by perturbative evolution? And second, which PDF combinations
are actually positive? Indeed, as well known, the eigenstates of QCD evolution are the two
eigenstates of a mixing matrix between the quark singlet and the gluon, and individual
nonsinglet components; any PDF (and thus any observable) can be decomposed into a
singlet and nonsinglet component, which evolve independently (see e.g. section 4.3.3 of
ref. [7]). Of course a difference between two positive quantities is not necessarily positive,
so this raises the question of which are actually the positive combinations: the eigenstates
of evolution, or individual quark, antiquark and gluons (or indeed something else)?

In order to answer the questions, we start from the observation that the operators
whose matrix elements separately define probability densities are the quark operators
eq. (2.2), and their antiquark and gluon counterparts. This can be understood physically
in a simple way by considering a moment of the PDF: for example, the second moment of
the PDF for quark of flavor i is just the matrix element of the energy (Hamiltonian) opera-
tor for the corresponding quark, expressed in terms of creation and annihilation operators
for the given quark state. Ditto for each antiquark of flavor j, and for the gluon. Hence,
at leading order the quantities which are separately positive are individual quark flavors,
antiquark flavors, and the gluon.

The argument presented in section 3.1.2 shows that this positivity is preserved for the
quark and gluon PDF, which at this order mix to first order in αs. This argument does
not make any assumption about the particular value of Q2, except that it ought to be in
the perturbative region where αs(Q2) is small enough. Hence, positivity must necessarily
be preserved by QCD evolution.

Actually, that this is the case directly follows from the construction of the positive sub-
traction scheme. Indeed, QCD evolution of the PDF is a consequence of the Q2 dependence
induced by the factorization into the PDF of scale-dependent collinear logs, i.e., by the scale

5The same power behavior also holds in the MS scheme, where however the off-diagonal coefficient
functions grow as ln(1− z) as z → 1, corresponding to a ln N

N
behavior of its Mellin transform at large N .
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dependence of the renormalization factor ZSij(Q2) in eqs. (2.3), (2.4). Indeed, using in these
equations the explicit form of the subtraction, as given in eqs. (2.14), (2.24), (2.38) it follows
that upon a change of the scale at which the subtraction is performed, the renormalization
factor changes according to

ZSij(Q′
2) =

(
δij + αs(Q′2)

2π Pij ln Q
′2

Q2

)
⊗ Zj(Q2) +O(α2

s), (3.27)

where Pij is the Altarelli-Parisi splitting function. Of course, taken in differential form for
infinitesimal scale changes eq. (3.27) is the standard QCD evolution equation.

The POS factorization scheme construction essentially amounts to choosing δSij in
eq. (2.4) in such a way that ZSij remains positive for all Q2: in particular, whenever Pij
is negative, this will mean that as the scale is increased, the renormalization factor ZSij
decreases, while (in a positive scheme) remaining positive. Clearly, the condition is more
easily satisfied at higher scales because of asymptotic freedom, in agreement with the phe-
nomenological observation [5, 6] that positivity constraints are more restrictive if imposed
at low scale and are preserved by evolution.

It is worth noting that a consequence of eq. (3.27) is that, as well known, a scheme
change will affect the NLO splitting functions. In particular, in the POS scheme contri-
butions proportional to ln (1−z)2

z to the off-diagonal splitting function will now be auto-
matically resummed to all orders when solving the NLO QCD evolution equations. These
contributions are actually power-suppressed as z → 1, so this resummation is likely not
to have a significant effect: the POS scheme is thus useful as a means to obtain positive
PDFs (which is our main goal here), but not necessarily phenomenologically better than
the standard MS scheme. On the other hand, in ref. [16] a factorization scheme has been
advocated, called the Monte Carlo scheme, that is similar in spirit to the POS scheme in
the off-diagonal channel, but also modifies the MS subtraction in the diagonal channel by
an analogous change of subtraction point. In this Monte Carlo scheme, ln(1 − z)2 con-
tributions in the diagonal channels are also resummed when solving the QCD evolution
equation: hence, leading-log threshold (Sudakov) resummation is automatically performed,
without having to be added a posteriori. It can be argued that in this Monte Carlo scheme
PDFs also resepect positivity [20].

3.2 Positive schemes vs. MS

In the previous section, we have shown that coefficient functions and PDFs in the POS
factorization scheme are indeed positive. We would like now to investigate the relation of
the POS scheme to other factorization schemes, specifically MS, and the related issue of
how a positive factorization scheme should be and can be defined.
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Figure 4. The off-diagonal elements of the NLO scheme change matrix KPOS, eq. (3.30), in
Mellin space.

