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Abstract: Multiscale structural analysis is carried out to explore the sequence of superposed pre-
Alpine chloritoid–staurolite–andalusite metamorphic assemblages in the polydeformed Variscan
basement of the upper Val Camonica, in the central Southalpine domain. The dominant fabric in
the upper Val Camonica basement is the late-Variscan S2 foliation, marked by greenschist facies
minerals and truncated by the base of Permian siliciclastic sequences. The intersection with the
sedimentary strata defines a Permian age limit on the pre-Alpine tectono–metamorphic evolution
and exhumation of the Variscan basement. The detailed structural survey revealed that the older
S1 foliation was locally preserved in low-strained domains. S1 is a composite fabric resulting from
combining S1a and S1b: in the metapelites, S1a was supported by chloritoid, garnet, and biotite and
developed before S1b, which was marked by staurolite, garnet, and biotite. S1a and S1b developed
at intermediate pressure amphibolite facies conditions during the Variscan convergence, S1a at
T = 520–550 ◦C and P ' 0.8 GPa, S1b at T = 550–650 ◦C and P = 0.4–0.7 GPa. The special feature of
the upper Val Camonica metapelites is andalusite, which formed between the late D1b and early D2
tectonic events. Andalusite developed at T = 520–580 ◦C and P = 0.2–0.4 GPa in pre-Permian times,
after the peak of the Variscan collision and before the exhumation of the Variscan basement and the
subsequent deposition of the Permian covers. It follows that the upper Val Camonica andalusite has a
different age and tectonic significance as compared to that of other pre-Alpine andalusite occurrences
in the Alps, where andalusite mostly developed during exhumation of high-temperature basement
rocks in Permian–Triassic times.

Keywords: Variscan subduction/collision; pre-Alpine andalusite; chloritoid–staurolite metapelites

1. Introduction

Andalusite is an indicator of high thermal regimes, such as those characterizing contact
metamorphism or regional Buchan/Abukuma-type metamorphism in the metapelites of
the continental crust [1,2]. High T/P ratios accountable for andalusite development are
envisaged in various convergent and divergent settings, including late-orogenic thinning
and lithospheric delamination in the mature stages of continental collision, as well as
lithospheric thinning announcing continental rifting in post-orogenic settings [3,4].

Andalusite is quite common in the pre-Alpine continental crust of the Alps, even if
the age of the andalusite-bearing assemblages and the geological context in which they
formed are various (Figure 1, Table 1). Andalusite-bearing rocks are associated with late-
Variscan aplites, pegmatites, granitoids, and cordierite-bearing migmatites in the Helvetic
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Argentera–Mercantour and Aiguilles Rouges massifs and often found in the contact zone
of the Permian–Carboniferous intrusives [5–8]. Similarly, andalusite relics are found in the
surroundings of late-Variscan granitoids in the Penninic Gran Paradiso massif [9] and in
the pre-Permian metapelites of the Grand St. Bernard [10,11]. In the Penninic Briançon
Basement, andalusite is instead related to a Permian thermal rise [12,13].

Different geological and chronological settings for andalusite development are envis-
aged in the Austroalpine and Southalpine domains, where andalusite-bearing assemblages
testifying to Permian–Triassic lithospheric thinning are described together with older
Permian–Carboniferous andalusite in the contact zone of late-Variscan intrusives [14–49].
In the Southalpine domain, andalusite mostly occurs in high-temperature basement
rocks that include sillimanite, cordierite, and/or spinel that reflect Permian–Triassic
Buchan/Abukuma-type metamorphism. In the upper Val Camonica, andalusite is in-
stead found in chloritoid–staurolite–garnet-bearing metapelites, which suggest higher P/T
conditions as characteristic of Barrovian/Dalradian metamorphism [1,2]. This case study
thus represents an excellent opportunity to improve our understanding of the Variscan base-
ment exhumation path, from the Variscan convergence to the Permian–Triassic lithospheric
thinning. To this purpose, we present new multiscale structural data integrated with a
detailed mineral–chemical and petrologic analysis, including thermodynamic modeling,
aimed at identifying the geodynamic significance of the chloritoid–staurolite–andalusite
transition in the upper Val Camonica basement.
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Figure 1. Tectonic map of the Alps redrawn after [50]. The red stars locate andalusite-bearing metapelites in the pre-Alpine
basements; the orange star refers to the andalusite described in this work. Keys are coded in Table 1, where assemblages,
inferred P-T conditions, and ages are listed with references. The grey shaded area locates the tectonic scheme of the central
Southalpine domain proposed in Figure 2.
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Table 1. Pre-Alpine andalusite-bearing assemblages in the continental crust of the Alps. Labels correspond to those of
Figure 1. Mineral abbreviations follow [51]. When the radiometric method is not specified, the age is deduced from
geological evidence or represents the average of results by different methods.