3.2.1 General positive schemes

The scheme change from POS to MS can be determined using eqs. (2.34)–(2.36) (quark
channel) and eqs. (2.44)–(2.46) (gluon channel). We have[
I + αs

2πC
(1)MS

]
=
[
I + αs

2πC
(1)POS

]
⊗
[
I + αs

2πC
(1)POS⊗

]−1 [
I + αs

2π

(
C(1)POS +KPOS

)]
(3.28)

=
[
I + αs

2πC
(1)POS

] [
I +⊗αs2πK

POS
]
, (3.29)

where in eq. (3.29) we have written the inverse of the POS scheme coefficient functions in
perturbative form according to eq. (3.25). The matrix KPOS has the off-diagonal structure

KPOS =
[
ln
(

(1− z)2

z

)
− 1

](
0 Pqg(z)

Pgq(z) 0

)
. (3.30)

The off-diagonal matrix elements of the matrix are displayed in figure 4 in Mellin space.
Writing the basic factorization formula eq. (3.19) in the POS and MS schemes, equating
the results, and using eq. (3.29) we get

fPOS(Q2) =
[
I + αs

2πK
POS⊗

]
fMS(Q2) , (3.31)

which gives the scheme change between the MS and POS PDFs.
Inspection of eq. (3.31) immediately shows a possible issue with the POS scheme.

Indeed, as well known, momentum conservation implies the pair of relations between the
second Mellin moments of splitting functions γqq(2)+γgq(2) = 0 and 2nfγqg(2)+γgg(2) = 0.
This relation is verified in the MS scheme: in order for it to remain true in any scheme
obtained from MS, the scheme change matrix must satisfy

Kqq +Kgq = 2nfKqg +Kgg

∣∣∣
N=2

= 0 , (3.32)
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where by Kij

∣∣∣
N=2

we denote the second Mellin moment of the scheme change matrix
elements. This relation is not satisfied by the matrix defined in eqs. (2.34)–(2.36),
(2.44)–(2.46).

It might therefore be worth considering a variant of the POS scheme, in which mo-
mentum conservation is enforced by adding to the diagonal elements of the scheme change
matrix a contribution which enforces momentum conservation. This can be done e.g. by
adding a soft function, which vanishes both as z → 1 and z → 0. We choose

fMOM(z) = 60z2(1− z)2 , (3.33)

which has the property that its second Mellin moment equals one: fMOM(N = 2) = 1. We
then define a MPOS scheme as that which is obtained from MS through a scheme change
matrix KMPOS whose matrix elements satisfy

KMPOS
qq (z) = −fMOM(z)KPOS

gq

∣∣∣
N=2

, (3.34)

KMPOS
qg (z) = KPOS

qg (z) , (3.35)
KMPOS
gq (z) = KPOS

gq (z) , (3.36)

KMPOS
gg (z) = −2nffMOM(z)KPOS

qg

∣∣∣
N=2

. (3.37)

The MPOS scheme then automatically satisfies momentum conservation. Coefficient func-
tions in the MPOS scheme are shown in figures 1–3. It is clear that coefficient functions,
and thus PDFs, remain positive in the MPOS scheme: indeed, the off-diagonal coefficient
functions are unchanged, while the diagonal NLO contributions are modified by a small
correction which is offset by the large positive LO contribution, and in fact in the hadronic
case leaves the NLO correction positive for all z. Hence the MPOS and POS schemes have
the same positivity properties. We will thus not discuss the MPOS scheme any further and
restrict the discussion for simplicity to the POS scheme.

A further observation is that the POS scheme has been constructed in section 2.2 based
on the kinematics of hadronic processes, namely by performing the collinear subtraction in
off-diagonal channels at the scale µ2

h, eq. (2.33). As discussed in section 2.2.1, if this scheme
is used for the computation of electroproduction processes for which the relevant scale is
µ2
D, eq. (2.17), leads to coefficient functions, and consequently PDFs, that are with stronger

reason positive. More in general, the POS scheme has been constructed using universal
properties of the collinear emission that only depend on the LO splitting functions and the
choice of scale, which is determined by the general kinematics of hadronic processes, but
otherwise process-independent. However, the positivity argument presented in this section
shows that this choice, whereas theoretically appealing, is by no means necessary. In fact,
any physical scheme choice of the form of eq. (3.22) can be used to construct a positive
factorization scheme, by just picking a scheme choice such that the coefficient functions of
the processes used to define the PDFs remain positive, and perturbative for all ξ. In any
such scheme positivity of the PDFs holds. In fact, the simplest choice would be to pick as
a positive factorization scheme the physical scheme itself, in which PDFs are positive by
construction, as they are identified with physically observable cross sections.
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3.2.2 The MS scheme

Having concluded that we can take the POS scheme as representative of a wide class of
positive factorization schemes, we now discuss its relation to the MS scheme, and what it
tells us about positivity of MS PDFs.

Inverting the scheme change from MS to POS perturbatively (see eq. (3.31)) we obtain

fMS(Q2) =
[
I− αs

2πK
POS⊗

]
fPOS(Q2) . (3.38)

It is then clear that if the POS PDFs are positive, then so are the MS ones, because
the matrix KPOS vanishes on the diagonal, and it has negative matrix elements off the
diagonal, so −KPOS in eq. (3.38) is positive. The perturbative inversion is justified due to
the fact that the non-vanishing off-diagonal matrix elements of the K matrix are actually
power-suppressed (i.e. next-to-eikonal) in the z → 1 limit.

This can be seen more formally by considering the exact Mellin-space inverse of the
scheme change matrix, eq. (3.31):[

I + αs
2πK

POS(N)
]−1

= 1
1−

(αs
2π
)2
Kqg(N)Kgq(N)

[
I− αs

2πK
POS(N)

]
, (3.39)

where KPOS
ij (N) denote (by slight abuse of notation) the Mellin transforms of the matrix

elements KPOS
ij of the matrix KPOS. It is easy to check that the factor Kqg(N)Kgq(N) is a

monotonically decreasing function of N along the real N axis, and in particular it vanishes
as 1

N2 as N →∞, hence the prefactor which relates the exact and perturbative inversions,
eqs. (3.38)–(3.39), is actually bounded in the region N & 2 in which the MS coefficient
functions, and thus the matrix elements of K, turn negative (see figures 2–3).

We conclude that the light quark and gluon MS PDFs are in fact positive at NLO.
Heavy quarks require a separate discussion, because for heavy quarks MS factorization

can be defined in a variety of ways (see e.g. [21]). Specifically, heavy quarks can be treated
in a massive scheme, in which collinear singularities associated to them are regulated by
their mass, so they decouple from perturbative evolution. In this scheme no collinear
subtraction is performed for massive quarks, so their PDF is given by the unsubtracted
eq. (2.2) and thus it remains a positive (and scale-independent) probability distribution to
all perturbative orders. Note that nothing prevents this heavy quark PDF from having an
“intrinsic” component, of non-perturbative origin: however, in this factorization scheme,
the heavy quark PDFs will be scale-independent, and thus positive at all scales.

However, it is also possible to treat the heavy quark in a massless MS scheme, in
which the heavy quark is treated like other massless quarks, namely the collinear singularity
regulated by its mass is subtracted according to eqs. (2.14), (2.24), but with µ2 now replaced
by the heavy quark mass. Calculations performed in this scheme, with heavy quark mass
effects neglected, are accurate for scales much larger than the quark mass. However,
the massless scheme is in principle formally defined for all scales, including at the heavy
quark mass. This is sometimes done by using the massless scheme for all flavors, but
discontinuously changing the number of flavors at a matching scale chosen equal to (or of
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order of) the heavy quark mass (zero-mass variable-flavor number scheme, ZM-VFNS [22]).
Below the matching scale the ZM-VFNS coincides with the massive scheme (with non-
evolving heavy quark PDF), and at the matching scale the heavy quark PDF changes
discontinuously: the matching condition is the scheme transformation from the massive to
the massless MS (computed up to NNLO in ref. [23]). This scheme transformation accounts
for the fact that in the massive scheme the heavy quark decouples from the running, so
loop corrections with the massive quark circulating in loops are included in the Wilson
coefficient, and not in the operator matrix element, while in the massless scheme they are
included in the operator normalization along with all other light quarks, but neglecting the
quark mass when computing them.

When Q2 ∼ m2
h this neglect is not justified, and the corresponding scheme transfor-

mation may ruin positivity of the PDF. Specifically, it is often assumed that the massive-
scheme PDF vanishes at some scale Q2 ∼ m2

h, and it indeed appears reasonable to expect
that the low-scale heavy quark scheme PDF if not vanishing, is rather smaller than light
quark PDFs (see refs. [24, 25]). However, if one determines the massless-scheme heavy
quark PDF by starting with a vanishing massive-scheme PDFs, and using perturbative
matching conditions, a negative result can be found — and is indeed found using standard
light quark and gluon PDFs [26]. This is now possible because the massless-scheme heavy
quark PDF is not defined by a matrix element of the form of eq. (2.2), but rather, as the
transformation of such an operator matrix element to a scheme in which the quark mass is
neglected, but in a region in which the quark mass is not negligible. Of course, if Q2 � m2

h

the mass does become negligible, the previous arguments apply, and positivity of the heavy
quark PDF is restored. Hence, positivity of the heavy quark PDF in the massless scheme
only holds at high enough Q2 that mass corrections are negligible.