Tectonic System Key Location Assemblage T (◦C) P (GPa) Age (Ma) Method Refs.

Helvetic—
Dauphinois—

Provençal
HDP 1 Argentera Massif

Gesso Valley
And + Bt ± Sil

± Pl - - 292 ± 10, 299–296 Rb/Sr,
Ar/Ar [5,6,8]

Helvetic—
Dauphinois—

Provençal
HDP 2 Aiugilles Rouges

Mieville

And + Ms +
Tur ± Tpz ±

Crd
- - Carboniferous–

Permian - [7]

Penninic P1 Gran Paradiso
Pian Teleccio

Bt, Sil, Crn, Qz,
Kfs, Pl, And? - - Carboniferous–

Permian - [9]

Penninic P2 Briançon
basement And 450–550 0.1–0.3 Permian–Triassic

(295–245)
Rb/Sr,
K/Ar [12,13]

Penninic P3
Briançon

Basement Mont
Mort

Grt + Bt +
Sil/And 550–600 0.5–0.8 332–328 U/Pb [10,11]

Austroalpine A1 Mont Mary
Nappe And + Ms - - Permian - [23,28]

Austroalpine A2 Silvretta
Pischahorn Qz + Ms + And 600 0.2 353–280, 353–295 Rb/Sr,

K/Ar [31]

Austroalpine A3
Languard–

Campo
Sondalo

And + Crd 540 0.3–0.4 290–260 U/Pb [39,46,47]

Austroalpine A4 Languard–
Campo And + Ms <500 <0.5 <250 U/Pb [38,41,43,48]

Austroalpine A5 Matsch Nappe
Grt + Sil/And

+ Bt ± Crd + Pl
+ Qz

570–640 0.30–0.55 Permian
Rb/Sr,
U/Pb,

Sm/Nd
[15,17,18]

Austroalpine A6 Jenig Complex And + Bt + Ms
+ Chl + Qz 450–530 0.24–0.42 254 ± 8 Sm/Nd [19,20,37]

Austroalpine A7
Kreuzeck
Strieden
Complex

And + Bt + Qz
± Pl ±Ms 500–570 <0.35 230–200 Ar/Ar [24,37,40]

Austroalpine A8 Deferegger Alps
Uttenheim And + Qz - - >260, >290 Rb/Sr,

Ar/Ar [21,37]

Austroalpine A9 Rappold
Complex (ex-) And - - 288 ± 4, 262 ± 2 Sm/Nd [37,40]

Austroalpine A10 Koralpe (ex-) And - - Permian–Triassic - [37,40]

Austroalpine A11 Stralleg And + Bt + Qz
± Pl ±Ms 550–600 0.32–0.48 Permian–Triassic - [37,40]

Austroalpine A12 Sieggraben (ex-) And - - Permian–Triassic - [14,37,40]

Austroalpine A13 Grobgneiss—
Sopron

And + Bt ± Spl
± Ilm 575–620 0.18–0.25 330–320 K/Ar [29,30,37,40]

Southalpine S1 Strona–Ceneri
Zone Sill, And, Crd - - Permian - [32,35]

Southalpine S2 Dervio–Olgiasca
Zone And < 600 <0.3 Triassic - [25,27,34,41,

45]

Southalpine S3 Val Biandino And + Crd 500–600 <0.35 312 ± 48, 286 ± 20 Rb/Sr,
K/Ar [22,26,49]

Southalpine S4 Val Camonica And + Bt + Qz
± St - - pre-Permian - [36], this work

Southalpine S5 Isarco Valley And + Bt + Crd <670 0.25–0.35 282 ± 14 Rb/Sr [16,33,42,44]
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2. Geological Setting

The Variscan basement of the central Southalpine domain (i.e., the Orobic basement)
comprises metapelites, gneisses, and quartzites, with minor metagranitoids, amphibolites,
and marbles ([41,49,52–54] and refs. therein). The protoliths of these rocks mostly derive
from Silurian–Ordovician sedimentary sequences and intrusives [55–57].

The dominant S2 foliation in the basement rocks is supported by greenschist fa-
cies minerals, which developed mainly during the late-collisional exhumation of the
Variscan basement (>280 Ma, [49] and refs. therein), with few exceptions (e.g., [58,59]
and refs. therein). S2 is truncated by siliciclastic Permian sequences, including conglom-
erates, arenites, and volcaniclastites, which are divided by unconformity in two cycles,
dated lower- and mid-upper Permian, respectively [54,60–62]. The basement and sedi-
mentary rocks were subsequently deformed and poorly metamorphosed during Alpine
convergence (e.g., [63–65]), which was responsible for the development of D3 and D4
structures [56,66–69].

Mineral assemblages supporting precollisional and collisional Variscan structures
(D1a, and D1b) are occasionally preserved in the Orobic basement, where five pre-Alpine
Tectono–Metamorphic Units (TMUs) are distinguished [45,58] and shown in Figure 2:

1. the Val Vedello (VVB) and Monte Muggio Basements (MMB), in which kyanite–
staurolite-bearing metapelites record the metamorphic peak of the Variscan collision
under amphibolite facies conditions [25,53,70];

2. the Passo Cavalcafiche Basement (PCB) and Domaso–Cortafò Zone (DCZ), which
record a prograde metamorphic evolution: syn-D1a chloritoid–garnet-bearing as-
semblages in metapelites testify to precollisional piling of cold lithospheric sheets
under epidote–amphibolite facies conditions [71], whereas Syn-D1b staurolite–garnet-
bearing assemblages formed during the subsequent Variscan collision [71];

3. the Aprica Basement (AB), which records two stages of the Variscan tectono–meta-
morphic evolution both under greenschist facies conditions, but marked by different
P/T ratios [68]. A similar tectono–metamorphic evolution is also recorded in a small
segment of Variscan basement immediately north of the Alpine Sellero line [55,58,72];

4. the Dervio–Olgiasca Zone (DOZ), which is the only TMU that records the high thermal
state relatable to the “Tethyan rifting” at intermediate crustal depth [25,27]. Andalusite
replacing sillimanite testifies to exhumation under high T/P ratio [25,52,73,74]. The
Triassic age of this event is constrained by syn-D2 pegmatite ages [25,34,70,75];

5. the Tre Valli Bresciane (TVB) massif, where peak epidote–amphibolte facies conditions
are recorded by chloritoid–garnet-bearing assemblages in metapelites [72,76].

In addition, P-T trajectories obtained from metamorphic pebbles from conglomerates
of the lower Permian sedimentary cycle have been compared with the P-T evolutions
inferred in different units of the Variscan basement [49,72,77]. In particular, metamorphic
conditions retained by staurolite–garnet-bearing pebbles of basement rocks in the Aga and
Vedello Conglomerates (AVC) (Figure 2) are similar to those characterizing the neighboring
VVB and AB [77]. In the same way, metamorphic conditions retained by garnet–chloritoid-
bearing pebbles in the Dosso dei Galli Conglomerate (DGC) (Figure 2) match those of the
closest TVB [72].

In the siliciclastic Ponteranica Formation (POC, Figure 2), two types of pebbles are
distinguished: the first type is similar to those found in the Aga and Vedello conglomerates,
whereas, the second type contains andalusite-bearing assemblages interpreted either as
developed during late-Variscan contact metamorphism, as induced by the emplacement of
Val Biandino pluton, or during late-orogenic thermal relaxation [49].
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Figure 2. Geologic sketch of the central Southalpine domain modified from [49] and refs. therein.
The present study area is shown as a black polygon indicated by a black arrow (cfr. Figure 3).
Variscan Tectono–Metamorphic Units: AB = Aprica Basement; DCZ = Domaso—Cortafò Zone;
DOZ = Dervio—Olgiasca Zone; MMZ = Monte Muggio Zone; PCB = Passo Cavalcafiche Base-
ment; TVB = Tre Valli Bresciane massif; VVB = Val Vedello Basement. Permian conglomerates with
pebbles deriving from the Variscan TMUs: POC = Ponteranica Formation; AVC = Aga and Vedello
Conglomerates; DGC = Dosso dei Galli Conglomerate. Main tectonic lines: GSL = Gallinera e Sellero
Lines; ML = Musso Line; OL = Orobic Line; VGL = Val Grande Line. Inset with the tectonic sketch
of the Alps after [78]. A = Variscan basement rocks in the Alpine subduction complex; B = Variscan
basement rocks in the Alpine external domains (Ag: Aar–Gotthard Massif, Ar: Argentera–Mercantour
Massif, Bd: Belledonne Massif, Mb: Mont Blanc Massif, Px: Pelvoux Massif, wSa: western Southern
Alps, cSa: central Southern Alps, eSa: eastern Southern Alps); C = Variscan basement rocks external
to the Alpine fronts (Mt: Maures–Tanneron Massif, Vs: Vosges); D = lithospheric-scale structures
delimiting the axial zone of the Alps (Pf: Penninic Front, Pl: Periadriatic Lineament); E: Alpine fronts.

The mid-upper Permian Verrucano Lombardo is part of the second sedimentary cycle
capping most of the Orobic basement; it consists of poorly stratified fluvial conglomerates
and sandstones ([62] and refs. therein) that grade into shallow sea deposits (Servino
Formation) in early Triassic times [79]. This contribution focuses on a segment of the
Orobic basement just below the Gallinera Line footwall (Figure 2), in upper Val Camonica.
Here, the Verrucano Lombardo formation truncates late-collisional S2 in the exhumed
Variscan basement.