All the discussion so far has been pursued at NLO. However, the main structure of
the argument remains true to all perturbative orders. In particular, it is true to all orders
that the diagonal splitting functions are negative at large z: in fact, at large z to all
perturbative orders they behave as 1

(1−z)+
[15]. At higher perturbative orders, coefficient

functions will contain plus distributions with higher order powers of ln(1 − z), leading to
the familiar rise in the partonic cross section which is predicted to all orders by threshold
resummation [12, 13]. Off-diagonal channels, where negative contributions as z → 1 may
and indeed are expected to arise, remain power suppressed in this limit. It follows that the
off-diagonal structure eq. (3.30) of the matrix relating a positive scheme to MS will hold
true to all orders. The positivity argument of section 3.2.2 is a direct consequence of this
structure, and it will thus also hold to all orders.

4 Conclusions

The goal of this paper was the construction of a universal factorization scheme in which
PDFs are non-negative. In order to attack the problem, we started from the observation
that MS partonic cross sections for typical electro- and hadro-production processes are not
positive. This then implies that positivity of the PDFs is not guaranteed, since folding
a negative partonic cross section with a positive PDF could lead to a negative physical
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cross section. We have then traced negative partonic cross sections to the way collinear
subtraction is performed in MS and specifically we have shown that it is due to over-
subtraction, related to the choice of subtraction scale, and also the treatment of the average
over gluon polarizations in d dimensions. This loss of positivity only manifests itself in off-
diagonal quark-gluon and gluon-quark channels.

A universal subtraction prescription which preserves positivity of the partonic cross
section can then be constructed using hadronic kinematics, and shown to preserve positiv-
ity also in electroproduction kinematics. This prescription does not automatically respect
momentum conservation, which however can be enforced with a soft modification of the
subtraction procedure that does not affect its positivity properties. By performing collinear
factorization in the standard approach of refs. [8, 9] it is then possible to show that posi-
tivity of the PDFs, defined as probability distributions, is preserved at all stages, so PDFs
remain positive.

In fact, this positivity is a manifestation of the fact that PDFs can always be defined
in terms of a physical process: what PDFs do is to allow one to express the perturbative
QCD prediction for a process in terms of that for another process. The definition of the
PDFs can then be process-independent (as in MS) or process-dependent (as in so-called
physical schemes [18, 19]). Its positivity will then be preserved provided only that the
renormalization conditions, which fix the value of operator matrix elements that define the
PDFs, preserves their interpretation as moments of a probability distribution. Effectively,
this corresponds to choosing positive Wilson coefficients.

By considering a scheme in which PDFs are manifestly positive, and the transformation
from it to MS, we have finally shown that in the MS scheme PDFs remain positive, despite
the fact that off-diagonal partonic cross sections are negative. From a physical point
of view, this is a consequence of the fact that the MS subtraction is actually strongly
positive in the diagonal channels (where by “strongly” we mean that partonic functions tend
to +∞ towards kinematic boundaries). This then overwhelms the negative contribution
from off-diagonal channels, while away from kinematic boundaries off-diagonal channels
are perturbatively subleading.

Positivity of the PDFs is neither necessary nor sufficient for physical cross sections to
be positive, as they ought to: it is not necessary, because it is possible that a negative
PDF still leads to a positive hadronic cross section once folded with a suitable coefficient
function, and it is not sufficient because in a scheme, such as MS, in which some partonic
cross sections are negative it could well be that, while the true PDF must necessarily lead to
positive measurable cross sections, an incorrectly determined PDF could lead to a negative
cross section despite being positive.

In other words, it is not necessarily true that the region in PDF space which is ex-
cluded by the requirement of positivity of the PDF is the same as that which is excluded by
requiring positivity of the cross sections. However, from the point of view of PDFs determi-
nation, knowing that PDFs must be positive in a given factorization scheme does provide
a useful constraint, in that it excludes a region which does not have to be explored, though
this restriction is not necessarily the most stringent one. It is natural to ask whether the
positivity requirement could be more restrictive in some factorization schemes than oth-
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ers, but it is unclear whether and how this question could be answered. The question of
optimizing the scheme choice from the point of view of positivity constraints, for the sake
of PDFs determination, remains open for future investigation.
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