3. Lithostratigraphy and Deformation History

Structural mapping was carried out on the right sloping bank of the Oglio river in
upper Val Camonica, west of Cedegolo and Sellero villages (Figure 3). The aim was to
constrain the intersection relationship between different types of pre-D2 structures in
the Variscan basement. The Sellero–Cedegolo Basement, hereafter named SCB, mostly
consists of chloritoid–staurolite-bearing metapelites, with minor lenses of garnet-bearing
metagranitoids, paragneisses, and amphibolites, and is capped by the mid-upper Permian
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Verrucano Lombardo. The relevance of this area in the Orobic basement is the outstanding
occurrence of pre-Permian andalusite in the metapelites (Figure 3).

Four generations of superposed structures are distinguished in the SCB. In the
metapelites, S2 foliation is supported by white mica, chlorite, ±albite (Figure 4). S2
dips from northwest to southeast, due to successive Alpine folding and thrusting (D3).
Alpine D3 folds are characterized by southwest trending axes and steeply dipping axial
planes (Figure 5).

Pre-D2 foliations, S1a and S1b, are occasionally preserved in the area, even if mostly
transposed into S2 (Figure 5). S1a is supported by white mica, garnet, biotite, and ±
chloritoid, and S1b is supported by white mica, garnet, biotite, and ± staurolite (Figure 4).
Overprinting relationships between S1a and S1b were not observed at the outcrop scale.
On the basis of chloritoid or staurolite, S1 is demarcated as S1a or S1b, respectively. Where
both intersection relationships and contrasting assemblages are absent, pre-D2 fabrics have
been simply labeled S1.
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Figure 4. Mesoscale representative structures and mineral assemblages in the Sellero–Cedegolo
basement. Metapelites: (A) Alpine D3 folding overprints Variscan S2 foliation marked by greenschist
facies minerals. D3 axial plane dips to NW; (B) overprinting relationships between S1 and S2. S2 dips
to S; (C) garnet (Grt) and chloritoid (Cld) grains supporting S1a foliation; (D) aggregates of staurolite
(St) grains lying with garnet (Grt) on S1b foliation. Metagranitoids: (E) mylonitic S2 marked by
chlorite and white mica. The red line is the lens lanyard, here used as scale.

In the metagranitoids, K-feldspar relics were wrapped by two superposed foliations:
S1 was supported by biotite, white mica, plagioclase, and quartz and wraps rare garnet
porphyroclasts. New white mica, chlorite, and rare plagioclase grains marked pervasive
S2 (Figure 4E). Metric lenses of amphibolites were hosted within the staurolite-bearing
metapelites in the northern part of the area (Figure 3). In the amphibolites, pervasive
S2 was supported by amphibole, chlorite, quartz, epidote, and plagioclase; relict S1 was
supported by amphibole, epidote, and biotite. Rare garnet porphyroclasts were found in
the amphibolites.

The mid-upper Permian Verrucano Lombardo Formation unconformably covers the
basement rocks and cuts S2 at the western boundary of the mapped area (Figure 3). D3 folds
affect the basement rocks together with the Permian–Mesozoic sedimentary sequences. In
both Variscan basement rocks and covers, D3 folds were characterized by a disjunctive
axial plane foliation S3. S3 was marked by chlorite, white mica, and opaque minerals.
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4. Microstructure and Mineral Chemistry

Deformation versus mineral growth relationships were determined for metapelites
and metagranitoids that well preserved pre-D2 structures (Figure 6). The aim is to investi-
gate the relationships between mineral growth and superposed fabrics and infer a robust
P–T–d–t (Pressure–Temperature–deformation–time) path. The above described and re-
gionally valid deformation history has been useful to individuate the site for investigating
mineral compositional variations, taking into account: (a) the timing of mineral growth
with respect to superposed fabric elements and (b) deformation mechanisms acting during
the same deformation stage (e.g., [80–82]).

Mineral chemical analyses and backscattered electron (BSE) images were performed
with the JEOL JXA-8200 electron microprobe in wavelength dispersion mode (EMPA) at
the laboratory of the Department of Earth Sciences of the University of Milan, Italy, under
the following conditions: 15 kV accelerating voltage, 5 nA beam current, and a count time
of 60 s on peak and 30 s on the background, with a 1 µm diameter beam. Natural minerals
were used as standards and the rough data corrected for matrix effects using a conventional
ϕρZ routine in the JEOL software. Compositional parameters of the analyzed minerals in
metapelites and metagranitoids are reported in Table 2. The mineral chemical dataset is
attached in Table S1 (Supplementary Materials).

4.1. Metapelites

S1a and S1b are well preserved in the selected metapelites. S1a is supported by shape-
preferred orientation (SPO) of white mica (WmI, Si > 6.20 apfu), chloritoid (XMg = 0.04–0.11),
biotite (BtI, XMg = 0.19–0.29), quartz, rutile, and ilmenite. These minerals, with rare grains
of plagioclase (PlI, An4–5), mark the internal foliation of millimeter- to centimeter-sized gar-
net porphyroblasts (GrtI, Alm81Grs14Prp5). Inclusion patterns in GrtI are usually straight,
slightly curved at garnet rims, and continuous with the external S1a foliation. Similarly,
millimeter-sized chloritoid grains included S1a as internal foliation (Figure 7A).
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S1a is crenulated by D1b and, where S1b is well developed, decussate and plastically
deformed WmI and BtI crystals are preserved in microlithons and/or as rotated grains
in the cleavage domains. GrtI cores contain internal S1a, discordant with external S1b
(Figure 7B), and show thin inclusion-free rims (GrtII, Alm89Grs6Prp4). S1b is marked by
white mica (WmII, 6.10 ≤ Si ≤ 6.20 apfu with Pg < 0.20), staurolite (XMg = 0.06–0.15),
biotite (BtII, XMg = 0.30–0.40), and ilmenite; quartz and plagioclase (PlII, An21–22) occupy
the microlithons. Skeletal GrtII grains are in trails along S1b together with staurolite.
Overprinting of staurolite-bearing S1b on chloritoid-bearing S1a is exceptionally preserved
(Figure 7A); in addition, staurolite includes S1b foliation deflected into strain caps around
GrtI porphyroclasts (Figure 7B), or it fills the necks of microboudinaged chloritoid grains
(Figure 7C).

S1b is crenulated by D2 or microfaulted along localized shear bands. S2 is outlined by
chlorite, white mica (WmIII, Si = 5.91–5.94 apfu, Pg = 0.09–0.10), ilmenite, tourmaline, and
rare biotite (BtIII). Plastically deformed grains of biotite and white mica were re-oriented
along S2. Centimeter-sized plagioclase crystals (PlIII, An1–3) retain S2 as internal foliation.
Plagioclase porphyroclasts are statically replaced by epidote and sericite, whereas chlorite
overgrew garnet, chloritoid, and staurolite.

Andalusite crystals of millimeter to centimeter size include S1b as internal foliation,
either straight, curved, or gently folded by D2 (Figure 7D,E), but continuous with external
S1b. Andalusite was microboudinaged during D2, with WmIII, BtIII, and chlorite filling the
boudin necks, and wrapped by coronae of very fine-grained WmIII. These features suggest
that andalusite growth took place during the final stages of S1b development and ceased
during early-D2. Staurolite inclusions are recurrent in andalusite grains and display sharp
grain boundaries (Figure 7F). Andalusite locally forms aggregates with small corundum
grains. In most cases, corundum is rimmed by diaspore (Figure 7G,H).

The following mineral compositional evolutions are here summarized and highlighted
in Figure 8 and Table 2: (1) replacement of Ca by Fe2+ from GrtI to GrtII; (2) decrease in
Si and Mg + Fe content from WmI to WmII to WmIII; (3) increase in XMg from BtI to BtII;
(4) increase in An component from PlI to PlII and decreasing from PlII to PlIII. Chlorite
composition seems to be controlled by the microstructural site: chlorite replacing andalusite
and staurolite has XMg = 0.34–0.36, chlorite replacing chloritoid has XMg = 0.17–0.29, chlorite
rimming garnet shows XMg = 0.09–0.37 and the lowest Al content (Figure 8).
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Figure 7. Variscan metapelites. (A) S1a supported by shape-preferred orientation of millimeter-sized
chloritoid porphyroblasts (BSE image). Internal foliation in chloritoid is continuous with external
S1a. S1b is supported by submillimeter sized staurolite grains and cuts S1a. (B) Porphyroclast of
GrtI wrapped by S1b. S1b is marked by WmII and BtII. GrtI retains a straight internal foliation
discontinuous with the external one. Staurolite in the strain caps around GrtI encloses deflected S1b
(PPL image). (C) S1a supported by chloritoid. Chloritoid is included in GrtI, and the internal foliation
in both GrtI and chloritoid is deflected but continuous with the external foliation S1a. Chloritoid
grains are boudinaged and staurolite grew in the boudin-neck (PPL image). (D) Andalusite with
internal foliation continuous with external S1b: the internal foliation is straight at the grain core
and curved at the rim. S1b is marked by BtII. Decussate grains of biotite are preserved in cleavage
domains and as inclusions in andalusite (PPL image). (E) Post-kinematic andalusite porphyroblast
overprints D2 folds (PPL image). (F) Andalusite porphyroblast includes staurolite with equilibrium
grain boundaries (PPL image). (G,H) Andalusite porphyroblasts include corundum grains and are
replaced by diaspore and WmIII (BSE and XPL images).
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Figure 8. Compositional variations of the main rock-forming minerals in metapelites and meta-
granitoids as a function of rock-type (triangle: garnet-bearing metapelites, circle: chloritoid-bearing
metapelites, square: staurolite-bearing metapelites) and microstructural site (D1a—blue, D1b—
yellow, D2—red).

4.2. Metagranitoids

S2 is the dominant foliation in metagranitoids. S1a and S1b are locally preserved
in low strained domains and wrap relics of igneous K-feldspar. S1b is supported by
biotite (BtII, XMg = 0.33, Ti < 0.21 apfu), quartz, plagioclase (PlII, An2–6), minor white
mica (WmII, Si = 6.20–6.47 apfu, Pg < 0.12), and ilmenite. S1a is the internal foliation in
skeletal garnet grains (Alm51Grs31Prp3Sps16) and is supported by elongated inclusions
of quartz. In the garnet porphyrclasts, S1a is discontinuous with respect to the external
foliation S1b. Decussate grains of biotite (BtI, XMg = 0.30–0.34, Ti = 0.28–0.38 apfu) and
white mica (WmI, Si = 6.11–6.27 apfu, Pg < 0.11) were found in the microlithons, with an
early generation of plagioclase (PlI, An13–42) that is extensively replaced by white mica and
epidote (Fe3+/(AlVI + Fe3+) = 0.16–0.17). BtI, WmI, PlI, garnet, and quartz are considered
stable during S1a development. Finally, S2 is supported by white mica, ilmenite, and
chlorite (XMg = 0.36–0.40), which pervasively replace biotite and garnet.
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Table 2. Synthesis of mineral chemical analyses. Stoichiometric formulae are calculated as follows: garnet at 8 cations and 12 oxygen atoms, epidote at 8 cations and 12.5 oxygen atoms,
biotite and white mica at 22 oxygen atoms, chloritoid at 12 oxygen atoms, staurolite at 46 oxygen atoms, chlorite at 7 oxygen atoms, and plagioclase at 4 oxygen atoms. Average values are
in brackets.

Rock Type Stage Mineral Alm Prp Grs Si Al Pg Fe + Mg Ti XMg An Ab

Metapelites

D1a

Grt I 0.75–0.90
(0.81)

0.01–0.10
(0.05)

0.05–0.20
(0.14)

Wm I 6.21–6.38 5.39–5.72 0.03–0.20 0.13–0.43
Bt I 0.17–0.25 0.19–0.29
Pl I 4–5 94–96
Cld 0.04–0.11

D1b

Grt II 0.86–0.94
(0.89)

0.02–0.10
(0.06)

0.02–0.07
(0.04)

Wm II 6.10–6.20 5.67–5.90 0.08–0.28 0.07–0.23
Bt II 0.10–0.23 0.30–0.40
Pl II 21–22 77–78
St 0.06–0.15

D2

Wm III 5.91–5.94 5.95–6.02 0.09–0.10 0.05–0.06
Pl III - - 1–3 97–98

Chl (And) 2.44–2.53 2.98–3.18 0.36–0.38
Chl (Cld) 2.53–2.69 2.90–3.11 0.17–0.29
Chl (Grt) 2.44–3.01 2.44–3.05 0.09–0.37
Chl (St) 2.49–2.64 2.93–3.05 0.34–0.46

Meta-
granitoids

D1a

Grt 0.58–0.62
(0.60) 0.03 0.35–0.39

(0.37)
Wm I 6.11–6.27 5.22–5.38 0.08–0.11 0.34–0.48
Bt I 0.28–0.38 0.30–0.34
Pl I 13–42 56–86

D1b
Wm II 6.20–6.47 4.88–5.42 0.08–0.12 0.33–0.69
Bt II 0.21 0.33
Pl II 2–6 92–97
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5. Metamorphic Evolution vs. Deformation History

This section constrains the P-T conditions under which D1a, D1b, and D2 structures
developed in the Variscan basement. The Permian sedimentary sequences overlying the
SCB define a Permian age limit for the exhumation of the Variscan basement in upper Val
Camonica.

Metamorphic conditions for the subsequent deformation stages recorded in the
metapelites were estimated by means of thermobarometers and pseudosections. Tem-
peratures were constrained using different Fe–Mg cationic exchange between mineral
pairs in textural equilibrium. Chloritoid–biotite and chloritoid–garnet thermometry [83,84]
was applied on mineral grains supporting S1a foliation and gave a temperature interval
of 490–580 ◦C. Staurolite–garnet thermometry [80] on minerals marking S1b provided
a temperature interval of 580–610 ◦C. The result was fully consistent with the upper
stability of chloritoid in the FeO–Al2O3–SiO2–H2O (FASH) system, which reacted to
form staurolite and/or almandine by increasing the temperature above 550 ◦C ([85] and
refs. therein). Garnet–biotite thermometry [86–89] coherently indicated that S1a devel-
oped at T = 480–540 ◦C and S1b at T = 510–630 ◦C. Pressure conditions were estimated
by garnet–plagioclase–biotite–muscovite–quartz [90] and garnet–plagioclase–muscovite–
quartz barometers [91]: S1a developed at P = 0.8–1.0 GPa and S1b at P = 0.4–0.6 GPa.

Pseudosections were calculated by the Theriak/Domino program [92] to better con-
strain the P-T intervals accountable for D1a, D1b, and early D2 events in metapelites and
metagranitoids (Figure 9). We adopted a converted version of the self-consistent thermo-
dynamic database ds55 [93] in the CaO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O (CNKF-
MASH) system, including the following mineral activity-composition (a-x) relations: gar-
net [94], biotite [94], chlorite [95], white mica [96], chloritoid [95], and staurolite [95].

The selected bulk compositions were acquired from metapelite and metagranitoid
samples from the lithostratigraphic unit in the Orobic basement that included the rocks
analyzed in this work [93]. Mn was excluded, because it is negligible in the metapelites and
only fractionated in garnet in the metagranitoids; P content is almost entirely contained
in apatite and thus removed from the system together with stoichiometric Ca. Water was
considered in excess except where indicated.

In the metapelites, the syn-D1a assemblage plagioclase + garnet + biotite + white mica
+ chloritoid + quartz was stable at T = 530–560 ◦C and P = 0.6–0.8 GPa (Figure 9A). The re-
sulting stability field was delimited at low temperature and high pressure by chlorite-in and
chloritoid-out curves, at high temperature by chloritoid-out and staurolite-in (T = 560 ◦C)
curves, and at low-pressure by garnet-out curves. Within the D1a field, the garnet compo-
sition changed from Alm79Grs16Prp5 to Alm87Grs8Prp5 under increasing of the T/P ratio.
The Si content in white mica is 6.20 apfu and consistent with P ' 0.8 GPa. The computed
compositions matched those of GrtI (Alm81Grs14Prp5) and WmI (Si ≥ 6.20 apfu) in the
metapelites for T = 530–550 ◦C and P ' 0.8 GPa.

The syn-D1b assemblage garnet + biotite + white mica + staurolite + quartz was stable
at T = 560–650 ◦C and P = 0.5–0.7 GPa. The predicted stability field was delimited at high
pressure by staurolite-out, at high temperature by univariant sillimanite-in/staurolite-out,
and at low pressure by garnet-out. In this field, garnet is characterized by almandine
content at around 0.90 and grossular at around 0.05, as in GrtII (Alm89Grs6Prp4). This
portion of the P-T space likely represents the main stage of S1b development, which was
followed by further decompression and exhumation out of the garnet stability field, as
suggested by the Si content in WmII (6.10 ≤ Si ≤ 6.20 apfu).

Andalusite was stable together with staurolite at T = 520–580 ◦C and P = 0.2–0.4 GPa
(Figure 9B). These metamorphic conditions characterized the transition between D1b and
D2 deformation stages. A further exhumation of metapelites towards shallower levels is
testified to by the replacement of corundum by diaspore at T≤ 400 ◦C and P ≤ 0.2 GPa [95].
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Figure 9. P-T and P-X pseudosections calculated in the CNKFMASH system for metapelites (A,B) and metagranitoids (C,D)
in the SCB. Bulk compositions are from [97]. Fields are colored as function of variance. Si-in white mica, Ca-in garnet,
and Fe-in garnet isopleths are added. P-T accountable for D1a to D2 deformation stages are highlighted by dotted ellipses
and lines.

In the metagranitoids, the stability and composition of garnet was mostly controlled by
the amount of water in the system (Figure 9C). Increasing water content, garnet was stable
towards higher pressure at the same temperature. The analyzed garnet (Alm60Grs37Prp3)
was predicted in the Pl + Grt + Bt + Wm + Kfs + Qz field if considered in slightly undersatu-
rated conditions (~3% mol of H2O). The P-T conditions accountable for garnet development



Minerals 2021, 11, 1124 15 of 20

vary from 450 ◦C and 0.65 GPa to 530 ◦C and 1.00 GPa (Figure 9D). In this wide P-T interval,
biotite XMg (0.30–0.38) matched with the analysis on Bt I (0.30–0.34) and the Si content in
white mica (6.14–6.34 apfu) was comparable to that of Wm I (6.11–6.27 apfu). This model-
ing suggests that garnet stability in the metagranitoids is only possible at P-T conditions
(T = 450–530 ◦C, P = 0.7–1.0 GPa), slightly cooler but comparable with those determined
for D1a in the metapelites (T = 520–550 ◦C, P ' 0.8 GPa), and not during D1b, in agreement
with the microstructural relationships.

6. Discussion and Conclusions

Multiscale structural analysis integrated with petrology in the SCB rocks allowed
the reconstruction of the Variscan P–T–d–t evolution, predating the deposition of the
Permian–Triassic sedimentary sequences (Figures 3 and 10, [54]). The Variscan structural
evolution is testified by the superposition of three groups of structures developed under
different metamorphic conditions: D1a structures formed at the boundary between epidote
amphibolite- and amphibolite-facies conditions (at T = 450–570 ◦C and P = 0.7–1.0 GPa),
D1b under amphibolite-facies conditions, at higher temperature and slightly lower pres-
sure (T = 550–650 ◦C and P = 0.4–0.7 GPa), whereas D2 structures are marked by mineral
assemblages testifying to the transition towards greenschist-facies conditions (T ≤ 400 ◦C
and P ≤ 0.3 GPa). Overprinting relationships between chloritoid–garnet-bearing S1a and
staurolite–garnet-bearing S1b confirmed that the development of the various mineral as-
semblages was controlled by different thermal states during successive deformation stages.

The textural relationship between staurolite and andalusite in some of the SCB rocks
suggests local equilibrium between the two minerals. Andalusite–staurolite assemblages
developed at T = 520–580 ◦C and P = 0.2–0.4 GPa, during the transition from late D1b to
early D2 stages. This is in contrast with the textural relationships in metamorphic clasts of
the Lower Permian Ponteranica Formation that shows andalusite replacing staurolite [49].

The thermal state obtained by the syn-D1a P-T conditions (Figure 10) was character-
ized by a T/depth ratio of 15–18 ◦C·km−1 and plots between those of warm subduction
zones, plate interior, and continental collision zones [98] and is compatible with tectonic
piling of cold lithospheric sheets during the Variscan convergence, as already suggested
in other portions of the Orobic basement and interpreted as an effect of the Variscan
continental subduction and collision (e.g., PCB, DCZ, TVB [71,72]).

D1b structures developed under P-Tmax conditions indicated a T/depth ratio of
25–30 ◦C·km−1 and suggested a thermal state compatible with that of plate interior [98].
This thermal state is compatible with those of the Variscan continental collision, in agree-
ment with other tectono–metamorphic units in the Southalpine domain (e.g., VVB, MMB,
PCB, and DCZ [25,49,53,59,68,70,71,77]).

Andalusite–staurolite-bearing assemblages developed under T/depth ratio comprised
between 40 and 70 ◦C·km−1 in between late-D1b and early-D2 indicate that a high thermal
state was already effective at the end of the exhumation trajectory of the SCB rocks. The
stratigraphic contact with the Verrucano Lombardo Formation in the area, and with lower
Permian sequences few kilometers north of SCB, makes the greenschist-facies D2 structures
older than Permian ([49,54] and refs. therein). Any relationship with the Permian–Triassic
high thermal state that characterized the DOZ [25,52,73,74] is precluded since the SCB
was already exhumed at that time. The identified high thermal state is thus interpreted
as related to a Variscan late-orogenic thinning, associated with lithospheric delamination.
This interpretation is supported by the predictions of 2D numerical models (Figure 10)
performed for simulating a subduction and collision process, whose convergence rate is set
by paleogeographic constraints on the Variscan belt [99–101].
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Figure 10. Comparison between the P-T path inferred for the SCB rocks (yellow line with arrow),
metamorphic field gradients, and P-T predictions obtained during different stages of a 2D numerical
model of Variscan convergence (subduction/post-collisional stages ([99] and refs. therein). Cross
signs refer to the P-T conditions attained by the SCB rocks during D1a to D2 deformation stages.
Dashed geotherms “Arcs, Ridges”, “Plate Interior”, “Warm Subduction Zones”, and “Cold Sub-
duction Zones” follow [98]. D1a, D1b, and D2 refer to the metamorphic conditions related to the
successive groups of structures in SCB. Ages referred to D1b and D2 are inferred from radiometric
and stratigraphic data ([49,62,102] and refs. therein).

The inferred evolution makes unique this portion of the Southalpine basement with
respect to the other units, where the thermal record of the late-collisional evolution is
instead registered at deeper crustal levels, as testified by sillimanite and/or cordierite
with andalusite [42,44,49,103,104]. This contribution indicates that the high thermal regime
affecting Southalpine basement rocks during pre-Alpine times may also result from late-
Variscan orogenic collapse and not only by Permian–Triassic lithospheric thinning. The
superimposition of such an elevated thermal state in the pre-Alpine basement suggests that
the thermal softening of the continental lithosphere at the end of the Variscan convergence
may have led to the localization of Permian–Triassic weakened zones in the Alpine area.
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